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Abstract
Current methods for obtaining accurate joint loading data lack simplicity, efficiency, and cost-effectiveness. This study aims to 
generate joint loading prediction models using anthropometric parameters and walking speed in overweight or obese females 
with flexible flatfoot. Sixteen participants’ motion capture data from walking trails and anthropometric parameters were col-
lected. The lower limb joint contact forces and the walking speed were calculated via a musculoskeletal model. Regression 
analysis was used to generate the prediction model. The second peak of knee joint contact force revealed a strong negative 
correlation with hip circumference and a weak positive correlation with age (p < 0.001 and adjusted R2 = 0.720). The peak 
ankle joint contact force exhibited a strong positive correlation with walking speed while strong negative correlations with 
waist circumference and lower limb length (p < 0.001 and adjusted R2 = 0.782). The first peak of vertical GRF displayed a 
medium negative correlation with walking speed (p < 0.001 and adjusted R2 = 0.750). Anthropometric parameters and walk-
ing speed are effective predictors of joint loading. This rapid, low-cost estimation method can be applied to areas such as 
flexible flatfoot that require assessment of joint stress, thereby saving costs and time.

Keywords  Anthropometrics · Flexible flatfoot · Kinetics · Regression analysis

1  Introduction

Overweight and obesity are global health issues that are 
associated with greater risks of lower limb musculoskel-
etal disorders [1]. Studies indicate that around 27 to 75% 
of overweight and obese individuals are affected by flatfoot 
[2–4], a foot deformity that is characterized by collapsed foot 
arch and subsequent changes in the lower limb mechanical 

alignment. Females are more prone to developing flatfoot 
than males [5], mainly due to the hormonal influences and 
anatomical features [6–9]. Given the kinetic coupling of 
adjacent body segments during locomotion, flatfoot can 
disrupt the kinetic chain and increase force distribution on 
the lower limb joints [10]. Obesity will further worsen the 
mechanical conduction and force distribution of flatfoot 
patients, as the increased weight-bearing burden on the 
articular surface [11] and dysregulation of joint force caused 
by fat-induced muscle weakness. The coexistence of obesity 
and flatfoot will boost the risk of sequential joint patholo-
gies, such as knee osteoarthritis and ankle instability [6, 7, 
12–14], since excessive joint loading contributes to articular 
wear and degeneration. Some intervention measures have 
been widely used, such as orthopedic insoles or orthopedic 
surgery, to reduce the negative impact of flatfoot on the mus-
culoskeletal system. The first step in diagnosing whether and 
how to intervene in flatfoot in obese women is to assess the 
joint loading accurately.

Previous studies have employed various methodologies, 
such as implanted stress gauge [15–17] and musculoskel-
etal modeling [18], to quantify lower limb joint forces. 
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Despite the existing findings, these approaches possess 
many limitations. Implanted gauge is an invasive method 
that can provide precise measurements of joint loading. 
Yet, it inherits the risk of infection and tissue damage, as 
well as presents ethical dilemmas, particularly when the 
investigation involves fragile groups [19]. On a frequent 
basis, invasive methods also restrict natural joint move-
ment, potentially leading to a gait pattern that underrepre-
sents the actual loading profile [20]. The modeling method 
uses rigid-body simulation and inverse dynamics to derive 
joint forces from body segment kinematics and ground 
reaction forces [21]. Kinematic data is usually acquired 
through motion-tracking techniques, such as marker-based 
motion capture analysis and wearable inertial measurement 
sensors [15–17]. Aside from requiring a time-consuming 
procedure for setup, the modeling methods usually require 
expert knowledge to achieve simulation convergence. In 
addition, the costly computational resource for successful 
kinetics calculation is not generally accessible in a clini-
cian’s practice. Therefore, there is an urgent need for an 
effortless system that can accurately predict joint loadings 
based on simple measures, such as anthropometries and 
walking speed.

Machine learning (ML) has recently emerged as an 
advanced prediction model that revolutionizes the para-
digm of biomechanical research [22], including the route 
of analyzing the human musculoskeletal system [23], 
such as the prediction of continuous joint kinetics based 
on measures of muscle electrophysiology [24] and inertial 
tracking of the body segments [25, 26]. However, these 
advancements are achieved using complex laboratory set-
tings and are derived from asymptomatic individuals. The 
predictability of joint force in groups of obesity and flat-
foot by ML models is unclear. Quantifying the lower limb 
joint forces can provide evidence to indicate the stress 
level of the joints and inform proactive measures for pre-
venting injuries.

In this study, we aimed to develop an ML model, a step-
wise multiple linear regression model, to predict joint loading 
among obese females with flexible flatfoot based on anthro-
pometric metrics and walking speed. Flatfoot is classified 
into two primary types: rigid flatfoot and flexible flatfoot. 
Flexible flatfoot, the most common variant, is characterized 
by a reducible medial longitudinal arch that restores during 
non-weight-bearing conditions [27, 28]. The anthropomet-
ric data was manually measured under the supervision of a 
physical therapist, and the joint loading was derived from gait 
analysis. Our methodology aims to streamline joint loading 
estimation without compromising precision, focusing spe-
cifically on females with obesity and flexible flatfoot. We 
hypothesized that anthropometric parameters and walking 
speed would be reliable predictors for joint loading.

2 � Materials and methods

2.1 � Study cohort

Sixteen participants were recruited in this study. The 
inclusion criteria were as follows: (1) females aged 18–40 
years; (2) BMI ≥ 23 kg/m2 [29]; (3) navicular drop ≥ 10 
mm on one or both sides of feet; and (4) the tiptoe test 
showing a reconstructed medial arch when the subjects 
switched from a standing position to a low weight bear-
ing position (sitting) [28]. The exclusion criteria included 
(1) foot deformities other than flexible flatfoot, damage 
or treatment for flexible flatfoot within the past 6 months, 
such as congenital clubfoot, amputation of the foot, and 
severe diabetic foot; (2) potential diseases that can influ-
ence walking and running ability; and (3) other diseases 
that were not suitable for walking experiments, such as 
high blood pressure. Participants were fully informed of 
this study and signed the informed consent. This study was 
performed in compliance with the declaration of Helsinki 
and approved by the institutional review board (Reference 
No: HSEARS20220318002).

2.2 � Experiment protocol

A commercial foot scanner (IFOOT-USOL, Shenzhen, 
China) [30] was used in this study to measure the heel 
alignment level, shank alignment level, and hallux valgus 
level at a standing position of 50/50 body weight distribu-
tion over the two feet (Fig. 1a). After the foot assessment, 
the body height, body weight, and circumferences of the 
breast, waist, pelvis, and hip were measured according to 
the landmarks of the human body [31–35] (Fig. 1a). The 
foot assessment and the measurement of anthropometric 
parameters were conducted under the supervision of a 
physical therapist. The anthropometric parameters col-
lected in this study were body height, body weight, BMI, 
foot length, lower limb length, heel alignment level, shank 
alignment level, hallux valgus level, hip circumference, 
pelvis circumference, waist circumference, chest circum-
ference, and waist-to-hip ratio.

A motion capture system with eight infrared cameras 
(Vicon Motion System Ltd., Oxford, UK) and six force 
platforms (OR6, AMTI, Watertown, USA) were used to 
obtain body trajectories and ground reaction force (GRF) 
(Fig. 1b). To enable motion capture, a total of 34 reflec-
tive markers were placed on anatomic landmarks [36]: 
the 2nd and 5 th metatarsal heads, the apex of the medial 
and lateral malleolus, shanks, lateral and medial femoral 
epicondyles, thigh, left and right greater trochanters, left 
and right anterior superior iliac spines, left and right iliac 
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crests, the xiphoid process of the sternum, jugular notch, 
the 7 th cervical vertebrae, and the 7 th thoracic vertebra. 
A five-minute warm-up adaptation was conducted before 
the walking experiment. All participants walked at their 
individual’s preferred speed along a 10 m walkway. A 
static calibration trial was collected prior to the walking 
experiment to scale the musculoskeletal model. For each 
participant, five trials were collected in which the entire 
left stance phase was captured within the force plate. The 
marker trajectories and GRF were collected synchronously 
at a frequency of 250 Hz and 2000 Hz, respectively.

2.3 � Calculation of joint forces and the walking 
speed

Marker trajectories and GRF data were processed using a 4 
th-order bidirectional Butterworth low-pass filter with cutoff 
frequencies set at 6 Hz and 50 Hz, respectively. These fil-
tered marker trajectories and GRF data were then input into 
the musculoskeletal modeling software AnyBody (Version 
7.4; AnyBody Technology, Aalborg, Denmark) to compute 
joint forces and walking speed through biomechanical simu-
lations. We used the lower limb musculoskeletal multibody 
model that was well established in previous studies [37] and 
accommodated the fat percentage setting to females. The 
model's computational approach consisted of three steps: 
static optimization, inverse kinematics, and inverse dynam-
ics [36]. In the static optimization stage, the bone geometry 

was scaled, and the locations of virtual markers in the model 
were determined using static trial data. Walking speed was 
calculated through inverse kinematics of the walking trials. 
Inverse dynamics were then executed to compute the joint 
contact forces (Fig. 1c). The joint force was normalized by 
the individual’s body weight.

2.4 � Regression model development

The stepwise multiple regression model was built using 
commercial statistical software (SPSS 27; IBM, Armonk, 
NY): y =

∑n

i=1
kixi + constant (Fig.  2). Where, y is the 

dependent variable, xi and ki are the i-th independent vari-
ables and corresponding coefficient, respectively. Dependent 
variables of the regression model were the first and second 
peak values of vertical GRF and contact forces at the hip, 
knee, patellofemoral, and ankle joints. The anthropometric 
parameters and walking speed were used as the independent 
variables in this study. Normalization was first applied to all 
continuous variables. Multicollinearity among the independ-
ent variables was examined by Pearson correlation analysis 
[38]. For each dependent variable, its linear correlation with 
the independent variables was determined using scatter plots 
[39]. In linear regression analysis, the sample size is at least 
five times the independent variables [40]. The number of 
participants in this study is 16, so each regression model 
in this study can retain at most three dependent variables, 
and the ones with large absolute values of coefficients are 

Fig. 1   The flow chart of this 
study. a Anthropometric param-
eters measurement; b walking 
experiments; c calculation of 
joint forces and the walking 
speed; d regression model 
development
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Fig. 2   The framework flow for 
model development



Medical & Biological Engineering & Computing	

retained first. Independent variables that had a linear cor-
relation efficient ( |r| ≥ 0.1) with the dependent variable 
were analyzed by stepwise multiple linear regression (for-
ward method) with a significance level of p < 0.05. When 
more than one model was generated, the one with the larg-
est adjusted R2 was selected. If there exist highly correlated 
independent variables ( |r| ≥ 0.5) [38, 39, 41] in the generated 
model, the independent variable with large absolute values 
of coefficient was reserved to accurately interpret the influ-
ence of independent variables on the corresponding depend-
ent variable.

3 � Results

3.1 � Pearson correlation analysis 
among independent variables

The detailed results of anthropometric measures and kinematic 
parameters are displayed in Appendix Table 3 and Appendix 
Table 4. All the continuous independent variables showed nor-
mal distributions. The results of the Pearson correlation analy-
sis for independent variables in this study are shown in Fig. 3. 
Age and waist-to-hip ratio were correlated with the lowest 
number of independent variables, which were pelvis circum-
ference and waist circumference. In contrast, body weight was 
significantly correlated with seven other independent variables. 
Waist and pelvis circumference have strong correlations with 
five other independent variables, while chest circumference, 

lower limb length, and foot length have strong correlations 
with three other independent variables. Body height and hip 
circumference have strong correlations with four other inde-
pendent variables, respectively. Walking speed was not cor-
related with any anthropometric parameters.

3.2 � Independent variables for stepwise multiple 
linear regression

Pearson correlation analysis among independent variables 
is displayed in Fig. 4. Table 1 summarizes the independ-
ent variables that were included in stepwise multiple linear 
regression based on the results of the Pearson correlation 
analysis. Table 2 presents the final prediction models derived 
from stepwise multiple linear regression, including regres-
sion coefficients, overall model significance (p), and adjusted 
R2 values quantifying the proportion of variance explained. 
For example, the model predicting the first peak of ankle 
joint contact force (AKF first peak = 11.045 + 2.027 × WS 
− 5.849 × WC − 5.110 × LLL) demonstrated a statistically 
significant association (p = 0.001), accounting for 78.2% of 
the variance in the AKF first peak (adjusted R2 = 0.782). The 
positive coefficient for walking speed (WS: 2.027) suggests 
that faster walking speeds were associated with an increase 
in the AKF first peak. Conversely, the negative coefficients 
for waist circumference (WC: − 5.849) and lower-limb 
length (LLL: − 5.110) indicate that smaller waist circum-
ferences and shorter lower-limb lengths were linked to a 
reduction in the AKF first peak. There were no significant 
predictors of the second peak of the hip contact force and 
patellofemoral contact force. Walking speed was the only 
regressor for the first peak of the knee joint contact force and 
vertical GRF. Two regressors were included in the models to 
predict the peak ankle contact force and the second peak of 
the knee contact force, patellofemoral contact force, and ver-
tical GRF. Three regressors, the chest circumference, body 
height, and walking speed, were required to predict the first 
peak of the hip contact force based on the analysis outcomes.

4 � Discussion

Overweight and obesity impair the functionality of the musculo-
skeletal system, particularly in females with flatfoot. Kinetic data 
can reflect joint loading and indicate the potential mechanism 
behind joint degeneration and arthritis [42]. Understanding joint 
kinetics is essential for conservative treatments of lower limb 
deformities, such as custom insole interventions for flexible flat-
foot. Our study showed that ML models can be used to predict 
joint loading by acquiring anthropometric metrics and walking 
speed. These ML models are based on regression analyses of 
the joint contact forces.

Fig. 3   The results of the Pearson correlation analysis for independ-
ent variables. Abbreviations: AH = alignment level of the heel; 
AS = alignment level of the shank; BH = body height; BW = body 
weight; CC = chest circumference; FL = foot length; HC = hip cir-
cumference; HV = hallux valgus level; LLL = lower limb length; PC 
= pelvis circumference; WC = waist circumference; WHR = waist-to-
hip ratio; WS = walking speed
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Fig. 4   The results of the Pearson correlation analysis for independ-
ent variables and dependent factors. Abbreviations: AH = alignment 
level of the heel; AKF_P = the peak value of ankle joint contact 
force; AS = alignment level of the shank; BH = body height; BW 
= body weight; CC = chest circumference; FL = foot length; HC = hip 
circumference; HPF_P1 = the first peak of hip joint contact force; 
HPF_P2 = the second peak of hip joint contact force; HV = hallux 

valgus level; KNF_P1 = the first peak of knee joint contact force; 
KNF_P2 = the second peak of knee joint contact force; LLL = lower 
limb length; PC = pelvis circumference; VGR_P1 = the first peak of 
vertical ground reaction force; VGR_P2 = the second peak of vertical 
ground reaction force; WC = waist circumference; WHR = waist-to-
hip ratio; WS = walking speed

Table 1   The Pearson correlation 
between dependent variable 
and the chosen independent 
variables among each regression 
model

Abbreviations: AKF, ankle joint contact force; GRF, ground reaction force; HPF, hip joint contact force; 
KNF, knee joint contact force; PFF, patella-femur joint contact force; WS, walking speed

Dependent variables Independent variables

HPF’s first peak Chest circumference (r = 0.52), body height (r = − 0.24), walk-
ing speed (r = 0.39)

KNF’s first peak Walking speed (r = 0.71)
KNF second peak Hip circumference (r = − 0.52), age (r = 0.47)
PFF’s first peak Heel alignment (r = − 0.62), walking speed (r = 0.59)
AKF’s peak Waist circumference (r = − 0.52), lower limb length (r = − 0.45)
GRF’s first peak Walking speed (r = 0.88)
GRF’s second peak Waist circumference (r = − 0.62), chest circumference (r = 0.11)

Table 2   Detailed information of 
the generated prediction models

Abbreviation: AH, alignment level of the heel; AKF, ankle joint contact force; BH, body height; CC, chest 
circumference; HC, hip circumference; HPF, hip joint contact force; KNF, knee joint contact force; LLL, 
lower limb length; PFF, patella-femur joint contact force; VGRF, vertical ground reaction force; WC, waist 
circumference; WS, walking speed

Prediction models p Adjusted R2

HPF first peak = 3.783 + 10.506 × CC – 7.311 × BH + 1.670 × WS 0.001 0.642
KNF first peak =  − 0.145 + 2.074 × WS 0.002 0.474
KNF second peak = 13.033 − 12.274 × HC + 0.074 × age  < 0.001 0.720
PFF first peak = 0.134–0.468 × AH + 1.499 × WS 0.004 0.515
AKF peak = 11.045 + 2.027 × WS − 5.849 × WC − 5.110 × LLL  < 0.001 0.782
VGRF first peak = 0.646 − 0.357 × WS  < 0.001 0.750
VGRF second peak = 1.340 − 0.751 × WC + 0.397 × CC 0.003 0.520
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Although seven regression models were generated that 
represent the specific predictors that could statistically sig-
nificantly predict the outcomes, four of them were reported 
with adjusted R2 below 0.7. According to a previous study 
about the prediction of the kinetics [43], the adjusted R2 
below 0.7 indicates a powerless prediction. Three of those 
linear models showed good ability for the prediction, includ-
ing the second peak value of the knee joint force (p < 0.001, 
adjusted R2 = 0.720), the peak value of the ankle joint force 
(p < 0.001, adjusted R2 = 0.782), and the first peak value of 
the vertical ground reaction force (p < 0.001, adjusted R2 = 
0.750).

The knee contact force is an important indicator of the 
prognosis of knee osteoarthritis on a clinical basis [44]. 
Our findings revealed that the second peak value of knee 
joint force exhibited a strong negative correlation with hip 
circumference and a weak positive correlation with age. 
Although a larger hip circumference is often associated 
with greater body weight, which can lead to increased knee 
joint contact forces [45], among individuals with the same 
body weight, a larger hip circumference may signify stronger 
lower limb and core muscle strength [46]. Stronger muscles 
could better absorb and distribute the forces generated dur-
ing walking, thus reducing the peak forces transmitted to 
the knee joint [46, 47]. Conversely, older adults may experi-
ence higher knee joint forces compared to younger individu-
als with the same body weight and hip circumference, due 
to age-related declines in muscle mass and strength [48]. 
Collectively, these results highlight that, under equiva-
lent body weight conditions, smaller hip circumference (a 
potential marker of reduced muscle strength) and advanced 
age (a proxy for muscle deterioration) are critical risk fac-
tors for elevated knee joint forces and, by extension, knee 
osteoarthritis.

This study demonstrated that the peak ankle joint force 
has a strong positive correlation with walking speed, while 
it has strong negative correlations with waist circumference 
and lower limb length. An increased walking speed is likely 
achieved through increased force output of the calf muscles 
and rectus femoris for forward propulsion [49, 50]. Conse-
quently, an increased calf muscle force contributes to higher 
ankle contact force [51]. In general, a larger waist circum-
ference is likely caused by fat accumulation and is related 
to the anterior and inferior displacement of the mass center 
[52], which can incur a higher plantarflexion force on the 
ankle joint to counterbalance the postural deviation [53]. 
Surprisingly, our research indicates a negative correlation 
between ankle joint contact force and waist circumference. 
A plausible explanation for this finding is that the joint force 
is normalized by body weight in this study. An increase in 
waist circumference is generally indicative of greater fat 
accumulation around the abdominal area. When body weight 
is constant, this suggests a redistribution of mass, possibly 

with less muscle mass in the lower body. Take the eighth 
and fifteenth participants as examples (Appendix Tables 3 
and 4). These two participants have similar body height and 
body weight (also similar lower limb length and hip circum-
ference). However, the eighth participant has a much bigger 
waist circumference (0.84 vs. 0.772 m), which means the 
eighth participant has more weight (fat) distributed in the 
abdomen and less weight (muscle) distributed in the lower 
extremities compared to the fifteenth participant. Since mus-
cle strength is a key factor in generating force, a decrease in 
lower body muscle mass could lead to reduced peak force 
production at the ankle joint [54]. Additionally, individuals 
with longer limbs experience an increase in the moment arm 
length, which can decrease the contractile force required 
from the soleus muscle, thereby optimizing the plantar angle 
of the ankle during the propulsion phase of movement [55, 
56]. Therefore, a diminished peak ankle joint force implies 
that longer limbs might necessitate less muscle force to pro-
duce the same amount of torque around the ankle joint.

The initial peak of the vertical ground reaction force 
exhibited a slight negative correlation with walking speed. 
Previous research indicated that for healthy individuals, the 
first peak value of the vertical joint contact force escalates 
with increasing speed [57]. The discrepancy in these find-
ings could be attributed to the fact that our study's incre-
ment in walking speed may only occur during the propulsion 
phase [49]. This inference is inferred from the association 
between the walking speed and both the peak value of the 
ankle joint contact force and the initial peak of the verti-
cal ground reaction force. Further investigation is needed 
to determine the precise reason for the negative relationship 
between the first peak value of the vertical joint contact force 
and the walking speed.

Several limitations existed in this study. This study used 
a small sample size to estimate the regression coefficients, 
which may have biases, although this avoids the disad-
vantage of overfitting [58]. We try to reduce the bias of 
parameters by reducing the number of explanatory vari-
ables [40]. Still, the limited sample size also limits the 
number of explanatory variables we can use, which com-
promises the accuracy of the model and may cause the 
miss of important explanatory variables. This study only 
involved overweight or obese Asian females with flexible 
flatfoot, which means the findings in this study may not be 
generalizable to other cohorts with different demographi-
cal backgrounds and fitness levels [59], such as females 
with normal feet, as the flatfoot changes the mechanical 
alignment and impair normal gait patterns [8]. Future stud-
ies may consider using a bigger sample size with different 
demographic backgrounds and fitness levels to improve the 
estimation precision and generalizability of the proposed 
method of joint loading prediction based on anthropomet-
ric parameters, walking speed, and regression model.



	 Medical & Biological Engineering & Computing

5 � Conclusion

In this study, we employed anthropometric parameters 
and walking speed to estimate joint contact forces and 
GRFs for overweight and obese females with FFF through 
regression analysis. The second peak of knee joint contact 
force exhibited a strong negative correlation with hip cir-
cumference and a weak positive correlation with age. The 
peak ankle joint contact force showed a strong positive 
correlation with walking speed while strong negative cor-
relations with waist circumference and lower limb length. 
The first peak of vertical GRF displayed a medium nega-
tive correlation with walking speed. Overall, this study 

indicated that anthropometric parameters and walking 
speed can be utilized to estimate joint loading using a 
regression model. This rapid assessment method, which 
is not based on expensive laboratory instruments, can be 
applied to areas such as flexible flatfoot screening and 
diagnosis and treatment that require assessment of joint 
stress, thereby saving considerable costs and time for 
relevant personnel and institutions. Future studies may 
consider applying the method of predicting joint force 
based on anthropometric parameters, walking speed, and 
regression models to more clinical areas and improv-
ing the generalization ability of the prediction model by 
increasing the sample size.

Appendix

Table 3   The results of anthropometric measurements of the participants

Note: A = age, B = BMI, C = body height, D = body weight, E = foot length with standing posture, F = hip circumference, G = waist circumfer-
ence, H = waist-to-hip ratio, I = chest circumference, J = lower limb length, K = pelvis circumference, L = alignment of the heel, M = alignment 
of the shank, N = hallux valgus, WS = walking speed. In the heel and shank alignment, the deformity level is 0 = normal, 1 = mild, 2 = moder-
ate, and 3 = severe. For the hallux valgus: 0 = normal, 1 = mild, 2 = severe. The deformity of the heel and shank includes inversion and eversion. 
Heel angle (degree) and shank angle: mild (< 4◦), moderate (4◦-8◦), and severe (> 8◦). Hallux angle (degree): normal (< 16◦), mild (16◦–30◦), 
severe (> 30◦)

No A (years) B (kg/m2) C (m) D (kg) E (m) F (m) G (m) H (1) I (m) J (m) K (m) L M N WS (m/s)

1 37 23.94 1.595 60.9 0.2397 1.04 0.88 0.8462 0.905 0.828 0.958 2 2 1 1.52
2 34 27.78 1.495 62.1 0.2248 1.013 0.85 0.8391 1.041 0.785 0.975 2 1 0 1.39
3 23 25.11 1.625 66.3 0.2434 1 0.795 0.7950 0.94 0.834 0.94 2 2 0 1.17
4 31 23.09 1.585 58 0.2269 0.95 0.83 0.8737 0.861 0.78 0.895 1 0 0 1.71
5 21 23.95 1.613 62.3 0.2302 0.97 0.85 0.8763 0.95 0.825 0.925 1 1 0 1.12
6 34 25.01 1.507 56.8 0.2376 0.97 0.815 0.8402 0.9 0.78 0.94 3 1 0 1.57
7 39 27.05 1.637 72.5 0.2401 1.108 0.93 0.8394 0.93 0.86 0.99 3 1 0 1.18
8 22 24.02 1.6 61.5 0.2494 0.96 0.84 0.8750 0.885 0.87 0.89 3 0 0 0.93
9 22 26.63 1.635 71.2 0.2446 1.1003 0.88 0.7998 0.97 0.845 0.99 1 1 0 1.52
10 21 24.84 1.54 58.9 0.2382 0.96 0.8 0.8333 0.89 0.792 0.88 3 2 0 1.32
11 40 24.49 1.45 51.5 0.2117 1 0.79 0.7900 0.78 0.767 0.93 3 1 0 1.25
12 18 26.56 1.55 63.8 0.2212 0.99 0.91 0.9192 0.91 0.81 0.925 3 2 1 1.41
13 32 24.23 1.615 63.2 0.2457 0.995 0.86 0.8643 0.93 0.84 1 2 2 0 1.32
14 40 24.42 1.735 73.5 0.2492 1.04 0.945 0.9087 0.96 0.945 1.035 3 0 0 1.8
15 21 24.17 1.595 61.5 0.2408 0.96 0.772 0.8042 0.88 0.874 0.835 1 2 1 1.66
16 27 25.77 1.587 64.9 0.2411 1.065 0.83 0.7793 0.88 0.852 0.88 2 2 0 1.54

Tables 3 and 4.
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