This is the Pre-Published Version.
JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

The following publication D. Li et al., "Hyper-lloT: A Smart Contract-Inspired Access Control Scheme for Resource-Constrained Industrial Internet of Things," in IEEE
Transactions on Sustainable Computing, vol. 10, no. 5, pp. 820-829, Sept.-Oct. 2025 is available at https://doi.org/10.1109/TSUSC.2025.3542466.

Hyper-IIoT: A Smart Contract-inspired Access
Control Scheme for Resource-constrained Industrial
Internet of Things

Dun Li"® |, Hongzhi Li"* | Noel Crespi

Abstract—In recent years, the refinements in industrial pro-
cesses and the increasing complexity of managing privacy-
sensitive data in Industrial Internet of Things (IloT) devices
have highlighted the need for secure, robust, and adaptive data
management solutions. In this work, we propose a smart contract-
assisted access control scheme for IIoT, which employs the
Attribute-Based Access Control (ABAC) model to set access
permissions for different industrial components. Besides, we
defined a storage model and data format for private data by
designing and deploying smart contracts to manage system
operations and access policies. In addition, the bloom filter
component is deployed to optimize the efficiency of contract
management and system performance. Experimental results show
that in real-world simulations, Hyper-IIoT demonstrates excellent
contract execution time control, stable system throughput, and
rapid consensus processes that are capable of handling high
throughput and efficient consensus in distributed systems, even
in large-scale request scenarios.

Index Terms—Blockchain, IIoT, Access Control, Smart Con-
tracts

I. INTRODUCTION

NDUSTRIAL Internet of Things (IIoT) integrates wireless

sensor networks, communication protocols, and internet
infrastructure with the monitoring, analyzing, and managing
industrial operations [1]], [2]. By building distributed networks
through wired and wireless connections, IIoT devices engage
with external environments and generate diverse data [3]-
[S]. The evolution from centralized to decentralized systems
improves scalability, personalization, and product quality [6].
In Industry 4.0, IIoT integrates smart devices with sensors,
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which support mobile computing and continuous commu-
nication across industrial sectors [7]], [8]. By autonomous
monitoring, collecting, analyzing, and optimizing industrial
production environments, IIoT systems significantly enhance
operational efficiency [9]], [10]. Platforms such as Siemens
MindSphere and GE Predix optimize data collection, storage,
and analysis in smart manufacturing, effectively eliminating
data silos and fostering integrated device ecosystems [11],
[12]].

However, existing IIoT frameworks normally rely on trusted
third parties or assume mutual trust across different domains,
which is challenging to fully implement in practical industrial
environments [[13[], [[14]. Maintaining data confidentiality in a
wide range of industrial manufacturing systems is critical, as
any data breach presents a significant threat to the system secu-
rity [15]-[17]. In addition, the diverse array of device types in
current [IoT systems further complicates the mutual utilization
of generated data [18]]. Therefore, centralized storage systems
are fundamentally inadequate for effective data management,
failing to guarantee data authenticity, integrity, and validity
[19]-[21]]. To overcome these limitations, decentralized man-
agement and collaborative data maintenance become essential
to ensure safer and more efficient data processing in IIoT
environments.

Furthermore, with the expansion of industrial operations
and the increasing interconnection of devices, traditional IIoT
architectures encounter growing pressure to support large-
scale networks, with the increasing complexity of data types
and communication protocols [22]. Current research on IloT
trust mechanisms focuses on addressing the practical needs of
application environments, especially considering the limited
and diverse computing and storage capabilities of IIoT devices
[23]], [24]. Therefore, more customized and practical solutions
are required when implementing these mechanisms to over-
come the associated challenges. This paper aims to answer the
following research questions: i) How can high computational
complexity in managing data access control and ensuring data
security be effectively mitigated in resource-constrained IloT
environments? ii) What customized and practical solutions can
be developed to implement trust mechanisms in IloT appli-
cations, considering the limited and diverse computing and
storage capabilities of IIoT devices? iii) How can emerging
technologies like Al and machine learning be integrated into
IIoT architectures to enhance robustness without exacerbating
computational complexities?

To address these challenges, smart contracts enabled by
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blockchain technology have provided a robust solution, sig-
nificantly improving security, trust, and data integrity within
the IloT framework [25]. Smart contracts integrate with the
distributed architecture of IIoT, managing data transactions
based on predefined rules while providing instant, automated
responses to security threats [26]. By embedding operational
rules into the blockchain, smart contracts make the interactions
of the IIoT network transparent, autonomous, and immutable
[27], [28]. Moreover, smart contracts can adapt to the diverse
technical requirements of IIoT devices, enabling precise access
control and secure data sharing, and adaptability is especially
crucial in complex IloT environments with unsynchronized
device operations, as it reduces reliance on central systems
and mitigates the risk of data breaches [29], [30].

A. Related work

Smart contracts provide a crucial security mechanism and
reliable operating environment for IIoT data access control,
with attribute-based access control (ABAC) models commonly
integrated to implement precise control in asynchronous multi-
stakeholder environments, protecting IIoT resources and sen-
sitive information [31]]-[33]]. For instance, Yang et al. [34]
developed a secure data-sharing protocol using blockchain
technology, enhancing single critical exposure protection, en-
abling efficient keyword searches, and supporting dynamic
user and key management. Then, Liu ef al. [35] developed an
IoT access control system based on Hyperledger Fabric but
lacks comprehensive auditing capabilities for access records.
To address the limitations of existing models, especially the
latency issues in smart contract operations, researchers are
exploring new enhancements to blockchain-based IIoT system
access control modules. Wu er al. [36] presented MapChain-
D, a framework that integrates distributed hash tables with
Ethereum storage, explicitly catering to environments with
significant latency and bandwidth constraints and thus serv-
ing resource-limited IIoT devices effectively. Similarly, the
combination of multiple blockchain distributed keys and fog
computing, as proposed in [37]], shows the potential to reduce
various link operation times and improve user privacy and
security.

Although smart contracts have made progress in IIoT, chal-
lenges still exist due to the high computational complexity of
device interactions. Existing research has not fully addressed
the burden, hindering scalable access control and data security.
Therefore, it is critical to reduce computational overhead while
ensuring strong access control.

B. Our contributions

Based on the above-mentioned analysis, this work intro-
duces Hyper-IloT, a data access control framework for IIoT
utilizing the Hyperledger Fabric platform. Hyper-IloT em-
ploys an ABAC model to provide a flexible, dynamic, and
fine-grained approach to data access control. The integration
of smart contracts with Bloom filters in formulating access
control policies reduces computational overhead and promotes
adaptive governance over private data access protocols, effec-
tively addressing the complexities of securing private data in

the IIoT domain. Compared to existing approaches, the pro-
posed method reduces the computational overhead associated
with access control and data querying in IIoT environments.
Deploying Bloom filters enables fast query response times,
while smart contracts ensure consistent and transparent en-
forcement of access control policies. Specifically, the contri-
butions of this work include the following:

o This paper introduces a secure private data storage struc-
ture for IIoT that addresses the limitations of centralized
storage systems by enabling decentralized management
and collaborative data maintenance.

« Innovative smart contracts are developed to build complex
data architectures, enforce access controls, and orches-
trate systemic processes, thereby accelerating data query-
ing and access while improving system functionality and
performance.

o An auxiliary architecture integrating Bloom filters with
ABAC is designed, significantly reducing system over-
head and enhancing data management efficiency in IloT.

o Simulations and experiments demonstrate the effective-
ness and operational efficiency of the proposed Hyper-
IIoT framework within the IIoT ecosystem, highlighting
the advantages of the Kafka consensus mechanism in
achieving rapid consensus and high throughput compared
to traditional Proof of Work (PoW) systems.

The remainder of this paper is organized as follows. Sec-
tion [II] introduces the problem definition. Section [lII| presents
the architectural framework of Hyper-IIoT. An in-depth pre-
sentation of the performance evaluation is provided in Sec-
tion [[V] Finally, conclusions and future directions are given in
Section [V]

II. PROBLEM DEFINITION

This section introduces the problem definition, including the
interplay among models outlined in Subsection the data
structure described in Subsection [II-B| and interconnectivity
in Subsection

A. Definition of the structural relationship between users and
private data resource stores

The storage protocol proposed in this work reduces the
load on the blockchain network by hosting public data on
cloud servers. This arrangement allows users to access the data
independently through the server address. In contrast, private
data containing sensitive information is securely maintained
within the blockchain network. Data owners should implement
access control policies for private data and manage private
data by auditing access records. Fig [I] presents the interaction
among users, the IloT platform, cloud, database, admin, and
blockchain for managing private data, showing the specific
data flow steps from data ownership, storage, and access
requests to blockchain verification.



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

I

TloT platform Cloud

“ +

¢ ™
&

@ (@2

Data owner

0 @ ;r‘

(4) )

Blockchain

Data requester

Fig. 1: Structural relationship of Hyper-IloT

B. Data structure definition

In this subsection, we present a reliable mechanism for
protecting private data, including the data format, access
control policies, and documentation methods.

1) PersistentData: This model defines private data in a
uniform format, as shown in Eq [T}

PD = {persistentld, persistent Data, persistentUrl} (1)

where PD represents the persistent data set of private data
in the IIoT application scenario, persistentId represents the
unique primary critical identification of persistent data re-
sources, and persistent Data represents the persistent format
of private data. persistentURL Indicates the URL where
public data can be accessed on the cloud server.

2) AccessPolicy: The access control strategy of the Hyper-
IIoT model is the core to achieving fine-grained access control.
The data structure is mainly based on the ABAC model, and
its structure is shown in Eq 2] - [}

PL ={AUser, APD, AAuth, AEnu} )

AUser = {userld,role, PKUser} 3)

APD = {datald, signer, signData, dataKey, dataUrl}  (4)

AEnu = {createTime, endTime, [ P, signPKuser} (5)

where PL signifies the access policy related to the attributes
such as user, data, environment, and permission. AAuth rep-
resents the permission attributes, delineating access privileges
for private and public data endpoints within the IIoT domain.
It comprises attributes such as authUrl and authData, which
correspond to the access control attributes for public data
URLSs and private data, focusing on validating the access per-
missions for private data. On the other hand, AFEnu signifies
the set of environmental properties, delineating the contexts
under which a data requester may access private environments.

Environment properties encompass attributes like createT'ime
(policy creation time), endlime (policy expiration time),
ip (requesting node’s IP address), and signP Kuser (data
owner’s signature on the policy to prevent tampering or
forgery).

3) Record: To ensure the traceability of the Hyper-IloT
model, the system defines the access record as four data struc-
tures: RECORD, REQUEST, RESPONSE, and HIS,
as shown in Eq[6]- [}

RECORD ={REQUEST,RESPONSE,HISTORY} (6)

REQUEST = {AUser, APD} 7)

RESPONSE = {policyl D, owner, requestI D,

status, endTime, timestamp}

®)

HIS = {resourceld, requestor,version} 9)

RECORD encompasses privacy data access records
for auditing, comprising RFEQUEST (data request
record), RESPONSE (data owner’s response record),
and HISTORY (data set access history). REQUEST
contains attributes about the requester and data set, while
RESPONSE includes details like policyld (index for
accessing blockchain’s control policy), owner (data owner),
requestI D (index for request record), and timestamp (data
owner’s response time). HISTORY serves as a ledger for
data set interactions, autonomously documenting pertinent
details of requesters within the blockchain network. This
registration occurs in conjunction with the access instance,
precisely when a data collection, identified by resourceld, is
successfully acquired by a requester. By efficiently structuring
access records, Hyper-IloT ensures minimal computational
overhead during audit processes.

C. Model interrelation

The Hyper-IloT model encapsulates a triad of interactive
processes: Policy-to-Data, Data-to-Log, and Log-to-Policy, as

shown in Fig 2|
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Fig. 2: Model relationship of Hyper-1IoT

In this model, the access control model ensures auditability
by recording data requester IDs, creating request and response
records, and validating legitimacy based on access, request,
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and response records stored in the blockchain network. Direct
correspondence between access logs and confidential data
is established, simplifying the auditing process. The model
uses ABAC to achieve fine-grained and context-aware access
management. The basic concepts of the ABAC model are as
follows: Subject (S) represents the entity requesting access,
Object (O) is the resource being accessed, Policy (P) defines
the rules that govern the access, and Environment (£) encom-
passes contextual information influencing the access decision.
This structured approach enhances the security and efficiency
of the access control mechanism within the IIoT framework.

III. SYSTEM MODEL AND DESIGN

The smart contract and Bloom filter-based access control
system proposed in this paper offers a reliable private data
protection scheme. This section outlines the architectural de-
sign and details of Hyper-IIoT.

A. System architecture

Hyper-IIoT is deployed on the consortium chain, and the
main design components include Users, Certification Authority
(CA), Administrator (Admin), and Blockchain Network (BN),
which provides user access modules that form the underlying
structure. The system, integrating a smart contract-based ac-
cess control model enhanced with a Bloom filter, is illustrated

in Fig 3

&) &

Fig. 3: Structural Design of Hyper-IloT

1) HloT: The IIoT device management platform processes
various datasets produced by IIoT devices, including video,
audio, and text content. The data generated during this opera-
tion is classified into private and public categories based on the
system’s predefined isolation criteria, which are transmitted to
the cloud server for storage.

2) User: The system encompasses data owners who up-
load, manage access, and respond to data requests and data
requesters requiring permission for access. Data owners can
audit their data resources via access control policies, enhancing
data security and traceability.

3) CA: This component issues certificates to uniquely iden-
tify new nodes, requiring each user to possess a CA certificate
for various procedures like connecting to and authenticating
with the blockchain network.

4) Admin: Responsible for managing the essential capabil-
ities, including network startup and smart contract installation
rights, while overseeing access control through CA authen-
tication, access policy formulation, user data access rights
assignment, and maintaining policies, enabling Hyper-IIoT to
authorize users for data-related activities.

5) BN: The critical platform of the system, which con-
sists of data storage and identity permission authentication,
manages the storage of private data, access control, user
authentication, and auditing, requiring authorization from the
CA for users and Admin for data access, whereas data circu-
lation and retention on the blockchain ledger are governed by
smart contracts, culminating in a comprehensive data exchange
ecosystem.

B. Smart contract design

Smart contracts are key components for implementing the
logic and access control of Fab-IIoT. To ensure system ef-
ficiency while maximizing data privacy and integrity, this
paper designs the following four types of smart contracts from
the perspectives of user management, data management, and
access control.

1) User management contracts (UMC): This contract is
responsible for the management of user names and serial
numbers, including the CreateUser(), QueryUser(), and
CheckUser(). Fig [] shows a simple example of a user
management contract creating a name and serial number.

{

“userName”: “userl”,

“userNumber’: “1a462ae9¢c1350c24ca8e389090946¢7ed51766723 1¢7bbac22d0fed39cas55dd1”,
4 }

Fig. 4: User data example

CreateU ser() method: The initial step for user participa-
tion involves user registration, where CreateU ser() generates
a unique user identification, User Number, based on the
User Name field.

QueryU ser() method: Facilitates user information retrieval
using User Name and U ser Number, including a check for
existing users during registration.

CheckUser() method: Before seeking authorization via
the access policy, users must undergo authentication, which
verifies the user’s signature SignlD, public key Puby, and
private key Priy.

2) Access control contracts (ACC): This function checks if
the request to access the data is aligned with the preset access
control policy. It includes key functions Auth(), Get Attrs(),
CheckPolicy(), and CheckAccess().

Auth() method: Uses Admin-distributed public keys for
request encryption, facilitating user request authentication and
identity verification.

GetAttrs() method: This module processes the attributes
in received requests, focusing on subject and object charac-
teristics, denoted as {S,O}. In addition, it configures envi-
ronmental attributes F, forming an integrated set of attributes
{5.0.E}.

Check Access() method: This method validates access re-
quests by checking if they align with established access
policies, involving retrieval of attributes using GetAtirs(),
querying the corresponding policy with QueryPolicy(), and
verifying attribute satisfaction, with an invalid request result if
no supporting policy is found or if attributes E and A fail to
satisfy the policy as Alg |l| shows. The deployment interface
of ACC is shown in Fig [3]
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rootejtli-ubuntu:/home/gopath/src/github. con/Hyper-IT0T/client/nodejs# node ./invoke.js acc CheckAccess 'ABACR{Su, Ou, Eu}'
/home/gopath/src/github. con/Hyper-IToT/client/nodejs/wallet

sssss ABACR{Su, Ou, Eu}
Tran on has been submit, result is: OK

Fig. 5: The interface of C'heckAccess() method installation

Algorithm 1 The CheckAccess() method checks the access
request

Require: ABACRcquest
Ensure: TrueorError
1: {Su,Ou, Eu} < Get Atrrs(ABAC Request);
2: //Retrieve attribute info from the access control request
based on attributes
3: PolicySet =
QueryPolicy(Su, Ou);
4: //Get attribute information based on attribute-based ac-
cess control request
if PolicySet is Empty then
return Denial()
end if
for each Policy in PolicySet do
//Check each policy for compliance with visitor cri-
teria
10: {Ap, ..., Pp, Ep} + Policy
11 if Value(Pp) == 1 and Eun Ep is Not Empty then
12: return Approval
13: end if
14: end for
15: return Denial()

{Policyi, ..., Policy,} —

R A

3) Private data control contract (PCC): This contract is
used to manage both private and public data. It enables the
data owner to amalgamate private and public data into singular
resources, facilitating uploads and downloads. The contract
encompasses methods as follows:

AddData() method: Enables the data owner to combine
private and public data into a single data resource. Once com-
bined, the consolidated data can subsequently be transmitted
to the permissioned blockchain network.

GetData() method: This function permits data owners to
access the data resources via a controlled policy mechanism,
which coordinates with the blockchain’s indexing system for
retrieval.

4) Access policy management contracts (PMC): This paper
defines the following four ways of operating ABAC Policy.

AddPolicy() method: It involves the CA executing the
CheckPolicy() module to ensure policy validity before ad-
dition. Only policies that pass this check are recorded in the
SDB and blockchain, as detailed in Alg

DeletePolicy() method: To remove expired policies, the
administrator can explicitly invoke this function, or it can
be executed automatically when the C'heckAccess() module
runs.

UpdatePolicy() method: Invoked by the administrator to
modify ABAC Policy, and it can be done by either deleting
the policy and writing the modified record to SDB and the
blockchain or by adding the modified policy after updating.

QueryPolicy() method: Allows administrators to retrieve
ABACPolicy details by attributes ABAC Policy_S or
ABAC Policy_O, as all policies are stored in CouchDB.

Algorithm 2 The AddPolicy() method customizes access

policies

Require: ABACP

Ensure: TrueorError
1: @implement SmartContract Interface;

. //Implementation of smart contract interface

. APIstubChaincodeStub < Invoke();

. if err! = Null then

return Error(BadPolicy);

: end if

: //Generate a unique index of the access policy based on
the host and guest attributes

. //Store the strategy in the blockchain

9: if err! = Null then

10: return OK

11: end if

12: return OK;

oo

C. Policy query optimization based on bloom filter

In IIoT systems, efficient data management is critical due to
limited resources. Traditional filtering techniques, like hash ta-
bles, skip lists, and tree structures, face challenges in memory
usage and query speed.

Hash Tables: Although hash tables offer fast lookups, they
require significant memory and can experience performance
issues due to collisions. In contrast, Bloom filters are highly
memory-efficient and provide fast membership checks with
minimal overhead.

Skip Lists: Require complex maintenance and higher mem-
ory usage. Bloom filters offer faster queries and use less
memory without maintenance overhead.

Tree-Based Structures: These structures have higher la-
tency due to disk or memory I/O. Bloom filters offer constant-
time query responses with no need for reorganization, making
them ideal for real-time IIoT applications.

The bloom filter, denoted as BF, is a spatially effi-
cient, probabilistic data structure tailored for approximate
set membership verification, as explored by Waikhom et
al. [38]. BF' offers memory efficiency, making them ideal
for resource-constrained IIoT systems, while ensuring fast
querying for low-latency data processing, with an accept-
able trade-off in accuracy through a low false positive
rate for many IIoT applications. Comprised of an array
of ¢t bits, BFF = (by,...,b:), all initialized to zero.
For a set of = elements A = {aj,a2,...,a,} and p
unique hash functions {hashi, hashs, ..., hash,} that map
uniformly to the range [l,n|, the insertion process of
an element «; € A involves calculating p hash values
{hashi(a;), ..., hash,(a;)} and setting the corresponding
indices in BF to one (BF'lhash;(c;)] =1 for 1 < j < p,
1 <4 < x). The BF can produce two types of indications:
certainty of the data’s presence or a probability of its presence,
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with the latter known as a false positive, which erroneously
indicates the presence of data not inserted. A response of
BFlhash;(a;)] = 0 conclusively signifies that the element
«; does not exist in BF'.

BF' is utilized to enhance query efficiency within smart
contracts, specifically to test the membership of variables
within queries initiated by an Admin, thereby reducing
the computational demands and the consequent system re-
sponse delays. The indices generated by the Bloom filter,
denoted as Index, are used to quickly check the presence
of attributes in the policy sets. Assuming that the attribute
sets of ABAC Policy_S and ABAC Policy_O with z el-
ements are {kg valueg, ..., k] valued, ..., k3
valuel_,} € ABACPolicy_S and {k§ : valueg, ..., k9
value?, ..., k9 | : value$_;} € ABACPolicy_O respec-
tively, the query procedure can be defined as follows:

Step 1: Build a bloom filter structure BF4 consisting of a
t-bit array (all default values are 0) and p independent hash
functions.

Step 2: Enter the defined set of

smart contract

attributes {ABAC Policy_S, ABACPolicy_O},
update the array BF4 = (b1,...,b,) with a value
of 1, and its corresponding mapping process is

BF[hash(ABAC Policy_S, ABAC Policy_O)] =
Index{ABACPolicy_S,ABACPolicy_O} .

Step 3: Input the attribute set

{ABACPOZZ'C:IJ_S/,ABACPOMC:IJ_O/} of the query

contract, Hash 4 it, and output the result set Index® © .
Step 4: ) The ) result set

Indem{ABACPO“Cy—S ,ABACPolicy_O } _ {I(/J, Ii’ e Iz/)} is

iterated successively to determine the b; = BF'(I;) value of

the element I' c Index{ABACPolicy_S/,ABACPolicy_O/}
J

in the BF,4 index position obtained previously.
If b = 0, it is determined that the attribute set
{ABACPolicy_S', ABACPolicy_O'} of the contract

in this query does not exist in the contract attribute
set {ABACPolicy_S, ABACPolicy_O} defined by the
system, and the query —process gnds. If the value of
Indel'{ABACPOliCy_S ,ABAC Policy_O il’l/ the COI‘I’CSPOIld,iI’lg

index position of BFj, is 1, then {k; : valuej— ,k?

valuejo/ € {ABACPolicy_S,ABACPolicy 0} is

indicated.

Step 5: Loop through Step 3/ and Step 4. ,If
all ) elements{f}BAC’P(/)licy_S s ABAC Policy_O }
and {k§ value§ , ... k3 valued , ..., k3
value;/_l} e ABACPolicy_S in {kg : valueg,... kO :
value?, ... k9 | : valueQ |} € ABACPolicy_O' exist

in {ABACPolicy_S, ABAC Policy_O}, the query policy
matches, and the query ends.

The above steps reduce the computational overhead of
queries by quickly excluding non-matching elements. While
the ABAC model supports fine-grained, context-aware access
control, it can be computationally demanding. By integrat-
ing Bloom filters into access policy management, Hyper-
IIoT lowers policy evaluation complexity and enhances ac-
cess control efficiency in resource-constrained environments.

Consequently, the computational complexity for querying the
target contract is reduced from O(t?) to O(p * t).

D. System workflow

As shown in Fig [6] the blockchain-based access control
policy model mainly consists of five parts, and this part will
explain the workflow of each part in detail.

() 0. (] _— =
[ ¢ R
1.User privacy data stor:

load:

i

12 Return the URL address®|

1 Certfcate g

31 Access policy define

32 Access policy upload—»

33 Access policy update

5.User gecess
allocafion

51 Request startup———>

[+———5.2 Request verification——|

3

Fig. 6: Workflow for Hyper-IloT solutions

1) Data storage: Data owners must first upload their private
data resources and formulate relevant access control policies to
complete the storage process of private data in the blockchain
network. Suppose that there is a user userl with priData,
pubData, and public key PKowner, so the specific process
of storing private data is as follows:

Step 1: The user transfers public data to the cloud server.

Step 2: The cloud server provides URL data in response.

Step 3: The user identifies and prepares private data for
secure storage.

Step 4: The user must hash the private data and obtain the
result sign_data.

2) Blockchain network initialization: After configuring the
experimental environment, the system must be started first.
The initial setup of the blockchain network mainly includes
generating certificates for each part of the blockchain, creating
and connecting nodes between the network, and installing
chain codes and policies on each node. The specific imple-
mentation process is executed in the form of a script, and the
steps are as follows:

Step 1: The certificate is generated. The certificates, public
and private keys of User, Orderer, Peer, and Admin are
uniformly generated by the CA, as shown in Eq [I0}

User — CA — {Ctyser, pubkyser, prikuser }
Orderer — CA — {CtOrdeTer7PUkardereryp’rikOrderer}
Peer — CA — {CtPeampukaaewprikPeer}

Admin - CA — {CtAdmi'/npUbkAdminvprikAdmin}
(10)
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Step 2: Creation and connection of blockchain network
nodes. Each user in the network constitutes a node. In a
stand-alone environment, creating each node is equivalent to
creating a docker container, ensuring each node has the same
system environment. In a multi-machine environment, each
computer is comparable to a node and does not need to have
the same environment, it only needs to have the same client to
achieve communication between nodes. Employing the Fabric-
provided configtxgen tool ctgen is essential for constructing
a blockchain network, with the process detailed in Eq [T1]

Fabric H% Block; kafka {Blocky, Blocks, ..., Block,} (11)

Step 3: Configure network nodes. The configuration infor-
mation for nodes and channels is used to set up the network,
while transaction details are processed as shown in Eq[12]

SDK
{CtOrdererv CfO'I‘dere7'7 CtPeerv CfPeeT} — {Txl 9o

b TGL’n }
(12)
Step 4: Chaincode installation. chaincode installation is
performed by the administrator according to Eq [13] Installing
a chaincode on a blockchain network node can facilitate the
authentication and endorsement of transactions on that node.

Chaincode — Admin S2¥ Peer (13)

3) Access policy deployment: The system customizes ac-
cess policies to ensure users’ access rights to relevant data.
The deployment procedure is as follows.

Step 1:Access policy definition. Admin provides man-
agement functions for attribute-based access control policies
developed based on business rules, as shown in Eq

{S,0,P,E} - Admin — {ABAC Policy} (14)

Step 2: Access policy upload. Once the access policy is
defined, it will be broadcast to the blockchain network in the

steps indicated by Eq.

{ABACPolicy} — Admin — {Blocki, Blocks, ..., Block,} (15)

Step 3: Access policy updates. The blockchain network
does this by executing chaincode, updating the Ledger state,
and saving the policy to the database, as shown in Eq

{ABACPolicy} — {Ledger, Level DB} (16)

4) User registration: Registering users involves recording
the identity details of the data owners and requesters on the
blockchain. The steps for registration are outlined as follows.

Step 1: User creation. This step first needs to check
whether UserName and User Number already exist in
the CA. If the member is new, the CA proceeds with
registering the User, leading to the creation of the fields
{SignID, Pubk, Prik,Ct}, as shown in Eq

User — CA — {SignID, Pubk, Prik,Ct}  (17)

UserName and User Number are then stored in the
database, as shown in Eq

{User Name, User Number} — {Ledger, Level DB} (18)

Step 2: User authentication. After registration, if the user
wants access to create, query, and update the correspond-
ing data, they need to obtain authentication by calling the
checkU ser() method and then invoke the pre-set access policy
to obtain authorization as shown in Eq [T9]

checkU ser

User - CA  — 0 Admin — Policyy ser (19)

Step 3: User login. Upon user authentication, the server ini-
tially verifies the existence of the member. Once confirmed, the
member’s public and private keys, Puby and Priy, facilitate
access to the Fabric blockchain network. Subsequently, the
member’s data retrieval is executed through the queryUser()
function. A successful data query triggers the server to dis-
patch the retrieved information and deliver the login outcome
to the member.

5) User access allocation: User access authorization is the
core of access control. Authorization must ensure sharing and
dynamics while ensuring the integrity and synchronization of
financial project data. User access authorization requires a
strict definition of the policy based on actual service logic.
The assignment steps are as follows.

Step 1: Request activation. The user initiates an access
request to the blockchain, verified upon arrival at Admin as
shown in Eq 20}

User Req—u;St Admin (20)

Step 2: Request validation. After receiving an access re-
quest from the user, Admin calls the GetAtrrs() method to
get the user properties and then the CheckAccess() method
for validation as shown in Eq

GetAttrs()
—

Admin User{S,0} — User{S,0, E}

Checkaccess(
—

2D
) User{S,0,E} —s User{S,0, E, P}

Step 3: Execution. After the administrator verifies the user’s
access policy, the system processes the user’s request per the
established access policy. If the return result is 1, the access is
passed. If the return result is 0, the access is denied, as shown

in Eq 22

Admin

1, Pass

ABACPolicy User{S,0, E, P} {0

Admin (22)

)

IV. PERFORMANCE EVALUATION AND ANALYSIS

This section describes the experimental process for eval-
uating functionality and presents the performance and com-
parative results of the proposed Hyper-IToT. Section
details the experimental setup and the parameters configured
for the evaluation, while Section delves into the analysis
of the experimental data and the consequent performance
implications.
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A. System environment and configuration

The experimental evaluation in this study is executed in
a stand-alone environment and configured as detailed subse-
quently.

1) Network structure: The proposed network topology con-
tains nine types of nodes. This setup comprises four database
nodes (Fabric — couchdb), two certificate authority nodes
(Fabric — ca), four peer nodes (Fabric — peer), one order
node (fabric—orderer), and one client node (fabric—tools).
Additionally, there are four nodes each for user-managed
contracts (UMC' and AMC), private data control contracts
(PCC(C), and access control policies (PMC'), as shown in
Tab [ We emulate a distributed multi-machine environment
utilizing three Raspberry Pi microcomputers, depicted in Fig[7]

TABLE I: Symbols used.

Node Implication Number
UMC | The user manages the contract nodes 4
AMC | The user manages the contract nodes 4
pPCC Private data control contract nodes 4
PMC Access control policy nodes 4

(a) (b)

Fig. 7: Raspberry Pi microcontroller devices

2) Chaincode deployment: Within the Hyper-IloT frame-
work, chaincode defines properties, manages access control,
and orchestrates system operations. This encompasses the pro-
cesses of installation, instantiation, and subsequent upgrades.

Step 1: Installation. Chaincode installation is initiated
after completing blockchain network initialization, performed
through Hyperledger client nodes, and installed into each peer
node.

Step 2: Instantiation. The instantiated chain code is spec-
ified after it has been installed on any peer node

Step 3: Upgrade. Before updating the chain code, it is
imperative to install the new version; the update will take effect
exclusively on peer nodes that have the revised chain code in
place.

B. Performance test and experimental results

To evaluate Hyper-IIoT’s performance, this study conducts
three simulation experiments to assess system concurrency,
transaction time, and throughput under real-world conditions,
demonstrating its ability to maintain high throughput and
effective consensus in a distributed system even under large-
scale request scenarios. To verify the practical applicability of
Hyper-1IoT, we used multi-machine experiments to conduct
simulations and case studies reflecting real industrial scenarios.

1) Contract execution time: Rooted in the operational logic,
this research initially assesses the execution time for user man-
agement, policy management, and access control contracts, as
depicted in Fig |8} The findings reveal a consistent and gradual
rise in the contract execution time corresponding to increased
block size, suggesting a well-regulated and systematic growth
pattern. It is evident that the add() and update() methods
require more time to execute compared to the query() and
delete() methods, primarily due to the more significant num-
ber of data writes they involve. However, this difference in
execution time is sufficiently minor to be effectively managed.

= AddPolicy
DeletePolicy
20T mmm UpdatePolicy
= = QueryPolicy

(s)

Response Time

0 200 100 600 800 1000 00 200 100 600 800 1000

Concurrent User Targets Coneurrent User Targets

(a) The execution time of UMC (b) The execution time of PMC

3.0

o ®

B CheckAccess BN AddData

o5 [ W GetData

e (s)

Response Timy

200 100 600 800 1000 200 100 600 800 1000

Number of Concurrent Requests

Number of Concurrent Requests

(c) The execution time of ACC (d) The execution time of PCC

Fig. 8: The execution time of smart contracts

Furthermore, Hyper-IIoT integrates a bloom filter-enhanced
API into the smart contract in Hyperledger Fabric. Fig
presents the efficiency of bloom filters in processing queries
across varying file sizes. The data indicate a systematic
increase in processing time correlating with heightened con-
currency, underscoring the bloom filter’s compatibility with
scalable data storage and query scenarios. For query precision,
the bloom filter’s byte size and hash function count are finely
tuned by the anticipated data dimensions. Subsequently, the
MD5 hash is stored as a key-value pair within the state
database, prompting an update to the ledger. A compara-
tive analysis between the bloom filter-enabled and traditional
search methodologies underpin the augmented efficacy of the
bloom filter approach as data volume escalates, as illustrated
in Fig P(b)

The integration of Bloom filters substantially reduces the
computational complexity of access control and data querying
operations. Traditional search methods typically exhibit linear
or even quadratic time complexity with respect to the number
of policies or data attributes, which can lead to significant
performance degradation as the system scales. In contrast,
Bloom filters enable constant-time complexity for membership
checks, thereby enhancing query performance and alleviating
the computational burden on the blockchain network. The
reduction in computational overhead is critical for maintaining
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low latency and high throughput in resource-constrained IIoT
environments.

15000 o
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Data Size (MB)

(a) Query time consumption of (b) Comparing
bloom filters

the query time
between the bloom filter-assisted
scheme and the regular scheme

Fig. 9: The execution time of bloom-filter assisted scheme

2) TPS of smart contracts: This section evaluates the Trans-
action Per Second (TPS) of Hyper-IIoT in simulated scenarios
with different concurrency levels. The system’s throughput
under the Kafka consensus protocol shows unparalleled relia-
bility, as seen in Fig @ Notably, the administrative contract,
which handles addition and modification functions, exhibits
a marginally reduced throughput compared to the contract
responsible for querying and validation due to the inherent
read and write demands. Nonetheless, the Hyper-IIoT system
sustains a robust TPS and stable performance even amidst
stringent operational demands.

—+— CreateUser - - 7 o AddPc -

Number of Concurrent Users

(a) TPS of UMC

Number of Coneurrent Users ’ Number of Concurrent Users

(c) The execution time of ACC (d) The execution time of PCC

Fig. 10: Smart contract throughput

3) Consensus Time Contrast: We compared the duration
and throughput of the consensus mechanisms of Kafka and
Proof of Work (PoW) across networks ranging from 10 to
100 nodes. Fig [T1(a)] shows the time consumption required
to reach consensus using the proposed Hyper-IIoT system
with Kafka compared to the traditional PoW mechanism.
Kafka’s ability to achieve consensus significantly faster than
PoW, especially as the number of nodes grows, highlights
its suitability for high-throughput, low-latency IloT applica-
tions by dramatically reducing consensus time. In contrast,
Fig [I1(b)] demonstrates Kafka’s notable advantage over PoW
in terms of throughput. Due to the computationally intensive
nature, PoW’s TPS decreases sharply as the number of nodes

increases. Kafka maintains a stable and high TPS rate, even
as network size scales up to 100 nodes, and meets the high-
throughput requirements for efficient data access control and
management in real-world IIoT applications.

. 100 | = pow
4 kafka

—— kafka

pow

300

200

Consensus time
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(a) The Consensus time compari-
son between Kafka and POW

(b) Consensus time comparison

Fig. 11: The TPS comparison between Kafka and POW

V. CONCLUSIONS AND FUTURE WORK

This paper proposes an IIoT data management framework
based on smart contracts and bloom filters to achieve secure
data storage and access control. The proposed Hyper-IIoT
enhances accurate data governance and access control by
maintaining secure storage, enabling efficient data access, and
ensuring traceability of sensitive data, effectively addressing
evolving data formats and increasing privacy demands. The
access policy in the system is programmable and offers
adaptability to diverse access requisites. Through the imple-
mentation of ABAC, Hyper-IloT has achieved fine-grained
access control, and the bloom filter deployment improves
system performance. Experimental results show that Hyper-
IIoT exhibits well-controlled contract execution times, stable
throughput, and efficient consensus in a distributed environ-
ment and highlight the advantages of the Kafka consensus
mechanism in achieving rapid consensus and high throughput,
meeting the requirements in real-world applications.

In future directions, this work can be explored in the
following aspects.

1) Future work will involve investigating and implementing
a variety of access control policies, such as Role-Based
Access Control (RBAC) and Context-Aware Access
Control (CAAC), alongside advanced security mecha-
nisms like anomaly detection and intrusion prevention
systems.

2) To integrate Hyper-IloT with cutting-edge technologies
such as 5G connectivity and edge computing frame-
works for information security management.

3) Future research will focus on designing and imple-
menting novel consensus algorithms specifically for
IIoT environments, reducing latency and maximizing
throughput, thereby improving the responsiveness and
consensus efficiency of Hyper-IloT in large-scale dis-
tributed networks.

4) To reduce the incidence of false positives inherent in
Bloom filters, future work will explore the development
of more accurate probabilistic data structures, such as
Counting Bloom Filters or Cuckoo Filters.
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