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Abstract—Reconfigurable intelligent surface (RIS) has recently
emerged as a promising solution to significantly enhance the
security of wireless communication systems. By combining the
advantages of the conventional fully-active and fully-passive RISs,
a novel hybrid active-passive RIS has been anticipated to achieve
the excellent communication performance at a low cost. In this
paper, we aim to maximize the secrecy rate in a hybrid active-
passive RIS assisted multi-input single-output multi-antenna Eve
(MISOME) system, where both fixed and dynamic hybrid RIS
architectures are considered. To tackle this intractable problem,
we jointly optimize the transmit covariance matrix at the base
station (BS), the reflection matrices of active and passive sub-
RISs, as well as the element allocation matrix for the dynamic
hybrid RIS. Specifically, we firstly explore the rank-1 structure
of the optimal BS transmit covariance matrix. Then, for the fixed
hybrid RIS, we develop an efficient two-loop successive convex ap-
proximation (SCA) based iterative algorithm, where the optimal
semi-closed-form solution to each subproblem can be obtained.
For the dynamic RIS, this proposed algorithm is still applicable
by relaxing the binary active/passive elements allocation variables
into exponent-based continuous ones. Simulation results validate
the superior secrecy performance of the proposed designs over
the existing fully-active and fully-passive RIS designs. Moreover,
it is demonstrated that the dynamic hybrid RIS is able to strike
a good balance between the passive beamforming gain and the
power amplification gain to adapt to the varying propagation
environment.

Index Terms—Fixed and dynamic hybrid active-passive RISs,
secrecy rate, MISOME system, two-loop SCA based iterative
algorithm, power amplification gain.

I. INTRODUCTION

Driven by the rapidly growing demands for high-speed data
transmission and low-latency communication, security is of
paramount importance in the next-generation wireless commu-
nication systems [1], [2]. However, due to the broadcast nature
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of wireless propagation channels, the transmitted confidential
signals are susceptible to the information leakage [3]. In recent
years, physical layer security (PLS) has become a promising
candidate to enable secure communications, which originates
from Shannon’s information theory. By exploiting the inherent
properties of wireless channels, various PLS techniques have
been proposed to reduce the information leakage, and thus
enhance system secrecy rate. There have been two widely
adopted PLS techniques in current systems, i.e., the so-called
artificial noise (AN) and cooperative beamforming, which are
respectively applied to disrupt eavesdroppers and strengthen
the signal reception at the legitimate user, thereby both enhanc-
ing the system security [4], [5]. Nevertheless, the former tech-
nique generally requires additional power allocation between
the transmit signal and AN at the transmitter. Moreover, the
implementation of cooperative beamforming relies on the col-
laboration among multiple nodes, which inevitably increases
burden to the system deployment [6]. Thus, a cost-effective
and energy-efficient approach to enhance system security is in
urgent need.

Reconfigurable intelligent surface (RIS), which is known
as a cost-effective technique, has emerged as a promising
solution to conquer these dilemmas. The signals reflected by
the RIS can be either combined with the signals from the
direct path constructively at the legitimate user to increase
the received signal power or combined destructively at the
Eve to suppress the information leakage, thus enhancing the
secrecy rate. Different from the traditional relay equipped
with energy-intensive radio frequency (RF) chains, RIS is
in essence a metamaterial-based planar array consisting of
abundant low-cost tunable elements and is able to adjust the
phases and amplitudes of the incident signals via a smart
controller, thereby reshaping the electromagnetic propagation
environment [7]. More importantly, the deployment of RIS
is able to provide additional optimization degrees of freedom
(DoFs) for improving system performance. Inspired by these
remarkable advantages of RIS, there have been a steady
stream of works focusing on RIS assisted secure sensing and
communications. For example, the authors of [8] leveraged
RIS to prevent passive sensing by malicious devices. The
authors of [9] further developed a RIS aided electromagnetic
stealth system to evade radar sensing.

From the perspective of secure communications, the inte-
gration of RIS and PLS techniques has attracted a widespread
research attention. It is worth noting that most existing works
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Fig. 1. Two types of hybrid active-passive RIS architectures.

focused on fully-passive RIS assisted communication sys-
tems, such as multi-input single-output single-antenna Eve
(MISOSE) [10], [11], multi-input single-output multi-antenna
Eve (MISOME) [12] and multi-input multiple-output multi-
antenna Eve (MIMOME) systems [13]. Although the fully-
passive RIS has a low-cost advantage, it usually suffers
from severe multiplicative path loss when not deployed in
close proximity to the transmitter/receiver, resulting in non-
negligible performance degradation. To address this challenge,
extensive research works are further extended to the fully-
active RIS assisted communication systems [14]. Compared
with the fully-passive RIS, the fully-active RIS additionally
integrates a low-power reflection-type amplifier into each
reflecting element, which can amplify the incident signals and
effectively combat the multiplicative path loss [15]. In [16],
the authors investigated the secrecy rate maximization (SRM)
problem by jointly optimizing the transmit beamforming ma-
trix at the base station (BS), along with phase shifts and
amplitudes of RIS elements in the fully-active RIS assisted
secure system. However, the hardware overheads and power
consumption of the fully-active RIS is much higher than those
of the fully-passive RIS. Therefore, the fully-active and fully-
passive RISs have complementary advantages in terms of
performance improvement and energy consumption [17]. By
combining their advantages, a hybrid active-passive RIS has
been proposed, whose architecture is shown in Fig. 1(a). The
hybrid RIS leverages its active and passive elements to achieve
both amplification and reflection capabilities. As compared
to the traditional relay technique, the hybrid RIS eliminates
the need for costly and energy-intensive RF chains, reduces
the signal processing complexity and also mitigates severe
self-interference. Therefore, the hybrid RIS is anticipated to
strike a good balance between system performance and energy
consumption.

Recently, the hybrid active-passive RIS has become a re-
search hotspot and been integrated into many scenarios, such
as the multi-input multi-output (MIMO) system [18], the
integrated sensing and communication (ISAC) system [19],
and the Terahertz (THz) communication system [20]. How-
ever, all the aforementioned works aimed at the fixed hybrid
RIS, i.e., the numbers and positions of active and passive
elements are fixed. Obviously, the fixed hybrid RIS has limited
flexibility in optimizing the reflection matrix, and potentially
leads to performance degradation. Therefore, a dynamic hybrid
active-passive RIS has been proposed. As shown in Fig. 1(b),
each element of the dynamic hybrid RIS can be switched
adaptively to active or passive mode according to the realistic

propagation environments. Compared with the fixed hybrid
RIS in Fig. 1(a), this dynamic architecture provides more
spatial DoFs to enhance system performance by allowing
the dynamic allocation between active and passive elements,
which means that both the numbers and positions of active
and passive elements can be optimized. However, the dynamic
active/passive elements allocation is quite challenging to solve
due to its discrete and nonconvex nature [21]. Currently, most
existing works on the dynamic hybrid RIS devote efforts to
improving system spectral/energy efficiency. For example, the
authors of [22] and [23] respectively investigated the ergodic
capacity maximization and energy efficiency maximization
problems for the dynamic hybrid RIS assisted communication
systems, where the optimal numbers of active and passive
elements were studied. In contrast, the authors of [24] fo-
cused on determining the optimal positions of active/passive
elements given their corresponding numbers. To explore the
performance potential of the dynamic hybrid RIS, Xie et al.
jointly optimized the BS transmit beamforming vector, the
RIS reflection coefficients and the element allocation matrix
by utilizing the continuous relaxation and successive convex
approximation (SCA) methods [25].

To our best knowledge, there have been a few research
works that study the integration of hybrid RIS and PLS
techniques. Ma et al. employed the semidefinite relaxation
(SDR) and particle swarm optimization (PSO) algorithms to
tackle a SRM problem in the downlink MISOSE communi-
cation system in the presence of a malicious multi-antenna
jammer [26]. Similarly, the authors of [27] and [28] aimed at
improving the secrecy capacity by jointly optimizing the BS
transmit beamforming vector and the hybrid RIS reflection
matrix in MIMOME systems. Nevertheless, the works in [26]
and [27] did not explore the inherent structure of the cor-
responding optimization problem to reduce its computational
complexity, and [28] neglected the eavesdropping channel
from the BS to the Eve via the hybrid RIS. Moreover, all
proposed algorithms in [26], [27] and [28] aimed at the fixed
hybrid RIS, which cannot be directly extended to the dynamic
hybrid RIS case. Motivated by the above facts, in this paper,
we aim to investigate a hybrid active-passive RIS assisted
downlink secure MISOME system, where both fixed and
dynamic hybrid RIS architectures are considered. Specifically,
we jointly optimize the transmit covariance matrix at the BS,
the hybrid RIS reflection matrix and the element allocation
matrix for the dynamic hybrid RIS to maximize the secrecy
rate, subject to both the transmit power budget at the BS and
the amplification power budget at the hybrid RIS. The main
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contributions of this work are summarized as follows.

• Firstly, in order to cope with the NP-hard SRM problems
for fixed and dynamic hybrid RIS empowered secure
communication systems, we validate the rank-1 property
of the optimal BS transmit covariance matrix, based on
which the original optimization problem can be equiv-
alently simplified as a tractable fractional programming
(FP) problem. Then, we propose a two-loop SCA-based
iterative algorithm to jointly optimize the BS transmit
beamforming vector , the reflection matrices of active and
passive sub-RISs, as well as the element allocation matrix
for the dynamic hybrid RIS.

• Secondly, for the fixed hybrid RIS, the optimal BS
transmit beamforming vector can be derived depending
on the tightness of the double power constraints at the
optimum. Furthermore, we jointly apply the Dinkelbach’s
method and the SCA technique to convert the nonconvex
FP problem into a tractable one, based on which the
optimal semi-closed-form solutions of reflection matrices
of active and passive sub-RISs are available through the
Lagrangian dual theory and the first-order Taylor’s series
approximation, respectively.

• Finally, in order to solve the mixed-integer programming
problem for the dynamic hybrid RIS, we firstly utilize
an exponent-based continuous relaxation method to relax
it into a continuous one, where the relaxation becomes
tighter with the increasing exponent. As such, the pro-
posed two-loop SCA-based iterative algorithm is still
applicable. Numerical results demonstrate the superior
secrecy performance of our proposed algorithms for both
fixed and dynamic hybrid RISs. Particularly, the dynamic
hybrid RIS is able to strike a flexible trade-off between
the beamforming gain and the power amplification gain
by adjusting the active/passive elements allocation.

Notations: Vectors and matrices are denoted by boldface
lowercase letters and boldface uppercase letters, respectively.
R+ and HN+ denote the sets containing all nonnegative real
numbers and all Hermitian positive semidefinite matrices of
size N × N , respectively. CN1×N2 denotes the space of
N1 ×N2 complex-valued matrices. CN (0, I) denotes the dis-
tribution of circularly symmetric complex Gaussian (CSCG)
with zero mean and unit covariance matrix I. Tr(A), rank(A)
and det(A) denote the trace, rank and determinant of the
matrix A, respectively. IN represents an identity matrix of
size N × N . The operator vecd (A) denotes stacking the
diagonal entries of A into a vector. diag(a) and diag(A)
represent two diagonal matrices with diagonal elements being
the elements of a and being those of A, respectively. [a]n
denotes the n-th element of the vector a, while [Ω]m,n
denotes the (m,n)-th entry of the matrix Ω. u(A,B) denotes
the normalized dominant eigenvector of the matrix pencil
(A,B). |a| denotes the amplitude vector and ∠a represents
the phase vector. (·)∗, (·)T and (·)H represent the conjugate,
transpose and conjugate transpose of a vector or a matrix,
respectively. ∥a∥2 denotes the 2-norm for the vector a and
∥A∥F denotes the Frobenius norm of the matrix A. ⊗ and ⊙
denote the Kronecker and Hadamard product of two matrices,
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Fig. 2. A hybrid RIS assisted downlink secure communication system.

respectively. ℜ(·) operates on a complex value and returns
its real part. The phrase “with respect to” is abbreviated as
“w.r.t.”.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As illustrated in Fig. 2, we consider a hybrid RIS-
empowered secure downlink communication system, where
the BS equipped with Nt antennas sends confidential infor-
mation to a single-antenna legitimate user with the aid of a
hybrid RIS composed of M reflecting elements denoted by the
set M = {1, · · · ,M}. Meanwhile, an Eve equipped with Ne
antennas attempts to intercept the transmitted downlink signal
from the BS. The hybrid RIS is assumed to be composed
of Ma active and Mp passive elements, satisfying M =
Ma +Mp, and operate in a full-duplex mode. To be specific,
its involved active elements denoted by the set A ⊂ M are
able to simultaneously amplify and reflect the incident signals
through reflection amplifiers and phase shifters, and thus
suffer from non-negligible amplification noise. In contrast, its
involved passive elements implemented by PIN diodes without
RF components are usually free of thermal noise and intend
to tune the phase shifts of incident signals. We define the
reflection matrix of the hybrid RIS as a diagonal matrix, i.e.,
Ψ = diag(ψ1, ψ2, · · · , ψM ), where ψm,∀m ∈ M denotes
the reflecting coefficient of the mth hybrid RIS element and
is modeled as

ψm =

{
ame

jθm , if m ∈ A
ejθm , otherwise

, (1)

where am denotes the amplitude of the mth hybrid RIS
reflecting element if it is active, and θm denotes the phase
shift of the mth hybrid RIS reflecting element no matter it is
active or passive. Inspired by (1), we consider decomposing Ψ
into the following two separate diagonal matrices Ψa and Ψp,
which represent the reflection matrices of the active sub-RIS
and the passive sub-RIS, respectively, i.e.,

Ψ = diag(1A
M)Ψ︸ ︷︷ ︸

Ψa

+
(
IM − diag(1A

M)
)
Ψ︸ ︷︷ ︸

Ψp

, (2)

where 1A
M denotes an M -dimensional vector whose non-zero

elements are all one and their indexes are determined by the
set A. It follows from (2) that the hybrid RIS reduces to
the fully-passive (fully-active) RIS when A = ∅ (A = M).
Denote by HBR ∈ CM×Nt , hHBU ∈ C1×Nt (HBE ∈ CNe×Nt ),
and hHRU ∈ C1×M (HRE ∈ CNe×M ) the baseband equivalent
channels from the BS to the RIS, from the BS to the legitimate
user (Eve), and from the RIS to the legitimate user (Eve),
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respectively, which are all assumed to be quasi-static flat-
fading and remain constant over the whole transmission block.
We also suppose that the global CSI of the whole system is
perfectly available at the BS for the sake of characterizing the
system performance limit [29].

Let x ∈ CNt×1 denote the transmitted signal vector at the
BS, and thus the transmit covariance matrix is defined as Q =
E[xxH ] ∈ CNt×Nt . Moreover, we consider a total transmit
power constraint at the BS, i.e., Tr(Q) ≤ Pt with Pt being
the maximum transmit power budget. Then, the signal reflected
by the hybrid RIS can be expressed as

yRIS = ΨHBRx+Ψanr, (3)

where nr ∼ CN (0, σ2
rIM ) models both thermal noise and

self-interference induced by the amplification operation at M
potential active elements, with σ2

r denoting the average noise
power. Let us define the maximum amplification power at the
hybrid RIS as Pr, and then we have

Tr(Ψa(HBRQHH
BR + σ2

rIM )ΨH
a ) +MaPdc ≤ Pr, (4)

where Pdc is the DC power required to drive each active ele-
ment [30]. The signals reflected by the hybrid RIS more than
once are negligible due to the large path loss. Consequently,
the received signals at the legitimate user and the Eve are
respectively written as

yu = (hHBU + hHRUΨHBR)x+ hHRUΨanr + nu,

ye = (HBE +HREΨHBR)x+HREΨanr + ne, (5)

where nu ∼ CN (0, σ2
u) and ne ∼ CN (0, σ2

eINe
) denote the

additive white Gaussian noise (AWGN) at the legitimate user
and the Eve, respectively. Based on (5), the secrecy rate of the
considered hybrid RIS empowered system is derived as [31]

Rs(Q,Ψa,Ψp) = [Ru −Re]
+, (6)

where [a]+ = max{a, 0}, and Ru and Re are respectively
given as

Ru=log2
(
1+(hHBU+h

H
RUΨHBR)Q(hBU+H

H
BRΨ

HhRU)K
−1
Ψa

)
,

Re=log2det
(
INe+(HBE+HREΨHBR)Q

× (HBE+HREΨHBR)
HR−1

Ψa

)
, (7)

where KΨa
= σ2

rh
H
RUΨaΨa

HhRU + σ2
u and RΨa

=
σ2
rHREΨaΨa

HHH
RE + σ2

eINe . From an information theoret-
ical perspective, the legitimate user can obtain confidential
information from the BS at the rate of Rs(Q,Ψa,Ψp),
whereas the Eve almost cannot retrieve any useful information
from its received signal.

B. Problem Formulation

In this paper, we aim to jointly optimize the BS transmit
covariance matrix Q, the active sub-RIS reflection matrix Ψa

and the passive sub-RIS reflection matrix Ψp at the hybrid RIS
to maximize the secrecy rate Rs(Q,Ψa,Ψp) of the considered
system, which is mathematically formulated as

max
Q⪰0,Ψa,Ψp

Rs(Q,Ψa,Ψp) (8a)

s.t. Tr(Q) ≤ Pt, (8b)

Tr
(
Ψa(HBRQHH

BR+σ
2
rIM )ΨH

a

)
+MaPdc≤Pr, (8c)

|[Ψp]m,m| = 1, ∀m ∈ M \A, (8d)

where (8b) and (8c) respectively represent the transmit power
constraints at the BS and the hybrid RIS, and (8d) denotes
the unit-modulus constraints imposed on the passive sub-
RIS. Obviously, problem (8) is nonconvex and challenging
to solve due to the following reasons. Firstly, the optimization
variables Q, Ψa and Ψp are nonlinearly coupled in both the
objective function (8a) and the constraint (8c). Secondly, the
nonconvex unit-modulus constraint (8d) renders problem (8)
more complicated. In the following section, we firstly explore
the inherent characteristics of the optimal solutions with the
aid of an upper-bound approximation, based on which problem
(8) is greatly simplified and becomes much easier to handle.
Then, an efficient two-loop AO algorithm is proposed to obtain
a high-quality suboptimal solution to problem (8).

III. JOINT TRANSMIT BEAMFORMING AND FIXED HYBRID
RIS OPTIMIZATION

In this section, the SRM problem (8) can be equivalently
converted into a more tractable problem by exploring the
inherent characteristics of the optimal solutions. Then, we
develop an AO algorithm to jointly optimize the BS transmit
covariance matrix Q, the active sub-RIS reflection matrix Ψa

and the passive sub-RIS reflection matrix Ψp under the fixed
allocation between active and passive elements at the hybrid
RIS.

A. Equivalent Transformation

To tackle the nonconvex objective function of problem (8),
we firstly apply the determinant inequality det(I+A) ≥ 1 +
Tr(A) for any A ⪰ 0, where the equality holds if and only
if rank(A) = 1, to provide an upper-bound approximation of
problem (8) as follows.

max
Q⪰0,Ψa,Ψp

1 + Tr(QAΨ)

1 + Tr(QBΨ)
s.t. (8b) ∼ (8d), (9)

where AΨ = K−1
Ψa

(hBU+HH
BRΨ

HhRU)(h
H
BU+hHRUΨHBR)

with rank(AΨ) = 1 and BΨ = (HBE +
HREΨHBR)

HR−1
Ψa

(HBE + HREΨHBR). Although the
approximated fractional problem (9) is still nonconvex on
{Q,Ψa,Ψp}, we readily find that problem (9) with any
given {Ψa,Ψp} is quasi-linear on Q, whose globally optimal
solution is usually available by using the general quasi-convex
optimization techniques such as the golden section search and
the bisection method [32], [33]. However, such methods are
usually very complex and cannot provide any useful insights
into the optimal solutions. In order to address these issues,
we further explore the inherent characteristics of the optimal
solution to problem (9).

Proposition 1. The optimal Q⋆ to problem (9) satisfies
rank(Q⋆)=1, which implies that problem (9) is actually a tight
relaxation of the original SRM problem (8).

Proof. Please see Appendix A.

According to Proposition 1, we can equivalently reexpress
the optimal rank-one transmit covariance matrix as Q = qqH ,
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where q denotes the transmit beamforming vector for guar-
anteeing rank(Q) = 1. Then, by substituting the rank-one
solution into the relaxed SRM problem (9), we can obtain

max
q,Ψa,Ψp

1 + qHAΨq

1 + qHBΨq
(10a)

s.t. (8d), qHq ≤ Pt, (10b)

Tr
(
Ψa(HBRqq

HHH
BR+σ

2
rIM)Ψ

H
a

)
+MaPdc≤Pr. (10c)

Thus, we have equivalently simplified the original SRM
problem (8) into a constrained fractional quadratic problem
(CFQP). However, problem (10) is still nonconvex due to the
strongly coupled variables {q,Ψa,Ψp} and the unit-modulus
constraint (8d). Hence, we develop an AO algorithm to find
a high-quality suboptimal solution to problem (10). Further-
more, by exploring the inherent characteristics of problem
(10), we have the following lemma.

Lemma 1. There is at least one power constraint (i.e., (10b)
or (10c)) being active at the optimum of problem (10).

Proof. Please see Appendix B.

It is worth noting that Lemma 1 can be leveraged to further
simplify the optimization of q, as elaborated in the following
section.
B. Optimization of Transmit Beamforming Vector

With any given Ψa and Ψp, the subproblem of optimizing
q is expressed as

max
q

1 + qHAΨq

1 + qHBΨq
s.t. (10b), (10c). (11)

It is well-known that problem (11) can be well addressed by
jointly leveraging Charnes-Cooper transformation and SDR
method. However, such methods are usually very complex and
cannot provide any useful insights. By recalling Lemma 1, at
least one power constraint is active at the optimum of problem
(11). Hence, we can gain more insights into the optimal
solution of q, depending on the tightness of the constraints
(10b) and (10c), which is detailed in the following proposition.

Proposition 2. The optimal q⋆ to problem (11) can be
summarized as the following three cases: tight (10b) and loose
(10c), tight (10c) and loose (10b), as well as tight (10b) and
(10c). Specifically, considering only one tight constraint, the
optimal closed-form q⋆ is obtained as

q⋆=

{√
Ptu(INt

+PtAΨ, INt
+PtBΨ), tight (10b),loose (10c)√

Pcu(CΨ+PqAΨ,CΨ+PqBΨ),tight (10c),loose (10b),

(12)

where CΨ = HH
BRΨ

H
a ΨaHBR, Pq = Pr − MaPdc −

σ2
rTr(ΨaΨ

H
a ) and Pc = Pq

/(
uH(CΨ + PqAΨ,CΨ +

PqBΨ)CΨu(CΨ + PqAΨ,CΨ + PqBΨ)
)
. Whereas for the

case of both tight constraints (10b) and (10c), the optimal q⋆

can be obtained by recalling Q = qqH and then solving the
following semidefinite programming (SDP) problem [34].

max
Q̃⪰0

Tr(Q̃H(INt
+ PtAΨ)) (13a)

s.t. Tr(Q̃H(INt + PtBΨ)) = 1, (13b)

Tr(Q̃H(PtCΨ − PqINt
)) = 0. (13c)

Accordingly, the optimal q⋆ is given by q⋆ =

√
Ptλ̄q

Tr(Q̃⋆)
υq,

where υq is the normalized eigenvector associated with the
maximum eigenvalue λ̄q of the matrix Q̃⋆.

Proof. Please see Appendix C.

It is worth noting that the optimal q⋆ to problem (11) with
any fixed Ψa, Ψp has been summarized in Proposition 2.
Next, we turn our attention towards deriving the optimal active
sub-RIS reflection matrix Ψa and the optimal passive sub-RIS
reflection matrix Ψp to problem (10).

C. Optimization of Reflection Matrices of Active and Passive
Sub-RISs

In this subsection, we consider the optimization of Ψa and
Ψp with the obtained q. To be specific, the subproblem of
jointly optimizing Ψa and Ψp is expressed as

max
Ψa,Ψp

1 +K−1
Ψa

|c+ hHRUΨHBRq|2

1 + (a+HREΨHBRq)HR−1
Ψa

(a+HREΨHBRq)

s.t. (8d), (10c), (14)

where c = hHBUq and a = HBEq. Inspired by the diagonal
structure of the reflection matrices Ψa and Ψp, we introduce
two novel variables ψa = vecd(Ψa) and ψp = vecd(Ψp) to
reformulate problem (14) as

max
ψa,ψp

1 +K−1
Ψa

|c∗ +ψHb|2

1 + (a+Gψ)HR−1
Ψa

(a+Gψ)
(15a)

s.t. ψHa ΩBRψa ≤ Pr −MaPdc, (15b)
|[ψp]m| = 1, ∀m = 1, · · · ,Mp, (15c)

where ψ = ψa + ψp, ΩBR = diag(HBRQHH
BR + σ2

rIM ),
b = diag(qHHH

BR)hRU and G = HREdiag(HBRq). Owing
to the nonconvex fractional objective function (15a) and the
unit-modulus constraint (15c), problem (15) is still nonconvex
and challenging to solve. To effectively tackle this problem,
we propose to jointly optimize ψa and ψp by applying
the Dinkelbach’s method and the SCA technique, which is
elaborated in the following section.

D. Proposed Method to Solve Problem (15)

In order to obtain the optimal solutions to problem (15), we
firstly consider employing the Dinkelbach’s method to trans-
form its fractional objective function (15a) into the following
equivalent function in a parametric subtractive form.

F (γ,ψa,ψp) = 1 +K−1
Ψa

|c∗ +ψHb|2

− γ
(
1 + (a+Gψ)HR−1

Ψa
(a+Gψ)

)
, (16)

where γ is the introduced auxiliary variable. It’s readily
inferred that the function (16) is still jointly nonconcave on ψa

and ψp. Therefore, we consider applying the SCA technique
to find a locally tight lower bound of F (ψa,ψp, γ), as shown
at the bottom of the next page, where the superscript (tout)
denotes the index of the outer iterations and λ̄G denotes the
maximum eigenvalue of the matrix GHG. Other auxiliary
parameters are defined as

ARE = G− σ−2
e HREdiag(m

(tout)),ΩRU = diag(hRUh
H
RU),
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p
(tout)
1 = σ−2

e (λ̄GIM −GHG)ψ(tout)
p − σ−2

e GHa,

w(tout) = (c+ bHψ(tout))(K
(tout)
Ψa

)−1,

c
(tout)
1 =2ℜ{w(tout)c∗}−|w(tout)|2σ2

u+1,

c
(tout)
2 =−σ−2

e λ̄GMp−σ−2
e (ψ(tout)

p )H(λ̄GIM−GHG)ψ(tout)
p ,

m(tout) =
(
σ−2
r IM+σ−2

e (Ψ(tout)
a )HHH

REHREΨ
(tout)
a

)−1

× (Ψ(tout)
a )HHH

RE(a+Gψ(tout)). (18)

The equality (a) in (17) holds due to the Woodbury
equality (A + UCV)−1 = A−1 − A−1U(C−1 +
VA−1U)−1VA−1, while (b) holds due to
Tr(XHY−1X) ≥ 2ℜ

{
Tr

(
(X(tout))H(Y(tout))−1X

)}
−

Tr
(
(Y(tout))−1X(tout)(X(tout))H(Y(tout))−1Y

)
[35].

Moreover, the inequality (c) holds based on the
first-order Taylor series expansion of the function
ψHp (λ̄GIM −GHG)ψp at the local point ψ(tout)

p .
Then, with any given ψa and γ, we can readily observe

from (17c) that the optimal closed-form ψp is given by

ψ⋆p = ej∠(γp
(tout)
1 −γσ−2

e GHAREψa+w
(tout)b). (19)

Substituting the optimal ψ⋆p into (17c) further yields

F̃ (γ,ψa,ψ
⋆
p)=−ψHa (γσ−2

e AH
REARE+|w(tout)|2σ2

rΩRU)ψa

+2
∑

m∈M\A

∣∣γσ−2
e [GHARE]m,:ψa−[γp

(tout)
1 +w(tout)b]m

∣∣
−2γσ−2

e ℜ{ψHa AH
REa}+2w(tout)ℜ{ψHa b}+c

(tout)
1

+γ(c
(tout)
2 −1−σ−4

e σ
−2
r ∥m(tout)∥22). (20)

Thus, a tractable lower bound approximation of problem (15)
can be reexpressed as

max
γ,ψa

F̃ (γ,ψa,ψ
⋆
p) s.t. (15b). (21)

It is obvious that problem (21) is still nonconvex due to the
strongly coupled variables γ and ψa. As such, we develop an
efficient inner-loop AO algorithm to tackle problem (21).

1) Optimization of γ: With any given ψa and the obtained
closed-form ψp, the optimal auxiliary variable γ can be
obtained according to the Dinkelbach’s update rule, which is
given by [36]

γ⋆=
1 +

(
K

(tin)
Ψa

)−1
∣∣∣c∗+(

ψ(tin)
)H

b2

∣∣∣2
1+

(
a+Gψ(tin)

)H(
R

(tin)
Ψa

)−1(
a+Gψ(tin)

), (22)

where the superscript (tin) denotes the iteration index of this
AO procedure.

2) Optimization of ψa: With the obtained γ, we optimize
ψa in problem (21). To be specific, since the second term in
the right-hand side of (20) is convex, we consider taking the
first-order Taylor series expansion of it at the local point ψ(tin)

a

to obtain a concave lower bound of F̃ (ψa,ψ
⋆
p; γ) as

F̃ (ψa,ψ
⋆
p; γ) ≥ −ψHa Baψa + 2ℜ{ψHa p

(tin)
2 }+ c

(tin)
3 , (23a)

where the auxiliary parameters are defined as

p̃
(tin)
1 =γσ−2

e [GHARE]m,:ψ
(tin)
a −[γp

(tout)
1 + w(tout)b]m,

Ba=γσ
−2
e AH

REARE + |w(tout)|2σ2
rΩRU,

p
(tin)
2 =

∑
m∈M\A

γσ−2
e e−j∠p̃

(tin)

1 [GHARE]m,:−γσ−2
e AH

REa+w
(tout)b,

c
(tin)
3 =c

(tout)
1 +γ(c

(tout)
2 −1−σ−4

e σ−2
r ∥m(tout)∥22)+2

∑
m∈M\A

∣∣p̃(tin)
1

∣∣
−2γσ−2

e

∑
m∈M\A

ℜ{e−j∠p̃
(tin)

1 [GHARE]m,:ψ
(tin)
a }. (24)

Following the lower-bound approximation in (23a), we fur-
ther stack the non-zero elements of ψa into a novel vector
ψ̃a ∈ CMa×1, based on which the subproblem w.r.t. ψ̃a can
be ultimately recast as

min
ψ̃a

ψ̃Ha B̃aψ̃a − 2ℜ{ψ̃Ha p̃
(tin)
2 } (25a)

s.t. ψ̃Ha Ω̃BRψ̃a ≤ Pr −MaPdc, (25b)

where B̃a ∈ CMa×Ma (Ω̃BR ∈ CMa×Ma ) contains Ma rows
and Ma columns of Ba (ΩBR), with their corresponding
indexes determined by the set A. The vector p̃(tin)

2 ∈ CMa×1

consists of Ma elements of p
(tin)
2 , whose indexes are also

from the set A. It can be readily inferred that problem (25)
is a standard quadratically constrained quadratic programming
(QCQP) problem, whose optimal solution can be derived in
closed form by leveraging the Lagrangian dual theory. Specif-
ically, by taking the first-order derivative of the Lagrangian
function of problem (25) to zero, we obtain

ψ̃⋆a = (B̃a + λaΩ̃BR)
−1p̃

(tin)
2 , (26)

where λa ≥ 0 is the dual variable associated with the con-
straint (25b), which can be determined by using the bisection
search method [37].

In a nutshell, we propose a two-loop SCA-based iterative
algorithm to solve the original problem (8). First of all, we
initially set the amplitudes of all elements {am|m ∈ M}
to 1 and randomly generate their phases {θm|m ∈ M}

F (γ,ψa,ψp)
(a)
= γσ−4

e (a+Gψ)HHREΨa(σ
−2
r IM+σ−2

e ΨH
a HH

REHREΨa)
−1ΨH

a HH
RE(a+Gψ) +K−1

Ψa
|c∗ +ψHb|2

+ 1− γ − γσ−2
e (a+Gψ)H(a+Gψ) (17a)

(b)

≥ − γσ−2
e ∥a+Gψp +AREψa∥22 − |w(tout)|2σ2

rψ
H
a ΩRUψa + 2ℜ{w(tout)ψHb} −γσ−4

e σ−2
r ∥m(tout)∥22 −γ+c

(tout)
1 (17b)

(c)

≥2ℜ{ψHp (γp
(tout)
1 − γσ−2

e GHAREψa + w(tout)b)} − γσ−2
e ∥AREψa + a∥2 + 2ℜ{w(tout)ψHa b} −|w(tout)|2σ2

rψ
H
a ΩRUψa

+c
(tout)
1 +γ(c

(tout)
2 −1−σ−4

e σ−2
r ∥m(tout)∥22) = F̃ (γ,ψa,ψp), (17c)
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Algorithm 1: Proposed two-loop SCA-based iterative
algorithm for solving problem (9)

Input: Initial Ψ(0), index of outer iterations tout = 0,
index of inner iterations tin = 0, maximum
iteration numbers Tout, Tin, convergence
threshold ϵ = 10−4;

Output: The BS transmit covariance matrix Q, the
active sub-RIS reflection matrix Ψa and the
passive sub-RIS reflection matrix Ψp;

1 repeat
2 tout = tout + 1 ;
3 Update q(tout) based on Proposition 2;
4 repeat
5 tin = tin + 1 ;
6 Update γ(tin) based on (22);
7 Update ψ(tin)

a based on (26);
8 until tin = Tin or

∣∣∣E(tin)
in − E

(tin−1)
in

∣∣∣ < ϵE
(tin−1)
in ;

9 Update Ψ
(tout)
a based on Ψa = diag(ψ

(tin)
a );

10 Update Ψ
(tout)
p based on (19) and

Ψp=diag(ψ
(tin)
p );

11 until tout = Tout or
∣∣∣E(tout)

out −E(tout−1)
out

∣∣∣<ϵE(tout−1)
out ;

12 Update Q = qqH .

from the set [0, 2π). Then, in the inner-loop, we iteratively
update the introduced auxiliary variable γ and the reflection
coefficients of the active sub-RIS ψa with the given transmit
beamforming vector q and the derived optimal closed-form
reflection coefficients of the passive sub-RIS ψp. In the
outer-loop, a high-quality suboptimal solution to problem (8)
can be obtained by alternately optimizing q and {Ψa,Ψp}.
Ultimately, the optimal Q can be obtained based on Q = qqH .
The proposed algorithm is summarized in Algorithm 1, where
Ein and Eout denote the objective values of problem (21) and
problem (10), respectively. The precision ϵ is set as 10−4. Tout
and Tin denote the maximum numbers of iterations in the outer
and inner loops, respectively.

IV. JOINT TRANSMIT BEAMFORMING AND DYNAMIC
HYBRID RIS OPTIMIZATION

In this section, we mainly consider the dynamic hybrid RIS
architecture and redefine the hybrid RIS reflection matrix as
Ψ̄, where the allocation of active/passive elements closely
related to the propagation environment is additionally regarded
as optimization variable. Specifically, we introduce an indica-
tor matrix to represent the dynamic allocation of active/passive
elements as

[Λ]i,j =

{
1, if i = j and i ∈ A
0, otherwise , (27)

where [Λ]i,i = 1 or 0 indicates that the ith RIS element is active
or passive. Then, by recalling (2), the reflection matrices of
the active and passive sub-RISs are respectively redefined as

Ψ̄ = ΛΨ̄︸︷︷︸
Ψ̄a

+(IM −Λ)Ψ̄︸ ︷︷ ︸
Ψ̄p

. (28)

Moreover, it follows from Proposition 1 that the optimal Q⋆

is also rank one, i.e., Q = qqH . Motivated by the above facts,

the original SRM problem (10) for the dynamic hybrid RIS
can be formulated as

max
q,Ψ̄a,Ψ̄p,Λ

g(q, Ψ̄a, Ψ̄p) (29a)

s.t. (10b),Tr
(
Ψ̄a(HBRqq

HHH
BR + σ2

rIM )Ψ̄H
a

)
+

∑
m
[Λ]m,mPdc ≤ Pr, (29b)

|[Ψ̄p]m,m| = 1− [Λ]m,m, ∀ m ∈ M, (29c)
[Λ]m,m = {0, 1}, ∀ m ∈ M. (29d)

where KΨ̄a
= σ2

rh
H
RUΨ̄aΨ̄

H
a hRU + σ2

u and RΨ̄a
=

σ2
rHREΨ̄aΨ̄

H
a HH

RE + σ2
eINe

and

g(q, Ψ̄a, Ψ̄p)

=
1+K−1

Ψ̄a
|hHBUq+ hHRUΨ̄HBRq|2

1+(HBEq+HREΨ̄HBRq)HR
−1
Ψ̄a
(HBEq+HREΨ̄HBRq)

.

(30)

In order to obtain a high-quality solution to the nonconvex
mixed-integer fractional optimization problem (29), we firstly
introduce a diagonal and positive semi-definite matrix V ∈
HM+ to represent the amplification power of all M potential
active elements. Furthermore, by recalling the element alloca-
tion matrix Λ, we have

|[Ψ̄a]m,m|2 = [Λ]m,mVm,m,∀m. (31)

Then, we additionally define KV = σ2
rh

H
RUVhRU + σ2

u and
combine it with (31) to convert problem (29) into

max
q,Ψ̄a,Ψ̄p,V

g̃(q, Ψ̄a, Ψ̄p,V,Λ) (32a)

s.t. (10b), (29b) ∼ (29d),

|[Ψ̄a]m,m|2 ≤ [Λ]m,m[V]m,m, ∀ m ∈ M, (32b)

where

g̃(q, Ψ̄a, Ψ̄p,V)

=
1+K−1

V |hHBUq+hHRUΨ̄HBRq|2

1+(HBEq+HREΨ̄HBRq)HR
−1
Ψ̄a
(HBEq+HREΨ̄HBRq)

.

(33)

It is worth noting that the equivalence between problem (32)
and problem (29) is established in the following lemma.

Lemma 2. Problem (32) is equivalent to problem (29). That
is to say, they can achieve the same optimal solution.
Proof. Please see Appendix D.

Unfortunately, problem (32) is still a mixed-integer op-
timization problem. In the following section, we intend to
develop an exponent-based continuous relaxation method to
efficiently solve problem (32).
A. A Tractable Continuous Relaxation of Problem (32)

In this subsection, we firstly relax the binary variables
into bounded continuous variables to make the mixed-integer
optimization problem (32) more tractable, i.e.,

0 ≤ [Λrel]m,m ≤ 1, ∀ m ∈ M. (34)

Moreover, by referring to [38], we also consider imposing
an exponent χ on [Λrel]m,m, ∀m for the sake of a tighter
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continuous relaxation. Therefore, problem (32) can be relaxed
into

max
q,Ψ̄a,Ψ̄p,V,Λrel

g̃(q, Ψ̄a, Ψ̄p,V) (35a)

s.t. (10b), (29b), (29c), (34),

|[Ψ̄a]m,m|2 ≤ [Λrel]
χ
m,m[V]m,m, ∀ m ∈ M.

(35b)

Intuitively, the exponent χ in problem (35) serves as a penalty
parameter, which penalizes the values of [Λrel]m,m,∀ m ∈
M, thereby encouraging them towards binary solutions despite
their continuous nature. Furthermore, according to [38], the
optimal objective value of problem (35) becomes closer to that
of the original mixed-integer problem (29) with the increasing
χ, thus leading to a tighter relaxation. In fact, problem (35) is
still nonconvex due to the strongly coupled variables and the
nonconvex constraints (29c) and (35b). To tackle it effectively,
the proposed efficient two-loop SCA-based iterative algorithm
is also applicable, as elaborated in the following.

B. Proposed Method to Solve Problem (35)

In this subsection, the two-loop SCA-based iterative algo-
rithm is also applied to solve problem (35). Specifically, we
firstly optimize the transmit beamforming vector q with any
given {Ψ̄a, Ψ̄p,V,Λrel}, which can be directly obtained from
Proposition 2. Subsequently, with the obtained q, we focus
on optimizing {Ψ̄a, Ψ̄p,V,Λrel} for the dynamic hybrid
RIS. Similar to Section III-C, we introduce two auxiliary
vectors ψ̄a = vecd(Ψ̄a) and ψ̄p = vecd(Ψ̄p), based on
which the subproblem of optimizing {Ψ̄a, Ψ̄p,V,Λrel} can
be simplified as

max
ψ̄a,ψ̄p,V,Λrel

1 +K−1
V |c∗ + ψ̄Hb|2

1 + (a+Gψ̄)HR−1
Ψ̄a

(a+Gψ̄)
(36a)

s.t. (34),

ψ̄Ha ΩBRψ̄a +
∑

m
[Λrel]m,mPdc ≤ Pr, (36b)

|[ψ̄p]m| = 1− [Λrel]m,m, ∀ m ∈ M, (36c)

|[ψ̄a]m|2 ≤ [Λrel]
χ
m,m[V]m,m, ∀ m ∈ M,

(36d)

where ψ̄ = ψ̄a + ψ̄p. It can be readily inferred that the
fractional objective function (36a) and the constraints (36c),
(36d) in problem (36) are all nonconvex. Similar to solving
problem (15), we also consider applying the Dinkelbach’s
method to rewrite the fractional objective function into the
following parametric subtractive form.

F̄ (γ̄, ψ̄a, ψ̄p,V) = 1 +K−1
V |c∗ + ψ̄Hb|2

− γ̄
(
1 + (a+Gψ̄)HR−1

Ψ̄a
(a+Gψ̄)

)
, (37)

where γ̄ is the introduced auxiliary variable. Then, by sequen-
tially applying the same SCA techniques as (17a), (17b) and
(17c), we can find a locally tight lower bound of the function
F̄ (γ̄, ψ̄a, ψ̄p,V) as follows.

F̄ (γ̄,ψ̄a,ψ̄p,V)≥−γ̄σ−2
e

∥∥√λ̄Gψ̄p+
GH√
λ̄G

(ĀREψ̄a+a)
∥∥2
2

+2ℜ
{̄
γσ−2

e ψ̄Hp (λ̄GIM−GHG)ψ̄(tout)
p

}
−|w̄(tout)|2σ2

rh
H
RUVhRU

−γ̄σ−2
e (ĀREψ̄a+a)

H
(
INe

− GGH

λ̄G

)
(ĀREψ̄a +a)−γ̄

+2ℜ{w̄(tout)ψ̄Hb}−γ̄σ−4
e σ−2

r ∥m̄(tout)∥22+c
(tout)
4 +γ̄c

(tout)
5

= F̂ (γ̄, ψ̄a, ψ̄p,V), (38)

where the involved auxiliary parameters are defined as

ĀRE = G− σ−2
e HREdiag(m̄

(tout)),

w̄(tout) = (c+ bHψ̄(tout))(K
(tout)
V )−1,

m̄(tout) = (σ−2
r IM+σ−2

e (Ψ̄(tout)
a )HHH

REHREΨ̄
(tout)
a )−1

× (Ψ̄(tout)
a )HHH

RE(a+Gψ̄(tout)),

c
(tout)
4 = 2ℜ{w̄(tout)c∗} − |w̄(tout)|2σ2

u + 1,

c
(tout)
5 = −σ−2

e (ψ̄(tout)
p )H(λ̄GIM −GHG)ψ̄(tout)

p . (39)

Thus, problem (36) can be reformulated as

max
γ̄,ψ̄a,ψ̄p,V,Λrel

F̂ (γ̄, ψ̄a, ψ̄p,V) s.t. (34), (36b) ∼ (36d). (40)

However, problem (40) is still nonconvex due to the coupled
variables and nonconvex constraints (36c) and (36d). In order
to ensure compliance with the constant-modulus constraint
(36c), we introduce a unit-modulus constrained vector θ to
reexpress ψ̄p as ψ̄p = (IM −Λrel)θ, based on which problem
(40) can be recast as

max
γ̄,θ,ψ̄a,V,Λrel

F̂ (γ̄,θ, ψ̄a,V,Λrel) (41a)

s.t. (34), (36b), (36d), |[θ]m| = 1,∀m ∈ M, (41b)

where

F̂ (γ̄,θ,ψ̄a,V,Λrel) = −|w̄(tout)|2σ2
rh

H
RUVhRU

− γ̄σ−2
e

∥∥√λ̄G(IM−Λrel)θ+
GH(ĀREψ̄a+a)√

λ̄G

∥∥2
2

+2ℜ
{
θH(IM−Λrel)

(
w̄(tout)b

)}
+ 2ℜ{w̄(tout)ψ̄Ha b}

−γ̄σ−2
e (ĀREψ̄a+a)

H
(
INe

−GGH

λ̄G

)
(ĀREψ̄a+a)

+2ℜ
{
θH(IM−Λrel)

(
γ̄σ−2

e (λ̄GIM−GHG)ψ̄(tout)
p

)}
− γ̄ − γ̄σ−4

e σ−2
r ∥m̄(tout)∥22 + c

(tout)
4 + γ̄c

(tout)
5 . (42)

Unfortunately, the optimization variables {γ̄,θ, ψ̄a,V,Λrel}
are still strongly coupled in problem (41). Moreover, the unit-
modulus constraint (41b) renders problem (41) difficult to
solve. To address these issues, we next propose a SCA-based
AO algorithm to solve problem (41) by alternately optimizing
γ̄,θ and {ψ̄a,V,Λrel}.

1) Optimization of γ̄: Similar to (22), with any given θ and
{ψ̄a,V,Λrel}, γ̄ is updated by

γ̄ =
1 + (K

(tin)
V )−1

∣∣c∗ + (ψ̄(tin))Hb
∣∣2

1 + (a+Gψ̄(tin))H
(
R

(tin)

Ψ̄a

)−1(
a+Gψ̄(tin)

) . (43)

2) Optimization of θ: With the obtained γ̄ and any given
{ψ̄a,V,Λrel}, we can obtain the closed-form solution of the
optimal θ⋆ as

θ⋆ = ej∠p̄
(tin)

3 , (44)

where p̄(tin)
3 = (IM−Λrel

(tin))
(
γ̄σ−2

e (λ̄GIM−GHG)ψ̄
(tin)
p +

w̄(tin)b− γ̄σ−2
e GH(ĀREψ̄

(tin)
a + a)

)
.



9

Algorithm 2: Proposed two-loop SCA-based iterative
algorithm for solving problem (35)

Input: Initial Ψ̄(0), Λ(0)
rel , iteration indexes tout = 0,

tin = 0, maximum iteration numbers Tout, Tin,
convergence threshold ϵ = 10−4;

Output: The BS transmit covariance matrix Q, the
active sub-RIS reflection matrix Ψ̄a and the
passive sub-RIS reflection matrix Ψ̄p;

1 repeat
2 tout = tout + 1;
3 Update q(tout) based on Proposition 2;
4 repeat
5 tin = tin + 1 ;
6 Update γ̄(tin) based on (43);
7 Update θ based on (44);
8 Update {ψ̄a,V,Λrel} by solving problem (47);
9 until tin = Tin or

∣∣∣E(tin)
in − E

(tin−1)
in

∣∣∣ < ϵE
(tin−1)
in ;

10 Update Ψ̄
(tout)
a based on Ψ̄a = diag(ψ̄

(tin)
a );

11 Update Ψ̄
(tout)
p based on Ψ̄p = diag(ψ̄

(tin)
p );

12 until tout = Tout or∣∣∣E(tout)
out − E

(tout−1)
out

∣∣∣ < ϵE
(tout−1)
out ;

3) Optimization of {ψ̄a,V,Λrel}: With the obtained γ̄ and
θ, the subproblem w.r.t. {ψ̄a,V,Λrel} can be written as

max
ψ̄a,V,Λrel

F̂ (ψ̄a,V,Λrel; γ̄,θ) s.t. (34), (36b), (36d).

(45)

To address the nonconvexity of the constraint (36d), we
firstly reformulate it as |[ψ̄a]m|2

[V]m,m
≤ [Λrel]

χ
m,m,∀m, both sides

of which are convex. Therefore, according to the idea of
SCA, we construct a concave lower bound of the right-hand
side function [Λrel]

χ
m,m by leveraging its first-order Taylor

expansion at the local point [Λrel]
(tin)
m,m, which is expressed

as

[Λrel]
χ
m,m≥

(1−χ)([Λrel]
(tin)
m,m)χ+χ([Λrel]

(tin)
m,m)(χ−1)[Λrel]m,m︸ ︷︷ ︸

h([Λrel]m,m)

,∀m.

(46)

Based on (46), the subproblem (45) can be relaxed into

max
ψ̄a,V,Λrel

F̂ (ψ̄a,V,Λrel; γ̄,θ) (47a)

s.t. (34), (36b),
|[ψ̄a]m|2

[V]m,m
≤ h([Λrel]m,m), ∀m. (47b)

It is evident that problem (47) is a strictly convex problem.
Hence, we can apply the well-known CVX toolbox to obtain
the optimal {ψ̄a,V,Λrel}.

In summary, we develop a two-loop SCA-based iterative
algorithm to tackle the nonconvex problem (35). The random
initializations of Ψa and Ψp are the same as those of Algo-
rithm 1. In addition, the initial values of [Λrel]m,m,∀m ∈ M
are randomly selected from the range (0, 1]. Then, we itera-
tively update γ̄, θ, {ψ̄a,V,Λrel} and ψ̄p with the given q until
convergence and finally recover Ψ̄a and Ψ̄p from the obtained

{θ, ψ̄a,V,Λrel}. In the outer loop, we obtain a high-quality
suboptimal solution to problem (35) by alternately optimizing
q, Ψ̄a and Ψ̄p. The proposed algorithm is summarized in
Algorithm 2, where Ein and Eout denote the objective values
of problem (41) and problem (35), respectively.

C. Recovery of the Binary Solution Λ

After obtaining the relaxed continuous solution Λrel from
Algorithm 2, we readily infer that the value of each
[Λrel]

χ
m,m,m ∈ M sufficiently approaches two discrete points

of 0 and 1 according to the property of the exponent-based
continuous relaxation method. Then, the corresponding m-
th diagonal element of Λ can be accordingly set to 0 or
1. Ultimately, based on the determined Λ, we re-carry out
Algorithm 1 to obtain the optimal {Q, Ψ̄a, Ψ̄p} to the original
SRM problem (29).

V. ANALYSIS AND EXTENSIONS

In this section, we discuss the convergence behaviors and
computational complexity of the proposed Algorithm 1 and
Algorithm 2. Moreover, we also discuss the applicability of
our proposed algorithms to the imperfect CSI case, as well as
the multi-user and multi-Eve system.

A. Convergence and Complexity Analysis

Firstly, the convergence behaviours of the proposed Algo-
rithm 1 and Algorithm 2 can be ensured by the following
proposition.

Proposition 3. The objective values of problems (9) and
(35) are monotonically nondecreasing over the iterations by
applying Algorithm 1 and Algorithm 2, respectively.

Proof. Please see Appendix E.

The complexities of our proposed Algorithm 1 and Al-
gorithm 2 both mainly come from the matrix multiplication
and the standard convex optimization algorithms. Specifically,
the worst-case complexity of deriving the optimal transmit
beamforming vector q is given by O((N2

t )
3.5log(1/ϵ)), which

arises from solving the SDP problem (13) via the interior-
point method embedded in the CVX toolbox [39]. For Al-
gorithm 1, the complexities of updating γ and ψa in each
inner iteration are respectively given by O(NeM

2 +N3
e ) and

O(M3
a+log(B/ϵ1)), where B and ϵ1 denote the initial interval

length and the desired accuracy of the bisection method,
respectively. In the outer iteration, the complexity of updating
ψp is calculated as O(NeM

2). Hence, the total complex-
ity of Algorithm 1 is given by O(Iout((N

2
t )

3.5log(1/ϵ) +
NeM

2 + Iin(NeM
2 + N3

e + M3
a + log(B/ϵ1))), where Iin

and Iout respectively denote the numbers of inner and outer
iterations. Similarly, the total complexity of Algorithm 2 is
calculated as O(Iout((N

2
t )

3.5log(1/ϵ) + Iin(NeM
2 + N3

e +
(3M)3.5log(1/ϵ))). The details are omitted here for brevity.
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B. Extension to the Imperfect CSI case

In this subsection, considering that it is quite challenging
to acquire the perfect CSI for the Eve in practice, we assume
imperfect CSI of the channels HBE and HRE, which can be
modeled as [40],

Hi = Ĥi +∆Hi, i ∈ {BE,RE}, (48)

where Ĥi denotes the estimated channel and and ∆Hi denotes
the corresponding CSI error bounded by Frobenius norm, i.e.,
∥∆Hi∥F ≤ ϵi, i ∈ {BE,RE}. Given the estimated ĤBE,
ĤRE, along with the perfectly known channels HBR, hBU

and hRU, we aim to jointly design the BS transmit covariance
matrix Q and the reflection matrix of the hybrid active-passive
RIS {Ψa,Ψp} to maximize the system secrecy rate in the
worst CSI error scenario, which is formulated as

max
Q⪰0,Ψa,Ψp

Ru − max
∆HBE ,∆HRE

R
′

e (49a)

s.t. (8b) ∼ (8d),
∥∆Hi∥F ≤ ϵi, i ∈ {BE,RE}, (49b)

where R
′

e = log2det
(
INe

+
(
(ĤBE + ∆HBE) +

(ĤRE + ∆HRE)ΨHBR

)
Q
(
(ĤBE + ∆HBE) + (ĤRE +

∆HRE)ΨHBR

)H
R−1

Ψa

)
. It is worth noting that the robust

max-min problem (49) is more intractable to solve than
problem (8), due to the complicated max-min objective
function (49a) and the extra CSI errors (49b). Then, by
introducing a slack variable τ , problem (49) can be converted
into

max
Q⪰0,Ψa,Ψp

Ru − log2(τ), (50a)

s.t. (8b) ∼ (8d),

R
′

e ≤ log2(τ), ∥∆Hi∥F ≤ ϵi, i ∈ {BE,RE}, (50b)

Similar to (17), the nonconvex constraint (50b)
can be converted into a tractable form by intro-
ducing the Woodbury equality and the inequality
Tr(XHY−1X) ≥ 2ℜ

{
Tr

(
(X(tout))H(Y(tout))−1X

)}
−

Tr
(
(Y(tout))−1X(tout)(X(tout))H(Y(tout))−1Y

)
. Furthermore,

based on the Schur complement and sign-definiteness lemmas
[39], [41], we can derive an effective reformulation of
constraint (50b) without the CSI errors. Then, the proposed
SCA-based iterative algorithm can still be applied to solve
the reformulated problem. However, this imperfect CSI case
is out of the scope of this paper and we plan to address it in
the future research.

C. Extension to the Multi-User and Multi-Eve System

In this subsection, we consider a general system with K
user-Eve pairs, meaning that each user is wiretapped by a
specific Eve. The set of the user-Eve pairs is defined as K =
{1, · · · ,K}. We denote the confidential message intended for
the k-th user and the corresponding precoding vector as sk ∼
CN (0, 1) and wk, respectively. Thus, the transmit signal at
the BS is expressed as x =

∑
k∈Kwksk. Denote by hBU,k

(hRU,k) and HBE,k (HRE,k) the baseband equivalent channels
from the BS (RIS) to the user k and the Eve k, respectively.
Then, the sum secrecy rate (SSR) of the considered system is
expressed as [42]

R̃s({wk},Ψa,Ψp) =
∑

k∈K
[R̃u,k − R̃e,k]

+, (51)

where R̃u,k and R̃e,k respectively denote the achievable rate
at the k-th user and the k-th Eve for the confidential mes-
sage sk, shown at the bottom of this page. Therefore, the
SSR maximization problem of the considered system can be
reformulated as

max
{wk},Ψa,Ψp

R̃s({wk},Ψa,Ψp) (53a)

s.t. (8d),
∑

k∈K
Tr(wkw

H
k ) ≤ Pt, (53b)∑

k∈K
Tr

(
Ψa(HBRwkw

H
k HH

BR+σ
2
rIM )ΨH

a

)
+MaPdc ≤ Pr. (53c)

Due to the the presence of the inter-user interference, the
proposed Algorithm 1 and Algorithm 2 cannot be directly
applied to solve problem (53). By referring to [43, Proposition
1], we can obtain the following equation by introducing a
series of variables u = [u1, · · · , uK ]T .

− log2

( ∑
j∈K,j ̸=k

∣∣(hHBU,j + hHRU,jΨHBR)wj

∣∣2
+ σ2

rh
H
RUΨaΨ

H
a hRU+σ

2
u

)
= max
uk>0

[
− uk

ln 2

( ∑
j∈K,j ̸=k

∣∣(hHBU,j+h
H
RU,jΨHBR)wj

∣∣2
+ σ2

rh
H
RUΨaΨ

H
a hRU+σ

2
u

)
+ log2(uk) +

1

ln 2

]
,∀k. (54)

Based on (54), we can convert the log-fractional objective
function (53a) into a more tractable form. An efficient AO
strategy can still be applied to tackle the strong coupling
among the optimization variables. Specifically, we can solve

R̃u,k = log2

(
1+

∣∣(hHBU,k + hHRU,kΨHBR)
Hwk

∣∣2 ( ∑
j∈K,j ̸=k

∣∣(hHBU,j+h
H
RU,jΨHBR)

Hwj

∣∣2+σ2
rh

H
RUΨaΨ

H
a hRU+σ

2
u

)−1
)
, (52a)

R̃e,k = log2det

(
INe+(HBE,k +HRE,kΨHBR)wkw

H
k (HBE,k +HRE,kΨHBR)

H

×
( ∑
j∈K,j ̸=k

(HBE,k +HRE,kΨHBR)wjw
H
j (HBE,k +HRE,kΨHBR)

H
+ σ2

rHRE,kΨaΨa
HHH

RE,k + σ2
eINe

)−1
)
. (52b)
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TABLE I
SIMULATION PARAMETER SETTINGS

Parameter Notation, Value Parameter Notation, Value
Number of transmit antennas Nt = 6 Number of antennas at Eve Ne = 4
Number of elements at RIS M = 36 Fading factor β0 = -30 dB

BS transmission power Pt = 20 dBm Power budget at RIS Pr = 6 dBm
DC signal power at RIS Pdc = −10 dBm Gaussian noise at user σ2

u=−75 dBm
Gaussian noise at Eve σ2

e =−75 dBm Amplification noise σ2
r = −70 dBm

Coordinate of the BS (0, 0, 5) Coordinate of the RIS (10, 0, 5)
Coordinate of the user (55, 2, 0) Coordinate of the Eve (45, 2, 0)

Path-loss exponents
ξBU = ξBE = 3.7

Rician factors
κBU = κBE = 0

ξRU = ξRE = 2.5 κRU = κRE = 1
ξBR = 2.2 κBR = ∞

BS

Hybrid RIS

Eve

...

Eve

...

 User User

Fig. 3. A three-dimensional coordinate system.

the subproblems of optimizing {wk} and {Ψa,Ψp} by adopt-
ing the SDR method and the SCA method, respectively. More-
over, the exponent-based continuous relaxation method can
be leveraged to optimize the active-passive element allocation
matrix Λ for the case of the dynamic hybrid RIS. However,
considering that problem (53) is out of the scope of this paper
and we plan to investigate it in our future research works.

Remark 1: Considering a special case of a single-user and
multi-Eve system, it can be inferred that Proposition 1 also
holds for optimizing the transmit covariance matrix, and thus
the proposed two-loop SCA-based iterative algorithm is also
applicable to solve the SRM problem of the considered system
after some modifications.

VI. SIMULATION RESULTS

In this section, numerical simulation results are presented
to validate the secrecy performance of the considered hybrid
active-passive RIS assisted system. We assume that both the
BS and Eve are equipped with uniform linear arrays (ULAs),
while the hybrid RIS is equipped with a uniform planar array
(UPA) of size

√
M×

√
M . As illustrated in Fig. 3, we establish

a three-dimensional coordinate system, where the BS and the
hybrid RIS are assumed to be located at (0, 0, zB)m and
(xR, 0, zR)m, respectively. The user and the Eve are located
at (xU, yU, zU)m and (xE, yE, zE)m, respectively. Moreover,
each involved channel matrix is modeled as the Rician fading
channel, i.e., H =

√
βH̃. β = β0(

d
d0
)−ξ denotes the distance-

dependent large scale path-loss coefficient, where β0 denotes
the path loss at the reference distance d0 = 1m; d represents
the individual link distance and ξ denotes the path loss
exponent. H̃ denotes the small-scale Rician fading channel
matrix, which is modeled as

H̃ =

√
κ

1 + κ
HLoS +

√
1

1 + κ
HNLoS, (55)

where κ ∈ [0,∞) denotes the Rician factor. In terms of
our work, the path loss exponents and the Rician factors
of the BS-User, BS-Eve, RIS-User, RIS-Eve and BS-RIS
channels are collected as {ξBU, ξBE, ξRU, ξRE, ξBR} and
{κBU, κBE, κRU, κRE, κBR}, respectively. For convenience,
the specific values of the above simulation parameters are
summarized in Table I. In addition, HLoS and HNLoS denote
the LoS and NLoS components of the channel H, respectively.
Each element of HNLoS is assumed to be Rayleigh fading,
i.e., [HNLoS]i,j ∼ CN (0, 1),∀i, j, while the LoS component
is modeled as the product of the steering vectors at the
transmitter and the receiver. Specifically, the normalized
transmit steering vector of a ULA is defined as ai(θi) =

1/
√
Nt

[
1, · · · , ej2πD

λ (nt−1) sin(θi), · · · , ej2πD
λ (NT−1) sin(θi)

]T
,

where ai, i ∈ {B,E} stands for the steering vector at the
BS or the Eve, and nt ∈ {1, 2, · · · , Nt} denotes the
antenna index. D and λ denote the inter-antenna spacing
and the wave-length, respectively. θi ∈ [0, 2π) , i ∈ {B,E}
represents the angle-of-departure (AoD) at the BS or
the angle-of-arrival (AoA) at the Eve. Moreover, the
normalized UPA steering vector is defined as aR (θR, ψR) =
1/
√
M

[
1, · · · , ej2πD

λ ((my−1) sin(θR) sin(ψR)+(mz−1) cos(ψR)),

· · · , ej2π
D
λ ((

√
M−1) sin(θR) sin(ψR)+(

√
M−1) cos(ψR))]T, where

my (mz) ∈ {1, 2, · · · ,
√
M} denotes the antenna index

in the horizontal (vertical) direction. θR ∈ [0, 2π) and
ψR ∈ [−π/2, π/2) denote the azimuth angle and the elevation
angle at the hybrid RIS, respectively. Moreover, the BS (Eve)
inter-antenna spacing of λ/2 wavelength and the RIS inter-
element spacing of λ/8 wavelength are considered. Without
loss of generality, we set the number of active elements
at the fixed hybrid RIS and the exponent in Algorithm
2 as Ma = 4 and χ = 2, respectively. Unless otherwise
specified, the basic simulation parameters are listed in Table I.
All simulation results are obtained by averaging over 100
channel realizations. Furthermore, we compare our proposed
algorithms with the following benchmark schemes.

1) SDR-based fixed (dynamic) hybrid RIS: In this scheme,
we jointly utilize the Charnes-Cooper transformation and
the SDR method to optimize the transmit beamforming
vector and derive the optimal hybrid RIS reflection matrix
based on Algorithm 1 (Algorithm 2).

2) CR-based dynamic hybrid RIS: In this scheme, we
derive the optimal transmit beamforming vector based on
Proposition 2 and optimize the dynamic RIS reflection
matrix by employing the traditional continuous relaxation
method with χ = 1.
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Fig. 4. Convergence behaviors of the proposed algorithms.
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Fig. 6. Secrecy rate versus the BS transmit power Pt.

3) Fully-passive (Fully-active) RIS: In this scheme, we set
Mp = M(Ma = M) and optimize the RIS reflection
matrix based on Algorithm 1.

4) Random-phase RIS: In this scheme, we consider the
fully-passive RIS and randomly generate each RIS phase
shift according to the distribution θm ∈ [0, 2π),∀m.

Fig. 4(a) and Fig. 4(b) respectively show the convergence
behaviors of the proposed Algorithm 1 and Algorithm 2
under different transmit power levels, i.e., Pt = 10dBm and
Pt = 20dBm. Specifically, the left subfigure in Fig. 4(a)
(Fig. 4(b)) illustrates the convergence of the proposed Algo-
rithm 1(Algorithm 2) in the inner loop of the first outer iter-
ation, while the right subfigure demonstrates the convergence
of the proposed algorithm in the outer loop. It can be observed
from Fig. 4 that both Algorithm 1 and Algorithm 2 converge
within 20 outer iterations under each considered Pt. Naturally,
the optimal objective values achieved by these two algorithms
both increase with Pt.

Fig. 5 illustrates the secrecy rates achieved by the fixed
hybrid RIS scheme versus the active element ratio, defined as
the ratio of the number of active elements to the total number
of RIS elements under different BS and hybrid RIS transmit
power budgets, i.e., {Pt, Pr}. In Fig. 5, the coordinates of
the user and the Eve are set as (75, 2, 0) and (85, 2, 0),
respectively. Moreover, the optimal active-passive ratios for

the dynamic hybrid RIS scheme under different values of Pt
and Pr are marked in Fig. 5. It can be observed that when
Pt = 20dBm and Pr = 6dBm, both the fixed and dynamic
hybrid RIS schemes achieve the same maximum secrecy rate
at the same active element ratio of 0.33, which verifies the
effectiveness of Algorithm 2. Furthermore, as Pt grows to
40dBm and Pr remains unchanged, the optimal active element
ratio of both the fixed and dynamic hybrid RIS schemes
decreases to 0, implying that the fully-passive RIS performs
best among all schemes. When keeping Pt = 20dBm and
increasing Pr to 20dBm, the optimal active element ratios
of both fixed and dynamic hybrid RIS schemes increase to
1, implying that the higher power budget on the hybrid RIS
allows more elements to switch to active mode.

Fig. 6 plots the secrecy rates achieved by different schemes
versus the BS transmit power Pt. It can be seen that the secrecy
rate of each scheme naturally increases with Pt. In addition,
it is clearly observed that the proposed fixed and dynamic
hybrid RIS schemes respectively demonstrate superior secrecy
performance over the corresponding SDR-based schemes, and
the dynamic hybrid RIS scheme also achieves a higher secrecy
rate than its CR-based counterpart. Owing to the additional
power amplification gain, both the fixed hybrid RIS schemes
and the fully-active RIS scheme show superior performance
over the fully-passive RIS scheme. Naturally, the dynamic
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Fig. 7. Effect of amplification power Pr on the secrecy rate and the active/passive elements allocation.
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Fig. 9. Secrecy rate versus the number of antennas at Eve Ne.

hybrid RIS scheme achieves the highest secrecy rate among
all schemes, which is attributed to the additional DoFs in
the active-passive elements allocation. Moreover, when the
transmit power is small, i.e., Pt ∈ [−10, 5]dBm, the fully-
active RIS outperforms the fixed hybrid RIS, whereas for a
large Pt, i.e., Pt ∈ [10, 20]dBm, the fixed hybrid RIS shows
better secrecy performance. This implies that at a high transmit
power, the passive beamforming gain becomes dominant on
the achievable secrecy rate instead of the power amplification
gain.

In Fig. 7, we investigate the effects of the hybrid RIS
amplification power Pr on secrecy rates achieved by different
schemes and the optimal active/passive elements allocation.
From Fig. 7(a), it is evident that Pr doesn’t make any influence
to the fully-passive RIS schemes. However, the achievable
secrecy rates of the fixed hybrid RIS, dynamic hybrid RIS and
fully-active schemes all monotonically increase with Pr. As
Pr increases, the secrecy rate of the fully-active RIS scheme
approaches that of the dynamic hybrid RIS scheme, which can
be attributed to the enhanced power amplification gain. The
comparison results between our proposed fixed and dynamic
hybrid RIS schemes and their corresponding SDR-based (CR-
based) counterparts are similar to those in Fig. 6. Fig. 7(b)
shows the optimal active/passive elements allocation for the

dynamic hybrid RIS scheme under different values of Pr. We
readily observe that the optimal number of active elements
naturally increases with the amplification power budget Pr,
which coincides with the results in Fig. 7(a). This may because
a larger Pr increases the DoFs of optimizing Ψa and Λ,
thereby implying a higher power amplification gain, which
is beneficial to enhance the system secrecy rate performance.

Fig. 8 illustrates the impact of the number of RIS reflect-
ing elements M on the secrecy rates achieved by different
schemes, where the active element ratio of the fixed hybrid RIS
scheme is set as 1

2
√
M

. We readily observe that for all schemes,
the secrecy rates increase with M since more RIS elements are
able to provide higher spatial DoFs, thereby allowing for more
precise adjustments of phases and magnitudes of the incident
signals. In addition, both the fixed and dynamic hybrid RIS
schemes yield a significantly higher secrecy rate than the fully-
passive RIS scheme, since they are able to provide additional
power amplification gains. In particular, for a large M , the
fully-active RIS scheme performs the worst due to the limited
amplification power budget.

Fig. 9 presents the secrecy rates achieved by different types
of RISs versus the number of antennas at Eve Ne. Evidently,
the secrecy rates of all considered schemes deteriorate with
Ne. This is attributed to the Eve’s enhanced signal interception
capability induced by the increasing Ne. Owing to the addi-
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tional power amplification gain, both the hybrid RIS and the
fully-active RIS schemes perform better than the fully-passive
RIS. Additionally, the secrecy rate of the dynamic hybrid RIS
scheme decreases much less than those of the fixed hybrid
RIS scheme and the fully-active scheme with Ne due to its
sufficient flexibility in elements allocation.

Fig. 10 plots the secrecy rates achieved by the proposed
fixed and dynamic hybrid RIS schemes and the random-
phase RIS schemes under perfect ECSI, imperfect ECSI and
no ECSI, which are respectively abbreviated as P-ECSI, Im-
ECSI and No-ECSI. For the Im-ECSI case, the uncertainty
region radii of both channels HBE and HRE is set as ϵi =
δ∥Ĥi∥F, i ∈ {BE,RE}, δ = 0.1. For the No-ECSI case,
we additionally introduce AN at the BS, where the power
PTP = 1

4Pt and PAN = 3
4Pt are respectively allocated

to the transmit precoder and the AN for simplicity [44].
Then, the optimal transmit precoder q⋆ =

√
PTP

h
∥h∥ can

be obtained based on the maximum-ratio transmission, where
hH = hHBU + hHRUΨHBR denotes the compound BS-RIS-
user channel. With the obtained q⋆, the optimal Ψ⋆

a and Ψ⋆
p

for maximizing legitimate user SINR are still available via
the proposed SCA-based iterative algorithm, based on which
the AN transmit covariance matrix RAN is designed to be
orthogonal to the BS-RIS-user channel hH , i.e., RAN =
PAN

Nt−1UANU
H
AN, where the columns of the semi-unitary matrix

UAN ∈ CNt×Nt−1 lie in the null-pace of h. Finally, we
can calculate the actual achievable secrecy rate based on the
obtained {q⋆,RAN,Ψ

⋆
a,Ψ

⋆
p,Λ}.

It is clear from Fig. 10 that all considered schemes under
P-ECSI naturally outperform their corresponding counterparts
under Im-ECSI and No-ECSI. For the Im-ECSI case, our
proposed fixed and dynamic hybrid RIS schemes both achieve
higher secrecy rates than their random-phase counterparts,
which demonstrates the robustness of our proposed schemes
in a certain extent. Furthermore, when no ECSI is available,
the proposed two schemes both exhibit the worst secrecy
performance among all three considered cases, which may be
attributed to the significantly reduced DoFs in the joint de-
sign of transmit precoder and hybrid active-passive reflection

matrices.

VII. CONCLUSION

In this paper, we investigated a novel hybrid active-passive
RIS aided secure MISO system with the presence of a multi-
antenna Eve, where both fixed and dynamic RIS architectures
were considered. In order to maximize the secrecy rate, we
jointly optimized the transmit covariance matrix and the hybrid
RIS reflection matrix, subject to the transmit power budget at
the BS and the amplification power budget at the active sub-
RIS. To tackle this intractable problem, we firstly explored the
inherent rank-1 property of the optimal transmit covariance
matrix to reexpress the original SRM problem in a tractable
form, and then proposed an efficient two-loop iterative algo-
rithm to obtain a high-quality suboptimal solution. Also, we
investigated the dynamic allocation of active and passive ele-
ments for further improving system security. Numerical results
illustrated the superior performance of our proposed fixed and
dynamic hybrid RIS schemes over the existing fully-passive
and fully-active RIS schemes. Moreover, it was hinted that the
dynamic hybrid RIS could strike a flexible balance between
the square-order passive beamforming gain and the power
amplification gain by adjusting the active/passive element
allocation according to the varying propagation environment.

APPENDIX

A. Proof of Proposition 1
Firstly, by introducing an auxiliary variable τ and employ-

ing the Charnes–Cooper transformation, we can equivalently
transform the relaxed SRM problem (9) into

max
Q̃⪰0,Ψa,Ψp,τ

τ +Tr(Q̃AΨ), (56a)

s.t. (8d), τ +Tr(Q̃BΨ) ≤ 1, (56b)

Tr(Q̃) ≤ Ptτ, (56c)

Tr
(
Ψa(HBRQ̃HH

BR+σ
2
rτIM )ΨH

a

)
≤ (Pr−MaPdc)τ. (56d)

It can be readily observed that the relaxed problem (56)
is jointly concave on {Q̃, τ} with any given Ψa and Ψp.
Moreover, the equivalence between problems (9) and (56) can
be established since tight (56b) always holds at the optimum
of problem (56), which can be easily proved by contradiction.

Secondly, we consider the following transmit power mini-
mization problem w.r.t. Q̃ to explore the inherent character-
istics of the optimal Q̃⋆ to problem (56) with any given Ψa,
Ψp and τ .

min
Q̃⪰0

Tr(Q̃), (57a)

s.t. τ +Tr(Q̃BΨ) ≤ 1, (57b)

Tr(ΨaHBRQ̃HH
BRΨ

H
a ) ≤ Pqτ, (57c)

τ +Tr(Q̃AΨ) ≥ f̄ , (57d)

where f̄ denotes the objective value of problem (56). Denote
the optimal solutions to problems (56) and (57) as Q̃⋆

s and Q̃⋆
p,

respectively. We readily find that Q̃⋆
s is also a feasible solution
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to problem (57). Moreover, we infer from the constraint
(56c) that Tr(Q̃⋆

p) ≤ Tr(Q̃⋆
s) ≤ Ptτ . Similarly, since Q̃⋆

p

is also feasible in the maximization problem (56), we obtain
τ + Tr(Q̃⋆

pAΨ) ≤ τ + Tr(Q̃⋆
sAΨ) = f̄ . Hence, the optimal

Q̃⋆
p of problem (57) satisfies τ + Tr(Q̃⋆

pAΨ) = f̄ due to
the constraint (57d). Thus, Q̃⋆

p is also the optimal solution
to problem (56) with given Ψa, Ψp and τ . Then, we strive
to explore the inherent characteristics of the optimal Q̃⋆ to
problem (57) based on the KKT conditions listed as follows.

Z⋆ = INt
+β⋆1BΨ+β⋆2H

H
BRΨ

H
a ΨaHBR−β⋆3AΨ, (58a)

Z⋆Q̃⋆ = 0, Z⋆ ⪰ 0, Q̃⋆ ⪰ 0, (58b)

where β1 ∈ R+, β2 ∈ R+, β3 ∈ R+ and Z ∈ HNt
+

denote the dual variables associated with constraints
(57b), (57c), (57d) and Q̃ ⪰ 0, respectively.
Postmultiplying (58a) by Q̃⋆ and referring to (58b)
yield

(
INt

+ β⋆1BΨ +β⋆2H
H
BRΨ

H
a ΨaHBR

)
Q̃⋆ =

β⋆3AΨQ̃⋆. Then, we obtain rank
(
(INt + β⋆1BΨ +

β⋆2H
H
BRΨ

H
a ΨaHBR)Q̃

⋆
)

= rank(β⋆3AΨQ̃⋆). Based on
the fact that INt

+ β⋆1BΨ +β⋆2H
H
BRΨ

H
a ΨaHBR ≻ 0 and

rank(β⋆3AΨQ̃⋆) ≤ rank(AΨ) = 1 hold, it’s verified that
rank(Q̃⋆) ≤ 1. Thus, we obtain that the optimal Q̃⋆ to
problem (56) or problem (57) is rank one.

Finally, based on the equivalence between problem (9) and
(56), the optimal solution to problem (9) is also rank one.
Moreover, by recalling that problem (9) is an upper-bound
approximation of problem (8), where the determinant equality
holds only if rank(A) = 1, we deduce that problem (9) is a
tight relaxation of problem (8). This completes the proof.

B. Proof of Lemma 1
We prove Lemma 1 by contradiction. First, we sup-

pose that the constraints (10b) and (10c) are both inac-
tive at the optimum. Denote the optimal solution to prob-
lem (10) by (q⋆1,Ψ

⋆
a,1Ψ

⋆
p,1) satisfying (q⋆1)

Hq⋆1 < Pt
and Tr(Ψ⋆

a,1HBRq
⋆
1(q

⋆
1)
HHH

BR(Ψ
⋆
a,1)

H) < Pq , where Pq
refers to Pr − MaPdc − σ2

rTr(Ψ
⋆
a,1(Ψ

⋆
a,1)

H) for brevity.
Then, we can always find another set of feasible solu-
tions (q⋆2,Ψ

⋆
a,2Ψ

⋆
p,2) satisfying active (10b) or active (10c),

where q⋆2 =
√
cq⋆1,Ψ

⋆
a,2 = Ψ⋆

a,1,Ψ
⋆
p,2 = Ψ⋆

p,1 and c =

min{ Pt

(q⋆
1)

Hq⋆
1
,

Pq

Tr(Ψ⋆
a,1HBRq⋆

1(q
⋆
1)

HHH
BR(Ψ⋆

a,1)
H)

} > 1. More-
over, substituting (q⋆2,Ψ

⋆
a,2Ψ

⋆
p,2) into the objective function

of problem (10) yields
1+(q⋆

2)
HAΨ⋆

2
q⋆
2

1+(q⋆
2)

HBΨ⋆
2
q⋆
2
=

1+c(q⋆
1)

HAΨ⋆
1
q⋆
1

1+c(q⋆
1)

HBΨ⋆
1
q⋆
1

. In
order to realize the correct decoding by the legitimate user and
failed eavesdropping, we should guarantee that the achievable
secrecy rate Rs > 0. That is to say, 1 + (q⋆1)

HAΨ⋆
1
q⋆1 >

1 + (q⋆1)
HBΨ⋆

1
q⋆1 always holds. Thus, the objective function

monotonically increases with the increasing c. This property
results in that the objective value generated by the feasi-
ble solution (q⋆2,Ψ

⋆
a,2Ψ

⋆
p,2) is larger than that generated by

(q⋆1,Ψ
⋆
a,1Ψ

⋆
p,1), which conflicts with the assumption of the

optimal solution. Hence, there is at least one active power
constraint, i.e., (10b) or (10c). This completes the proof.

C. Proof of Proposition 2
We obtain the optimal solution to problem (11) in three

cases. Considering the tight constraint (10b) and loose (10c),

the problem is reformulated as max
q

1+qHAΨq
1+qHBΨq

with tight

(10b). Then, substitute the normalized vector variable q̃ =
q√
Pt

into the objective function 1+qHAΨq
1+qHBΨq

, yielding a gener-

alized Rayleigh quotient problem, i.e., maxq̃
q̃H(INt+PtAΨ)q̃

q̃H(INt+PtBΨ)q̃
.

Thus, the optimal solution of problem (11) in the case of
tight (10b) and loose (10c) is given by q⋆ =

√
Ptu(INt

+
PtAΨ, INt

+ PtBΨ). Similarly, for the tight (10c) and loose
(10b), problem (11) can also be converted into a gener-
alized Rayleigh quotient problem, which can be recast as
maxq̃

q̃H(CΨ+PqAΨ)q̃
q̃H(CΨ+PqBΨ)q̃

. It can be deduced that the matrix
CΨ + PqBΨ in the denominator has full rank, otherwise
the secrecy rate will become infinity and the transmit power
constraint (10b) will be tight. Thus, the optimal solution in
this case is given by q⋆ =

√
Pcu(CΨ+PqAΨ,CΨ+PqBΨ),

where the scalar factor Pc equals Pq
/(

uH(CΨ+PqAΨ,CΨ+
PqBΨ)CΨu(CΨ + PqAΨ,CΨ + PqBΨ)

)
to guarantee the

tight constraint (10c). Finally, we consider the case of two
tight constraints, i.e., (10b) and (10c). In order to simplify the
double-constraint problem, we substitute q =

√
Pt

q̃H q̃
q̃ into

problem (11), yielding the problem max
q̃

q̃H q̃+Ptq̃
HAΨq̃

q̃H q̃+Ptq̃HBΨq̃
with

a single constraint q̃H(PtCΨ − PqINt
)q̃ = 0, which is still

a CFQP. Thus, we apply the Charnes-Cooper transform and
obtain that

max
q̃

q̃H(INt
+ PtAΨ)q̂, (59a)

s.t. q̃H(INt
+ PtBΨ)q̃ = 1, (59b)

q̃H(PtCΨ − PqINt
)q̃ = 0. (59c)

It can be readily observed that problem (59) is actually a
QCQP problem. However, due to the convex objective function
(59a) and the nonconvex constraint (59c), problem (59) is
nonconvex. To tackle this problem, we convert problem (59)
into the SDP problem (13) by introducing Q̃ = q̃q̃H . Thus,
the rank-one solution Q̃⋆ can be solved by the famous opti-
mization toolbox CVX. Then, the optimal q⋆ can be obtained
through eigenvalue decomposition on Q̃⋆. Specifically, q⋆ is

given by q⋆ =

√
Ptλ̄q

Tr(Q̃⋆)
υq where υq is the normalized

eigenvector associated with the maximum eigenvalue λ̄q of
the matrix Q̃⋆. This completes the proof.

D. Proof of Lemma 2
It can be readily inferred by contradiction that the constraint

(32b) is tight at the optimum. Otherwise, we can always
decrease [V]m,m for any m to achieve a larger objective value
for problem (32). This completes the proof.

E. Proof of Proposition 3
Considering a fixed hybrid RIS assisted secure

communication system, we propose a two-loop SCA-
based iterative algorithm (Algorithm 1) to solve the
nonconvex fractional problem (9). Define the objective
value of problem (9) as fobj(Q,Ψa,Ψp). We can obtain
the nondecreasing sequences fobj(Q,Ψa,Ψp)’s, i.e.,

fobj(Q
(tout),Ψ

(tout)
a ,Ψ

(tout)
p )

(a)

≤fobj(Q(tout+1),Ψ
(tout)
a ,Ψ

(tout)
p )

(b)

≤
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fobj(Q
(tout+1),Ψ

(tout+1)
a ,Ψ

(tout+1)
p ), where (a) holds since

the optimal Q⋆ obtained from Propositon 2 maximizes the
objective value of problem (9) during each iteration. (b) holds
since the joint optimization of Ψa and Ψp can be formulated
as the convex problem (25) by leveraging the Dinkelbach’s
method and the SCA method. In addition, due to the closed
feasible region, the objective value of problem (9) is also
upper-bounded. Similarly, for the dynamic hybrid RIS case,
the objective value of problem (35) is also monotonically
nondecreasing and upper-bounded. This completes the proof.
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