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Abstract—To promote the sharing of medical data assets 
(MDAs) in a more secure and sustainable manner, this 
paper presents a blockchain-based MDA sharing 
framework. The contributions of this paper are threefold. 
First, we designed a layered-architecture to decouple the 
privacy-preserving responsibilities among technologies 
considering the incentive rewarding and parallelization of 
execution. Second, we introduce zero-knowledge proofs in 
smart contracts with a group signature to construct a 
supervisory privacy-preserving sharing mechanism, which 
can be executed in a decentralized environment to protect 
the privacy of MDAs. Third, we introduce an incentive 
mechanism that motivates MDA sharing by capturing the 
decentralized features of the participants to deliver fair 
rewards. The experiments show that our framework 
achieves a comprehensive privacy protection on sharing 
MDAs, comparing with single blockchain sharing schema, 
with only 2.2% sacrifice on TPS (throughput/second). 
Moreover, our framework has better potential for large-
scale application due to the paralleled execution on ZKP 
(zero-knowledge proof)-based smart contracts. 

Index Terms— Blockchain, Medical data asset, Sharing 
mechanism, Incentive mechanism, Healthcare 4.0 
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I. INTRODUCTION

he healthcare industry is currently heading into a new era, 
motivated by the revolution of Industry 4.0 and Logistics 

4.0. This era has been defined as Healthcare 4.0 [1], which 
promotes the intelligent transformation of medical 
informatization. In such a context, the Internet of Things (IoT), 
radio frequency identification (RFID), medical wearables, and 
other smart devices have been integrated with traditional 
healthcare equipment and systems to construct a ubiquitous 
perceptual environment so that extensive data can be generated 
and collected to increase the accuracy of medical diagnosis and 
treatment. Additionally, cloud computing, big data analysis and 
artificial intelligence (AI) have been introduced to facilitate 
smart and connected healthcare delivery [2]. 

Medical data has been recognized as the cornerstone of 
Healthcare 4.0 [3]. The massive amounts of available medical 
data have promoted the acquisition and representation of 
knowledge for healthcare analysis and diagnosis. In recent 
years, machine learning, especially deep learning, has rapidly 
developed into a medical data analysis hotspot [4]. Machine 
learning is capable of automatically identifying the underlying 
diagnostic features of diseases or predicting treatment features 
from medical data. In turn, this capability has stimulated the 
commercialization and industrialization of machine learning 
applications in Healthcare 4.0. Medical data, which has 
significant value, possesses beneficial features. First, it has a 
definite provider, e.g., a patient or a medical institution. Second, 
medical data is valuable because of its potential academic and 
commercial uses. Third, medical data can be authorized or 
transferred among individuals and organizations. Hence, 
effective medical data may be recognized as a kind of medical 
data asset (MDA), which is the basic unit of useful information 
that can be labeled, indexed, stored, retrieved and manipulated 
based on the observed needs of medical data management 
practices [5]. 

However, MDA sharing does not come without challenges 
arising from medical privacy issues [6]. First, associating the 
identity information of an owner with the MDAs being shared 
is deemed sensitive, thereby inhibiting sharing. However, the 
identity of the owner of an MDA should be traceable by a 
specific manager on a limited basis in case a potential disease 
warning is encountered or an epidemiological investigation is 
conducted. Second, on the basis of identity privacy, the process 
privacy of MDAs is also a concern. The ownership of an MDA 
should be able to be verified in a more secure way to prevent 
MDA leakage. Furthermore, an ownership claim can be verified 
by an intended party without showing the MDA itself. 
Moreover, when an MDA is authorized to a third party, this 
process should be conducted with the minimal amount of data 
needed, and the authorized party should be able to provide 
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effective authorization to obtain access to this MDA.
 Additionally, several real-life concerns make the above 
challenges more complicated. The major concern is the 
distribution of MDAs. A decentralized MDA organization 
paradigm has been strongly suggested in recent research. MDA 
stakeholders also follow a weakly centralized distribution. 
Since sharing behavior is highly associated with stakeholders 
and MDAs, it is necessary to consider both decentralized 
features when designing a sharing mechanism. Hence, 
technology is no longer the factor restricting MDA sharing; 
rather, it brings greater convenience to sharing. Currently, 
participants show interest in using the data made available 
through sharing platforms but refrain from sharing their own 
private MDAs. This behavior is attributed to the lack of 
incentives, as perceived by MDA contributors [7]. A large 
segment of the current literature uses the participation level or 
the amount of data uploaded by contributors to determine 
rewards [8], [9]; thus, these platforms limit themselves to the 
quid pro quo of compensating other contributors. Such 
situations produce platform overcrowding with irrelevant and 
poor-quality data and deter active participation in sharing 
platforms [10]. Hence, the need for a reward mechanism that 
takes the specific attributes that drive the benefits and costs of 
individual MDA contributors into account has become 
imperative. First, we should measure the factors that drive the 
MDA sharing behaviors of contributors and then 
reward/compensate participants with fair value. 

In summary, the challenging scenario is to shield the privacy 
concerns of MDA owners (i.e. patients or medical institutions) 
and promote their willingness when contributing their MDAs 
for third-party organizations (i.e. data analyzers). Thus, the 
underlying research questions are extracted as follows. 
1) How can provable privacy guarantees be associated with 
MDA sharing to eliminate concerns over both identity and 
management privacy in a decentralized manner? 
2) How can a reasonable incentive mechanism be designed to 
motivate MDA sharing under a decentralized environment 
while taking the specific drivers of sharing behavior into 
account? 

To address these questions, this paper presents a blockchain-
based MDA sharing framework as an integrated solution to 
facilitate the sharing of MDAs in a decentralized healthcare 
network, and the following research objectives are explored: 
1) To propose an overall technical sharing framework for 

decentralized MDA sharing. 

2) To design a privacy-preserving sharing mechanism to 
shield both identity and process information during MDA 
sharing. 

3) To build an incentive mechanism and analyze its 
effectiveness in promoting and motivating MDA sharing 
behavior by the participants. 

To achieve these objectives, the research pathways are 
depicted in Fig. 1. The blockchain-enabled MDA sharing 
framework is designed as an integrated solution. Blockchain is 
adopted as the underlying technology due to two reasons. First, 
the decentralized feature of blockchain can shield the concerns 
of MDA providers (MDAPs) that no one can solely dominate 
their shared MDAs. Otherwise, there must be a party, who will 
hold and manipulate all shared MDAs and it is difficult for this 
party to obtain sufficient trust from MDAPs because self-proof 
of innocence and self-regulation are usually weak. Second, 
blockchain is suitable for decoupling the relationship among 
multiple stakeholders [11]. This will facilitate the establishment 
of transparent and creditable cooperation among MDAPs, 
MDA storage provider, all kinds of data users. Our sharing 
framework provides a novel privacy-preserving solution to 
decouple the responsibilities of MDA storing, sharing and 
incentives. Based on this sharing framework, two enabling 
mechanisms are designed. The first one is a supervisory 
privacy-preserving sharing mechanism, which allows 
individuals to register and authorize their MDAs and enables 
authorized parties to access them in a privacy-preserving 
manner. This mechanism provides provable guarantees to 
eliminate concerns over identity and process privacy for total 
sharing management. Furthermore, it also maintains limited and 
reliable MDA identity traceability. The second mechanism is a 
sharing incentive mechanism, which enhances the 
sustainability of MDA sharing behaviors. We build a model for 
an individual-based reward mechanism that facilitates the 
codification of MDAs into a blockchain platform. Blockchain 
technology provides (1) convenient recording of information, 
with ownership being tied to the contributors, and (2) ease of 
access for users while tracking their use of MDAs, as prescribed 
by the codification strategy [12], [13]. Finally, we design and 
conduct a series of performance tests to verify and optimize the 
supervisory privacy-preserving sharing mechanism and analyze 
the impact of factors such as privacy, cost, and the 
interdependence of MDAs on the sharing behavior of MDA 
contributors. 

The novelty of this paper is threefold. First, a layered 
architecture is adopted in the MDA sharing framework to 
decouple the relationship among multiple technologies and 
perform a fine-grained responsibility assignment for practicing 
privacy-preserving MDA management. Second, zero-
knowledge proof (ZKP) has been employed for constructing 
MDA sharing with least privacy disclosure, with group 
signature approach for ensuring limited identity traceability. 
Third, with the above traceable identity, an individual-based 
reward mechanism through the blockchain is designed to 
encourage and stimulate MDA sharing behaviors. 

The rest of the paper is organized as follows. Section II 
reviews related works about general privacy protection. Section 
III illustrates the overall framework of MDA sharing. Section 
IV specifies the supervisory privacy-preserving sharing 
mechanism. Section V describes and proves the sharing 
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incentive mechanism. Section VI evaluates both mechanisms, 
and Section VII draws the conclusions of this study and notes 
future work ideas. 

II. RELATED WORKS 
Studies on privacy protection have long been concerned with 

the wide applications of information systems and increasing 
privacy protection awareness. The research on privacy 
protection can be categorized into three directions: protection 
through policies, protection through statistical methods, and 
protection through technology. 

Studies on privacy protection policy generally utilize laws 
and regulations to restrain the collection and management of 
private data, assuming that policies have significant effects on 
reasonable people [14]. In this context, technology can be 
introduced as a supplementary means of collecting, storing, 
retrieving, and analyzing private data. For the digitalization of 
privacy policies, two privacy policy description languages, the 
platform for privacy preferences (P3P) and the enterprise 
privacy authorization language (EPAL), have been proposed to 
make such policies more readable and enforceable. P3P was 
further standardized by the World Wide Web Consortium 
(W3C) so that it could be widely deployed between online 
websites and end users [15]. This approach has been employed 
to formulize privacy practices into a definite format so that both 
parties can identify and interpret their privacy policies to 
determine whether the privacy preferences of end users match 
the privacy requirements of websites. EPAL uses a logic 
program model to ensure abstract-level access control for 
privacy so that it can only be invoked when specific user roles 
or conditions indicated by the EPAL format are satisfied [16]. 
To enhance the compatibility of policy languages across 
different platforms, the eXtensible Access Control Markup 
Language (XACML) was designed as a platform-independent 
language using the eXtensible Markup Language (XML) to 
enhance its structurization. Moreover, role-based access control 
models have attracted more attention in the field of privacy 
policy in recent years [17]. For example, [18] proposed a 
knowledge-constrained role-based access control model to 
reduce unnecessary access to private medical information. [19] 
also contributed an attribute-based access control model using 
an access control markup language based on XML to achieve 
fine-grained access control for cloud-based electronic health 
records. Recently, blockchain technology has been adopted in 
access control. [20] designed a digital asset access control 
solution to migrate existing e-health systems to a unified 
blockchain-based model so that digital assets could be accessed 
seamlessly and securely. Moreover, [21] provided an effective 
method for conducting data interoperation and synchronization 
between a traditional relational database and a distributed 
ledger while considering secure access control. Upon 
blockchain, smart contract has been integrated to perform 
attribute-based access control due to definite execution feature 
after deployment for achieving security and privacy 
commitment as agreed for cloud-edge computing of IoT 
systems [22]. Afterwards, zero-knowledge proof was also 
explored with smart contract to realize to transparent access 
policies evaluation without disclosing the value of such sensible 
attributes under XACML [23]. In general, policy-based privacy 

protection studies have sufficiently explored policy 
implementations to protect user privacy from unconventional 
collection, unauthorized access, and accidental disclosure. The 
assumption is that the accessed party should hold the data. 
However, in MDA sharing, most of the MDA owners would be 
patients who do not have the responsibility to keep the MDAs 
after their healthcare diagnosis. Thus, policy-based privacy 
protection studies, especially using access control approaches, 
has limitation on disposing privacy protection among multiple 
parties. 

To prevent excessive privacy disclosure, statistical methods 
have been introduced to obfuscate original private data. Such 
obfuscation has been carried out in two ways. The first 
approach involves the interpolation or obfuscation of original 
data to maintain its statistical characteristics so that the data 
receiver cannot infer sensitive data about individuals [24]. This 
method depends more on the data analysis requirements of data 
receivers in performing statistical computations. Moreover, the 
statistical features of MDAs, especially medical images, are 
difficult to extract, which becomes a limitation of this approach. 
The second approach focuses on data anonymization to shield 
identities or identifiable data through a trusted party [25]. In this 
regard, studies use statistical models to construct identity-
independent disclosure mechanisms for specific attack models 
or data mining and learning models. However, these methods 
only provide effective protection for specific data analysis 
models, and the potential attacker can make use of marginal 
data and background knowledge to overflow the identity 
information. 
 Cryptography has attracted considerable attention for 
resolving privacy-preserving issues. Asymmetric and 
symmetric cryptographic algorithms are the most lightweight 
methods for securing private communications [26], but they are 
not capable of supporting complicated MDA operations 
because a single key is difficult to manage among multiple 
stakeholders. Thus, complex encryption mechanisms have been 
designed. Attribute-based encryption (ABE) maintains a series 
of keys with labeled descriptive attributes and takes one of the 
keys for the given plaintext; only the correct receiver with a 
matching key can decrypt the ciphertext [27]. Two enhancing 
mechanisms, the key policy and ciphertext policy, were 
proposed based on ABE to optimize encryption performance 
under different application scenarios. Recently, with the 
integration of blockchain technology, secure multiparty 
computing (SMC) has received increased attention [28]. SMC 
research can be categorized into three directions: oblivious 
transfer, oblivious polynomial evaluation, and homomorphic 
encryption. Homomorphic encryption is regarded as the most 
promising privacy preservation method, and its integration into 
blockchain has been recommended to address privacy issues 
[29]. For example, [30] presented a lightweight privacy-
preserving protocol based on a labeled homomorphic 
encryption approach to protect IoT data between data owners, a 
third-party cloud service and data users. [31] proposed three 
data protection methods based on differential privacy and 
homomorphic encryption to protect existing data and conduct 
model aggregation in federated learning. Besides homomorphic 
encryption, blockchain was also taken for distributing 
cryptographic keys among multiple stakeholders. For instance, 
[32] proposed the using of smart contract to conduct group key 
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distribution with group signatures for authenticating user roles 
in vehicular ad hoc networks. Then, considering the more 
complex mesh-to-mesh network, blockchain is adopted as 
information sharing method for generating and verifying key 
pairs for cryptography. Concerning to data sharing, [33] 
integrated blockchain with ABE for addressing the policy 
hiding and keyword search when sharing medical data. [34] 
introduced ZKP as the blinding mismatching mechanism on 
blockchain to bridge data sharers and requesters with privacy 
and security protection. 

However, there approaches are difficult to migrate to address 
our MDA sharing scenario as summarized in the problem 
domain of Table I, which considers the full lifecycle privacy 
protection of MDA circulation. Moreover, the scenario domain 
drives the innovation of methodology domain. Thus, this study 
aims to take the advantages of blockchain, smart contract and 
ZKP to be coupled to bridge the above gap. Preliminary studies 
have integrated blockchain as the enabling technology to 

address MDA management problem [20], [35], [36]. It allows 
MDAPs (i.e. patients) to generate tokenization for their MDAs 
and designate a third party (i.e. a caregiver) to access their 
MDAs through a permission-based mechanism. However, these 
frameworks still depend on single blockchain to bridge MDAPs 
and MDA users, which means blockchain needs to undertake 
both data storage and sharing logic disposal. Even though 
blockchain can provider an ingenious infrastructure for 
practicing privacy protection approaches, it would be worth 
exploring further separation on blockchain’s responsibilities, 
which will be better to control MDA sharing, according with 
the Single Responsibility Principle of software engineering [37]. 
Also, as a script-based automata, smart contracts can provide 
transparent and regulatory of processes. They are limited to 
offer encapsulation for data protection. Thus, ZKP is introduced 
to realize the tokenization of MDAs. [34] has made a 
preliminary exploration on using the verification feature of 
ZKP for privacy-preserving demand matching. However, in our 
scenario, the management of MDAs is a series of jobs, not just 
a single matching step. This takes us to figure out whether the 
constrain system of ZKP can be further developed and how it 
should be to suit for our scenario. 

III. THE OVERALL FRAMEWORK 
To achieve secure and sustainable MDA sharing in a 

decentralized environment, a blockchain-based MDA sharing 
framework is proposed as an integrated solution to eliminate 
privacy concerns and encourage sharing behaviors. Table II 
gives the notations of all symbols used in this paper. This 
framework enables MDA owners to conduct privacy-
preserving MDA sharing third-party organizations with 
incentives. This framework adopts a five-layer architecture to 
decouple the relationship for practicing privacy protection from 
infrastructure perspective, as shown in Fig. 2. The 
responsibility of each layer is specified as follows. 
 The application layer encapsulates the business logic of 
MDA sharing and provides user interactions. There are three 
key operations for the sharer and user. The first is MDA 
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TABLE I 
SUMMARY OF RELATED WORKS 

 Problem Domain Methodology Domain 

Paper Access 
Privacy 

Content 
Privacy 

Identity 
Privacy 

Privacy 
Sharing 

Incentive 
Language Attribute 

Control Blockchain Smart 
Contract 

Zero-
knowledge 

Proof 

Statistical 
Method Cryptography 

[19] √ × × × √ × × × × × × 
[20] √ × × × √ √ × × × × × 
[21] √ × × × √ √ × × × × × 
[22] √ × × × × √ × × × × × 
[23] √ × × × √ √ × × × × × 
[13] √ × × × × √ √ × × × × 
[24] √ × × × × √ √ × × × × 
[25] √ × × × × √ √ √ × × × 
[26] √ √ × × √ √ √ √ √ × × 
[27] × √ × × × × × × × √ × 
[28] × × √ × × × × × × √ × 
[29] × √ × × × × × × × × √ 
[30] × √ × × × √ × × × × √ 
[31] × √ × × × × √ × × × √ 
[32] √ √ × × × √ √ × × × √ 
[33] × √ √ × × √ × × × × √ 
[34] × √ × × × × × × × × √ 
[35] √ × √ × × × √ √ × × √ 
[36] × √ × × × √ √ × × × √ 
[37] × √ √ × × × √ × √ × × 
This 

Paper √ √ √ √ × × √ √ √ × × 
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registration, which enables the sharer to declare the ownership 
of a definite MDA. The second operation is MDA authorization, 
which allows a sharer to authorize registered MDAs to a third-
party user (e.g., a medical institution or data analysis 
department). The third operation is for a third-party user to 
access authorized MDAs by showing the corresponding 
authorization proof. 

 The mechanism layer is the core of this framework. It 
implements two enabling mechanisms as backend 
dependencies to support the operations in the application layer. 
The supervisory privacy-preserving sharing mechanism is a 
sharing management dependency that protects identity and 
process privacy for MDA registration, authorization and 
extraction. Furthermore, it guarantees limited identity 
traceability for shared MDAs to prevent malicious sharing or to 
enable epidemiological investigations. The sharing incentive 

mechanism is also dependent on the application layer because 
it encourages owners to provide MDAs so that this sharing 
behavior is sustainable. 
 The service layer abstracts the near-minimum amount of 
services that can provide the critical functionalities needed to 
deliver mechanisms for execution on the sharing network. It 
consists of three services. The smart contract service generates 
a smart contract, which is an executable instance for completing 
the mechanism logic on the network layer. The group signature 
service is responsible for maintaining identity privacy and 
traceability. The ZKP service is integrated to guarantee the 
process privacy of MDA sharing. Both of these last two services 
are invoked by a smart contract so that they can handle the 
related contract logic that is encapsulated and required by the 
mechanism layer. The network layer consists of a consortium 
blockchain network. The consortium blockchain is selected 
because this framework aims to share MDAs with multiple 
stakeholders, and this scenario falls between public and private 
chains. In general, the network layer constructs a decentralized 
network to organize sharing stakeholders and provides a secure 
and transparent environment to execute smart contracts. More 
specifically, three functions held by this consortium blockchain 
are important for the upper layers. First, a peer-to-peer (P2P) 
protocol should be integrated to construct the P2P network so 
that the storage layer can be deployed for qualified peers. 
Second, a distributed identity protocol is essential for providing 
the underlying interfaces for users and user role management in 
terms of key generation, certificate issues and access control. 
The distributed message protocol enables asynchronous 
message distribution and routing in the distributed network. 

The storage layer is responsible for archiving and extracting 
the two types of data in a distributed manner. The interplanetary 
file system (IPFS) is used to slice the original MDAs, and the 
generated slices can then be distributed to geographically 
dispersed peers for storage. The adoption of slicing makes 
MDA storage more secure and private because each peer can 
only obtain parts of the MDAs, and no peer can obtain a full 
MDA [38]. The distributed ledger acts as the basis of the 
blockchain, which only keeps various kinds of proofs. Since a 
proof is lighter than the original MDA, it decreases storage 
waste and improves the scalability of the blockchain network. 

IV. SUPERVISORY PRIVACY-PRESERVING SHARING 
MECHANISM 

The supervisory privacy-preserving sharing mechanism 
consists of five operations. The responsibility of each operation 
is described as follows. 
1) Group enrollment 

A trusted MDA authority, such as a hospital, a clinic, or 
another medical institution, is introduced as a kind of group to 
manage its internal members. An MDAP should first enroll in 
a group with a unique ID. Then, the group generates a pair 
(𝑃𝑘!" , 𝑆𝑘!") based on the ID and invokes 𝑠𝑡((𝑃𝑘!" , 𝑆𝑘!"), 𝑇, 𝐴). 
2) MDA registration 

MDA registration depends on the following assumptions. (i) 
An α must be generated. (ii) 𝐴 must set a private key 𝑆𝑘!  for 
him/herself; 𝑆𝑘!  does not need to be stored, but the owner must 
remember the value of the key. (iii) Only someone who knows 

TABLE II 
NOTATION 

Symbol Description 

𝐴 An MDAP 
ℎ(	) A hash function (i.e., SHA256) 

𝑇 A trusted medical authority 
𝑃𝑘!" , 𝑆𝑘!" 
 
𝑧𝑘𝑝#(𝑖𝑛𝑝$, 
𝑖𝑛𝑝%, 𝑖𝑛𝑝&) 
 
𝑧𝑘𝑝' 

The group-usable public key and private key 
generated by T for A 
A ZKP function for generating the proof. 𝑖𝑛𝑝$ 
denotes the public inputs, 𝑖𝑛𝑝% represents the 
private inputs, and 𝑖𝑛𝑝& signifies the constraints 
to be verified. 
A ZKP function for verifying the proof 

𝑃𝑘! , 𝑆𝑘!  The public key and private key for A, where: 
𝑃𝑘! = ℎ(𝑆𝑘! ) 

𝑠𝑡(𝑚𝑠𝑔, 𝑎, 𝑏) A way to safely transmit a message from a to b 
σ A random salt 
α The unique nonsubstitutable ID of the MDA 

from A for registration 
𝑆∗ Source data of an MDA 
𝑅𝑒∗ A record on a distributed ledger 
𝑃∗ Proof generated by the ZKP service 
𝑒(𝑚𝑠𝑔, 𝑘𝑒𝑦) Group signature encryption function 
𝐴)*+, Data after group signature encryption 
𝐴𝑑𝑑𝑟∗ 
𝐴𝑑𝑑𝑟∗../,012/ 

The block address of a record 
The brother nodes of the corresponding address 

𝑀∗ The root of a Merkle tree for a record 
𝑡(𝑚𝑠𝑔) Function of the group administrator for 

decrypting the group message 
H A third party for MDA acquisition 
𝑐(𝑅𝑒∗, 𝐴𝑑𝑑𝑟∗../,012/) A calculation function for producing the Merkle 

root 
𝑅 A Boolean value for the algorithmic result 

𝑔) The total number of unique MDAs with MDAP 𝑖 

ℎ)(≤ 𝑔)) The number of MDAs out of the total 𝑔) that are 
held by them 

𝐹(𝒉; 𝒈) The function of FSP for producing an additional 
payoff from MDA sharing 

𝐵(𝑔)) The inherent utility function of privacy for 
MDAP 𝑖 obtains by keeping its unique MDAs 
private 

𝐶(ℎ)) The cost function for sharing ℎ) 

𝑉)(ℎ)) The gained compensation function for 
contributing	ℎ) 

* A symbol may have the following subscripts: 
(i) α means it is related to the registration of MDA 	α	 
(ii) α. H means it is related to the authorization of MDA α to H 
(iii) α. H. E means it is related to the extraction of the authorized MDA α 

for H 
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𝑆𝑘!  can register A’s MDA. (iv) An α can only be registered 
once. The specific registration process is shown below: 

A generates a proof 𝑃# through Algorithm 1. Then, A sends a 
request with 𝑃# to the smart contract and sends 𝑆# to the smart 
contract for the IPFS. 

The nodes run Algorithm 2 to ensure that A's request is 
legitimate. If the result of Algorithm 2 is true, 𝑅𝑒# is put into 
the request pool, and user A's request is broadcast to all other 
nodes and goes through the same process. Subsequently, 𝑅𝑒#	 
is recorded in the distributed ledger, and 𝑆# persists to the IPFS. 
Then, 𝐴𝑑𝑑𝑟# is sent back to A. 
3) MDA authorization 

The MDA owner can anonymously authorize his or her 
MDAs to any organization or individual. This process stores an 
authorization record on the distributed ledger without additional 
information about the authorization process. The authorization 
procedure has two assumptions. (i) Only a registered α can be 
authorized. (ii) A knows the private asset key 𝑆𝑘!  and the σ 
corresponding to α. The authorization process for A to H is 
specified as follows: 

First, A queries the Merkle root 𝑀# of the block via 𝐴𝑑𝑑𝑟#. 
Then, A runs Algorithm 3. In Algorithm 3, A creates a message 
through the group signature encryption function and sends it to 

H. Then, similar to MDA registration, A sends a request with 
𝑃#.% to the smart contract. 

The node uses Algorithm 4 to check the request and then uses 
the same process as in operation (2) to process the result of 
Algorithm 3. If the request is successfully stored, A will be able 
to view the block address 𝐴𝑑𝑑𝑟!.# of its request record. 

When H is the administrator of A’s group, he or she can 
identify the owner of the authorized MDA through operation 
(5). When H is an organization/person outside A’s group or 
is not the administrator of A’s group, he or she can still use 
𝐴$%&' in operation (5) and verify whether the MDA is from 
the expected group, but he or she cannot identify the specific 
owner. 
4) MDA extraction 

If H wishes to obtain A’s authorized MDA, H can access 𝑆# 
by presenting the proof of authorization. The whole process is 
designed as follows: 

H generates a proof 𝑃𝛼.𝐻.𝐸 through Algorithm 5 and sends 
𝑃𝛼.𝐻.𝐸 to the smart contract for the IPFS. 

The IPFS nodes verify the validity of the inputs in 𝑃𝛼.𝐻.𝐸 and 
𝑃𝛼.𝐻.𝐸 with two conditions: 

> 𝑀𝛼.𝐻 is the root of the corresponding 𝐴𝑑𝑑𝑟!.# block. 
> 𝑃𝛼.𝐻.𝐸 can pass the proof verification. 

 If successfully passed, the smart contract for the IPFS returns 
𝑆# to H. 
5) MDA ownership traceability 

During the authorization process, A sends a message 
encrypted by the group signature to the authorized party. This 
message can be used to trace the MDA ownership of the group 
administrator or the group ownership of outside members to 
perform supervision using the following process: 

(a) Calculate 𝛼=ℎ(𝑆#). 
(b) Find the 𝐴$%&' corresponding to 𝛼. 
(c) Administrator: Calculate 𝑡(𝐴$%&') to obtain the identity 

of A. 
Others: Calculate 𝑡+(𝐴$%&')  to obtain only the group 

identity of A.  

Algorithm 1: User-side MDA registration process 
 Input: 𝑆! , 𝑃𝑘", 𝑆𝑘", 𝜎 
 Output: 𝑃! 
1 set 𝛼 ← ℎ(𝑆!); 
2 set 𝑅𝑒! ← ℎ(𝛼|𝑃𝑘"|𝜎); 
3 set 𝑖𝑛𝑝# = {𝑃𝑘", 𝑅𝑒! , 𝛼}; 
4 set 𝑖𝑛𝑝$ = {𝑆𝑘", 𝜎}; 
5 set constraints ← {𝑖𝑛𝑝#[1] ≡ ℎ(𝑖𝑛𝑝$[1]), 𝑖𝑛𝑝#[2] ≡ 
 			ℎ(𝑖𝑛𝑝#[1]|𝑖𝑛𝑝#[3]|𝑖𝑛𝑝$[2])}; 
6 set 𝑃! ← 𝑧𝑘𝑝%(𝑖𝑛𝑝#, 𝑖𝑛𝑝$,𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠); 
7 return 𝑃! 

 

Algorithm 2: Node-side MDA registration process 
 Input: 𝑃! , ℎ(𝑆!) 
 Output:	𝑅 
1 set 𝛼 from 𝑃!; 
2 set 𝑅 ← 𝐹𝑎𝑙𝑠𝑒; 
3 if 𝛼 ≡ ℎ(𝑆!)	&	𝑧𝑘𝑝'(𝑃!) ≡ 𝑇𝑟𝑢𝑒	&	 
    𝑎	𝑖𝑠	𝑛𝑜𝑡	𝑖𝑛	𝑡ℎ𝑒	𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛	𝑟𝑒𝑐𝑜𝑟𝑑, then 
4   |  set 𝑅 ← 𝑇𝑟𝑢𝑒; 
5 end 
6 return 𝑅 

 

Algorithm 4: Node-side MDA authorization process 
 Input: 𝑃!.) , 𝐴𝑑𝑑𝑟* 
 Output: 𝑅 
1 set 𝛼,𝑀! from 𝑃!.); 
2 set 𝑅 ← 𝐹𝑎𝑙𝑠𝑒; 
3 if 𝑎	𝑖𝑛	𝑡ℎ𝑒	𝑟𝑒𝑐𝑜𝑟𝑑	&	𝑧𝑘𝑝+(𝑃!.)) ≡ 𝑇𝑟𝑢𝑒	& 𝑀!	𝑖𝑠	𝑡ℎ𝑒	𝑟𝑜𝑜𝑡	𝑜𝑓 

𝐴𝑑𝑑𝑟*, then 
4   |  set 𝑅 ← 𝑇𝑟𝑢𝑒; 
5 end 
6 return 𝑅 

 

Algorithm 5: Node-side MDA extraction process 
 Input: 𝛼, 𝑃𝑘", 𝑃𝑘) , 𝑆𝑘) , 𝜎,, 𝑅𝑒!.) , 𝐴𝑑𝑑𝑟*.).-./012. , 𝑀!.) 
 Output: 𝑃!.).3 
1 set 𝑖𝑛𝑝# = {𝑅𝑒!.) , 𝑃𝑘", 𝑃𝑘) , 𝑀!.) , 𝐴𝑑𝑑𝑟*.).-./012. , 𝛼}; 
2 set 𝑖𝑛𝑝$ = {𝑆𝑘) , 𝜎,}; 
3 set constraints	← 𝑖𝑛𝑝#[3] ≡ ℎ(𝑖𝑛𝑝$[1]), 𝑖𝑛𝑝#[4] ≡ 𝑐(𝑖𝑛𝑝#[1], 
    𝑖𝑛𝑝#[5]), 𝑖𝑛𝑝#[1] ≡ ℎ(𝑖𝑛𝑝#[2]|𝑖𝑛𝑝#[3]|𝑖𝑛𝑝#[6]𝑖𝑛𝑝$[2])}; 
4 set 𝑃!.).3 ← 𝑧𝑘𝑝%(𝑖𝑛𝑝#, 𝑖𝑛𝑝$,𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠); 
5 return 𝑃!.).3 

 

Algorithm 3: User-side MDA authorization process 
 Input: 𝛼, 𝑃𝑘", 𝑆𝑘", 𝜎, 𝜎,, 𝑅𝑒! , 𝐴𝑑𝑑𝑟*.-./012. , 𝑆𝑘"4 , 𝑃𝑘) , 𝑆! , 𝑀! 
 Output: 𝑃!.) 
1 set 𝑚𝑠𝑔 ← ℎ(𝑆*); 
2 set 𝐴567/ ← 𝑒(𝑚𝑠𝑔, 𝑆𝑘"4); 
3 Do 𝑠𝑡QR𝜎,, 𝐴567/, 𝛼, 𝑃𝑘"S, 𝐴, 𝐻U; 
4 set 𝑅𝑒!.) ← ℎ(𝛼|𝑃𝑘"|𝑃𝑘)|𝜎′); 
5 set 𝑖𝑛𝑝# = {𝑃𝑘", 𝑃𝑘) , 𝑅𝑒! , 𝑀! , 𝐴𝑑𝑑𝑟*.-./012. , 𝛼, 𝑅𝑒!.)}; 
6 set 𝑖𝑛𝑝$ = {𝑆𝑘", 𝜎,, 𝜎}; 
7 set constraints	← 𝑖𝑛𝑝#[1] ≡ ℎ(𝑖𝑛𝑝$[1]), 𝑖𝑛𝑝#[3] ≡			 
 			ℎ(𝑖𝑛𝑝#[1]|𝑖𝑛𝑝#[6]|𝑖𝑛𝑝$[3]), 𝑖𝑛𝑝#[4] ≡ 𝑐(𝑖𝑛𝑝#[3], 𝑖𝑛𝑝#[5]), 
 			𝑖𝑛𝑝#[7] ≡ ℎ(𝑖𝑛𝑝#[1]|𝑖𝑛𝑝#[2]|𝑖𝑛𝑝#[6]|𝑖𝑛𝑝$[2])}; 
8 set 𝑃!.) ← 𝑧𝑘𝑝%(𝑖𝑛𝑝#, 𝑖𝑛𝑝$, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠); 
9 return 𝑃!.) 
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V. PROPOSED SHARING INCENTIVE MECHANISM 
With medical data contributors becoming increasingly aware 

of the value of their unique information, providing fair rewards 
or compensation has become imperative for MDA acquisition. 
For instance, new third-party platforms such as DNASimple 
reward donors with fixed rewards for their donations of 
biological samples [39]. Similar practices also exist in other 
industry sectors [40]. However, most of these programs merely 
focus on the quid pro quo of compensating contributors and fail 
to consider the drivers of MDA sharing, who could determine 
sufficiently valuable compensation to drive MDAP behavior. 
These include the disutility of MDAPs breaching the privacy of 
their unique MDAs, as well as the inherent time and energy 
costs linked to MDA sharing. Moreover, the influence of 
complementarity among the MDAPs in the reward mechanism 
is present as a blockchain platform integrates MDAs from 
different MDAPs. Finally, we introduce a model that 
endogenizes the decisions of MDAPs on MDA sharing. That is, 
an MDAP determines its optimal amount of MDA sharing to 
derive optimal individual-based rewards, while a blockchain 
platform leverages the MDAs to deliver knowledge and 
actionable insights to consumers such as healthcare providers 
for generating value. 

Consider a framework service provider (FSP) with 𝑛 
registered MDAPs. The MDAPs are participants who interact 
with the FSP through their devices (registered smartphones, 
PCs, etc.). Each MDAP is assumed to be a self-utility 
maximizer. A model built on the self-utility maximization 
motivation not only produces valuable insights but can also 
easily be integrated into traditional management theories [41]. 
Similarly, the FSP is assumed to target the incremental payoff 
that it may generate, as effective medical image management 
will ultimately be reflected in its financial performance (by 
serving it to consumers interested in medical images). MDA 
consumers can use the valuable insights made available through 
the platform to either improve the value of their services or 
decrease their costs. Additionally, we assume that each MDA is 
unique to the person or patient to whom it belongs. 

A. The FSP’s Objective 
Let 𝒈	 = 	 (𝑔&, 𝑔'… . . 𝑔() , where 𝑔)  represents the total 

number of unique MDAs with MDAP 𝑖. For example, in the 
medical imaging context, each MDAP acquires MDAs from the 
radiographic scanning procedures in which it participates. 
Therefore, the number of images that the MDAP has acquired 
can be used as a measure of the number of MDA units possessed 
by the MDAP. The MDAPs share 𝒉	 = 	 (ℎ&, ℎ'… . . ℎ(), where 
ℎ)(≤ 𝑔)) is the number of MDAs out of the total 𝑔) that are held 
by them. For analytical simplicity, we treat both 𝑔)  and ℎ)  as 
continuous variables. Subsequently, the FSP produces an 
additional payoff from MDA sharing, given by 𝐹(𝒉;𝒈), which 
is increasing and concave in ℎ) . This assumption is widely 
adopted in the literature [42], [43] and is suitable for scenarios 
that focus on incremental performance improvement. 

Now, the MDAs obtained from each MDAP are 
heterogeneous in terms of their potential contributions to the 
platform payoff. For instance, an MDAP who contributes MRI 
images may contribute more to the payoff than an MDAP that 
contributes X-ray images of the same body part because of 

MRI’s capability to depict even the most minute details and 
intricacies of the body part [44]. Hence, the potential impact of 
an MDAP on FSP performance may be expressed as *+(𝒉;𝒈)

*1!
, 

which represents the marginal MDA contribution from MDAP 
𝑖 to the payoff of the FSP. 

Additionally, the MDAs managed through an FSP often tend 
to be interdependent and may complement one another in terms 
of the functions they serve. For example, multiple images of the 
same body part obtained from different MDAPs are required to 
train AI models for effective medical diagnosis [45], [46]. 
Hence, we introduce an additional facet called MDA 
interdependence. Here, *

"+(𝒉;𝒈)
*1!*1#

> 0 identifies a positive MDA 

interdependence between MDAPs 𝑖  and 𝑗. Hence, the higher 
the value of *

"+(𝒉;𝒈)
*1!*1#

 is, the higher the level of complementarity 

among the MDAs contributed by the two MDAPs. For 
analytical simplicity, we rule out the case of negative 
interdependencies even though the results remain the same 
either way. 

B. Costs Incurred by MDAPs 
This study takes two factors that impose costs on MDAPs 

into account. First, MDAPs enjoy the inherent utility 𝐵(𝑔)) of 
privacy, which is the utility of privacy that MDAP 𝑖 obtains by 
keeping its unique MDAs private. Consequently, MDAP 𝑖 
incurs a cost 𝐵(𝑔)) − 𝐵(𝑔) − ℎ))  when sharing ℎ)  units of 
MDAs. Here, 𝐵(∙)  is increasing and concave in ℎ) ; i.e., 
𝐵′(𝑔)) > 0, and 𝐵′′(𝑔)) < 0. It is reasonable to assume that the 
utility of privacy increases with the increase in the number of 
MDAs, i.e., 𝐵′(𝑔)) > 0 . Furthermore, we assume that 
𝐵′′(𝑔)) < 0 because an MDAP with many MDAs experiences 
a lower increase in utility from an additional unit of MDA than 
an MDAP with a small number of MDAs. Hence, the more an 
MDAP engages in MDA sharing, the more rapidly its utility 
decreases. 

Second, disutility also arises because of the time and effort 
that needs to be put in by MDAPs to identify, segregate, prepare 
and publish MDAs to the FSP. Hence, 𝐶(ℎ)) represents the cost 
or disutility experienced by MDAP 𝑖 when sharing ℎ) units of 
MDAs, where 𝐶(∙) is convex in ℎ). 

Now, the resulting incentive-compatible MDA sharing 
mechanism functions as follows. First, the FSP introduces a 
valorization system to promote MDA sharing. Subsequently, 
the MDAPs determine the number of MDAs to publish, ℎ) > 0, 
if they decide to participate. In the case of nonparticipation, 
their utility remains unchanged. Finally, the FSP valorizes the 
MDAPs for their contributions. 

C. MDA Valorization Mechanism 
Assuming that 𝑉) is the value extended to MDAP 𝑖 based on 

the valorization system, the MDAP determines the optimal 
level of MDA sharing that can maximize its total utility. When 
sharing ℎ)  units of MDAs, MDAP 𝑖  incurs a cost 𝐶(ℎ)) , its 
remaining utility of privacy becomes 𝐵(𝑔) − ℎ)), and it gains 
compensation 𝑉)(ℎ)) for its contributions. Hence, MDAP 𝑖’s 
maximization problem may be written as: 

max
1!
	𝑍 = 𝐵(𝑔) − ℎ)) − 𝐶(ℎ)) +	𝑉) 								− − − (1) 
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Furthermore, its corresponding first-order condition may be 
written as follows: 

𝜕𝐵(𝑔) − ℎ))
𝜕ℎ)

− 𝐶′(ℎ)) +
𝜕𝑉)
𝜕ℎ)

= 0										 − − −	(2) 

From Equation (2), when the MDAP determines the optimal 
ℎ)  to share, it balances its utility from the marginal benefits 
*2!(1!)
*1!

 and the costs of privacy, − *3(4!51!)
*1!

, and effort, 𝐶′(ℎ)). 
Consequently, the FSP maximizes its net payoff while 

considering the MDAPs’ incentive to maximize their individual 
utilities. Hence, the FSP’s maximization problem may be 
written as: 

max
1$….1%
2$….2%

𝜋 = 𝐹(𝒉) −	Q𝑉) 																
(

)7&

−−− (3) 

s.t. 
𝐵(𝑔) − ℎ)) − 𝐶(ℎ)) +	𝑉) ≥ 𝐵(𝑔));	∀𝑖					 − − − (4) 
𝜕𝐵(𝑔) − ℎ))

𝜕ℎ)
− 𝐶′(ℎ)) +

𝜕𝑉)
𝜕ℎ)

= 0;	∀𝑖					 − − − (5) 

Equations (4) and (5) represent the individual rationality 
constraint (IRC) and incentive compatibility constraint (ICC) of 
the agent, respectively. Here, the IRC ensures that an MDAP 
does not face a negative utility from MDA sharing, while the 
ICC considers the self-utility maximization of the MDAPs. 
These constraints are commonly used in principal agent studies 
[47], [48] to monetize an agent’s contribution to the principal. 
At the optimum, the first-order condition for the FSP’s 
maximization problem may be derived by introducing the 
binding constraint in (4) to Equation (3) as follows: 

𝜕𝐹(𝒉)
𝜕ℎ)

+
𝜕𝐵(𝑔) − ℎ))

𝜕ℎ)
− 𝐶′(ℎ)) = 0;	∀𝑖				 − − − (6) 

In Equation (6), the benefits are represented by the marginal 
increase in payoff *+(𝒉)

*1!
, while − *3(4!51!)

*1!
+ 𝐶′(ℎ))  is the 

marginal cost increase incurred by the MDAPs, which should 
be compensated to promote MDA sharing. 

Let us denote 𝒉∗ 	= 	 (ℎ&
∗, ℎ'

∗… . . ℎ(
∗)  as the optimal 

solutions to the first-order conditions of the FSP. When binding 
constraint (4) is seen alongside constraints (5) and (6), the 
resulting incentive-compatible valorization system is given by 
the proposition below. 

Proposition: The incentive-compatible valorization system 
is given as follows: 

𝑉)(ℎ)) = 𝑥)ℎ) + 𝑦) 														− − − (7) 
where 

𝑥) =
𝜕𝐹(𝒉∗)
𝜕ℎ)

	ℎ) 

𝑦) = 𝐵(𝑔)) − 𝐵(𝑔) − ℎ)
∗) + 𝐶(ℎ)

∗) −	
𝜕𝐹(𝒉∗)
𝜕ℎ)

	ℎ)
∗ 

 Hence, Equation (7) provides a simple individual-based 
incentive-compatible valorization system that is linear in the 
number of MDAs shared. Notably, this study does not explicitly 
define any functional form for 𝑉), but the representation 𝑉)(ℎ)) 
here is based on the observed dependence of 𝑉)  on ℎ)  in 
Equation (7). In Equation (7), 𝑥)  and 𝑦)  represent the 
marginal and basic values, respectively, given to MDAP 𝑖 for 
its MDA contribution. These values are dependent on the 
number of shared MDAs ℎ) and its corresponding productivity 

*+(𝒉)
*1!

. Interestingly, the marginal value set for the MDAs is 
equivalent to their productivity at the optimum. 

Furthermore, when all MDAPs share the same optimal 
number of MDAs ℎ)

∗ , the optimal value assigned to the 
MDAPs from Equation (7) and the net payoff of the FSP 
converge to the following: 

𝑉)(ℎ)
∗) = 𝐵(𝑔)) − 𝐵(𝑔) − ℎ)

∗) + 𝐶(ℎ)
∗) 			− − − (8) 

𝜋∗ = 𝐹(𝒉∗) −Q𝐵(𝑔)) − 𝐵(𝑔) − ℎ)
∗) + 𝐶(ℎ)

∗)
(

)7&

	(9) 

From Equation (8), at the optimum, the compensation 
received by the MDAPs balances out the costs that they incur. 
Hence, the MDAPs enjoy a zero net surplus (i. e. , 𝑍∗ = 𝐵(𝑔))) 
from sharing ℎ)

∗ , whereas they are exposed to a net utility 
deficit otherwise, as shown in Fig. 3 (refer to Appendix A.2 for 
the functional forms used). Consequently, the FSP keeps the 
entire surplus, excluding the compensation provided to the 
MDAPs. 

VI. MECHANISM EVALUATIONS 
A. Evaluation of the Supervisory Privacy-Preserving 
Sharing Mechanism 

To further evaluate the computing performance of this 
mechanism, a prototype is implemented as the testbed to verify 
the feasibility of real-life applications. The specifications of this 
prototype are given in Table III. 

The development tools for this prototype are based on Python 
3.8, Flask 1.1.2, Go-IPFS 0.10.0, ZoKrates 0.7.7, RabbitMQ-
3.10.7, LevelDB-0.201 and Gevent-20.0.0. FISCO BCOS 
v.2.9.0 is used to build the distributed ledger and consortium 
blockchain network in our framework. The computing 

TABLE III 
SPECIFICATIONS 

Hardware Environment Dell Precision T7920 (Intel Xeon Silver 
4214 CPU*2, 64 GB RAM, 1 TB SSD)*2 

Development Tools Python 3.8, Flask 1.1.2, Go-IPFS 0.10.0, 
ZoKrates 0.7.7, RabbitMQ-3.10.7, 

LevelDB-0.201, Gevent-20.0.0 
Deployment Environment VMware ESXi 6.7 

Virtual machine for each node 
(10v CPU, 8 GB RAM, 80 GB SSD) 

Network Configuration TP-Link TL-R479G+ 
Consensus Algorithm PBFT 

Testbed Settings 7 Nodes (1 Primary and 6 Replica) 
 

 
Fig. 3.  Effect of the number of MDAs shared on the MDAP’s net 
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performance of this mechanism is evaluated based on four 
aspects. First, the overall system performance regarding the 
authorization verification operation is tested in terms of its 
transaction throughput and latency. Two parameters are 
considered key factors for designing experiments. One is the 
block size, which is widely discussed and analyzed in 
blockchain performance evaluations. It is measured by the 
number of transactions in a block in our experiments. The other 
parameter is the number of workers in each node that undertake 
proof operations. This is because proof operations are 
computationally intensive, and the parallelization of proof 
processes may be beneficial for achieving performance 
improvements. Thus, two groups of experiments are designed 
to verify the influences of the block size and number of workers.  

The first group focuses on the block size. The number of 
workers is set to 4 and 8 separately with different transaction 
sending rate strategies. For throughput testing, a total of 8192 
requests are released at one time with 20 repetitions to obtain 
the throughput ceiling. Then, latency testing is conducted with 
an adaptive sending rate under the ceiling to obtain the general 
latency level. The results in Fig. 4 show that an increase in the 
block size can raise the throughput ceiling to some extent, and 
the latency remains stable at approximately 0.61 seconds when 
the sending rate does not exceed the throughput ceiling. 
Additionally, an increase in the number of workers can 
significantly enlarge the throughput ceiling. However, the 
increase in the number of workers has a negative effect on 
throughput when the block size is relatively small. This is 
because with 8 workers, proof operations occupy more CPU 
resources, so other threads for broadcasting and consensus are 
blocked. Furthermore, a small block size with a constant 
number of requests generates too many blocks concurrently, 
which aggravates the burden of the CPU with respect to 
handling communications for block broadcasting and 
consensus. Thus, the bottleneck of the CPU affects the 

throughput of the 8 workers. To avoid this, it is better to assign 
more CPUs to blockchain nodes and not set a block size that is 
too small, especially when the timeout value of the transaction 
of packing into a block can be controlled. 

The second group of experiments aims to study the specific 
influence of parallelization on system performance. As shown 
in Table IV, an increase in the number of workers can indeed 
improve throughput before the CPU reaches saturation. 
However, even though the CPU is already fully loaded when 8 
workers are enabled, the throughput remains stable. This is 
because the block size of 16 decreases the computing 
dependency of communication. Combined with the first group, 
it is preferable to first enlarge the block size to 16 or above and 
then set the number of workers according to the CPU 
performance to implement our framework.  Second, we 
compare the specific performances of two ZKP schemes, 
Groth16 [49] and GM17 [50]. Their computing performance for 
the three key proof operations is summarized in Table V. One 
hundred sets of proof generation and verification processes are 
tested for registration, authorization and extraction, and the 
average time consumption levels are calculated. Large proof 
generation performance differences are observed. However, the 
schemes have similar proof verification performance. In 
addition, the proof sizes are the same for both schemes. For the 
three operations, the proof sizes are 3 kB, 6 kB and 6 kB for 
both Groth16 and GM17 [51]. Since all generations are 
performed on local devices, Groth16 is preferred considering 
the future adoption of smartphones, which are limited by their 
computational capacities and batteries, for MDA operations

 Third, the network bandwidth overhead is measured under 
different numbers of workers when the block size is set to 16 
transactions, as shown in Fig. 5. Fig. 5(A) is the network 
bandwidth overhead for primary nodes with different worker 
numbers. The inflow overhead is almost the same and stable 
because the inflows mainly consist of proof-related requests 
from clients, and the sending rate of clients has been set with a 
ceiling value (e.g., 550 requests/second, larger than the ceiling 
TPS). In addition, the inflows involve acknowledgments for 
consensus, which may cause slight fluctuation. The outflow 
overhead will increase with the worker number, but it will not 
have a linear ratio. This is because the outflow overhead is 
composed of verified proofs sent to others and 
acknowledgments. Ideally, the outflow overhead may increase 
with the worker number. However, the increase in the worker 
number will increase the CPU load to the bottleneck value, so 
we can see that the increased amplitude between outflow 
overheads will narrow. Fig. 5(B) is the network bandwidth 
overhead for replica nodes with different worker numbers. 
Generally, its inflow depends on the broadcasting rate of 
primary nodes. By the same analysis as for Fig. 5(A), it 

TABLE V 
PERFORMANCE COMPARISON BETWEEN DIFFERENT ZKP SCHEMES 

Average Processing Time Groth16 
(seconds) 

GM17 
(seconds) 

Registration Generation 9.9936 102.6935 
Registration Verification 0.0192 0.0195 
Authorization Generation 58.8134 519.9867 
Authorization Verification 0.0206 0.0211 

Extraction Generation 54.6818 482.6898 
Extraction Verification 0.0197 0.0199 

 

TABLE IV 
BLOCKCHAIN PERFORMANCE ACHIEVED UNDER DIFFERENT PEER 

CONFIGURATIONS 
(ZKP= GROTH16, BLOCK SIZE = 16) 

Number of 
Workers 

Throughput  
(TPS) 

Latency 
(Seconds) 

Average CPU 
Utilization 

1 67.1573 0.6296 19.10% 
2 161.8195 0.6212 33.60% 
4 298.9398 0.6194 50.70% 
6 386.6623 0.6322 78.40% 
8 450.8449 0.6247 94.20% 

10 447.9366 0.6096 94.50% 
12 447.3179 0.6469 94.90% 

 

 
Fig. 4.  System performance comparison 

 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0
50

100
150
200
250
300
350
400
450
500

1 2 4 8 16 32 64 128

La
te
nc
y
(S
ec
on

d)

Th
ro
ug
hp

ut
(T
ra
ns
ac
tio

ns
Pe

rS
ec
on

d,
TP
S)

Blocksize (Number of Transactions)

System Performance Comparison
TPS (4 workers) TPS (8 workers) Latency (4 workers) Latency (8 workers)



M.Li et al. Blockchain-Based Medical Data Asset Sharing Framework for Healthcare 4.0   

 

approximates the outflows of primary nodes. Since replica 
nodes only generate acknowledgments (i.e., consensus, proof 
verification or confirmation), the outflow is significantly small, 
which is consistent with the above analysis. In general, the 
bandwidth overhead has a positive correlation with the number 
of workers because worker concurrency can accelerate the 
processing of transactions, which increases the communication 
overhead required for broadcasting and consensus. Since we 
use proofs instead of the MDAs themselves for blockchain 
network transmission, the small sizes of proofs greatly reduce 
the network bandwidth consumption. In addition, the inbound 
and outbound network bandwidth follow a fixed proportion 
because the message content and distribution scheme in 
practical Byzantine fault tolerance (PBFT) are stable. In 
conclusion, network bandwidth is unlikely to become the 
bottleneck of the system compared with the CPU. Additionally, 
a short group signature approach is adopted [52]. The size of 
the group signature is fixed to 92 bytes in our experiments 
because the input scales for signature parameters are 
consistent. Since signatures will be attached to proofs at the 
kilobyte level, the influence of signature size can be neglected. 
Furthermore, some limitations are observed due to the hardware 
constraints. The major limitation is the throughput ceiling. 
Since the physical workstations are limited, our experiments 
already make sufficient use of the performance of current 
hardware, especially the CPU. Thus, it is difficult to improve 
this performance. However, in real-life scenarios, the 
computing infrastructure, which usually involves a computing 
cluster or at least a server instead of one virtual machine, will 
have better CPU performance and will be able to avoid 
computation bottlenecks with an uncapped number of workers. 
Another limitation is the small network scale. The testing 
network contains 7 nodes, which can only simulate an early 
consortium network. However, since the network bandwidth 

overhead is very small, the expansion of the network scale will 
not have an appreciable impact on the overall system 
performance. 

Fourth, a benchmark experiment has been conducted, 
comparing with single blockchain-based MDA sharing schema 
in [12]. The results are shown in Table VI. The benchmark 
approach employed blockchain for MDA sharing without 
privacy protection. The results show the exact overheads of 
TPS, latency, computing and networking for implementing 
privacy protection for MDA sharing. For TPS, our framework 
only sacrifices 2.2% on TPS, benefiting from the parallel 
execution. Latency will be increased significantly because of 
the generation and verification of proofs are computing-
intensive, which takes more time for transaction disposal. This 
is also shown on the average CPU utilization, which means if 
more powerful CPU will be deployed, the performance of TPS 
and latency will be further optimized. For the networking 
overhead, proofs are needed to be attached in the transaction 
broadcasted so that both primary and peer nodes will have more 
overhead. 

B. Impacts of the Number and Productivity of MDAs on 
MDA Sharing 

Consider a scenario in which the productivity of MDAs 
obtained from MDAP 𝑖  is increased while the remaining 
MDAPs display unaltered MDA productivity at the optimum. 
Here, at 𝒉∗ (the optimum before an increase in productivity), 
Equation (6) takes a positive value on its left-hand side. For 
Equation (6) to hold, MDAP 𝑖 needs to increase its number of 
shared MDAs, ℎ) , which in turn influences the numbers of 
MDAs shared by the remaining MDAPs because of MDA 
interdependence. Therefore, the corresponding ℎ9 ( 𝑗 ≠ 𝑖 ) 
increases from ℎ9

∗  ( 𝑗 ≠ 𝑖 ) in the respective first-order 
conditions of the MDAPs. Furthermore, to compensate for the 
resulting decrease in *3(4!51!)

*1!
− 𝐶′(ℎ)) , the value of *+(𝒉)

*1!
 

should increase at the optimum. As a result, the marginal 
benefits given to MDAP 𝑖 as well as the remaining MDAPs see 
increases in value. Hence, it may be inferred that the optimal 
amount of MDA sharing increases with an increase in the 
productivity of MDAPs. 

Now, the following lemma summarizes the impacts of the 
number of unique MDAs , 𝑔) , held by MDAP 𝑖  and its 

 
(A) NETWORK BANDWIDTH OVERHEAD FOR PRIMARY NODES 

 
(B) NETWORK BANDWIDTH OVERHEAD FOR REPLICA NODES 

Fig. 5.  Network bandwidth overhead for different worker numbers 
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TABLE VI 
BENCHMARK EXPERIMENTS 

(ZKP= GROTH16, BLOCK SIZE = 16) 

Item Baseline 
[12] 

Our 
framework 

Percentage 
Change 

Numerical 
Change 

TPS 460.7 450.8 ↓2.2% -9.9 
Latency (s) 0.04 0.62 ↑1450% +0.58 

Average 
CPU 

Utilization 
34.03% 94.20% ↑176.8% +60.17% 

Network 
overhead-
Primary 

node 
(in/out, Kb/s) 

380/687 1746.67/1536.91 ↑359.65% 
/↑123.71% 

+1366.67 
/+849.91 

Network 
overhead-
Peer node 

(in/out, Kb/s) 

67/53 1550.46/3.54 ↑2214.11% 
/↓93.32% 

+1483.46 
/-49.46 
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productivity on the optimal number of shared MDAs ℎ)
∗ (refer 

to Appendix A.1 for the proof). 

Lemma. The optimal number of shared MDAs ℎ)
∗ from an 

MDAP 𝑖 is given in Table VII. 
From the first row, for any level of interdependence, a more 

productive MDAP should engage in better sharing than its less 
productive counterparts when they all possess an equal number 
of MDAs (𝑔) = 𝑔9 for all 𝑖 ≠ 𝑗). Now, to investigate how the 
valorization mechanism should be set up, consider a scenario in 
which MDAP 𝑖 produces MDAs with higher productivity than 
those of MDAP 𝑗  ( 𝑀𝑃) > 𝑀𝑃9 ). Here, ℎ)

∗ > ℎ9
∗  at the 

optimum. Observing (E.1) from the Appendix, the signs of the 
second and third parentheses are negative and positive, 
respectively, making the positivity of the first term apparent. 
Hence, 𝑥)  ( = 𝜕𝐹(𝒉∗)/𝜕ℎ) ) > 𝑥9  ( = 𝜕𝐹(𝒉∗)/𝜕ℎ9 ). Now, 
assume that for 𝑦) ≥ 𝑦9, 𝑉)(ℎ)) = 𝑥)ℎ) + 𝑦) > 𝑉9(ℎ)) = 𝑥9ℎ) +
𝑦9  for all ℎ) . Furthermore, 𝑉)aℎ9

∗b = 𝑥)ℎ9
∗ + 𝑦) > 𝑉9aℎ9

∗b =
𝐵(𝑔) − 𝐵(𝑔 − ℎ9

∗) + 𝐶 (ℎ9
∗), producing a net positive utility 

for MDAP 𝑖 , which shares ℎ9
∗ . This contradicts the result 

obtained from Section V(C), which identifies the net-zero 
utility experienced by the IPs at the optimum. Hence, 𝑦) < 𝑦9. 
As a result, the platform should set a higher marginal value and 
a lower base value for an MDAP with higher productivity given 
that the MDAPs display homogeneity over all other factors. 

Now, the scenario in which MDAP 𝑖 possesses more MDAs 
than MDAP 𝑗 (𝑔) > 𝑔9) is given in the second row of the table 
in the lemma. Here, MDAP 𝑖 incurs lower costs from MDA 
sharing than MDAP 𝑗 , and hence, it has lower associated 
marginal costs. For a scenario with nonexistent 
interdependence and 𝑀𝑃) ≥ 𝑀𝑃9 , the platform’s payoff from 
MDAP 𝑖’s MDAs is greater than or equal to that from MDAP 
𝑗’s MDAs. As a result, the platform should facilitate increased 
sharing of the MDAs from MDAP	𝑖 in an attempt to balance the 
costs and benefits in Equation (6); i.e., 		ℎ)

∗ > ℎ9
∗ . For the 

remaining cases in the lemma, the relationship between ℎ)
∗and 

ℎ9
∗ is not uniquely determined, even though ℎ)

∗ > ℎ9
∗for the 

majority of cases. 

C. Discussion 
The design, experiments, and analysis of the MDA sharing 

framework have produced insights and recommendations for 
FSPs and contributors aiming to maximize their benefits from 
MDA sharing. First, the novel supervisory privacy-preserving 
sharing mechanism, the technical backbone of the proposed 
framework, eliminates the privacy worries associated with 
contributors’ MDA sharing. Second, the sharing incentive 
mechanism aligns the incentives to motivate the use of the 
platform by MDA contributors by capturing the attributes and 
factors that drive their sharing behavior. These preliminary 

observations and insights are the backbone for the implications 
we discuss below. 
• FSPs can use two levers to maximize blockchain 

performance for MDA sharing: block size optimization and 
worker/processer parallelization on the blockchain node. 
Block sizes that are too small can inhibit the throughput of 
the underlying blockchain network, whereas large block 
sizes may result in empty blocks (from timeout) or blocks 
with very few transactions. Therefore, the FSPs should 
perform market testing to observe MDA contributor 
engagement, or the resulting transaction rate, to determine 
the ideal block size. Similarly, worker/processer 
parallelization for transaction execution is suitable for use 
alongside a zero-knowledge proof. The latter provides 
independent verifiability of transactions with minimal 
messaging of proofs to avoid network congestion. 

• Notably, FSPs and participants may adjust the throughput 
ceiling of the mechanism by relaxing the hardware 
constraints. Unlike the physical workstation we used for 
the experiments in this study, an industrial computing 
infrastructure with a computing cluster (or at least a server) 
will produce high CPU performance. It can avoid 
computation bottlenecks with an uncapped number of 
workers. Therefore, the proposed mechanism can be easily 
scaled for industrial applications with many participants 
engaging with the sharing platform simultaneously. 

• Finally, FSPs can set up a simple linear incentive 
mechanism that inherits the decentralized nature of the 
stakeholders by avoiding the centralization of the platform 
over time, i.e., a few participants taking all the rewards, as 
is typical in cryptocurrency networks such as Bitcoin. 
Although the incentive mechanism encourages 
contributors with more MDAs or more productive MDAs 
to contribute to FSPs, the more minor contributors still 
receive reasonable compensation or fair value for their 
contributions because of their interdependence with their 
larger counterparts. Therefore, more minor contributors or 
new contributors will have opportunities to join and benefit 
from FSPs. 

VII. CONCLUSIONS 
To facilitate the collection and sharing of big medical data, 

this paper presents a blockchain-based MDA sharing 
framework. The major contribution of this paper lies in three 
aspects. First, we designed a layered-architecture to decouple 
the privacy-preserving responsibilities among the employed 
techniques considering both the incentive rewarding and the 
parallelization of execution. Second, a supervisory privacy-
preserving sharing mechanism is used to integrate the 
transparency and determinacy of smart contracts with the 
privacy-preserving ZKP and group signatures to create a 
provable and supervisory privacy protection guarantee for 
managing the MDA sharing process. Third, an MDA sharing 
incentive mechanism is presented to promote MDA sharing. 
Even though the analysis is based on a simplified model, it 
captures various important attributes that should be considered, 
such as the private utility derived by an MDAP from its MDAs, 
the time- and effort-intensive nature of MDA sharing, the 
impacts of MDAs on the financial performance of an FSP, and 

TABLE VII 
THE OPTIMAL SHARING ANALYSIS 

Number 
of MDAs 

Interdepende-
nce 

MDA Productivity (MP) 

𝑀𝑃) > 𝑀𝑃3 𝑀𝑃) = 𝑀𝑃3 𝑀𝑃) < 𝑀𝑃3 
𝑔) = 𝑔3 Nonnegative ℎ)

∗ > ℎ3
∗ ℎ)

∗ = ℎ3
∗ ℎ)

∗ < ℎ3
∗ 

𝑔) > 𝑔3 Zero ℎ)
∗ > ℎ3

∗ ℎ)
∗ > ℎ3

∗ Mostly	ℎ)
∗ >

ℎ3
∗ 

 Positive ℎ)
∗ > ℎ3

∗ 
(mostly) 

ℎ)
∗ > ℎ3

∗ 
(mostly) 

Intermediate 
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the productivity of and interdependence among MDAs. The 
mechanisms introduced in this study can act as a stepping stone 
for further studies on MDA sharing and more sophisticated 
valorization mechanisms. 

However, some future work ideas are worth further 
exploration. First, this paper does not consider an exit 
mechanism for current group members in terms of the group 
signature encryption function, which results from the 
shortcoming of the short group signatures. Thus, the current 
method can be further improved, or more kinds of group 
signature methods can be integrated to enhance the suitability 
of our framework for different application scenarios. Second, 
the security of sharing should be enhanced for real-life 
applications due to potential malicious sharers or repeated 
MDA sharing. Third, the shared MDAs may generate potential 
application value. The a posteriori incentive mechanism is 
promising for distributing reverse rewards; in particular, this 
paper contributes an identity traceability basis for obtaining 
these rewards. 

APPENDIX A.1-PROOF OF LEMMA 
Considering the first-order conditions in Equation (6) for 

MDAPs 𝑖	and 𝑗 together, we obtain the following: 
8
𝜕𝐹(𝒉∗; 𝒈)

𝜕ℎ"
−
𝜕𝐹(𝒉∗; 𝒈)

𝜕ℎ#
B + 8

𝜕𝐵(𝑔" − ℎ"∗)
𝜕ℎ"

−
𝜕𝐵F𝑔# − ℎ#∗G

𝜕ℎ#
B

− H𝐶$(ℎ"
∗) − 𝐶$Fℎ#

∗GJ = 0 

(E.1) 

(1) Case 1: 𝑔5 = 𝑔M 	(= 𝑔) . Assuming 𝑀𝑃5 > 𝑀𝑃M , suppose 
that ℎ)

∗ ≤ ℎ9
∗. In (E.1), the signs of the second and third  

expressionsin parentheses are negative and positive, 
respectively, making the positivity of the first term apparent. 
However, 
𝜕𝐹Fℎ"∗, ℎ#∗; 𝑔, 𝑔G

𝜕ℎ"
≥
𝜕𝐹Fℎ#∗, ℎ#∗; 𝑔, 𝑔G

𝜕ℎ"
>
𝜕𝐹Fℎ#∗, ℎ#∗; 𝑔, 𝑔G

𝜕ℎ#
≥
𝜕𝐹Fℎ"∗, ℎ#∗; 𝑔, 𝑔G

𝜕ℎ#
 (E.2) 

which produces a contradiction. Thus, ℎ)
∗ > ℎ9

∗. 
Now, when 𝑀𝑃) = 𝑀𝑃9, ℎ)

∗ = ℎ9
∗ by symmetry. 

(2) Case 2: 𝑔) > 𝑔9. When ℎ)
∗ ≤ ℎ9

∗, as in case 1, the terms 
in the first set of parentheses of (E.1) must produce a negative 
value for the first-order condition to hold. Hence, 

𝜕𝐹6ℎ!
∗, ℎ#

∗; 𝑔!, 𝑔#;
𝜕ℎ!

=	
𝜕𝐹6ℎ!

∗, ℎ#
∗; 𝑔#, 𝑔#;

𝜕ℎ!
≥	
𝜕𝐹6ℎ#

∗, ℎ#
∗; 𝑔#, 𝑔#;

𝜕ℎ!
 (E.3) 

• Subcase 1: Zero interdependence. For nonexistent 
interdependence, 

𝜕𝐹Fℎ#∗, ℎ#∗; 𝑔#, 𝑔#G
𝜕ℎ#

=	
𝜕𝐹Fℎ"∗, ℎ#∗; 𝑔" , 𝑔#G

𝜕ℎ#
 (E.4) 

If 𝑀𝑃5 ≥ 𝑀𝑃M , then 𝜕𝐹QℎM
∗, ℎM

∗; 𝑔M , 𝑔MU/𝜕ℎ5 ≥
𝜕𝐹QℎM

∗, ℎM
∗; 𝑔M , 𝑔MU/𝜕ℎM . Subsequently, from (E.3) and (E.4), 

Qℎ5
∗, ℎM

∗; 𝑔5 , 𝑔MU/𝜕ℎ5 ≥ 𝜕𝐹Qℎ5
∗, ℎM

∗; 𝑔5 , 𝑔MU/𝜕ℎM, which produces a 
contradiction. Therefore, ℎ5∗ > ℎM

∗ . If 𝑀𝑃5 < 𝑀𝑃M , then 
𝜕𝐹QℎM

∗, ℎM
∗; 𝑔M , 𝑔MU/𝜕ℎ5 < 𝜕𝐹QℎM

∗, ℎM
∗; 𝑔M , 𝑔MU/𝜕ℎM. From (E.3) and 

(E.4), 𝜕𝐹Qℎ5∗, ℎM∗; 𝑔5 , 𝑔MU/𝜕ℎ5 − 𝜕𝐹Qℎ5∗, ℎM∗; 𝑔5 , 𝑔MU/𝜕ℎM  becomes 
negative only when there is a substantial productivity 
difference. Although (E.1) does not hold for the majority of the 
cases resulting in ℎ5∗ > ℎM

∗ , it holds (that is, ℎ5∗ ≤ ℎM
∗ ) for a 

substantial difference in productivity. 
• Subcase 2: Positive interdependence. (E.4) can be 

modified to suit this subcase as follows: 
𝜕𝐹Fℎ#∗, ℎ#∗; 𝑔#, 𝑔#G

𝜕ℎ#
>
𝜕𝐹Fℎ"∗, ℎ#∗; 𝑔#, 𝑔#G

𝜕ℎ#
<	
𝜕𝐹Fℎ"∗, ℎ#∗; 𝑔" , 𝑔#G

𝜕ℎ#
 (E.5) 

For 𝑀𝑃5 ≥ 𝑀𝑃M , taking (E.3) and (E.5) into account, 
𝜕𝐹Qℎ5

∗, ℎM
∗; 𝑔5 , 𝑔MU/𝜕ℎ5 ≥ 𝜕𝐹Qℎ5

∗, ℎM
∗; 𝑔5 , 𝑔MU/𝜕ℎM is likely to hold 

for low-interdependence cases or when the difference between 
𝑔5 and 𝑔M is not very large, i.e., when 𝜕𝐹Qℎ5∗, ℎM∗; 𝑔5 , 𝑔MU/𝜕ℎM −
𝜕𝐹Qℎ5

∗, ℎM
∗; 𝑔M , 𝑔MU/𝜕ℎM is not very significant (the last inequality 

in (E.5)). As a result, ℎ5∗ > ℎM
∗  in the majority of cases. For 

𝑀𝑃5 < 𝑀𝑃M , 𝜕𝐹QℎM∗, ℎM∗; 𝑔M , 𝑔MU/𝜕ℎ5 < 𝜕𝐹QℎM
∗, ℎM

∗; 𝑔M , 𝑔MU/𝜕ℎM . 
From (E.3) and (E.5), 𝜕𝐹Qℎ5

∗, ℎM
∗; 𝑔5 , 𝑔MU/𝜕ℎ5 −

𝜕𝐹Qℎ5
∗, ℎM

∗; 𝑔5 , 𝑔MU/𝜕ℎM  becomes nonpositive for a significant 
difference in productivity and nonsignificant interdependence. 
Although (E.1) is not satisfied in the majority of cases, 
producing ℎ5∗ > ℎM

∗, it will hold (i.e., ℎ5∗ ≤ ℎM
∗) given that there 

exists a very significant difference in productivity. 

APPENDIX A.2-FUNCTIONAL FORMS 
The functional forms used for the numerical study (or the 

numerical examples introduced in Fig. 2) are listed below. 
𝐹(𝒉) = S(𝜏"/2)

"

F𝑏"
% − (𝑏" − ℎ")%GS𝑔#

#&"

+SS𝜑"#ℎ"ℎ#
#'""

 

𝑏" ≥ 𝑔" , 𝜏" > 0 and 𝜑"# > 0 for all 𝑖 ≠ 𝑗. (E.6) 

𝐵(𝑔") = 	 (𝜌/2)(𝑎% − (𝑎 − 𝑔")%), 𝜌 > 0 and 𝑎 ≥ 𝑔" for all 𝑖. (E.7) 

𝐶(ℎ") = (𝜎/2)ℎ"
%, 𝜎 > 0. (E.8) 

 Since 𝜕𝐹(𝒉)/𝜕ℎ" = 𝜏"(𝑏" − ℎ")	∑ 𝑔##&" + ∑ 𝜑"#ℎ##&	" , the productivity of ℎ5 
increases with increases in 𝜏)  and 𝜑5M . Hence, these two 
parameters together represent the productivity of the given 
MDAs. In addition, 𝜑5M captures the interdependence between 
the MDAs of MDAP 𝑖 and MDAP 𝑗 (as 𝜕$𝐹(𝒉)/𝜕ℎ5𝜕ℎM = 𝜑5M). 
Furthermore, 𝜌 and 𝜎 account for the importance of privacy and 
the significance of the MDAP’s effort and time, respectively. 

To derive the incentive-compatible valorization system 
introduced in the proposition, we consider a scenario with two 
MDAPs (𝑛 = 2). Note that our derivation remains applicable for 
scenarios with more than two MDAPs, even though we skip the 
details here to conserve space. 

Since 𝐵(𝑔5 − ℎ5)/𝜕ℎ5 =	−𝜌(𝑎 − 𝑔5 + ℎ5)  and 𝐶′(ℎ5) = 𝜎ℎ5 , 
the first-order condition for MDAP 𝑖 introduced in Equation (6) 
becomes the following: 

𝜏"𝑔)*"(𝑏" − ℎ") + 𝜑+%ℎ)*" − 𝜌(𝑎 − 𝑔" + ℎ") − 𝜎ℎ" = 0,𝑖 = 1,2. (E.9) 

Solving the equations for the two MDAPs in (E.9) 
simultaneously, we obtain the following: 
ℎ"
∗ =

𝜏)*"𝜌𝑔"% + (𝜏"𝜏)*"𝑏"𝑔)*" + 𝜏)*"𝜑+%𝑏)*" − (𝜏)*"𝑎 − 𝜌 − 𝜎)𝜌)𝑔"
(𝜏)*"𝑔" + 𝜌 + 𝜎)(𝜏"𝑔)*" + 𝜌 + 𝜎) − 𝜑+%%

 

+
(𝜏"𝑏"(𝜌 + 𝜎) + 𝜑+%𝜌)𝑔)*" − (𝜑+% + 𝜌 + 𝜎)𝜌𝑎
(𝜏)*"𝑔" + 𝜌 + 𝜎)(𝜏"𝑔)*" + 𝜌 + 𝜎) − 𝜑+%%

, 𝑖 = 1,2. 

(E.10) 

Plugging ℎ5∗ from (E.10) into 𝜕𝐹(𝒉)/𝜕ℎ5, 𝐵(𝑔5 − ℎ5), and 
𝐶(ℎ5), we obtain the marginal value 𝑥5 = 𝜕𝐹(𝒉∗)/𝜕ℎ5 and the 
base value 𝑦5 = 𝐵(𝑔5) − 𝐵(𝑔5 − ℎ5

∗) + 𝐶(ℎ5
∗) − (𝜕𝐹(𝒉∗)/

𝜕ℎ5)ℎ5
∗. Here, for brevity, we omit the detailed expressions. 
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