Medical & Biological Engineering & Computing
https://doi.org/10.1007/s11517-025-03378-y

ORIGINAL ARTICLE q

Check for
updates

Predicting joint loading in Asian overweight and obese females
with flexible flatfoot: a regression analysis of anthropometric
parameters and gait dynamics

Linjuan Wei' - Guoxin Zhang' - Tony Lin-Wei Chen'?3 . Yan Wang'*3 . Yinghu Peng* - Ming Zhang'-*3

Received: 5 June 2024 / Accepted: 10 May 2025
© The Author(s) 2025

Abstract

Current methods for obtaining accurate joint loading data lack simplicity, efficiency, and cost-effectiveness. This study aims to
generate joint loading prediction models using anthropometric parameters and walking speed in overweight or obese females
with flexible flatfoot. Sixteen participants’ motion capture data from walking trails and anthropometric parameters were col-
lected. The lower limb joint contact forces and the walking speed were calculated via a musculoskeletal model. Regression
analysis was used to generate the prediction model. The second peak of knee joint contact force revealed a strong negative
correlation with hip circumference and a weak positive correlation with age (p <0.001 and adjusted R*=0.720). The peak
ankle joint contact force exhibited a strong positive correlation with walking speed while strong negative correlations with
waist circumference and lower limb length (p <0.001 and adjusted R>=0.782). The first peak of vertical GRF displayed a
medium negative correlation with walking speed (p <0.001 and adjusted R>=0.750). Anthropometric parameters and walk-
ing speed are effective predictors of joint loading. This rapid, low-cost estimation method can be applied to areas such as

flexible flatfoot that require assessment of joint stress, thereby saving costs and time.
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1 Introduction

Overweight and obesity are global health issues that are
associated with greater risks of lower limb musculoskel-
etal disorders [1]. Studies indicate that around 27 to 75%
of overweight and obese individuals are affected by flatfoot
[2—-4], a foot deformity that is characterized by collapsed foot
arch and subsequent changes in the lower limb mechanical
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alignment. Females are more prone to developing flatfoot
than males [5], mainly due to the hormonal influences and
anatomical features [6-9]. Given the kinetic coupling of
adjacent body segments during locomotion, flatfoot can
disrupt the kinetic chain and increase force distribution on
the lower limb joints [10]. Obesity will further worsen the
mechanical conduction and force distribution of flatfoot
patients, as the increased weight-bearing burden on the
articular surface [11] and dysregulation of joint force caused
by fat-induced muscle weakness. The coexistence of obesity
and flatfoot will boost the risk of sequential joint patholo-
gies, such as knee osteoarthritis and ankle instability [6, 7,
12—14], since excessive joint loading contributes to articular
wear and degeneration. Some intervention measures have
been widely used, such as orthopedic insoles or orthopedic
surgery, to reduce the negative impact of flatfoot on the mus-
culoskeletal system. The first step in diagnosing whether and
how to intervene in flatfoot in obese women is to assess the
joint loading accurately.

Previous studies have employed various methodologies,
such as implanted stress gauge [15—17] and musculoskel-
etal modeling [18], to quantify lower limb joint forces.
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Despite the existing findings, these approaches possess
many limitations. Implanted gauge is an invasive method
that can provide precise measurements of joint loading.
Yet, it inherits the risk of infection and tissue damage, as
well as presents ethical dilemmas, particularly when the
investigation involves fragile groups [19]. On a frequent
basis, invasive methods also restrict natural joint move-
ment, potentially leading to a gait pattern that underrepre-
sents the actual loading profile [20]. The modeling method
uses rigid-body simulation and inverse dynamics to derive
joint forces from body segment kinematics and ground
reaction forces [21]. Kinematic data is usually acquired
through motion-tracking techniques, such as marker-based
motion capture analysis and wearable inertial measurement
sensors [15-17]. Aside from requiring a time-consuming
procedure for setup, the modeling methods usually require
expert knowledge to achieve simulation convergence. In
addition, the costly computational resource for successful
kinetics calculation is not generally accessible in a clini-
cian’s practice. Therefore, there is an urgent need for an
effortless system that can accurately predict joint loadings
based on simple measures, such as anthropometries and
walking speed.

Machine learning (ML) has recently emerged as an
advanced prediction model that revolutionizes the para-
digm of biomechanical research [22], including the route
of analyzing the human musculoskeletal system [23],
such as the prediction of continuous joint kinetics based
on measures of muscle electrophysiology [24] and inertial
tracking of the body segments [25, 26]. However, these
advancements are achieved using complex laboratory set-
tings and are derived from asymptomatic individuals. The
predictability of joint force in groups of obesity and flat-
foot by ML models is unclear. Quantifying the lower limb
joint forces can provide evidence to indicate the stress
level of the joints and inform proactive measures for pre-
venting injuries.

In this study, we aimed to develop an ML model, a step-
wise multiple linear regression model, to predict joint loading
among obese females with flexible flatfoot based on anthro-
pometric metrics and walking speed. Flatfoot is classified
into two primary types: rigid flatfoot and flexible flatfoot.
Flexible flatfoot, the most common variant, is characterized
by a reducible medial longitudinal arch that restores during
non-weight-bearing conditions [27, 28]. The anthropomet-
ric data was manually measured under the supervision of a
physical therapist, and the joint loading was derived from gait
analysis. Our methodology aims to streamline joint loading
estimation without compromising precision, focusing spe-
cifically on females with obesity and flexible flatfoot. We
hypothesized that anthropometric parameters and walking
speed would be reliable predictors for joint loading.

@ Springer

2 Materials and methods
2.1 Study cohort

Sixteen participants were recruited in this study. The
inclusion criteria were as follows: (1) females aged 18-40
years; (2) BMI >23 kg/m?2 [29]; (3) navicular drop > 10
mm on one or both sides of feet; and (4) the tiptoe test
showing a reconstructed medial arch when the subjects
switched from a standing position to a low weight bear-
ing position (sitting) [28]. The exclusion criteria included
(1) foot deformities other than flexible flatfoot, damage
or treatment for flexible flatfoot within the past 6 months,
such as congenital clubfoot, amputation of the foot, and
severe diabetic foot; (2) potential diseases that can influ-
ence walking and running ability; and (3) other diseases
that were not suitable for walking experiments, such as
high blood pressure. Participants were fully informed of
this study and signed the informed consent. This study was
performed in compliance with the declaration of Helsinki
and approved by the institutional review board (Reference
No: HSEARS20220318002).

2.2 Experiment protocol

A commercial foot scanner (IFOOT-USOL, Shenzhen,
China) [30] was used in this study to measure the heel
alignment level, shank alignment level, and hallux valgus
level at a standing position of 50/50 body weight distribu-
tion over the two feet (Fig. 1a). After the foot assessment,
the body height, body weight, and circumferences of the
breast, waist, pelvis, and hip were measured according to
the landmarks of the human body [31-35] (Fig. 1a). The
foot assessment and the measurement of anthropometric
parameters were conducted under the supervision of a
physical therapist. The anthropometric parameters col-
lected in this study were body height, body weight, BMI,
foot length, lower limb length, heel alignment level, shank
alignment level, hallux valgus level, hip circumference,
pelvis circumference, waist circumference, chest circum-
ference, and waist-to-hip ratio.

A motion capture system with eight infrared cameras
(Vicon Motion System Ltd., Oxford, UK) and six force
platforms (OR6, AMTI, Watertown, USA) were used to
obtain body trajectories and ground reaction force (GRF)
(Fig. 1b). To enable motion capture, a total of 34 reflec-
tive markers were placed on anatomic landmarks [36]:
the 2nd and 5 th metatarsal heads, the apex of the medial
and lateral malleolus, shanks, lateral and medial femoral
epicondyles, thigh, left and right greater trochanters, left
and right anterior superior iliac spines, left and right iliac
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crests, the xiphoid process of the sternum, jugular notch,
the 7 th cervical vertebrae, and the 7 th thoracic vertebra.
A five-minute warm-up adaptation was conducted before
the walking experiment. All participants walked at their
individual’s preferred speed along a 10 m walkway. A
static calibration trial was collected prior to the walking
experiment to scale the musculoskeletal model. For each
participant, five trials were collected in which the entire
left stance phase was captured within the force plate. The
marker trajectories and GRF were collected synchronously
at a frequency of 250 Hz and 2000 Hz, respectively.

2.3 Calculation of joint forces and the walking
speed

Marker trajectories and GRF data were processed using a 4
th-order bidirectional Butterworth low-pass filter with cutoff
frequencies set at 6 Hz and 50 Hz, respectively. These fil-
tered marker trajectories and GRF data were then input into
the musculoskeletal modeling software AnyBody (Version
7.4; AnyBody Technology, Aalborg, Denmark) to compute
joint forces and walking speed through biomechanical simu-
lations. We used the lower limb musculoskeletal multibody
model that was well established in previous studies [37] and
accommodated the fat percentage setting to females. The
model's computational approach consisted of three steps:
static optimization, inverse kinematics, and inverse dynam-
ics [36]. In the static optimization stage, the bone geometry
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was scaled, and the locations of virtual markers in the model
were determined using static trial data. Walking speed was
calculated through inverse kinematics of the walking trials.
Inverse dynamics were then executed to compute the joint
contact forces (Fig. 1c). The joint force was normalized by
the individual’s body weight.

2.4 Regression model development

The stepwise multiple regression model was built using
commercial statistical software (SPSS 27; IBM, Armonk,
NY): y= 3" kx; +constant (Fig. 2). Where, y is the
dependent variable, x; and k; are the i-th independent vari-
ables and corresponding coefficient, respectively. Dependent
variables of the regression model were the first and second
peak values of vertical GRF and contact forces at the hip,
knee, patellofemoral, and ankle joints. The anthropometric
parameters and walking speed were used as the independent
variables in this study. Normalization was first applied to all
continuous variables. Multicollinearity among the independ-
ent variables was examined by Pearson correlation analysis
[38]. For each dependent variable, its linear correlation with
the independent variables was determined using scatter plots
[39]. In linear regression analysis, the sample size is at least
five times the independent variables [40]. The number of
participants in this study is 16, so each regression model
in this study can retain at most three dependent variables,
and the ones with large absolute values of coefficients are
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retained first. Independent variables that had a linear cor-
relation efficient (|| > 0.1) with the dependent variable
were analyzed by stepwise multiple linear regression (for-
ward method) with a significance level of p < 0.05. When
more than one model was generated, the one with the larg-
est adjusted R? was selected. If there exist highly correlated
independent variables (7| > 0.5) [38, 39, 41] in the generated
model, the independent variable with large absolute values
of coefficient was reserved to accurately interpret the influ-
ence of independent variables on the corresponding depend-
ent variable.

3 Results

3.1 Pearson correlation analysis
among independent variables

The detailed results of anthropometric measures and kinematic
parameters are displayed in Appendix Table 3 and Appendix
Table 4. All the continuous independent variables showed nor-
mal distributions. The results of the Pearson correlation analy-
sis for independent variables in this study are shown in Fig. 3.
Age and waist-to-hip ratio were correlated with the lowest
number of independent variables, which were pelvis circum-
ference and waist circumference. In contrast, body weight was
significantly correlated with seven other independent variables.
Waist and pelvis circumference have strong correlations with
five other independent variables, while chest circumference,
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Fig.3 The results of the Pearson correlation analysis for independ-
ent variables. Abbreviations: AH =alignment level of the heel;
AS =alignment level of the shank; BH =body height; BW =body
weight; CC =chest circumference; FL. =foot length; HC =hip cir-
cumference; HV =hallux valgus level; LLL =lower limb length; PC
=pelvis circumference; WC = waist circumference; WHR = waist-to-
hip ratio; WS =walking speed

lower limb length, and foot length have strong correlations
with three other independent variables. Body height and hip
circumference have strong correlations with four other inde-
pendent variables, respectively. Walking speed was not cor-
related with any anthropometric parameters.

3.2 Independent variables for stepwise multiple
linear regression

Pearson correlation analysis among independent variables
is displayed in Fig. 4. Table 1 summarizes the independ-
ent variables that were included in stepwise multiple linear
regression based on the results of the Pearson correlation
analysis. Table 2 presents the final prediction models derived
from stepwise multiple linear regression, including regres-
sion coefficients, overall model significance (p), and adjusted
R? values quantifying the proportion of variance explained.
For example, the model predicting the first peak of ankle
joint contact force (AKF first peak =11.045 +2.027 X WS
—5.849 XxWC —5.110 X LLL) demonstrated a statistically
significant association (p = 0.001), accounting for 78.2% of
the variance in the AKF first peak (adjusted R?= 0.782). The
positive coefficient for walking speed (WS: 2.027) suggests
that faster walking speeds were associated with an increase
in the AKF first peak. Conversely, the negative coefficients
for waist circumference (WC: —5.849) and lower-limb
length (LLL: —5.110) indicate that smaller waist circum-
ferences and shorter lower-limb lengths were linked to a
reduction in the AKF first peak. There were no significant
predictors of the second peak of the hip contact force and
patellofemoral contact force. Walking speed was the only
regressor for the first peak of the knee joint contact force and
vertical GRF. Two regressors were included in the models to
predict the peak ankle contact force and the second peak of
the knee contact force, patellofemoral contact force, and ver-
tical GRF. Three regressors, the chest circumference, body
height, and walking speed, were required to predict the first
peak of the hip contact force based on the analysis outcomes.

4 Discussion

Overweight and obesity impair the functionality of the musculo-
skeletal system, particularly in females with flatfoot. Kinetic data
can reflect joint loading and indicate the potential mechanism
behind joint degeneration and arthritis [42]. Understanding joint
kinetics is essential for conservative treatments of lower limb
deformities, such as custom insole interventions for flexible flat-
foot. Our study showed that ML models can be used to predict
joint loading by acquiring anthropometric metrics and walking
speed. These ML models are based on regression analyses of
the joint contact forces.

@ Springer



Medical & Biological Engineering & Computing

Age BMI BH BW FL HC WC
HPF P 024 0&2 -024 -001 -0.09 008 0.15
HPF P2 0.3 009 011 016 030 0.4 -0.05
KNF Pl 023 -0.14 0.0 -0.01 -0.03 0.01 017
KNF P2 047 032 033 @80 015 8 -030
PFF Pl 003 -0.12 018 010 006 023 0.3
PFF P2 021 021 017 029 019 o4 011
AKF p 011 -022 (& B 028 -032 B
GRF Pl 014 -002 027 023 004 023 030
GRF p2 -010 008 -031 025 -0.02 -027

Fig.4 The results of the Pearson correlation analysis for independ-
ent variables and dependent factors. Abbreviations: AH =alignment
level of the heel; AKF_P =the peak value of ankle joint contact
force; AS =alignment level of the shank; BH =body height; BW
=body weight; CC =chest circumference; FL =foot length; HC =hip
circumference; HPF_P1 =the first peak of hip joint contact force;
HPF_P2 =the second peak of hip joint contact force; HV =hallux
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valgus level; KNF_P1 =the first peak of knee joint contact force;
KNF_P2 =the second peak of knee joint contact force; LLL =lower
limb length; PC =pelvis circumference; VGR_P1 =the first peak of
vertical ground reaction force; VGR_P2 =the second peak of vertical
ground reaction force; WC =waist circumference; WHR = waist-to-
hip ratio; WS =walking speed

Table 1 The Pearson correlation

N Dependent variables
between dependent variable

Independent variables

and the chosen independent
variables among each regression
model

HPF’s first peak

KNF’s first peak
KNF second peak
PFF’s first peak
AKF’s peak

GRF’s first peak
GRF’s second peak

Chest circumference (r= 0.52), body height (r= —0.24), walk-
ing speed (r= 0.39)

Walking speed (r=0.71)

Hip circumference (r= —0.52), age (r=0.47)

Heel alignment (r= —0.62), walking speed (r= 0.59)

Waist circumference (r= —0.52), lower limb length (r= —0.45)

Walking speed (r= 0.88)

Waist circumference (r= —0.62), chest circumference (r=0.11)

Abbreviations: AKF, ankle joint contact force; GRF, ground reaction force; HPF, hip joint contact force;
KNF, knee joint contact force; PFF, patella-femur joint contact force; WS, walking speed

Table 2 Detailed information of
the generated prediction models

Prediction models p Adjusted R?
HPF first peak =3.783 4+10.506 X CC — 7.311 xBH +1.670 X WS 0.001 0.642
KNF first peak = — 0.145 +2.074 X WS 0.002 0.474
KNF second peak =13.033 —12.274 X HC +0.074 x age < 0.001 0.720
PFF first peak =0.134-0.468 X AH +1.499 X WS 0.004 0.515
AKF peak =11.045 +2.027 X WS —5.849 xWC —5.110 xLLL < 0.001 0.782
VGREF first peak =0.646 —0.357 X WS < 0.001 0.750
VGREF second peak =1.340 —0.751 Xx WC +0.397 x CC 0.003 0.520

Abbreviation: AH, alignment level of the heel; AKF, ankle joint contact force; BH, body height; CC, chest
circumference; HC, hip circumference; HPF, hip joint contact force; KNF, knee joint contact force; LLL,
lower limb length; PFF, patella-femur joint contact force; VGRF, vertical ground reaction force; WC, waist

circumference; WS, walking speed
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Although seven regression models were generated that
represent the specific predictors that could statistically sig-
nificantly predict the outcomes, four of them were reported
with adjusted R? below 0.7. According to a previous study
about the prediction of the kinetics [43], the adjusted R?
below 0.7 indicates a powerless prediction. Three of those
linear models showed good ability for the prediction, includ-
ing the second peak value of the knee joint force (p < 0.001,
adjusted R*= 0.720), the peak value of the ankle joint force
(» < 0.001, adjusted R*= 0.782), and the first peak value of
the vertical ground reaction force (p < 0.001, adjusted R*>=
0.750).

The knee contact force is an important indicator of the
prognosis of knee osteoarthritis on a clinical basis [44].
Our findings revealed that the second peak value of knee
joint force exhibited a strong negative correlation with hip
circumference and a weak positive correlation with age.
Although a larger hip circumference is often associated
with greater body weight, which can lead to increased knee
joint contact forces [45], among individuals with the same
body weight, a larger hip circumference may signify stronger
lower limb and core muscle strength [46]. Stronger muscles
could better absorb and distribute the forces generated dur-
ing walking, thus reducing the peak forces transmitted to
the knee joint [46, 47]. Conversely, older adults may experi-
ence higher knee joint forces compared to younger individu-
als with the same body weight and hip circumference, due
to age-related declines in muscle mass and strength [48].
Collectively, these results highlight that, under equiva-
lent body weight conditions, smaller hip circumference (a
potential marker of reduced muscle strength) and advanced
age (a proxy for muscle deterioration) are critical risk fac-
tors for elevated knee joint forces and, by extension, knee
osteoarthritis.

This study demonstrated that the peak ankle joint force
has a strong positive correlation with walking speed, while
it has strong negative correlations with waist circumference
and lower limb length. An increased walking speed is likely
achieved through increased force output of the calf muscles
and rectus femoris for forward propulsion [49, 50]. Conse-
quently, an increased calf muscle force contributes to higher
ankle contact force [51]. In general, a larger waist circum-
ference is likely caused by fat accumulation and is related
to the anterior and inferior displacement of the mass center
[52], which can incur a higher plantarflexion force on the
ankle joint to counterbalance the postural deviation [53].
Surprisingly, our research indicates a negative correlation
between ankle joint contact force and waist circumference.
A plausible explanation for this finding is that the joint force
is normalized by body weight in this study. An increase in
waist circumference is generally indicative of greater fat
accumulation around the abdominal area. When body weight
is constant, this suggests a redistribution of mass, possibly

with less muscle mass in the lower body. Take the eighth
and fifteenth participants as examples (Appendix Tables 3
and 4). These two participants have similar body height and
body weight (also similar lower limb length and hip circum-
ference). However, the eighth participant has a much bigger
waist circumference (0.84 vs. 0.772 m), which means the
eighth participant has more weight (fat) distributed in the
abdomen and less weight (muscle) distributed in the lower
extremities compared to the fifteenth participant. Since mus-
cle strength is a key factor in generating force, a decrease in
lower body muscle mass could lead to reduced peak force
production at the ankle joint [54]. Additionally, individuals
with longer limbs experience an increase in the moment arm
length, which can decrease the contractile force required
from the soleus muscle, thereby optimizing the plantar angle
of the ankle during the propulsion phase of movement [55,
56]. Therefore, a diminished peak ankle joint force implies
that longer limbs might necessitate less muscle force to pro-
duce the same amount of torque around the ankle joint.

The initial peak of the vertical ground reaction force
exhibited a slight negative correlation with walking speed.
Previous research indicated that for healthy individuals, the
first peak value of the vertical joint contact force escalates
with increasing speed [57]. The discrepancy in these find-
ings could be attributed to the fact that our study's incre-
ment in walking speed may only occur during the propulsion
phase [49]. This inference is inferred from the association
between the walking speed and both the peak value of the
ankle joint contact force and the initial peak of the verti-
cal ground reaction force. Further investigation is needed
to determine the precise reason for the negative relationship
between the first peak value of the vertical joint contact force
and the walking speed.

Several limitations existed in this study. This study used
a small sample size to estimate the regression coefficients,
which may have biases, although this avoids the disad-
vantage of overfitting [58]. We try to reduce the bias of
parameters by reducing the number of explanatory vari-
ables [40]. Still, the limited sample size also limits the
number of explanatory variables we can use, which com-
promises the accuracy of the model and may cause the
miss of important explanatory variables. This study only
involved overweight or obese Asian females with flexible
flatfoot, which means the findings in this study may not be
generalizable to other cohorts with different demographi-
cal backgrounds and fitness levels [59], such as females
with normal feet, as the flatfoot changes the mechanical
alignment and impair normal gait patterns [8]. Future stud-
ies may consider using a bigger sample size with different
demographic backgrounds and fitness levels to improve the
estimation precision and generalizability of the proposed
method of joint loading prediction based on anthropomet-
ric parameters, walking speed, and regression model.
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5 Conclusion

In this study, we employed anthropometric parameters
and walking speed to estimate joint contact forces and
GRFs for overweight and obese females with FFF through
regression analysis. The second peak of knee joint contact
force exhibited a strong negative correlation with hip cir-
cumference and a weak positive correlation with age. The
peak ankle joint contact force showed a strong positive
correlation with walking speed while strong negative cor-
relations with waist circumference and lower limb length.
The first peak of vertical GRF displayed a medium nega-
tive correlation with walking speed. Overall, this study

Appendix

Table 3 The results of anthropometric measurements of the participants

indicated that anthropometric parameters and walking
speed can be utilized to estimate joint loading using a
regression model. This rapid assessment method, which
is not based on expensive laboratory instruments, can be
applied to areas such as flexible flatfoot screening and
diagnosis and treatment that require assessment of joint
stress, thereby saving considerable costs and time for
relevant personnel and institutions. Future studies may
consider applying the method of predicting joint force
based on anthropometric parameters, walking speed, and
regression models to more clinical areas and improv-
ing the generalization ability of the prediction model by
increasing the sample size.

No A(years) B (kg/mz) C(m) D(kg) E@m) F (m) G@m) H() I(m) J(@m) K@m) L M N WS(m/s)
1 37 23.94 1.595 60.9 0.2397 1.04 0.88 0.8462 0905 0.828 0958 2 2 1 1.52
2 34 27.78 1495 62.1 0.2248 1.013 0.85 0.8391 1.041 0.785 0975 2 1 0 139
3 23 25.11 1.625 66.3 0.2434 1 0.795 0.7950 0.94 0.834 0.94 2 2 0 117
4 31 23.09 1.585 58 0.2269 0.95 0.83 0.8737 0.861 0.78 0895 1 0 0 171
5 21 23.95 1.613 623 0.2302 097 0.85 0.8763  0.95 0.825 0925 1 1 0 112
6 34 25.01 1.507 56.8 0.2376  0.97 0.815 0.8402 0.9 0.78 0.94 3 1 0 157
7 39 27.05 1.637 725 0.2401 1.108 0.93 0.8394 0.93 0.86 0.99 3 1 0 1.18
8 22 24.02 1.6 61.5 0.2494  0.96 0.84 0.8750 0.885 0.87 0.89 30 0 093
9 22 26.63 1.635 712 0.2446  1.1003 0.88 0.7998 0.97 0.845 0.99 1 1 0 152
10 21 24.84 1.54 58.9 0.2382  0.96 0.8 0.8333  0.89 0.792  0.88 32 0 132
11 40 24.49 1.45 51.5 0.2117 1 0.79 0.7900 0.78 0.767 093 3 1 0 125
12 18 26.56 1.55 63.8 0.2212  0.99 0.91 0.9192 091 0.81 0925 3 2 1 141
13 32 24.23 1.615 632 0.2457 0.995 0.86 0.8643  0.93 0.84 1 2 2 0 132
14 40 24.42 1.735 735 0.2492 1.04 0.945 0.9087 0.96 0945 1035 3 0 0 18
15 21 24.17 1.595 615 0.2408 0.96 0.772  0.8042 0.88 0874 0835 1 2 1 1.66
16 27 25.77 1.587 649 0.2411  1.065 0.83 0.7793  0.88 0.852 0.88 2 2 0 154

Note: A= age, B= BMI, C= body height, D= body weight, E= foot length with standing posture, F= hip circumference, G= waist circumfer-
ence, H= waist-to-hip ratio, I= chest circumference, J = lower limb length, K= pelvis circumference, L = alignment of the heel, M = alignment
of the shank, N = hallux valgus, WS =walking speed. In the heel and shank alignment, the deformity level is 0= normal, 1 = mild, 2= moder-
ate, and 3 = severe. For the hallux valgus: 0= normal, 1 = mild, 2 = severe. The deformity of the heel and shank includes inversion and eversion.
Heel angle (degree) and shank angle: mild (< 4°), moderate (4°-8°), and severe (> 8°). Hallux angle (degree): normal (< 16°), mild (16°-30°),

severe (> 307)

@ Springer
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Table 4 Kinematic parameters calculated by Anybody musculoskeletal model (N/kg)

No  HPF first HPF second  KNF first KNF second  PFF first PFF second  AKF Peak (BW)  GREF first GRF second
peak (BW) peak (BW) peak (BW)  peak (BW) peak (BW) peak (BW) peak (BW)  peak (BW)
1 5.13 3.17 4.25 2.92 2.53 1.13 4.71 1.27 1.05
2 6.29 3.83 3.24 3.60 0.92 0.44 4.93 1.18 1.15
3 3.92 3.55 2.09 2.58 0.46 0.71 4.01 1.06 1.11
4 4.00 3.45 3.82 3.37 2.65 0.81 5.63 1.29 1.05
5 3.29 2.20 2.29 2.12 0.82 0.65 4.00 1.06 1.03
6 5.18 3.69 2.62 4.02 0.80 0.56 5.35 1.11 1.07
7 3.55 2.77 241 243 0.88 0.42 3.83 1.04 1.00
8 3.55 3.59 1.68 2.83 0.28 0.52 3.54 0.99 1.04
9 3.90 4.75 2.35 0.61 2.74 4.90 4.90 1.27 1.04
10 3.49 3.14 2.60 2.71 1.11 0.85 5.33 1.09 1.13
11 3.14 3.37 1.82 3.17 0.44 0.65 5.17 1.05 1.07
12 4.51 2.58 2.89 2.26 1.01 0.27 4.13 1.17 1.01
13 3.71 3.34 2.79 3.17 1.06 0.45 4.85 1.10 1.02
14 4.25 393 3.05 3.27 0.89 0.39 4.28 1.28 1.07
15 391 3.63 3.32 3.44 1.58 0.40 5.73 1.19 1.13
16 4.25 2.56 2.95 2.58 1.17 0.30 4.46 1.18 1.08

Abbreviation: AKF, ankle joint contact force; GRF, ground reaction force; HPF, hip joint contact force; KNF, knee joint contact force; PFF,

patella-femur joint contact force
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