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Abstract— Electric vehicle energy network (EVEN) enables the csS , CS,. . Set of BCSs and BCSs near i
transmission of renewable energy from rural to urban area by . .

the flexibility of EVs via energy exchange. In this paper, CS;(~ Set of accessible BCSs at at 7, , .
(dis)charging behavior modelling and bidirectional charging |/ Set of nodes in road network.

station (BCS) deployment optimization are addressed, since they  p R, Set of routes, and nodes in k-th route.
are crucial in EVEN for EV accommodation, renewable energy Nbus b in th

utilization, drivers’ profitability estimation, operators’ cost Set of buses in the system.
assessment, and financial policy establishment. A novel stochastic

Markov (dis)charging behavior model is proposed to calculate ~Parameters

the spatiotemporal load pattern considering the realistic factors  cost”“ " Cost of operator for building BCSs.

such as personal features, state of charge (SoC), electricity price,
and BCS locations. Unlike most works ignoring energy trading,
six scenarios are explored: (S1) no trade; (S2) trade in main
battery. (S3) trade in extra battery. (S4) trade in extra
ultracapacitor; (S5) trade in both main and extra battery; (S6)
trade in both main battery and ultracapacitor. Also, a multi-
objective BCS deployment strategy is newly designed, aiming at
minimizing installation cost and driver’s electricity bill, while
quality of service (QoS) and voltage stability are ensured. An
improved hybrid algorithm is developed, which combines hill
climbing for enhanced exploitation and particle swarm
optimization for better evolvement based on genetic algorithm
framework. The simulation validates the fitting ability of
charging model, the effectiveness of parameter selection
algorithm and the deployment approach. Comparing 6 scenarios,
benefits of energy trading in EVEN is confirmed and the
superiority of ultracapacitor for trading is demonstrated. The
feasibility of financial policies is also studied, and certain
guidance is provided for drivers to improve their cost.

Index Terms—Electric vehicle, driver’s behavior, bidirectional
charging station deployment, energy trading

NOMENCLATURE
Indices and Sets
i,j Index of nodes in road or in route.
k Index of routes/EVs.
t index of time.

LA index of SoC level and price level.
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cost™ , cost Cost of one BCS and one charging server.

cost™™ Cost of driver’s EV bill.
cost™ Cost of driver to buy electricity.
cost ™ Cost of battery degradation.
cost; , cost{*’  Battery and degradation cost for k-th EV.
c(l), r(1), d(I) States of charging, running, and discharging.
cap, Battery capability of k-th EV.
cap}” Initial battery capability of k-th EV.
ar;; Maximum allowable distance at 7, , .
dt(n,r,) Distance between nodes r; and .
e Energy consumed per unit distance.
;f,’:’”i” Remaining energy of destination at 7, , .
kp, ky Driver’s decisiveness parameter.
m™ Maximum customer.
n, ,n™ Number of servers and its maximum value.
probu(t) The probabilities that m customers in the
system at time ¢.
price(t) Electricity price at ¢.
profitrade Profit of driver via selling electricity.
prob®ss Proportion of fleet that can reach BCSs with

in certain distance.
D, gt (D) p and ¢ of main battery for charging.
pi(D), q*"(I)  p and g of main battery for discharging.
p¥M(Q), g*"(1) p and g of second device for trading.
pf(®), pf*“ () EV charging and discharging profile.
i@, pf () (Dis)charging profile of battery.
o @), pf*(t) (Dis)charging profile of ultracapacitor.
pfi(@ s pf(t) Charging and discharging demand at r; , .
pf () Non-EV load at node .
pf(8), pfi*" () (Dis)charging profile at node i.
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P p™ Active generated power and load at node i.

o, oM Reactive generated power and load at node i.

r i-th node on the road network.

Tk Jj-th node of k-th route.

rt, ,rt, (Dis)charging rate of battery and
ultracapacitor.

el Charging and discharging rate of k-th EV.

soc;, EV’sSoCat r,, .

soc}ff'/':’“"" Remaining SoC of destination at 7, .

50C,,;,50C Initial and final SoC of energy exchange.

soc™  soc™ Minimum and maximum SoC.

sp, Speed of k-th EV.

s,m Number of servers and customers.

th" ,th™  th*" Threshold of waiting time, distance, and
charging.

the  th"™” Threshold of life cycle and BCS
accessibility.

wi™ Maximum waiting time for all BCSs.

v, , vy node i voltage, allowable minimum and
maximum voltage.

X, A binary variable indicating whether i-th
node should be deployed a BCS or not.

x5 x Range anxiety parameter.

o Price sensitivity parameter in trading.

Ax Price's impact on range anxiety.
Al , At SoC level interval and time interval .
dch

Asoc", Asoc!" Change of SoC for charging and discharging.

road

Asoc Change of SoC driving from 7, to r,, .
AL Travelling time 7, to 7,,,, .

AE, Loss of exploitable energy of battery.

7" n Efficiency of charging and discharging.
w1(),0(t) Service and arrival rate at time .

&) Probability of parking.

o(state', state’) Transition probability of two states.

Aexp Expected price.

[.  INTRODUCTION

ue to the rising awareness of environmental
Dsustainability, the transportation system has been

shifting from fuel-based vehicles to electric vehicles
(EVs), and the power community has been devoted to
accommodating more renewable energy sources (RESs) to
construct a cleaner grid [1-3]. The concept, EV energy
network (EVEN), developed from vehicle-to-grid (V2G),
emphasizes on the EVs’ transmission ability between rural
RESs and urban user end [4]. EVEN has recently gained
attention for its significant benefits, including smoothing
RESs’ utilization, supporting EV load, managing peak

demand, acting as the energy storage system, and offering
drivers profits [5, 6].

Bidirectional charging station (BCS) is the key
component in EVEN. Different from traditional unidirectional
CS, it enables the reverse flow of energy from the vehicle to
the grid. BCS deployment is of paramount importance for
EVEN, providing the essential infrastructure to meet EV
energy demands, directly affecting grid load dynamics and
shaping the accessibility and utilization of RESs. A critical
prerequisite for BCS deployment is the EV load prediction, as
the spatial-temporal demand distribution dictates the siting and
capacity of the BCSs. Additionally, it helps drivers to evaluate
cost and profit, and enable operators to assess renewable
energy consumption and develop financial auxiliary policies
[7]. Notably, the major participants in our paper are public
service EVs, such as bus, taxi, truck, and etc. The reasons are:
(1) They are key players in EVEN, as they are constantly on
the road during work hours, requiring and transmitting more
energy. (2) Their extensive driving range enables them to
deliver renewable energy to urban areas. (3) They have larger
battery capacities, such as medium-sized EVs like buses and
heavy-duty trucks. A 60 kW electric bus can power an
electrically-heated home for 2 hours. Converting 1,000
gasoline buses to electric could supply energy to 24,000
homes for 2 hours [8]. (4) These drivers have free time. For
example, Truck drivers can sell electricity in nearby CS during
breaks. Instead of wasting time, they own more willingness for
the participation.

Typically, there are two main approaches to obtaining EV
load data: (dis)charging scheduling and driver behavior
modelling. The former focuses on the strategic control of EV
energy flow. This stems from researchers' interest in
harnessing the potential of flexible and mobile EVs to enhance
both economic efficiency and energy performance. The typical
objectives of related works include: minimizing energy loss
[6], energy consuming [9], economic cost [10], and
maximizing total energy flow between energy plant to CS [11].
While modelling estimates electrical load under typical
operating conditions. It focuses on the natural character of
drivers without external intervention. In recent years, most of
the EVEN-related research focuses on scheduling, drivers’
behavior modelling is vacant in this field. From the
perspective of BCS planner, relying on scheduling patterns is
relatively unpractical for the following reasons: 1) The
coexistence of multiple scheduling agents may result in
deviations from planned outcomes. 2) Privacy concerns make
it challenging for planners to accurately assess which
scheduling strategies are in use and the corresponding share of
EV users. 3) Drivers add further uncertainty, as individuals
may switch energy management providers or even opt out of
scheduled plan. Therefore, the second approach: modelling
has been regarded as a more viable method for consideration.
Most deployment works focus on stochastic load modelling,
rather than scheduling [12-14].

Driver behaviour modelling can be classified into 3
categories: assumption-based method, data-driven method,
and Markov method. Assumption-based method simplifies
demand into designated mode by considering assumptions and
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factors, including traffic flow [15], parking time [16], and etc.
For discharging works, the assumptions are relatively
unrealistic, such as fixed discharging location, time, and
volume [17-20]. Also, these assumption-based methods
simulate a homogeneous load, as it typically captures the
macro-level aggregate load at specific locations without
randomness. The second type, data-driven method is widely
applied as it is straight-forward and easily to implement.
Specifically, the relevant probability distributions are collected
from real-world survey data, including arrival time, departure
time, initial SoC, duration, and etc. Next, Monte Carlo method
is employed to generate samples, enabling the load estimation
[21, 22]. However, most of the data comes from internal
combustion engine vehicles, which overlooks the EV specific
features. Also, the individual behaviour cannot be adequately
described and reasoned. The third type, Markov model is then
introduced to tackle the above issues, which facilitates load
prediction by probabilistically capturing the transitions
between different states, including parking, driving, and
charging [23-25]. However, distribution characteristics of
behaviour-related parameters are not explicitly addressed in
these studies, limiting the behaviour understanding and its
application in deployment design. [26] proposed a general
Markov charging model, which incorporates range anxiety-
related parameters and demonstrates the fitting ability for
multiple real-world data. The feasibility of integrating price
into the model is also validated. Nonetheless, discharging
models remain underexplored in data-driven method and
Markov method, with challenges in obtaining discharging
data, and voids in designing discharging states. As V2G and
renewable energy utilization are vital parts in EVEN, price-
sensitive (dis)charging model is needed to further developed.
Corresponding to the vacant of discharging in load
modelling, most deployment optimization studies focus on
charging load, and few studies have addressed discharging
profiles. In the future, discharge is nonnegligible for
infrastructure planning for the following reasons [27]: 1) the
discharge energy is considerable with numerous participants.
Especially in the EVEN which provides the cheap and even
free electricity from RESs, hence the spatial and temporal load
pattern will be greatly changed. 2) If drivers choose to
discharge at peak hours for higher profits, this may cause
congestion, which is an important consideration evaluated as
waiting time for planning. Therefore, further investigation of
discharging and their impact on deployment is essential.
Moreover, EV energy storage devices greatly influence
drivers’ behavior and infrastructure deployment. The most
common devices are battery and ultracapacitor. Batteries offer
relatively high energy density, while ultracapacitors provide
longer lifespans without degradation and higher (dis)charging
rate [28, 29]. Higher energy density allows for greater capacity,
longer life minimizes degradation costs, and higher rate
enables faster energy transaction, all of which impact the EV
load profile. Nevertheless, all the aforementioned articles
assume a single battery for both travel and trading functions.
In EVEN, frequent energy exchanges are required, and
concerns about battery health may deter driver participation.
Exploring trading scenarios with different device
configurations can leverage the strengths of each equipment,

offering drivers and operators flexible, informed options for
better outcomes. To the best of the authors' knowledge, the
impact of varying device settings on driver behavior and
deployment has not been addressed in the literature.

More specifically, the main contributions are:

e A novel general stochastic Markov (dis)charging model
is proposed to capture dynamic spatiotemporal load
patterns. The model is highly adaptable to various real-
world factors, such as EV specification, electricity price,
and battery level of charge. Drivers’ personal
characteristics are explicitly presented, including range
anxiety, economic sensitivity, and decision execution.
A parameter selection algorithm is newly designed to
fit real-world charging data.

e A multi-objective BCS deployment strategy is
presented. It targets at EV owners and grid operator
with the consideration of minimizing driver’s electricity
cost and operator’s installation cost, while ensuring
voltage stability and quality of service, i.e., maximum
waiting time and accessibility. To achieve this, a hybrid
algorithm is developed. Based on the genetic algorithm
(GA) framework, hill climbing (HC) is employed for
further exploitation and particle swarm optimization
(PSO) is for better evolvement with next generation.
Also, the planning characteristics are utilized for
revising initialization and mutation operators.

e Six different equipment configuration scenarios are
studied, including (S1) no trade; (S2) trade in main
battery; (S3) trade in extra battery; (S4) trade in extra
ultracapacitor; (S5) trade in both main and extra battery;
(S6) trade in both main battery and ultracapacitor. Main
battery refers to the battery supporting EV driving. To
the best of authors’ knowledge, this is the first paper to
explore behavior modelling and BCS deployment with
diverse equipment settings in the context of EVEN.
Our findings provide insights into selecting device
configurations for both drivers and operators, validate
financial policies for attracting EVs participation, and
offer drivers with guidance on adjust their behavior for
better profit while maintaining SoC.

Literature review is presented in Section II. Section III and
IV introduce the theoretical background of drivers behavior
model and BCS deployment method, respectively. Section V
conducts a case study for the charging model. Section VI
presents experiment for the BCS deployment and drivers’
performance. A conclusion is drawn in Section VII.

II. LITERATURE REVIEW

Electric Vehicle Energy Network (EVEN). EVEN is
proposed as an energy delivery system comprising EVs,
BCSs, and the transportation network. Its fundamental concept
is to transport energy from rural renewable energy plants to
urban areas with high energy demand via EV fleet. In
traditional electricity transmission via power lines, total
energy losses can reach up to 30%, including a 10% loss from
DC to AC conversion, 6.5% losses during transmission, and
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TABLE I
SUMMARY AND COMPARISON OF LITERATURES
EV load prediction BCS deployment EVEN
Ref. Considerations Considerations
V2G RES Personal Different CS cost EV QoS Grid Method
preference trading devices cost (waiting time) stability

[12] x v v x v v x v MILP x

[14] x x x x v x x x MILP x

[15] x x x x v x v MIMJs x RL x

[16] x x x x v v v’ MIMs x Greedy x
[17,18] 4 X x x X x x 4 Heuristic X

[19] v v x x v x x v MILP v

[20] 4 v x x v x x x Greedy v

[22] x x v x v x v MIMJs v Hybrid x

[23] x x v x v x V' MI/Mls x - x

[31] x v x x v x x x Greedy v

[35] x x v x v v v Point queue x GA x

[34] X v X X X X X v GA X

Our v v | v v v v M(0)/M(1)/s | Hybrid v

an additional 15% loss from AC to DC conversion. In
contrast, utilizing electric vehicles (EVs) as mobile energy
carriers can reduce these losses to around 10% largely due to
the high charging and discharging efficiency of EV batteries,
which is approximately 95% [20]. EVEN emerges as a pivotal
component in advancing smart grid technologies and
modernizing energy systems owning to the V2G
advancements and Energy Internet (EI) development. V2G
enables bidirectional power exchange between electric
vehicles and the grid. The worldwide market for V2G is
expected to increase from $11.3 million in 2023 to $59.2
million by 2030 with an annual growth rate of 26.6% during
this period [30]. EI fosters an intelligent, interconnected
energy ecosystem, enhancing coordination among diverse
energy resources. Besides the advantage of reducing energy
loss, there are numerous benefits of EVEN: including
augmenting the capacity of power grid, enhancing renewable
energy utilization, mitigating the intermittency inherent in
renewable generation, smoothing load profiles, reducing peak-
to-valley fluctuations, and providing additional income
streams for vehicle owners [5, 6]. Several other similar
architectures embody this basic concept under different
nomenclatures, such as the electric vehicles energy internet

[31], vehicular network [32], and vehicular energy network [4].

Recent studies of this area mainly focus on energy
management. [6] designed an energy routing model for
minimizing energy loss in time-varying vehicular networks.
[10] optimizes energy allocation in localized energy networks.
In [11], routing and dynamic storage for renewable energy are
jointly optimized. [33] addresses route and (dis)charging
scheduling to increase economic benefits for drivers. Another
work focus on communication. [9] focuses on network
selection and computation offloading in vehicular edge
computing to reduce latency and energy consumption. These
studies underscore the importance of utilizing renewable
energy, positioning EVs as mobile storage, and enabling [oT-
based intelligent (dis)charging interactions to support peak
load management, renewable energy use, and energy loss
reduction. However, significant EV participation is the
prerequisite for above works, which in turn requires accessible
and reliable infrastructure support. Unlike traditional
deployment with unidirectional CS, BCS 1is requested in

EVEN, which allows V2G and hence impacts load dynamics
significantly. There has been limited research on this topic,
and the review is conducted in the next part.

Drivers’ behaviour Modelling and BCS Deployment in
EVEN. Generally, CS deployment primarily focuses on
determining optimal CS locations and capacities to meet
increasing EV demand while constrained by limited resources
considering human activity patterns. Studies mainly target
three stakeholder perspectives, including CS planners, grid
operators, and EV drivers. Grid-focused studies typically aim
to minimize energy or power loss. [34] minimizes energy loss
while considering voltage deviations, using MC simulations to
form charging load but disregarding V2G. [17] and [18]
concentrate on reducing power loss with voltage, current and
power constraints. The discharging profiles are formed by
predefining the number of V2G EVs at CS. [20] also targets
energy loss with electric bus. The discharging is considered by
defining hop, which means one time of charge and discharge
during the regular route. From the angle of drivers, [15]
maximizing quality of service (QoS), i.e., waiting time and
range anxiety is often considered. [31] optimizes CS
accessibility to RES without load prediction, since only site
selection is discussed, ignoring capacity design. Apparently,
single-objective approaches lack comprehensive analysis,
prompting a shift toward multi-objective optimization. [16]
considers deployment with driver and CS operator angle, such
as charging likelihood, charging demand, and coverage of
points of interest. [14] aims to minimize the electric bus
purchasing fee, CS construction cost, and maximize
environmental equity. [22] optimizes CS profits and QoS with
elastic charging demand adjusted by waiting time and
travelling distance. [35] minimizes both construction and
travel costs with dynamic charging model, emphasizing traffic
constraints for expressways. [19] targets operational cost and
carbon emissions. To model discharging, authors assume that
discharge begins at the end of final trip, start charging after
discharge, and fully charge each time. Among these works,
there are mainly three types of optimization algorithms are
used, including exact calculation algorithm, the approximate
approach, and hybrid algorithm. Exact calculation method,
e.g., mixed integer linear problem, is able to find optimal
solutions with commercial solvers, but is hard to solve
nonlinear optimization with large-scale application [15].
Approximate approaches trade-off between solution optimality



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. X, NO. X, XXXX

and computational efficiency. They are particularly beneficial
when addressing issues of complexity and scalability. Genetic
algorithms and particle swarm optimization are the most
prevalently  utilized techniques. Hybrid approaches
amalgamate various methods to harness their benefits, thereby
they represent a promising strategy for formulating solutions
[36].

The comparison with above studies is summarized in Table
1, highlighting the focus of our work. If the work considers
V2G and RESs, it is assumed can be used in EVEN
application. From the table, it can be concluded that: 1) Most
works overlook the V2G, which is not applicable in BCS. 2)
V2G-relevant studies employ over-simplified and unrealistic
assumption, which limits applicability. 3) Deployment studies
are designed from limited perspectives, and hybrid algorithm
deserves further study; 4) Waiting time is often estimated
based on constant load by M/M/s, which may fail to reflect the
maximum waiting time. 5) None of the reviewed articles
consider scenarios with different trading devices.

III. MARKOV-BASED DRIVER’S BEHAVIOR MODEL

Our model aims to depict (dis)charging behaviors across

time and space. Electricity price is pre-determined and pre-
communicated to drivers.

A. States and Connections

States and their connections are deigned as in Fig.1. States
are: charging c(/), discharging d(/), and running r(/), where /
and /” indicates SoC level of main battery and second device.
Transitions with / are shown with solid lines, while others are
dotted lines. There are 3 models. Model 1 is for the main
battery without trading. Two states are #(/) and c(/). Charging
raises the SoC, while driving lowers it, shown by rightward
and leftward arrow. Model 2 is for main battery both for
trading and driving. Discharging state is added, which also
decreases SoC. Model 3 is for extra trading-only device,
including battery or ultra-capacitor. Compared with model 2,
running states are unconnected, as the second device does not
consume energy. Specially, parking is represented by self-
loops at r(l) without actions and energy variance. The
probability is presented by &) €[0, 1], which is a vector with
the dimension equals to the number of time intervals. Table 2
concludes the relationships between the models and scenarios.
The models for S3 and S4, as well as S5 and S6, are identical.
Their differences arise in the use of battery or ultracapacitor.

B. Transition Probability

The probabilities are built by exponential-related sigmoid
functions p(in) and ¢(in). In economics theory, the functions
often model preferences, where risk aversion remains stable
across preference levels [37]. In our case, the two main factors
influencing behavior, i.e., price and SoC, vary with conditions,
fitting the framework of state-dependent utility. The ability in
drivers’ behavior modelling has also been proved [38, 39].

1

—kq (—m+xq )

—k (in—x,) q(in) = M
e " l+e

Where in is the input, and x and & are adjustable parameters.

For simple clarity, x represents both x, and x,, and k£ means £,
and kg,

p(in) =
1

Fig. 1. Proposed stochastic (dis)charging model. (a) Model 1: main battery
without trading. (b) Model 2: main battery both for trading and driving. (c)
Model 3: extra device for trading.

TABLE II
RELATIONSHIPS OF SCENARIOS AND MODELS
S1 S2 S3, S4 S5, S6
Model 1 v - v -
Model 2 - v - v
Model 3 - - 4 v
x =50,k=:—0.1 —0.2 —04 —0.6 —0.8 —1.0
30 40 50 =60 270 80 90
1 ~ ~ SN
A W W SN LY
LT T 1
LI N 1 L |
—_ L I N B | [ Y
S05 vy [
\g' LI B I | 1
1 1 1 1 1
L I T T | \
| W W T LN
0 A N\ U
100 0 50 100

Fig. 2. p(in) and q(in) curves with k and x related parameters
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Fig. 3. p(in) and q(in) curves adjusted by different Ax

Fig. 2 visualizes p(in) and g(in) with different x and k. In
charging or discharging context, the subscripts ci and dch are
utilized. For charging, since drivers tend to start charging at
low SoC and stop at high levels, their probabilities can be
presented by ¢ and p with SoC level / as in. For parameters, &k
influences its slope, while x shifts the curve horizontally. In
terms of personal characteristic, k represents decisiveness.
With k increases, the curve becomes steeper, suggesting a
driver who are likely to make firm, binary decisions. x reflects
range anxiety: larger x shifts both p(in) and g(in) to the right,
so drivers tend to start charging at a higher SoC and stop until
nearly full. In addition to inherent traits that contribute to
driving anxiety, x is also influenced by real-time price: high
cost has a suppressive effect, so price can be incorporated to
adjust x. To start with, two boundaries should be set, the
minimum (x{ -Ax, x;' -Ax) and maximum (x' +Ax, X, +Ax)
willing to charge. Driver's willingnes will fluctuate between
these two extremes, depending on the deviation between their
expected price and the current price. If Ax=0, the change of
price will not affect the charging behavior, so Ax reveals how
much range anxiety can be affected by price. When renewable
energy is available, drivers are most willing to charge. x' and

ch

x, can be obtained as:
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w0 (2) = max {x¢' - Aw,x! — Ax|2- A, | 1100} 2> A, @)
w0 (2) = min {x" +Ax,x! + Ax[2 =4, | 1100} A< A,
- 100} 2> 2,

q / } > Aesp (3)

{x;h (2) = max {x - Av,x — Ax|A- A,
ch o ch ch
X (A) = min{x" + Ax,x" + Ax[A- 4,

/100 A<,

In Fig. 3, different Ax is visualized with maximum impact.
Curves exhibit a larger shift with higher Ax. When the A < Ay,
curves move rightward, so drivers are likely to charge even
without reaching a range-anxiety threshold. Hence

ch _ 1 ch _ 1
p (D—W’ D= 4)

1+ e—kq (~1+x5"(2))

For discharging, since drivers are likely to discharge when
prices are high and stop when prices drop, so the probabilities
are p and ¢g with the A input. & indicates decisiveness, while x
reflects price sensitivity. A higher x suggests a preference for
discharging only at high prices and stopping at minor price
dips, placing greater emphasis on economic returns. When /=0,
there is no energy, so p*"(1)=0, and ¢*"(2)=1.

P = L=

dch
—k, (At

5
¢ hr l+e ®
Based on above p and g related probabilities, the transient
probability o(state' state*) in models are summarized as Table
3. Their calculations all adhere to Principle 1, which is also
used in [24].

Principle 1: For a given state state', if there are Ns possible

transitions, then the sum of all transition probabilities equals 1.
Ns
Z o(state',state™ ) =1 (6)

ns=1
Model 1 [26]: For state r(I), o(r(l), r(I)): As self-loop of r(I)

represents parking, so it is &(¢). o(r(/), c(/)): two events happen,
i.e., no parking 1—&(#) and deciding to charge ¢'(/), so the
probability is the multiplication, and o(r(/), r(I-1)) is obtained
by principle 1. For ¢(l), drivers tend to stop charging with p<(/)
as o(c(!), r(1)), while 1-p([) to continue as (c(/), ¢ (I+1)).

Model 2: Compared with model 1. discharging d(/) is
newly added. For discharging related transient, o(r(/), d(!)):
three events are happened, i.e., no parking 1—&(f), abundant
energy 1—¢"(I-Al), and deciding to discharge p“"(1), where
AI>0. o(r(l), r(I-1)) is also obtained by 1 minus remaining
probabilities. For o(d(]), d(I-1)), abundant energy 1—¢<"(I-Al)
and not to decide stop charging (1- g%"(1)) are considered.

Model 3: There are no links between running states since
no energy is consumed by driving. Two sets of p and ¢ are
applied, ie., ¢*(A)/p?"(1) and gq*“"(A)/p*"(A). Their
differences are in x. The conditions, x* ;" >x;" and x’ ;" >x,"
with the difference of Ax“’, ensure profitability. For o(r(/),
d(D), two events are no parking 1—gf) and deciding to
discharge p “"(A). o(r(l), c()) is calculated by (1—&#)) and
g%"(A). Other probabilities are calculated at the same way.

C. Models in Trading Scenarios

This part explains how to implement above models in six
trading scenarios with road network, BCS locations, RESs, etc.
Assuming drivers are served once arriving. calculations are
shown in Fig. 4. Remaining energy at the destination is

remain
e

— . _ . consume
ik T S0C;, -cap, dt(rj,k’rdes,k) € (7

TABLE III

TRANSIENT PROBABILITIES IN MODEL 1,2, AND 3
Probability Model 1 Model 2 Model 3
o(c()), (1)) (D p(I) PR
(S(C(D, c l—p"h([) 1—pd'(l) l-pdCh(ﬂ.)
(1))
o(r(l), (D)) a0 a0 1-(1=()( g

A+ pi(2))
o@D, r(i-1))  (1-&0n)(1- (1—&®)(1-¢g"(D-(1-
q(1) g (I-AD) P (2)

o(r(), (D) (=)™ (A=elt)g™() (1=&(0))g™"(2)
o(r(D.dy) - A=0)(1-g"(-AD)  (1=&0) p (A
pdch( Z,)

o(d(D, (D) g Ay +qh(I-AD- q 4 (2)
q*H (g (-AD
o(d(D), d(I-1)) - g e 1)

(1- g*M(A)(1-g* (-
AD)

start: j=1

41

end
(only S1)

v, is v, 7
Update /.
(i) not charge.
charge demand in (if) charge at Csffl;"d" =Fy
S1 (Model 1 ecide
( ) (iii) charge at cs{ € {CS,Ak - r/(k}
OR} (i) (i}
discharge demand in
S2 (Model 2) charge demand in

$3/4 (Model 3) S3/4/5/6 (Model 3).

$5/6 (Model 2 and 3)

Fig. 4. (Dis)charging demand calculation of 6 scenarios by 3 models

If remaining energy is higher than the threshold, meaning is
sufficient, the procedure ends in S1. Next, CS;x yields

CS,, :{rl. |dt(rj,k,r,.)Sthd',;; ECS} ®)

If CS;« is empty, EV goes to the next node. CS;," is
dt}r.::x — SOCJ-J( -cap, /econsume (9)
S ={r |di(r, 1) <71 € CS)=CS,, (10)

If CS;” is empty, meanng there is no chance to charge after
Tik s0 SoC can be updated

remain remain

socy " = ey /capk (11)
Charging behavior in S1 is decided by model 1. For BCS with
available renewable energy, free greatly enhances ¢“'(/) and
motivates drivers to charge. However, due to the intermittency
and variability of RES, its output may not align with EV
demand. When a large number of EVs approaches, their
charging requirement may exceed the generation. In this
condition, first-come first-served principle is applied. There
are three possible results. First, no charge, so the driver would
go to rj+1k Second, charge at r;;, meaning x=1, and the
charging energy and duration are decided by o(c(/), #())).
Third, charge at near node: charging is urgently needed but
x=0, so the driver has to change the route to reach the nearest
BCS. The trading is developed based on the above results. No
charging means that SoC is relatively sufficient, or the price is
high, so discharging of S2 to S6 are decided afterwards. S2
and S3/4 are based on model 2 or 3, respectively. Specially, in
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S5/6 two models are involved. In our work, trading first
occurs in the second device if there is energy, which is
calculated by model 3. If it is depleted, model 2 is utilized to
calculate discharging in main battery. Charging indicates that
the price might be attractive, so the charging of second device
in S3 to S6 is modelled afterwards. The changes of SoC is

Asoc" = rt" At [cap, (12)
Asoc" = —rt" At [cap, (13)
ASOC(V;,a,ﬂl),k = _dt(rj,k Ry )e """ /Capk (14)

which are for charging, discharging and reaching the next
node. The time consumed between the adjacent nodes can be
expressed as

At(r;,aj‘il),k =dt(r; 4 )/Spk (15)
The power demand can be calculated based on the change of
SoC in the corresponding time. The profiles can be obtained as

0= > pfao/n” (16)
RyeR 7y R,
o =n""3 Y pfii® 17
RyeRr;peRy
The simplified battery degradation model in [40] is given as
AE, =k, cap, |soc,.m. —socy, (18)

where k,, is degradation-related parameter chosen as 0.00015.
The degradation cost is calculated as
cap, = cap, — AE,

(19)
(20)

degrad

cost = (cap™ — cap, )cost” [th*“cap™
k Dy Dy k P

D. Parameter Selection Algorithm

The algorithm is for &f). Compared with other parameters,
&(f) is high dimensional and plays a key role in fitting. The
main idea of the algorithm is that higher &) increases the
probability of no (dis)charging at a 7. Therefore, &(¢) is updated
based on the error between the prediction and real data. In
Algorithm 1, firstly, initialize and form a predicted profile.
Then, calculate subtraction for each time segment and obtain
the adjusting index. Specifically, if &¢)=1 and sign>0,
indicating that the predicted data is higher than the real data,
&(f) should be increased but reach the upper limit, so it is non-
adjustable. Next, update &(f) using step and sign, if the current
sign differs from that of former iteration, the index scales by a
decay weight. The selection stops when there is no adjusting
index or at the end of cycles. Other parameters in our paper
are decided by grid search approach. Also, the related
parameters can be defined by driver as they are highly related
to their personal characteristic.

E. Sensitivity Analysis

Fig. 5 visualizes the transient probabilities in Table 3, both
complementarity and symmetry are clearly shown.
Complementarity, as introduced by Principle 1, results in a
light-dark contrast, while symmetry emerges from the g and p
curves due to their opposing input signs. Typical probabilities
are explained in detail, including c(c(/), (7)) in model 1, o(r()),
d(D)) in model 2, and o(c(/), r(/)) in model 3, since other
probabilities can be analyzed similarly using complementarity
and symmetry. In model 1, o(c(l), (1)) = p"(/). Larger
difference between / and x.' () brings the probability closer to

Algorithm 1 Parameter Selection Algorithm for =(t)
Input: Real EV load profile pf,(¢), probabilities pe*(t,1), ¢<"(t,1), decay
welght Wgeeqy, number of circles n;, and other inputs for charging modeling.
Output: Probabilities of parking in each time segments £(t).

1: Initialize the £(t) and the update step step,,. The mumber of time seg-
ments is n;

: Run the model to obtain the predicted load profile pf,(t) and s, (t)

2 syr(t) = sign(pfu(t) — pfi(t))

s ford=2:1 ing. do

Run the charging model based on above inputs, obtain p f,(t).

6 spe(t) = sign(pfy(t) — pfo()sidet(t) = (Z Ipfo(t) — pfr(&)])/me
idrposi = find(spr > 0),idTnega = find(sy, < 0)
idrag; = [1:1: ng) — [find(e(idzposi) == 1)] — [find(e(idTnega) ==

0)] — [find(idct(t) < thidt)]

9: if isempty (idz,q;) then

G W

10: return £(t).
11: else
12: e(idxad;) = e(idxad;) + Spr(idrea;) - stepup(idead;)
13: 1dTgecay = find (s'7).(t) #si.(t))
14: stePup(tdT gecay) = Wiecay * St€Pup(idTdccay)
15: end if
16: end for
2
2
o(e.r(D) o(c(D,ct-1)) o@®),cD) -
2
= 2
o)D) o(c(Dyc-1) o(r(),c(D) o((),r(-1)) ~
N L N ree——— ;
u \ ! : Axis labeling |
1 to0 :
o@(D),d(l) o(dD.rD) o(d(l),d(l-1)) : ] :
|
i ol 4 100]|
: Colorbar i
| 7
|
otelr (el Lo 1
' z
e
CUUNU) W ot (t-1)) 0-0)

Fig. 5. Transient probabilities with x axis of 4 and y axis of I: £ =0.2, x;'= x
o =70, x'= x" =40, Aexy=50, Ax=10, AI=A1=20.

1. For fixed A, the high-probability region is concentrated in
the upper area. While for fixed /, larger A decreases x (1),
resulting in a dark triangular shape in the upper right.
Complementarity is seen in o(c(/), ¢ (I+1)) = 1- o(c(l), r())),
and symmetry appears in o(r(/), c(/)) = ¢°*(]). In a charging
context, lower SoC increases charging probability, while
higher prices decrease it, and vice versa. In model 2, o(r(/),
d(D) = (1-g°"(I-AD) p“"(2). The first term parallels o(r(/), r (I-
1)) in model 1, but with a reduced area due to Al. The second
term, influenced by A, creates a left-bright, right-dark region,
causing a penumbra-like shape in the upper-right corner. Here,
higher SoC and prices encourage discharging, with the price
acceptance range set by xj, < x,. In model 3, o(c(l), r(]))=
p%"(2). Unlike model 1, is independent of / due to a constant x
o', forming a square-shaped dark area on the right. For above
discussion, transitions governed by complementarity and
symmetry indicate a balanced process in which state
probabilities dynamically adjust based on behavior-related
parameters, capturing nuanced changes across models.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. X, NO. X, XXXX

k x5 Ax Aexp "
e | mm ——— 5 g
? 2
X Tz
==
01 03] 1|60 | 70] 80| |5 ] 15| 25]|. 0 | 50 [100] =
k Xg el Ax Aex, a
S a
8 &
=~
0.1 | 0.3 1 30 40 50 5 15 25 0 50 | 100 =
ich
Al "
a
LR iz
: T a
= =
& 5 25 60 70 80 S "
re T n =

Fig. 6. Sensitivity analysis of selected transient probability with x axis of 4
and y axis of 1.
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Fig. 7. Load of 3 models under different parameters

Next, the sensitivity analysis of above probabilities is
presented in Fig. 6, using the same axis labels and color bar as
Fig. 5. k controls steepness. A larger k sharpens the light-dark
boundary across all models, indicating 0-1 probability action
for drivers. For x;' and x{', higher values represent increased
range anxiety, shifting the dark region upward in models 1 and
2. Ax reflets the impact of electricity price on range anxiety,
expanding the range of x)' (¢) and x{' (z). This appears as a

steeper triangular slope in model 1 and a downward extension
of shading in model 2. A.,, as the price threshold, shifts the
shaded area upward in models 1 and 2. A/, defining the safe
discharging SoC range, enforces stricter limits on /, visualized
as an upward shading shift in model 2. x)”, associated with
discharging initiation, increases the high-probability region’s
rightward movement in models 2 and 3 with higher values.
Therefore, by adjusting these parameters, distinct driver
behaviors are effectively characterized within the model.

The effects on (dis)charging load across the 3 models are
analyzed using 100 EVs with 60 kWh battery capacities,
initialized at 00:00 with a power rate of 6 kW. In Fig. 7, 3
values are selected, with solid and dashed lines representing
the load curves for charging and discharging, and bars
showing the 24-hour average SoC. The shaded area indicates
24-hour price fluctuations, scaled to 101 levels to correspond
to A. For Aeyp in model 1 and 2, an increase raises the charging
load due to a higher price acceptance threshold. As expected
prices rise, discharging decreases, hence increases SoC. For
Ax in model 1 and 2, higher values elevate the load with a
slight delay as drivers opt to charge during low-price intervals.
Higher x;" and x' reveal drivers’ preference for early charging
initiation and delayed cessation due to driving anxiety, and
higher x' further suppresses discharging, which are shown in
model 1 and 2. For Al in model 2, the safety margin is adjusted
adversely. Only discharging is affected, and discharging
ceases entirely with value of 70. x,” and x)" is positively
related to strict price requirements. Higher x ;" delays
discharging until prices are elevated, and charging load
decreases as the high-probability region of o(r(/), c(/)) is
surpressed. In model 3, larger A x*" intensifies trading in high-
price-difference zones. Lastly, a large k reduces randomness,
with inherent behaviors primarily guided by other parameters.
Thus, the impact on load corresponds and relates directly to
changes in transient probabilities. Parameter adjustments
allow targeted control over EV (dis)charging patterns, with
distinct behaviors emerging in response to price sensitivity,
range anxiety, execution ability, and safety margins across the
models.

I'V. BIDIRECTIONAL CHARGING STATION DEPLOYMENT

A. Optimization Formulation

1) Objective Function. The goal is to maximize score:.
driver )

operator

@
The operator cost is calculated by two parts, cost for
constructing one BCS and cost for installing servers:

score = 1/ ( w,cost +w,cost

Ccs serve
cost™""" = cost Zx,. + z x.n,cost™™"
ieV ielV

Expenses for drivers consist of three parts: cost®, profit"*
and cost€?:

(22)

cost™ = Z pf " (t)price(t)At (23)
profit™* = z pf " (t)price(t)At (24)
(25)

degrad degrad
cost™"! = Zcostk*’“
k

cost™™" = (cost"’w +cost™ ™ — profit™* ) / z prwyar (26)
t
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2) QoS Constraints. Firstly, most drivers can reach BCS within a
certain distance along their route. If there is any close-range BCS
through Ry, then flag;'=1, which is given by

1 fsz{g‘ﬁraneRwﬁCgkig 7)
. O.W.
The constraint can be written as
D flag®
propass:RAETR | ZthEV (28)
k

where |Ry| is the total number of routes. It confirms at least one
BCS close to the route. Secondly, the maximum waiting time is
acceptable as described by

(29)

W™ < ﬂlw’

M(t)/M(t)/s model is employed to estimate w"*[41] as (30)-(32).

It is a time-varying queueing system where arrivals and service
rates are both time-dependent, following Poisson processes. In
the interaction of EVs and BCSs, M(f), M(t), and s represent
EV demand (the arrival rate), the (dis)charging rate (the
service rate), and the number of chargers (servers).

proby(t) = =5(t) prob, (t) + u(t) prob, (t) (30)

Prob ) = ~(3(e) s mu(t) prob, )+ 60 prob, @) 3
+(m+1D)pu(t)prob,, (t), if 0<m<s

PrOb () = ~(5(0) +su(0)prob, )+ 60 prob, ) 1

+su(t)prob,, (), if m=s

The arrival rate is the sum of the EV load demand in the BCS as
given by

8t =pf" 0+ pf O+ (pf O+ pf (), 17, (33)
where subscripts # and b denote ultracapacitor and battery.

Specially, since the (dis)charging rates of battery and
ultracapacitor are different. The waiting time can be estimated by

wi(t) = (Z: (m—s+1)prob, (r)) /s 24(1) (34)

Different from our work, lots of works estimate system delay
by M/M/s [15, 16, 22, 23], which assumes a constant arrival
rate for system with steady-state conditions. In Fig. 8, two
models are compared: the purple area indicates the time-
varying EV demand, while the blue area represents the
constant mean value. Observing the solid and dashed blue
lines shows that, with an averaged input, both models’ delays
converge to the same value. Comparing the solid purple and
blue lines reveals that M(z)/M(#)/s calculated delay exhibits a
sinusoidal pattern, whereas M/M/s yields a constant value.
Ensuring QoS requires keeping system delay within the limit.
However, M/M/s significantly underestimates peak delay
compared to M(#)/M(t)/s with a 41.7% relative error in this case,
which is insufficient for QoS. Thus, it is concluded that
M(t)/M(t)/s is more applicable for dynamic EV-BCS interaction
system with time-varying EV load to maintain QoS.

3) Grid Constraints. The constriants with grid stability are:

NP

P —RIM = Z ‘Vi Vi (Gii’ cos@, + B, sin 9") (33)
i'=1

0" =0 = X |n|lv|(G, sin6, ~ B, cos6,)  (36)
i'=1

Rbus — pf;lmzd (f)+ pf}nh (t)—pf;dCh (f) (37)

vmin < V‘. < vm"‘" (38)

[l Time varying arrival rate o(f) =3+2sin(2mt) == M(#)/M(#)/s with o(¢)
I Mean arrival rate 6 = mean(o(¢)) =— M(t)/M(t)/s with 6 === M/M/s with &

relative error = (0.24-0.14)/0.24=41.7%
M Ww lm Wﬂw "“m

] ]
[T

..

t

Fig. 8. Delay calculation by M(t)/ M(¢)/s and M/M/s with time varying arrival
rate or constant mean arrival rate.

Delay

5

4) Other Constraints. The maximum number of servers is
limited by (39); the SoC-related constraints are (40).
1<n <n if x,=1

soc™ < soc, (t) < soc™

(39
(40)

max >

B. The Proposed Hybrid Algorithm

Our algorithm based on genetic algorithm (GA) framework.
GA is searching techniques based on the process of natural
selection. Evolutionary is simulated by working with a
population of potential solutions that evolve through iterative
processes. Fitness determines the quality of each solution,
with more successful individuals having a higher chance of
contributing to subsequent generations. GA owns the
advantages of strong global search capability and high
robustness. Also, its modular design provides flexibility of
customizability. In GA, the next generation is created through
crossover and mutation operators, which combine gene
segments from parent solutions. However, crossover is
inherently a global operation, lacking the ability to explore in
the vicinity of local optima. Also, the randomness results in a
lack of meaningful guidance for forming next generation,
reducing the efficiency of evolution. Therefore, to address
exploitation, hill climbing (HC) is introduced, which is a local
search algorithm that iteratively improves solutions within the
neighborhood of the current solution to find a local optimum.
To imrove directional evolution, particle swarm optimization
(PSO) is incorporated. The crossover is enhanced by
leveraging both individual historical experience and collective
knowledge of the population. Through velocity and position
updates, the solution space is dynamically explored, avoiding
inefficient searches cause by random gene recombination,
hence the updates become more directional and continuous,
accelerating the convergence. The success of the improvement
crossover by PSO has been recognized [42]. The specific steps
are as follow:

1) Initialization. Generation of random initial population.
pro’® is considered for the improvement. The core idea is to
mandatorily select nodes with a high traffic volume for
construction. By assuming BCS is set at i-th node in turn,
calculate flag.’ by (27), hence n/* is as (41). Sort /' for
potential nodes in descending order to identify the top n®S
nodes as mandatory nodes. Also, constraint (39) is considered
in the initialization phase.

=3 gt

RA

2) Selection. Calculation of fitness to select individual. QoS
constraint is addressed by penalty method. The basic idea is to
incorporate a penalty term into the objective function that
discourages solutions violating the constraints. The fitness

(41)
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score is updated by (42), where wfand w;is penalty weights.
Higher score means greater probability of being selected.
score = score—w!’ max {0, wt™™ — thw’}
(42)
—w} max {0, pro’™ — thEV}
3) Offspring generation. Forming new offspring is divided
into four groups. a) Crossover and mutation. high-scoring
individuals are selected and mutated following traditional GA;
b) Elite preservation. High-scoring individuals are retained to
maintain good solutions; c¢) Constraint-directed adjustment.
High-scoring individuals serve as templates, fine-tuning server
numbers by comparing the maximum waiting time to the
thresholds. d) Hill climbing. Solutions are refined through
local searching and movement with best individual. Next, an
offspring enhancement phase using PSO strategy is included.
Based on equations of updating velocity and position, each
particle is improved the population's convergence towards
optimal solutions. Finally, the new offspring is obtained and
the best solution is recorded for new iteration.

V. CASE STUDY: FITTING ABILITY FOR CHARGING BEHAVIOR

A. Case Description

Two data-sets used to validate the fitting ability of charging
behavior in S1, which are online data-set from [43] and [44].
The number of EVs is 2000. The average speed is set as 40
km/h, and the energy consumed is 0.6 kWh/km [45]; the
battery capacity is 80 kWh. The route is generated by the
shortest path method. The departure time is formed by the
probability distribution in [46]. The price is from [47].

B. Fitting Results

The selected parameters for two datasets are listed in Table
4. Prediction performance is evaluated by mean absolute
percentage error (MAPE), mean squared error (MSE), and
root mean squared error (RMSE) [26]. To avoid contingency,
the model runs 50 times, and the curves and indicators are
calculated by averaging the 50 random load profiles.

Firstly, the results of different &(¢) dimension are visualized
in Fig. 9. Grid search (GS) method is used with 0.1 search
interval. Gray bars represent the collected EV charging load
from the dataset. For dataset 1, peak is around 12:00, whereas
in dataset 2, load peak is at approximately 9:00 and 10:00. Fig.
9 indicates that with the dimension of 24, our model fits well
in both cases. As dimensionality reduces, the fit quality
decreases. Also, it is clear that our model outperforms GS
method. From Table 5, it is clear that higher dimensions
improve 3 indicators. At dimension of 24, the optimal MAPE,
MSE, and RMSE are achieved: 11.5%, 0.1%, and 3.6% for
dataset 1, and 12.6%, 0.4%, and 6.5% in dataset 2. The
superiority of our method over GS is demonstrated. Also, the
proposed method is notably more efficient than GS. Higher
dimension in our model will not affect efficiency, even ends
faster, because requirements are meet more easily, hence
ending the iteration earlier.

Next, three baseline methods are selected for comparison.
[48], [49] are probability-distribution-based methods, while
[26] is Markov-based method. Each method's probability
distribution aligns with that in its original paper, including
SoC, arrival, and departure distributions, and etc. Fitting for

TABLE IV
PARAMETER SELECTION RESULTS

X! xd, k, Ax EO)

Dataset I 80, 30, 0.5, 3 [1.0,0.7,0.3,0.5,0.4,0.1,0.0,0.4,0.9,0.2,1.0,0.9,
0.8,0.8,1.0,0.9,0.9,1.0,0.9,0.9,1.0,0.9,0.9,0.9]
Dataset2  80,40,0.5,10  [1.0,1.0,1.0,0.9,0.9,0.1,0.1,0.1,0.3,0.9,0.8,0.9,

0.9,0.9,0.9,0.9,0.9,0.9,0.9,1.0,1.0,1.0,1.0]

Real data =——24 ===12 6 3 ===3(grid)

Dataset 1 2| Dataset 2 /> .

0.8

0.5

EV load (MW)
04

< = il
P (=] I
0 12 24 0 12 24
Time (hour)
Fig. 9. Fitting result of different &¢) dimension of two data-sets.
TABLE V
INDICATORS OF DIFFERENT DIMENSION OF &(7)
Dimension of &(f) 3 (GS) 3 6 12 24
MAPE  Dataset 1 33.0 28.6 16.9 14.8 115
(%) Dataset 2 24.0 18.8 164 15.9 12.6
MSE  Dataset 1 1.1 0.8 0.2 0.2 0.1
(%) Dataset 2 1.6 1.6 12 0.8 0.4
RMSE  Dataset 1 104 8.6 5.0 4.4 3.6
(%) Dataset 2 12.8 12.6 11.0 9.1 6.5
Time () 4009.7 433.8 428.7 380.7 380.4
Real data —Our === [26] [48] [49]
g 5| Dataset 1 S| Dataset 2 ;
g ot A
=) !
é | . WWW
» » li
0 12 24 0 12 24
Time (hour)
Fig. 10. Fitting result of different models of two data-sets.
TABLE VI
INDICATORS OF DIFFERENT METHODS
Method [48] [49] [26] Our
MAPE Dataset I~ 53.6 29.7 11.8 115
(%) Dataset2  65.0 409 14.4 12.6
MSE Dataset 1 24 0.9 0.1 0.1
(%) Dataset 2 122 7.1 04 0.4
RMSE Dataset 1 155 9.5 3.6 3.6
(%) Dataset2  34.9 26.1 6.0 6.5

probability-driven methods is achieved by fine-tuning
parameters such as capacity and charging rate, while the
Markov method uses the same parameter selection approach
as the proposed method. Fig. 10 visualizes the comparisons,
with indicators in Table 6. The proposed method and [26]
achieve the good fit for both datasets. Probability-driven
methods show limited fitting ability. For instance, [48] forms a
Gaussian-like curve, capturing the peak but missing intervals
(00:00-06:00 and 22:00-24:00). It achieves relatively
acceptable performance for dataset 1, while for dataset 2 the
fitting is not satisfactory. Thus, [49] also cover the 24-hour
load but lack fitting flexibility. Given probability distributions,
the shape of the load curve is largely determined, restricting
fitting performance. Indicators in Table 6 confirm our method
achieves the best MAPE, with MSE and RMSE comparable to
[26]. Therefore, the fitting ability of Markov-based models are
demonstrated. Our method outperforms [26] as it can be
extended to broader trading scenarios.
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VI. CASE STUDY: BIDIRECTIONAL CHARGING STATION
DEPLOYMENT

A. Case Description

In Fig. 11, the road network is a 6x5 grid with 177 nodes,
labelled as i for clarify. The red line illustrates R;, which
contains 71,1, 72,1, and 73;. These correspond to nodes o, 731,
and rs;. The distance of adjacent nodes is 2.4 km. The map
shows 2,000 EVs over 24 hours, with colors indicating EV
density. An overlaid modified IEEE-9-bus system connects
EV loads to PQ buses based on color-coded areas, powered by
a wind generator at bus 2 [50]. The specifications of vehicles
are from [51], their proportion is decided by the market share.
The unit price of Li-ion battery and ultracapacitor is 128
$/kWh and 2500 $/kWh respectively [52]. The lifecycle of the
battery ends with 20% capacity loss [40]. It is assumed that
the capacity of the extra device is 10% of main battery.
(Dis)charging rates and efficiency of battery are 6 kW and
95%, and ultracapacitor fully (dis)charges within the time

interval. MATPOWER is used for power flow calculation [53].

The constraint’s settings are Wemae=1 h, thf"=70%, Vuu=1.05,
Vin=0.95, Npa=50, socma=1, and socmn=0. The penalty
weights wfand w) are assigned with sufficiently large values
to treating them as hard constraints, i.e., -999. Renewable
energy available for free during surplus periods i.e.,
10:00—16:00 and 20:00—22:00. The initial SoC distributions of
the battery and ultracapacitor in each scenarios are generated
by Monte Carlo method.

B. Deployment Results

Deployment results are listed in Table 7. The planned BCS
is scattered throughout the road network. In the RES area,
more BCS and servers are planned, such as node 6 and 111. In
S2-S6, the cost of infrastructures are enhanced since the
involvement of trading. In cases where main battery includes
trading, charging demand is higher. Notably, S4 incurs
minimal extra costs among trading scenarios. There are 6
methods are selected for comparison, which are widely
applied in EV-related case, including: GA, HC, PSO, and
simulated annualing (SA) [54-56]. Also, ablation experiments
are conducted, and the comparison algorithms include GAHC
and GAPSO. The difference between the two algorithms and
our method lies in the removal of corresponding components,
and other parameters are the same. Table 8 presents the
relevant comparative analysis, emphasizing cost™
costPr . and score, as key parameters linked to the
objective. Bold text identifies the best-performing result. S4
yielding the highest scores due to the lower driver cost with
trading and less extra construction cost. Results of waiting
time, accessibility evaluation, and training process are shown
in Fig. 12. Limitations for w¢™* and pro’* are depicted in
green and red areas. wt”* is within the green part, and pro’**
exceeds the red region. Fig. 12 (c) illustrates the training cycle
in relation to peak score. It is clearly indicated that our
proposed algorithm demonstrates superior performance
relative to benchmark algorithms.

As discussed in the introduction, M/M/s is the most widely
used model for estimating waiting time, with the input of a
constant EV load (arrival rate). While in our work M(¢)/M(¢)/s
is utilized, time-varying load can be considered. Two models’
impacts on deployment tasks are compared in S1. D1 and D2
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Fig. 11. Road network with IEEE 9 bus overlaid.

TABLE VII
RESULTS OF OPTIMAL DEPLOYMENT OF 6 SCENARIOS

BCS locations # servers costrerr

S1  6,18,103, 111,122 14,3,5,31,2 1.5x10°$

S2  6,18,103, 111,122 35,13, 10,32, 14 2.0x10°$

S3  6,18,103, 111,122 13,6,2,50,8 1.7x10°$

S4  6,18,103, 111,122 16,4,3,32,4 1.5x10°$

S5 6,10,18,103, 111, 122 19,50,3,11,32,17  2.5x10°$

S6  6,18,103, 111,122 33,12, 17, 40, 34 2.3x10°$

TABLE VIII
COMPARISONS OF OPTIMIZATION ALGORITHMS

HC PSO SA GA GAHC  GAPSO  Our
S1 15 1.6 1.6 15 1.5 1.5 1.5
s & S2 1.3 1.3 13 1.4 1.3 1.4 1.3
f3 S3 1.3 12 12 1.3 1.3 1.3 1.3
37 S4 1.0 1.1 1.1 1.0 1.0 1.1 1.0
S~ S5 1.3 1.2 12 1.3 1.3 1.3 1.3
S6 0.9 1.0 0.9 0.9 0.9 0.9 0.9
S1 2.7 1.9 2.4 15 1.9 1.8 1.5
s 5 S2 3.8 32 3.7 2.8 23 24 2.0
R S3 3.5 3.7 3.8 2.8 2.6 2.4 1.7
L S4 3.0 2.6 2.5 2.6 2.0 1.9 1.5
S~ 85 3.8 3.2 37 2.8 2.6 2.5 25
S6 3.6 3.6 35 33 23 3.6 23
S1 3.1 4.0 33 32 4.1 43 5.0
— S2 2.5 2.8 2.5 3.0 3.6 34 4.0
§B S3 2.6 2.8 2.5 3.1 33 34 45
S S4 32 34 35 35 4.3 4.3 54
- s 2.4 2.4 2.3 2.6 33 3.4 3.4
S6 2.9 2.8 3.0 3.1 4.0 3.6 4.0
B HC PSO SA HE GA GAHC B GAPSO M Our
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Fig. 12. Comparison of different optimization algorithms. (a) maximum
waiting time. (b) accessibility evaluation. (c) training process.

represent deployment schemes based on M(¢)/M(f)/s and
M/M/s. Both approaches select the same BCSs, yet D2
requires fewer servers than DI, resulting in reduced
construction costs. Waiting time is displayed in two rows: the
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Fig. 13. Waiting time estimation of D1 and D2 by M(#)/M(#)/s or M/M/s.

TABLE IX
COMPARISON OF RESULTS OF D1 AND D2

=1

D1: M(t)/M(¢)/s D2: M/Ms
BCS locations 6,18,103, 111, 122 6,18,103, 111,122
# servers 14,3,5,31,2 8,3,4,14,2
costererer (1068) 0.15 0.13
ax Cooresponding model 0.5 0.5
i () Crosscheck 0.0 6.3
g0-25 pso= 0.6 pro—= Pso=0.6  pso=06  pso=06  pso=06
k= s2 S6
o
e
& 0 i
0 100 0 100 0 100 0 100 0 100 0 100
SoC level

Fig. 14. SoC level of 6 scenarios at the end of the day, where py,. is the
proportion of SoC>0.7.
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Fig. 15. EV (dis)charging load of 6 scenarios with indicators of RES
utilization, cost and profit.

first row presents waiting times derived directly from each
model (D1 using M(£)/M(¢)/s and D2 using M/M]s), with both
yielding a waiting time of 0.5, within acceptable limits. The
second row shows a cross-checked waiting time, with D2
assessed under M(#)/M(t)/s, resulting in a maximum value of
6.3 h, which significantly exceeds the constraint. This
discrepancy demonstrates that M/M/s may underestimate
waiting times, risking a QoS lower than anticipated. Thus,

TABLE X
INDICATORS UNDER DIFFERENT BEHAVIOR-RELATED PARAMETERS
S1 S2 S3 S4 S5 S6
0.1 1.4 13 13 1.1 12 08
k05 14 12 12 1.1 12 0.8
1.0 1.3 12 1.2 1.1 12 0.8
0 1.6 1.6 14 1.1 12 09
Ax 5 13 12 12 1.0 12 0.8
10 1.2 1.2 1.2 0.9 1.1 0.8
R 30 12 13 12 1.1 1.0 0.8
S X 60 13 13 13 1.1 1.1 0.8
x 90 L5 1.3 14 1.1 12 0.9
10 12 1.1 1.1 0.9 1.0 0.8
T x40 13 12 12 1.1 12 0.8
8 70 1.3 1.3 1.3 1.1 13 0.8
30 - 12 13 1.0 12 0.8
X460 - 1.3 1.3 1.1 12 0.8
90 - 13 13 12 12 0.8
10 - 12 13 1.0 11 0.8
X 40 - 12 13 1.1 12 0.8
70 - 1.3 1.3 1.1 13 0.8
0.1 46 57 5.0 6.0 49 74
k05 4.6 6.4 4.8 5.6 49 6.8
1.0 47 6.4 48 5.6 49 6.8
0 31 35 43 55 46 6.5
Ax 5 5.1 6.5 54 6.1 5.1 6.8
10 5.1 6.2 4.7 5.8 5.1 6.4
= 30 5.1 53 54 59 54 74
E 60 48 6.1 4.9 56 5.1 6.9
=) 90 42 7.2 4.6 54 5.0 6.8
%0 10 5.5 6.4 5.7 6.9 6.4 8.5
T x40 4.6 59 4.7 54 49 6.8
§ 70 4.6 4.6 4.6 53 4.6 6.7
30 - 71 52 6.4 52 6.9
X" 60 - 5.4 4.6 5.6 5.1 6.8
90 - 4.9 4.7 53 48 6.8
10 - 6.2 5.0 6.1 6.0 7.0
x40 - 58 48 55 49 6.8
70 - 5.8 4.8 53 45 6.8
01 125 1.8 11.8 11.8 11.8 1.7
k05 125 118 1.7 118 11.8 11.8
1.0 125 11.8 1.7 119 11.8 11.8
0 125 1.8 122 122 11.9 1.8
Ax 5 125 117 119 118 11.8 11.8
= 10 122 11.7 11.8 11.9 11.8 11.8
= 30 124 118 11.8 118 11.8 11.7
E 60 125 11.7 11.8 11.8 11.8 11.7
= 90 125 11.7 11.8 11.8 11.8 11.7
z 0 123 117 11.9 11.9 1.8 11.8
x40 123 118 11.9 119 119 11.8
3 70 123 11.8 11.9 11.9 11.9 11.9
= 30 - 118 11.8 118 119 11.8
X460 - 118 120 120 11.9 11.8
90 - 11.8 120 120 12.0 11.8
10 - 117 11.8 119 119 11.8
x40 - 118 11.9 11.9 11.9 11.8
70 - 11.9 11.8 11.9 11.9 11.8

adopting the M(z)/M(¢)/s model is essential for a realistic
estimation and improved deployment outcomes.
C. Drivers’ Performances

Based on deployment result, drivers’ behavior is further
studied with the results from 2000 drivers over 30 days. SoC
is an essential metric, Fig. 14 illustrates the SoC distribution at
the end of trips, using SoC > 70% as a threshold. It is noted
that psoc is lowest in S2, where only the main battery is used
for both travel and trading, thus potentially increasing range
anxiety. EV loads are depicted in Fig.15 with electricity prices
in the background shaded gray and load represented by bars:
red for regular charging, green for renewable charging, and
yellow for discharging.The renewable energy generation curve
is overlaid as green line. The top left corner of the figure
displays three metrics: average daily renewable utilization,
total cost, and total profit. Across the 6 scenarios, charge-
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TABLE XI

IMPACTS OF FINANCIAL POLICY OR TECHNICAL IMPROVEMENT
S1 S2 S3 S4 S5 S6
2 1.5 1.1 1.2 1.0 1.2 0.7
Pl 5 1.5 0.5 0.9 0.7 0.6 0.1
10 1.5 0.5 0.4 0.2 0.4 0.9
0.5 1.1 1.0 1.0 0.8 1.1 0.7
P2 02 1.0 0.9 0.9 0.7 0.9 0.6
0.1 0.9 0.8 0.9 0.6 0.9 0.5
0.5 1.0 0.8 0.8 0.7 0.8 0.5
P3 0.1 0.7 0.4 0.5 0.4 0.4 0.3
0.0 0.6 0.4 0.4 0.4 0.3 0.2
0.3 1.2 1.0 1.0 0.8 1.0 0.7
P4 0.5 1.0 0.9 0.9 0.7 0.9 0.6
1.0 0.6 0.4 0.4 0.3 0.3 0.2

discharge patterns are similar, with load generally rising
around 9:00, peaking between 12:00 and 13:00. Discharging
tends to concentrate during high-price periods.Comparing
across the six scenarios, the integration of trading leads to a
marked increase in charging load. Significant discharging is
observed in S2, S5, and S6, as these scenarios allow the main
battery to participate in trading. Additionally, the renewable
energy utilization rate increases across trading-enabled
scenarios S2—S6. Scenarios S4 and S6, in particular, show
potential for driver profit due to the absence of degradation
costs from supercapacitor. These results affirm the benefits of
renewable energy integration in EVEN scenarios and the
advantages of ultracapacitor participation in trading.

Next, we perform sensitivity analysis on key parameters,
using indicators: cost™’, " and loss"®", representing unit
driver cost, daily average renewable energy consumption, and
grid transmission loss, respectively. Calculations of cost®™e
has been given in (23)-(26). Performances under different
behavioral parameters are compared in Table 10. It provides

ch

guideline to reduce cost for drivers. Drivers should lower £, x|,
xJ, x¥ and xi, while increase Ax to lower cost?™. This
means improving decision-making execution ability, reducing
driving anxiety, and moderately increasing price sensitivity.
In scenarios with a second device, slightly broadening the
price range is advantageous. Comparing S1 with other
scenarios, trading can reduce the cost of driver. Higher
energy’® are associated with lower cost™". Ultracapacitor has
higher consumption compared to battery, and two trading
devices result in higher energy™, i.e., S5>S3 and S6>S4.
Additionally, trading positively impacts loss”, reducing grid
losses. Among these indicators, S6 outperforms other trading
scenarios since it achieves lowest driver cost, transmission
loss, and highest RES utilization, but the cost for buying the
ultracapacitor is not accounted, which is expensive to afford.

Impacts of different policies on cost™ are studied,
including: (P1) higher selling prices, (P2) lower buying prices,
(P3) reduced £, (a key degradation parameter in Eq. (18)), and
(P4) proportional subsidies for degradation. Results are shown
in Table 11. Among these measures, increasing the selling
price provides the highest profit for drivers, even covering
travel costs in S2, S5, and S6. Lowering the buying price has a
limited effect, as drivers already benefit from free renewable
energy. Reducing degradation costs also improves profitability,
but cost™™e>(). Therefore, the effectiveness of providing
higher selling prices are highlighted for improving driver
profitability.

VI. CONCLUSION

In this paper, a stochastic driver’s behavior model and a
BCS deployment optimization approach are developed for
EVEN for 6 trading scenarios: (S1) no trade; (S2) trade in
main battery; (S3) trade in extra battery; (S4) trade in extra
ultracapacitor; (S5) trade in both main and extra battery; (S6)
trade in both main battery and ultracapacitor. The proposed
stochastic (dis)charging behavior model is based on Markov
method, considering personal characteristic, SoC, real-time
electricity price. It is able to estimate load pattern in both
microscopic and macroscopic levels, examining the impact of
different behaviors on individual and overall load. BCS
deployment is designed by minimizing both drivers and
operators’ cost, with the constraints of QoS and grid voltage
stability, and solved by the proposed hybrid optimization
algorithm.

In experiments of driver’s behavior model by two real-world
datasets, the model effectively fits charging patterns with
MAPE, MSE, and RMSE. The parameter selection algorithm
achieves an efficiency improvement of 89.1% comparing with
grid search approach with dimension of &#)=3. Among S1-S6,
trading increases charging demand, and ultracapacitors lead to
earlier and higher peaks compared to batteries. Sensitivity
analysis reveals that range anxiety increases charging while
reducing discharging load. Price-sensitive drivers tend to focus
on trading during peak and off-peak price periods. The model
offers profitability suggestions for drivers, such as improving
decisiveness, reducing range anxiety, and maintaining
relatively higher price sensitivity.

For the experiment of BCS deployment, the effectiveness of
the proposed algorithm is demonstrated by ablation
comparisons. Comparing S1 to S6, trading necessitates
additional chargers, raising construction costs, and more BCSs
are constructed in RES areas. For maximum waiting time
calculation, M/M/s underestimate maximum waiting times
compared with M(#)/M(¢)/s, degrading QoS. The benefits of
EVEN is verified as energy trading lowers daily costs,
enhances renewable energy utilization, and reduces grid
transmission losses, with S6 performing best in these areas.
The benefits of ultracapacitor in energy trading is also verified.
For drivers, it helps eliminate degradation cost hence improve
their cost. For BCS operator, the exclusive use of
ultracapacitors leads to lower additional cost, as it enables
quick trading and reducing charger demand. To further attract
drivers in EVEN, providing higher selling prices is highlighted
as effective financial strategies compared with other policies,
such as lower buying prices and reduce degradation cost.

However, our work overlooks real-world complexities such
as EV energy efficiency variability, diverse usage patterns,
and real-time traffic conditions. Addressing these aspects in
future work will enhance the robustness and practicality of
demand modeling and deployment.

APPENDIX

The settings for the comparison algorithms in part B, section
Vlis presented as below.



14

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. X, NO. X, XXXX

[10]

[11]

[12]

[13]

[14]

TABLE XII
SETTINGS OF THE COMPARISON ALGORITHMS
Algorithm Settings
HC Stochastic hill climbing is used.
1. With the initial population of 50, the solutions are formed randomly.
2. Top 5 solutions are selected to generate neighbours with the number of 10.
3. The local change to current solution is formed randomly.
4. The algorithm stops when reach the number of iterations of 100.
GA 1. With the initial population of 50, the candidate solutions are formed randomly.
2. Rank-based selection is used to choose parents, and the crossover rate is selected as 0.9.
3. Crossover with uniform method.
4. The probability of mutation is set as 0.2 to change the genes randomly.
S. The algorithm stops when reach the number of iterations of 100.
SA 1. Initial temperature as 1000; ending temperature as 0.1, alpha=0.98. literation in each temperature = 50.
2. Geometric cooling is applied to decide the cooling schedule.
3. Cooling rate is set as 0.98, so as to allow more thorough exploration of search space.
4. Neighbour generation, which can refer HC method.
S. The algorithm stops when reach the number of iterations of 100.
PSO 1. Initial swarm size as 50. Randomly initialize the position and velocity of each particle in the swarm.
2 Set parameters: inertia weight =0.9; cognitive coefficient = 1.5; social coefficient = 1.5; velocity limits for x: +1, for n is +
maximum number of servers=50.
3. Based on given parameters to update velocity and position.
4. Update particles and repeat until reach the number of iterations of 100.
GAPSO Parameters are the same with GA and PSO.
GAHC Parameters are the same with GA and HC.
Our Parameters are the same with GA, PSO, and HC.
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