
1Abstract—This paper proposes a hybrid knowledge-based and 

data-driven electrical safety risk (ESR) prediction method consid-

ering spatio-temporal characteristics of extreme rainfalls to identify 

distributed photovoltaic systems (DPVSs) with high risks of shut-

downs induced by waterlogging. Firstly, a two-dimensional hydro-

dynamic partial differential model of DPVS waterlogging is formu-

lated to deduce dynamic distributions of inundation depths under 

temporal-spatial heterogeneity of extreme rainfalls. A fast image 

segmentation driven risk partitioning algorithm is developed to ex-

tract nonuniform spatial distributions and temporal volatility of 

rainstorms as well as waterlogging for dividing DPVSs into multiple 

zones with different degrees of ESRs. Then, a knowledge-based an-

alytical approach for leakage currents concerning inundation 

depths and parasitic capacitance is mathematically presented to re-

veal the underlying impacts of extreme rainfalls on ESRs of DPVSs. 

A data-driven spatio-temporal graph convolutional network is im-

plemented to predict inundation depts of DVPSs for improving ESR 

prediction accuracy with limited extreme rainfall events and obser-

vation samples. Furthermore, probability density functions of spa-

tio-temporal ESRs are formed to dynamically quantify ESR de-

grees triggering shutdowns of DPVSs in different partitioned zones. 

Finally, simulation results have validated the effectiveness of the 

proposed method for the spatio-temporal ESR prediction of DPVSs 

under extreme rainfalls. 

Index Terms—Distributed photovoltaics, deep learning, distribu-

tion networks, electrical safety, risk prediction. 

I. INTRODUCTION

A. Motivation

XTREME rainfall events are becoming increasingly fre-

quent with the dramatic global meteorological change, pos-

ing a great threat to high economic losses and widespread ad-

verse impacts on distribution networks [1], [2]. Distributed pho-

tovoltaic system (DPVS) equipment needs to be installed out-

doors for receiving solar energy and is more susceptible to ex-

treme natural disasters [3]. According to the snapshot of global 

PV markets 2023 [4] published by the International Energy 

Agency, the installed capacity of PVs around the world has 

reached 1,185GW by the end of 2022. However, the operational 

performance and reliability of PV modules are still potential is-

sues due to failures and electric leakages in the field. For instance, 

from 2002 to 2015, approximately 2500 fire incidents were rec-

orded in nearly 550,000 PV systems in Italy. In May 2019, a 
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severe flooding disaster completely destroyed a DPVS with a to-

tal installed capacity of 100 kW in Sanming City, China. Mean-

while, there have been occasional reports related to personal in-

jury or casualties resulting from electric leakages caused by 

DPVSs. DPVSs are widely scattered across multiple locations 

within distribution networks, which increases the difficulty of 

their operations and maintenance, and thus it is becoming a 

pressing need to investigate the electrical safety risks (ESRs) of 

DPVSs under extreme climates. 

In transformerless DPVSs, the common-mode circuit will re-

sult in leakage current flowing through parasitic capacitances to 

the ground [5], and the waterlogging caused by extreme rainfalls 

can lead to an increase in the parasitic capacitance of DPVSs. 

According to international standards IEC 62109-2:2011 [6] and 

DIN VDE-0126-1-1 [7], it is mandatory to ensure that the leak-

age currents of transformerless DPVSs do not exceed 300 mA. 

Once leakage currents exceed the limit value, DPVSs must be 

disconnected from distribution networks within 0.3 s through 

rapid shutdown devices (RSDs). A large number of shutdowns 

of DPVSs will further adversely affect the overall stability of 

distribution networks [8], [9]. Extreme rainfalls feature numer-

ous centers of intense rainfalls and frequent occurrences of lo-

calized heavy downpours, exhibiting highly spatio-temporal het-

erogeneous distribution of precipitation [10]. These intricate spa-

tio-temporal variations underscore the complex nature of ex-

treme rainfalls, making the occurrence and interaction of water-

logging and ESRs of DPVSs more diverse and complex. Conse-

quently, this paper aims to investigate an ESR prediction method 

for DPVSs considering spatio-temporal characteristics of ex-

treme rainfalls to identify DPVSs with high shutdown risks, and 

strives to provide guidance for electrical operators for formulat-

ing waterlogging prevention strategies against potential wide-

scale shutdowns of DPVSs. 

B. Relevant Background

So far, extensive research works have been devoted to inves-

tigating the adverse impacts of extreme meteorological disasters 

on DPVSs. The impacts of typhoons on the operation status and 

stability of DPVSs were assessed in [11], [12], aiming to opti-

mize the design and installation positions of DPVSs for enhanc-

ing resilience against typhoons. To assess the risks of DPVSs 

under lightning hazards, a high-precision equivalent circuit 
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method considering the coupling effects and the influence of 

metal frames is developed in [13], which demonstrates the con-

sideration of coupling effects in the design of DPVS lightning 

protection systems can mitigate the risks of lightning strikes. 

Nevertheless, the mechanisms of electric leakages of DPVSs are 

revealed in [5]. By incorporating the effects of water on parasitic 

capacitance, the model provides insights into how rainfall-in-

duced waterlogging can affect the leakage current of DPVSs. 

Additionally, the adverse impacts of operational risks of DPVSs 

on distribution networks are studied in [8]-[9], [14]-[15]. Exten-

sive shutdowns of DPVSs would result in a modification of the 

power flow, leading to voltage fluctuations and adversely affect-

ing the overall stability of distribution networks. Current studies 

have made efforts to investigate the impacts of extreme weather 

conditions, such as lightning and typhoons on the operational 

risks of DPVSs, while investigations on waterlogging-triggered 

shutdown risks of DPVSs under extreme rainfalls have not been 

involved yet. 

With the continuous development of big data technology, 

data-driven methods have been widely implemented in the field 

of risk prediction in distribution networks [16]-[18] and renewa-

ble generation systems [19]-[21], which generally demonstrate 

higher prediction accuracy compared with traditional approaches. 

However, data-driven methods lack clear physical significance, 

meaning that the underlying physical mechanisms or relation-

ships may not be explicitly captured or explained, and the supe-

rior performance of deep learning relies heavily on a large col-

lection of sample data with high quality [22]-[23]. Thus, to com-

pensate for the above limitations and enhance models’ interpret-

ability, field knowledge is often integrated into data-driven 

methods, and an amount of hybrid data and knowledge methods 

are proposed. The hybrid mode of knowledge and data driven 

technology contains the following four categories: 1) Cascading 

mode [24]: Utilizing knowledge-based approaches to process 

data and using the results as the input of data-driven methods; 2) 

Parallel mode [25]: Knowledge-based and data-driven methods 

are parallelly executed, and the results are outputted through 

methods such as weighted averaging; 3) Feedback mode [26]: 

Using data-driven approaches to correct certain unknown mech-

anisms within knowledge-driven models; 4) Informed mode [27]: 

Leveraging the knowledge from physical models to reconstruct 

the loss function of data-driven methods. Satisfactory combina-

tions of the complementary domain knowledge and data were 

proposed in [28], [29] for calendar health prognostics of Lith-

ium-Ion batteries, and the introduction of domain knowledge can 

significantly improve the forecast performance compared to pure 

data-driven methods. In [24], a knowledge augmented training 

method was adopted to improve the sample efficiency and avoid 

the overfitting of data-driven models. The data insufficiency is-

sue can be effectively solved and thus achieve a higher sample 

efficiency. A knowledge-based model is proposed in [25] to as-

sess damage probabilities of transmission line-tower systems, 

and the data-driven method is developed based on historical 

damage data to learn correction factors, and the damage proba-

bilities are predicted by combining outputs of both data-driven 

and model-driven. Moreover, a hybrid physical model-driven 

and data-driven framework for linearizing branch power flow 

was proposed in [26], in which the data-driven method is utilized 

to obtain the linearized errors and improve the approximation 

accuracy of the physical-equation-based linearization. 

Taking a comprehensive view of the existing studies, they 

have only considered the impacts of water on the electric leakage 

risk of an individual DPVS, while neglecting the large-scale 

shutdowns of DPVSs induced by electric leakages within distri-

bution networks under extreme rainfalls. Waterlogging-prone 

DPVSs and their corresponding locations cannot be visually 

identified, and it is hard to provide effective guidance for the op-

eration and maintenance personnel of DPVSs to carry out differ-

entiated strategies and implement waterlogging prevention plans 

during the rainy season. Moreover, DPVSs are spatially located 

in distribution networks, where spatio-temporal distributions of 

rainfalls vary greatly between different zones. The spatio-tem-

poral heterogeneity and volatility of extreme rainfalls have been 

not taken into account yet in previous studies, and the spatio-

temporal ESR prediction methodology for DPVSs under ex-

treme rainfalls is still in a technological gap, lacking well-devel-

oped techniques and methods. 

C. Contribution 

In this paper, a hybrid knowledge-based and data-driven ESR 

prediction methodology for DPVSs considering spatio-temporal 

characteristics of extreme rainfalls is proposed to identify 

DPVSs with high risks of shutdowns induced by electric leak-

ages. The pivotal contributions of this paper are threefold: 

1) A risk partitioning algorithm is proposed to extract uneven 

spatial distributions and temporal volatility of rainstorms as well 

as waterlogging for improving ESR prediction accuracy of 

DPVSs. A two-dimensional hydrodynamic partial differential 

model of waterlogging is formulated to deduce dynamic distri-

butions of inundation depths of DPVSs, and a fast fuzzy c-means 

(FFCM) based segmentation algorithm is utilized to partition 

DPVSs into multiple zones with different spatio-temporal char-

acteristics of extreme rainfalls as well as inundation depths. 

2) A knowledge-based analytical approach for leakage cur-

rents with respect to inundation depths is presented to reveal the 

impacts of extreme rainfalls on ESRs of DPVSs. A mathematical 

expression of leakage currents concerning inundation depths and 

parasitic capacitance is derived to calculate leakage currents of 

DVPSs for the subsequent ESR prediction. Then, the impacts of 

inundation depths on parasitic capacitance and leakage currents 

are analyzed under different extreme rainfall conditions. 

3) A data-driven ESR prediction method is proposed to iden-

tify DPVSs with high risks of shutdowns induced by electric 

leakages under rainstorms. The spatio-temporal graph convolu-

tional network (STGCN) is implemented to predict waterlogging 

risks within distribution networks, which can convert input data 

to advanced graphical representation and has strong spatio-tem-

poral feature extraction capability to improve prediction accu-

racy with limited extreme rainfall events. The kernel density es-

timation (KDE) is utilized to quantify spatio-temporal ESR de-

grees triggering shutdowns of DPVSs. 

II. ESR PARTITIONING WITH SPATIO-TEMPORAL  

VOLATILITY OF RAINFALLS 

A. Spatio-Temporal Characteristics of Extreme Rainfalls 

Electric leakages of DPVSs are mainly caused by extreme 

rainfall-induced waterlogging [5]. Spatio-temporal characteris-

tics of extreme rainfalls and waterlogging are two critical factors 

directly influencing ESR variations of DPVSs. As DPVSs are 

widely located in distribution networks, in which spatio-tem-

poral distributions of rainfalls vary greatly between different 

zones, the refined characterization of spatio-temporal volatility 

of extreme rainfalls is crucial for ESR prediction. However, due 



to the limited installed capacities of DPVSs, there are no special-

ized meteorological monitoring devices, and wide-area meteor-

ological data tend to be coarser-grained and have lower lati-

tude/longitude resolution, resulting in the lower ESR prediction 

accuracy of DPVSs under extreme rainfalls. Hence, the Co-

Kriging [30] based spatial interpolation method is utilized to ob-

tain high-resolution rainfall data for refined nonuniform spatial 

distributions and temporal volatility of rainstorms. The area 

scope is meshed with multiple grids, and the rainfall intensity of 

grid points is given by (1). 
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where 𝑞𝑖,𝑗
𝑡  denotes the rainfall intensity of grid (𝑥𝑖 , 𝑥𝑗) at time 𝑡; 

𝑥𝑖 and 𝑥𝑗 represent spatial coordinates on the horizontal plane; 

𝑞𝑚
𝑡  is measured rainfall amounts of meteorological observation 

station 𝑚  at time 𝑡 ; 𝑔𝑖,𝑗  is the elevation data of grid (𝑥𝑖 , 𝑥𝑗 ), 

which can be derived from the digital elevation model (DEM), 

𝑚𝑦  and 𝑚𝑧  are the global average elevation and precipitation 

within the distribution network area; 𝜆𝑚 is the weight of the me-

teorological observation station 𝑚; 𝛼 is the weight of covariate 

variables. 𝜆𝑚 and 𝛼 can be obtained by the Lagrange multiplier 

method. Then, the uneven spatial distributions and time-varying 

features of extreme rainfalls and undulation of terrains are char-

acterized as (2). 
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where 𝒒𝑖,𝑗
𝑡 = [𝑞𝑖,𝑗

1 , 𝑞𝑖,𝑗
2 , … , 𝑞𝑖,𝑗

𝑡 ] is the time-sequential rainfall in-

tensity of the grid (𝑥𝑖 , 𝑥𝑗); 𝑡 is the time-sequential index; 𝑸𝑛 de-

notes the spatial distribution of rainfall intensity matrix under the 

𝑛-th extreme rainfall events; 𝜸𝑛 is the set of historical extreme 

rainfall events. 

Due to historical rainfall samples are of inconsistent time-se-

ries lengths and challenging to visually express characteristics of 

rainfalls in different zones. Thus, statistical features are adopted 

to characterize the temporal-spatial heterogeneity of extreme 

rainfalls. Typically, the rainfall intensity follows the logarithmic 

normal distribution [31], as shown in (3). 
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where 𝑞𝑖,𝑗  is the rainfall intensity of grid (𝑥𝑖 , 𝑥𝑗); 𝜎𝑖,𝑗  and 𝜇𝑖,𝑗 

denote the location parameters and scale parameters, which can 

be obtained by the maximum likelihood estimation (MLE). On 

this basis, temporal-spatial features of extreme rainfalls can be 

represented by 𝜎𝑖,𝑗  and 𝜇𝑖,𝑗, and the rainfall feature dimensional-

ity of each grid is reduced into two dimensions. 

Consequently, the spatio-temporal volatility of extreme rain-

falls characterized by (2) can be reformulated as follows, 
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where 𝜮, 𝜧 denote matrices composed of 𝜎𝑖,𝑗, 𝜇𝑖,𝑗, respectively. 

Coordinating 𝜮 and 𝜧, the temporal-spatial heterogeneity of ex-

treme rainfalls can be characterized. 

B. DPVS Waterlogging Model Under Extreme Rainfalls 

The water level monitoring system for urban waterlogging de-

tection can record real-time inundation depths under extreme 

rainfalls. However, due to the limited number of waterlogging 

monitors, historical inundation depth samples are usually small. 

Additionally, inundation depths of urban regions without water-

logging monitors cannot be recorded. The two-dimensional hy-

drodynamic model with partial differential equations can accu-

rately reflect spatio-temporal variations of inundation depths, 

which is widely used for waterlogging simulations under ex-

treme rainfalls [32], and thus it is utilized to generate waterlog-

ging samples under historical rainfalls for increasing the histori-

cal sample size and fill in the data gaps in the areas with missing 

data. Because the terrains of installation locations of DPVSs are 

relatively flat, this paper considers water is balanced by the 

forces in the vertical direction and neglects the effects of wind, 

Coriolis force, and it is assumed that water is only subject to the 

pressure of the surrounding water and the frictional resistance of 

the ground. The above assumptions can significantly reduce 

computation time while maintaining computational accuracy. 

The modified hydrodynamic model with two-dimensional partial 

differential equation for DPVS waterlogging is formulated as 

(5)-(7). 
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where 𝑑𝑖,𝑗
𝑡  refers to the inundation depth of DPVSs located on 

grid (𝑖, 𝑗) at time 𝑡; ℎ𝑖,𝑗 denotes the water surface elevation, and 

satisfies ℎ𝑖,𝑗=𝑔𝑖,𝑗+𝑑𝑖,𝑗; 𝑘 is the unit conversion factor; 𝑚 is the 

Manning coefficient; 𝑔 is the gravitational acceleration; 𝑤 de-

notes the water surface elevation; 𝜃 is the coverage of buildings 

within grids; 𝜆 is the connection ratio of two neighboring grids, 

which can be approximated as 1-√𝜃. 𝜃 is the average coverage 

of buildings within two grids. The finite difference method is 

used to solve two-dimensional partial differential equations. For 

convenience, it is assumed that the water can only flow between 

grids connected across the edges, as shown in Fig. 1. 

(i, j) (i, j+1)(i, j-1)

(i-1, j) (i-1, j+1)(i-1, j-1)

(i+1, j) (i+1, j+1)(i+1, j-1)

j 

+
j 

-

i 

+

i 

-

 
Fig. 1 Schematic diagram of the flood flowing direction 

Take water flow from grid (𝑖, 𝑗) to grid (𝑖, 𝑗+1) as an example, 

𝜕ℎ𝑖,𝑗/𝜕𝑥 is approximated as (ℎ𝑖,𝑗+1 − ℎ𝑖,𝑗)/Δ𝑥, while 𝜕ℎ𝑖,𝑗/𝜕𝑦 

is approximated as 
1

2
[(ℎ𝑖,𝑗−1 − ℎ𝑖,𝑗+1)/2Δ𝑦 + (ℎ𝑖−1,𝑗+1 −

ℎ𝑖+1,𝑗+1)/2Δ𝑦], where Δ𝑥 and Δ𝑦 denote the length and width 

of the grid, respectively. Then, water flow 𝑄𝑖,𝑗+  from grid 



(𝑖, 𝑗) to grid (𝑖, 𝑗+1) is formulated as (8-9), and water flow 𝑄𝑖+,𝑗 

from grid (𝑖, 𝑗) to grid (𝑖+1, 𝑗) is derived as (10-11). 
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Similarly, 𝑄𝑖,𝑗−  and 𝑄𝑖−,𝑗  which respectively denote water 

flow from grid (𝑖, 𝑗) to grid (𝑖, 𝑗 -1)  and grid (𝑖 -1 , 𝑗)  can be 

derived by modifying (8-11), and the inundation depth of grid 

(𝑖, 𝑗) is calculated by (12-13), 

, , , ,1

, , ,= +
pi j i j i j i jt t t

i j i j i j t
Q Q Q Q A

d
y

d
x

q
+ − + −

+



+ + +
+ 



−
       (12) 

,2 t

p p i jA c gdS=                                (13) 

where 𝐴𝑝  represents drainage capacity of grid (𝑖, 𝑗); 𝑐 denotes 

the number of drainage wells; 𝛿 is the drainage factor; 𝑆𝑝 im-

plies the cross-sectional area of drainage wells. Consequently, 

inundation depths of DPVSs can be deduced by the waterlogging 

distributions of the grids where they are located. 

1
1,1 1,2 1,

2
2,1 2,2 2,

,1 ,2 ,

 
,

    

  

Tt t t

j

t t t

jn n

nt t t

i i i j

d d d

d d d
β

d d d

                    (14) 

where 𝒅𝑖,𝑗
𝑡 = [𝑑𝑖,𝑗

1 , 𝑑𝑖,𝑗
2 , … , 𝑑𝑖,𝑗

𝑡 ]  represents the time-sequential 

inundation depths of the grid (𝑥𝑖 , 𝑥𝑗); n  denotes the spatial dis-

tribution of inundation depth of the 𝑛-th extreme rainfall events; 

𝜷𝑛 is a set that combines actual measured waterlogging distribu-

tions and model-generated waterlogging distributions. 

C. FFCM Algorithm Driven ESR Partitioning for DPVSs 

Due to significant variations of rainfall intensity and water-

logging across different zones of the distribution network, 

DPVSs located in zones with heavier rainfalls and deeper inun-

dation depths are more susceptible to triggering higher degrees 

of ESRs, thereby leading to rapid shutdowns owing to the high 

leakage currents. Treating all DPVSs in the distribution network 

as an entity to predict the ESRs of DPVSs would result in sub-

stantial errors. Thus, it is vital to partition DPVSs into multiple 

zones with different rainfall intensities and inundation depths to 

identify waterlogging-prone areas for improving ESR prediction 

accuracy. 

On the basis of Section II-A and II-B, spatio-temporal charac-

teristics of historical rainfalls are formulated as two matrices 𝜮 

and 𝜧 according to their distribution characteristics, and inun-

dation depths of DPVSs under 𝑛-𝑡ℎ rainstorms are formulated as 
n . As inundation depths do not follow a specific distribution, 

the average inundation depth 𝑫 under historical rainstorm events 

is calculated to represent the distribution characteristics of 

waterlogging. Coordinating 𝜮, 𝜧, and 𝑫, the temporal-spatial 

heterogeneity of extreme rainfalls and waterlogging for ESR par-

titioning can be characterized as follows, 
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where 𝑭 is a feature matrix that unites 𝜮, 𝜧, and 𝑫, and it can 

characterize the spatio-temporal volatility of extreme rainfalls as 

well as waterlogging triggering ESR variations of DPVSs. 

𝑭 is used as the input for the ESR partitioning algorithm. It is 

worth noting that the feature matrix 𝑭 contains three sub-matri-

ces 𝜮, 𝜧, 𝑫, and each element of the matrix can be regarded as 

a pixel point. Thus, 𝑭 can be regarded as the pixel matrix of a 

color image with three channels of 𝜮, 𝜧, 𝑫, which contains spa-

tio-temporal characteristics of extreme rainfalls and waterlog-

ging. Consequently, the image segmentation algorithm is imple-

mented to subdivide the three-channel image 𝑭 for partitioning 

distribution networks into multiple zones with different rainfalls 

and waterlogging depths. In the computer version field, super-

pixels are irregular blocks composed of neighboring pixels with 

similar features [33]. Superpixel algorithms are usually used to 

obtain adaptive neighboring information of an image for incor-

porating adaptive local spatial information and improving the 

segmentation effect. To generate superpixels, the image is pro-

jected into CIE Lab color space [34], and each pixel point is 

transferred to a 5-dimensional vector 𝑉[𝐿, 𝑎, 𝑏, 𝑥, 𝑦]. Simple lin-

ear iterative clustering (SLIC) [35] is utilized to generate super-

pixels. Firstly, the initial clustering center is defined as, 

, ,[ ],, T

i i i i i ib xa yV l=                               (16) 

where 𝑙𝑖 is the brightness of the color space; 𝑎𝑖 and 𝑏𝑖 denote the 

chromaticity coordinates of clustering center 𝑖; 𝑥𝑖 and 𝑦𝑖 repre-

sent the spatial coordinates of clustering center 𝑖;  
Then, a clustering process is performed by searching for all 

pixel points within a range of twice the step size around the clus-

ter center. The distances between each pixel point and the cluster 

centroids are calculated as follows, 

2 2 2( ) ( ) ( )c j i j i j id l l a a b b= − + − + −                (17) 

2 2( ) ( )s j i j id x x y y= − + −                       (18) 
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                             (19) 

where 𝑑𝑐  and 𝑑𝑠  implies the chromaticity and spatial coordi-

nates of pixel 𝑗 and clustering center 𝑖, respectively; 𝑚 denotes 

fixed factor; 𝑆 = √𝑝/𝑛 is the length of the sides of the square 

grid, 𝑝 is the number of pixels, 𝑛 is the number of superpixels. 

Subsequently, the FFCM clustering [36] algorithm driven im-

age segmentation method is utilized to divide the color image 

constructed by multiple superpixels. Because the number of su-

perpixels is far less than that of pixels in an image, it is faster to 

implement FFCM on the generated superpixels than original  
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Fig. 2 The proposed hybrid data and knowledge driven ESR prediction methodology for DPVSs under extreme rainfalls 

pixels for color image segmentation. The objective function of 

FFCM is defined as follows, 

2
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i

n m
l

l i ji i p j

i j p

J S u S x c
= = 

= −               (20) 

where 𝑛 is the number of generated superpixels; 𝑖 denotes the 

color level and subjects to 1 ≤ 𝑖 ≤ 𝑛; 𝑚 is the number of clus-

ters; 𝑙 is the weighting exponent; 𝑢𝑗𝑖
𝑙  represents the fuzzy mem-

bership matrix between the 𝑖-th superpixel and the 𝑗-th cluster-

ing center; 𝑆𝑖 implies the number of pixels in the 𝑖-th superpixel 

𝑅𝑖, and 𝑥𝑝 is the color pixel within the 𝑖-th region of the super-

pixel image; 𝑐𝑗 is the 𝑗-th clustering centroid. 

By implementing the Lagrange multiplier method, the afore-

mentioned optimization problem can be reformulated as an un-

constrained optimization problem as (21), 
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where 𝜆 is the Lagrange multiplier, 𝜇𝑗𝑖 and 𝑐𝑗 can be derived by 

𝜕𝐿(𝜇𝑗𝑖 , 𝑐𝑗 , 𝜆)/𝜕𝑐𝑗 = 0 and 𝜕𝐿(𝜇𝑗𝑖 , 𝑐𝑗 , 𝜆)/𝜕𝜇𝑗𝑖 = 0, respectively. 

Solutions of 𝜇𝑗𝑖 and 𝑐𝑗 are shown in (22-23), 
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A convergence coefficient 𝜂 is set to assess the convergence 

condition of FFCM. When the membership partition matrix 𝑼 

composed of 𝑢𝑗𝑖 satisfies 𝑼𝑙 − 𝑼𝑙−1 < 𝜂. Then, the color image 

composed of pixels representing rainfalls and inundation depths 

is segmented into multiple sub-images. DPVSs located on the 

same sub-image are partitioned in a zone, and all DPVSs are par-

titioned into multiple zones with different rainfall and inundation 

depths triggering the different ESR degrees. 

III. HYBRID DATA AND KNOWLEDGE DRIVEN 

ESR PREDICTION METHOD 

The proposed hybrid data and knowledge driven ESR 

prediction methodology for DPVSs under extreme rainfalls is 

shown in Fig. 2, which contains the following parts: 1) The study 

area for ESR prediction of DPVSs is extracted based on the 

electrical topology of the distribution network, other areas 

outside the distribution network are not taken into consideration; 

2) The waterlogging model is implemented to deduce inundation 

depths within the distribution network, and the dataset for risk 

partitioning is constructed based on the fusion of actual limited 

measured inundation depth distributions and numerous model-

generated inundation depth distributions; 3) The data-driven 

FFCM algorithm is utilized to divide the distribution network 

into multiple zones based on historical rainfalls and waterlog-

ging; 4) Critical inundation depths inducing ESRs of DPVSs are 

derived from the mathematical expression of leakage currents 

concerning inundation depths; 5) The data-driven STGCN is im-

plemented to predict waterlogging risks for the distribution net-

work. 6) The KDE is utilized to fit the time-varying PDFs of 

inundation depths of DPVSs and dynamically quantify spatio-

temporal ESR degrees triggering shutdowns of DPVSs under 

rainstorms. Parts I and II have been presented in Section I, and 

the remaining parts of the proposed methodology will be 

described in detail in the following Sections. 

A. Knowledge-based Leakage Currents Calculation Model 

Leakage currents are generated due to the parasitic capacitors 

between DPVSs and the ground. When a loop is formed between 

parasitic capacitors, the PV system, and the power grid, the com-

mon-mode voltage will create leakage currents in parasitic ca-

pacitors. The expression for leakage currents and parasitic ca-

pacitance is shown below, 
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where 𝑖𝑖,𝑡
𝑃𝑉 imposes leakage currents of DPVS 𝑖 at time 𝑡; 𝑈𝑖,𝑡

𝑃𝑉 is 

the common-mode voltage across PV parasitic capacitors of 

DPVS 𝑖 at time 𝑡; 𝐶𝑖,𝑡
𝑐𝑓

, 𝐶𝑖,𝑡
𝑐𝑟, and 𝐶𝑖,𝑡

𝑐𝑔
 denote the parasitic capaci-

tance between the PV cell and the frame, the PV cell and the rack, 

PV cell and the ground, respectively. The parasitic capacitors of 

a PV panel under waterlogging are shown in Fig. 3. 

The common-mode voltage 𝑈𝑖,𝑡
𝑃𝑉 across parasitic capacitors of 

the PV panel is related to the rated parameters, and less suscep-

tible to the external environment. Conversely, parasitic capaci-

tors are formed between the PV cell and the surrounding envi-

ronment, which are vulnerable to extreme rainfall-inducing wa-

terlogging, and the impedance in transformerless DPVSs is rela-

tively small, making it easy to generate large leakage currents. 

Therefore, the parasitic capacitance of PV panels is utilized as a 

bridge to investigate the impacts of extreme rainfalls on the leak-

age currents of DPVSs. For instance, the parasitic capacitance 

𝐶𝑖,𝑡
𝑐𝑔

 between the PV cell and the ground is calculated as (25-28). 
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where 𝐶𝑖,𝑡
𝑐𝑔−𝑖𝑛

 indicates the parasitic capacitance between the 

bottom of the PV panel and the ground; 𝐶𝑖,𝑡
𝑐𝑔−𝑡𝑜𝑝

 denotes the par-

asitic capacitance between the top of the PV panel and the 

ground; 𝑊𝑃𝑉 is the width of the PV panel; 𝐻𝑃𝑉 is the width of 

the PV cell; 𝑑𝑔 imposes the distance between the intersection of 

the PV panel and the extension of the PV panel to the ground; 

𝛽𝑃𝑉 is the angle between the PV panel and the ground; 𝐿𝑃𝑉𝑒𝑓 is 

the calculated length of frame capacitance; 𝜀0 is the absolute per-

mittivity; 𝜀𝐸𝑉𝐴, 𝜀𝑤𝑎𝑡𝑒𝑟, 𝜀𝑎𝑖𝑟 imply relative permittivity of EVA 

layer, water, and air, respectively; 𝑇𝐸𝑉𝐴  and 𝑇𝑇𝑒𝑑𝑙𝑎𝑟  are the 

thickness of the EVA layer and Tedlar layer, respectively. Addi-

tionally, the calculation method for 𝐶𝑖,𝑡
𝑐𝑓

 and 𝐶𝑖,𝑡
𝑐𝑟 can be referred 

to [5]. 
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(a)                                                                       (b) 

Fig. 3 Parasitic capacitors of a PV panel. (a) Schematic diagram of parasitic ca-

pacitors. (b) Two-dimensional schematic diagram of a PV panel. 

Since PV arrays are arranged in several strings in a DPVS, 

parasitic capacitance cannot be revealed by a single equivalent 

capacitance model. The 𝜋-shaped equivalent circuit for PV ar-

rays is utilized to calculate leakage currents of DPVSs, as illus-

trated in Fig. 4. This equivalent circuit not only considers the 

parasitic capacitance of the DPVS but also considers the panel 

equivalent inductance 𝐿𝑓, 𝐿𝑟, the equivalent conductor 𝐺𝑐𝑔, 𝐺𝑟𝑔, 

and cable parameters 𝐿𝑐, 𝐶𝑐. By calculating theoretical leakage 

currents of DPVSs under all extreme rainfall events occurring in 

the distribution network area, the dataset formed by spatio-tem-

poral rainfall data and corresponding time-sequential leakage 

currents of DPVSs can be obtained for the training process of the 

data-driven STGCN. 

Ccf Lf

Lc

CcgGcg

Ccr Lr

Grg Crg Cg

Ccf Lf

Lc

CcgGcg

Ccr Lr

Grg Crg Cg

Ccf Lf

Lc

CcgGcg

Ccr Lr

Grg Crg Cg

 

Fig. 4 Equivalent 𝜋-shaped circuit for a PV panel with parasitic capacitance 

B. Data-Driven Waterlogging Risk Prediction Method 

Knowledge-based inundation depth risk prediction models 

with clear physical mechanisms are prone to result in remarkable 

errors due to the uneven spatial distribution and temporal 

variability of extreme rainfalls. In contrast, data-driven methods 

can mine the relationship between extreme rainfalls and the time-

sequential inundation depths from historical data to simplify the 

prediction process, thereby providing capabilities to handle 

models’ uncertainties and enhancing computational efficiency. 

Thus, a data-driven STGCN [37] is implemented to predict 

waterlogging risks of distribution networks, which can convert 

input data to an advanced graphical structure and has the 

capability to learn shared representations across nodes in the 

graph, allowing it to transfer knowledge from observed samples 

to unseen ones. This transferability property enables GNNs to 

make accurate predictions and generalize well in application 

scenarios with limited training datasets [38]. Assuming meshed 

grids of distribution networks as nodes and correlations between 

nodes as edges, each partitioned region can be represented as a 

spatio-temporal graph as 𝐺 =< 𝑉, 𝐸 >. 𝑉 = {𝑣𝑖}. 𝐸 = {𝑒𝑖,𝑗}. 𝑉 

is the node set consisting of meshed grids. 𝐸  is the edge set, 

representing the correlation between node 𝑣𝑖  and 𝑣𝑗 . 𝑣𝑖  and 𝑣𝑗 

can only be connected to each other if they exhibit a high 

correlation, and the connection relationship between nodes can 

be represented as an adjacency matrix 𝐴 ∈ ℝ𝑁×𝑁 , which is 

calculated as follows, 

exp( ( , )), ( , )

0, ( , )                         
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where 𝐴𝑖𝑗 denotes the correlation coefficient between 𝑣𝑖 and 𝑣𝑗; 

𝑑𝑖𝑠𝑡(𝑣𝑖 , 𝑣𝑗) represents the Euclidean distance between 𝑣𝑖 and 𝑣𝑗; 

𝑘  is the threshold, inferring that two nodes with a small 

correlation coefficient are considered to be unconnected for 

reducing computational complexity. 

The STGCN presented in this paper is composed of 

Chebyshev graph convolution networks (CGCNs) and one-

dimensional temporal convolution networks (TCNs), where 

CGCNs are utilized to extract spatial features of extreme 

rainfalls and TCNs are implemented to learn the impacts of 

extreme rainfalls on time-varying inundation depths of 

distribution networks. In CGCNs, due to the non-Euclidean 

nature of graphs, it is not possible to perform convolution 

operations in the vertex domain. The graph features are firstly 

converted to the spectral domain, and the convolution operation 

is then performed. The Laplace matrix is defined as, 
1/21/2

NL D A I D AD−= − = −                     (30) 

where 𝐼𝑁 represents the 𝑛-th order identity matrix; 𝐷 ∈ ℝ𝑁×𝑁 is 

the degree matrix of the previously defined graph. The 

eigenvalue decomposition of 𝐿 is as follows, 
TL UU=                                       (31) 

where 𝑈 denotes the basis composed of eigenvectors; Λ ∈ ℝ𝑁×𝑁 

is the diagonal matrix consisting of eigenvalues 𝜆𝑖, 𝑖 ∈ [1, 𝑁]. 
The Fourier transform matrix 𝑋̂𝑔 of graph features 𝑋𝑔 ∈ ℝ𝑁×1 

can be calculated as, 

ˆ T

g gX U X=                                     (32) 

Analogous to the traditional function convolution, the graph 

convolution formula is defined as, 

( * ) (( ) ( ))T T T
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where symbol “⨀” represents Hadamard product; “∗” denotes 

graph convolution; 𝑔 is the convolution kernel; 𝑔𝜃 is the learna-

ble convolutional kernel, which satisfies 𝑔𝜃 = 𝑈𝑇𝑔; (𝑋𝑔 ∗ 𝑔)
𝐺

 

implies graph convolution applied in graph 𝐺. 

Due to the heavy computational burden in performing graph 

convolution, the Chebyshev polynomial is used to fit the convo-

lution kernel to speed up computation, which is as follows, 
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where Λ̃ = 2Λ/λmax − 𝐼𝑁, 𝜆max is the maximum eigenvalue of 

𝐿; 𝑇𝑘(∙) denotes the 𝑘-th order Chebyshev polynomial; 𝜃𝑘 rep-

resents the Chebyshev coefficient. 

Consequently, the graph convolution can be reformulated as, 
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where 𝐿̃ = 2𝐿/𝜆max − 𝐼𝑁 = 𝑈Λ̃𝑈𝑇; (𝑈Λ̃𝑈𝑇)
𝑘

= 𝑈Λ̃𝑘𝑈𝑇. 

The TCN is designed as a dilated causal convolution followed 

by a gated linear unit (GLU) layer, which can extract temporal 

features for time-sequential data of different lengths. Given a 

one-dimensional time series 𝐵 ∈ 𝑅𝑇 (𝑇 is the time step) as the 

input and a filter 𝑓 ∈ 𝑅𝐾 (𝐾 is the kernel size), the dilated causal 

convolutional form of 𝐵 and 𝑓 can be represented as, 
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where symbol ∗ denotes the dilated causal convolution form; 𝑑𝑠 

implies the dilated factor; 𝑠 denotes the index of the kernel. 

Suppose 𝑃 denotes the output of dilated causal convolution, 

and the output of GLU can be represented as, 

1 1 2 2( * ) ( * )h P b P c =  +  +                   (38) 

where 𝜎1(∙)  and 𝜎2(∙)  denote sigmoid and tangent hyperbolic 

activation function, respectively; Θ1, Θ2, 𝑏, 𝑐 are learnable pa-

rameters of STGCN. 

Waterlogging risk prediction for distribution networks can be 

considered to be a multivariate time series prediction problem 

considering spatial dependence. Meshed grids are considered to 

be nodes while rainfall intensity and inundation depths are re-

garded as the input features and labels of the nodes, respectively. 

Then, connecting nodes with high correlations, the graph 𝐺𝑐 =<
𝑉𝑐 , 𝐸𝑐 > for waterlogging risk prediction can be formed. 𝑉𝑐 =
{𝑞𝑖,𝑡 , 𝑖𝑖,𝑡}, where 𝑞𝑖,𝑡 and 𝑑𝑖,𝑡 denote the rainfall intensity and in-

undation depth of grid 𝑖, which are both spatio-temporal sequen-

tial data; 𝐸𝑐 = {𝑤𝑖,𝑗} denotes the correlation between nodes 𝑖 

and 𝑗, which can be obtained by (29). The data-driven STGCN 

based model of waterlogging risk prediction for distribution net-

works can be represented as a learning function 𝑓 mapping 𝐻 

steps historical rainfalls to 𝐾 steps future inundation depths, as 

follows, 
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f

t i t i t Kq q q G d d d− + − + + + +⎯⎯→     (39) 

where {𝑞𝑖,𝑡−𝐻+1, 𝑞𝑖,𝑡−𝐻+2, … , 𝑞𝑖,𝑡} ∈ ℝ𝑁×𝐻×𝐹  represents the 𝐻 

steps historical rainfalls of grid 𝑖 ; {𝑑𝑖,𝑡+1, 𝑑𝑖,𝑡+2, … , 𝑑𝑖,𝑡+𝐴} ∈

ℝ𝑁×𝐴×1 denotes the 𝐾 steps future inundation depths of grid 𝑖; 
𝑁 is the number of nodes; 𝐹 is the feature dimension of nodes. 

C. ESR Modelling for DPVSs under Extreme Rainfalls 

It is obligated in international standards [6]-[7] of the opera-

tion and maintenance of DPVSs with peak leakage currents 

exceeding 300 mA must be rapidly disconnected. Otherwise, it 

may occur electric leakage accidents. Critical inundation depths 

𝑑-𝑐𝑟𝑖 of DPVSs triggering electric leakages can be derived from 

the knowledge-based leakage current calculation model (24-28), 

and the ESR degrees of DVPSs can be qualified by the probabil-

ities of inundation depths exceeding their critical values. Since 

the nonparametric KDE does not require any assumptions about 

the distribution of data, it is more flexible in dealing with uncer-

tain inundation depth distributions under uneven spatial and 

time-varying features of rainfalls. Thus, the KDE is implemented 

to fit the PDFs of predicted inundation depths and quantify spa-

tio-temporal ESR degrees of DPVSs under extreme rainfalls [39]. 

The PDF of inundation depths is estimated as follows, 
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where 𝐷𝑡 = {𝑑𝑖,𝑡 , 𝑑𝑖,𝑡+1, . . , 𝑑𝑖,𝑡+𝐿𝑝
}  represents the inundation 

depths from time slot 𝑡 to 𝑡 + 𝐿𝑝; 𝐿𝑝 is the ESR warning rolling 

cycle; ℎ denotes the bandwidth, determining the smoothness of 

fitted distributions; 𝐾(∙)  implies the kernel function, and the 

Gaussian kernel function is adopted in this paper. The bandwidth 

ℎ has a significant impact on the quality of the KDE. Thus, the 

principle of minimizing the asymptotic mean integrated squared 

error (AMISE) is used for optimizing the bandwidth of the KDE. 

Then, the cumulative distribution functions (CDFs) of inunda-

tion depths exceeding critical depths are formed to dynamically 

quantify spatio-temporal ESR degrees of DPVSs 𝑖 in different 

partitioned zones. As inundation depths are time-varying with 

the evolution of extreme rainfalls, 𝐹𝑖
𝑅  is variable at different 

warning rolling cycles 𝑅. 
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IV. CASE STUDIES 

A. Network Data 

A typical distribution network, located in a hilly area, is intro-

duced to verify the performance of the proposed hybrid data and 

knowledge driven ESR prediction method for DPVSs under ex-

treme rainfalls. There are a number of DPVSs installed within 

the distribution network. As rooftop PVs are not susceptible to 

waterlogging, we only consider ground mounted DPVSs. Rele-

vant parameters of DPVSs are obtained from the local power 

company. The spatial distribution of DPVSs within the distribu-

tion network area is illustrated in Fig. 5. Moreover, the specific 

parameters of a typical ground mounted DPVS are listed in Table 

I, and all data requirements and sources are summarized in Table 

II. The hourly historical rainfall data is collected from the Open-

Meteo platform [40]. With its historical weather API, we have 

access to over 80 years of hourly rainfall data, covering any lo-

cation on earth, all at a 10-kilometer resolution. It also provides 

forecasted rainfalls for up to 16 days. Terrain elevations of the 

distribution network area are obtained from shuttle radar topog-

raphy mission version 3 (SRTM3) [41], the spatial resolution of 

which is 90 meters. Other geographic information is obtained 

from OpenStreetMap [42]. According to the classification crite-

ria of rainfalls by the China Meteorological Administration 

(CMA), an amount of precipitation exceeding 30 mm within a 

12-hour period or exceeding 50 mm within a 24-hour period is 



 

 

considered a rainstorm event. Since 2004, a total of 73 rainstorm 

events have been observed in the studied area. 

TABLE I 

SPECIFIC PARAMETERS OF A TYPICAL GROUND MOUNTED DPVS 

Parameters Symbol Value 

Width of PV panels WPV 920mm 

Thickness of EVA layer TEVA 0.5mm 

Thickness of Tedlar layer TTedlar 0.2mm 

Thickness of PV cells HPV 0.2mm 

Effective length of PV panels LPVef 30mm 

Distance between PV panel and ground dPV 50mm 

Installation angle βPV 40° 

Absolute permittivity ε0 8.85*10-12 

Relative permittivity of water εwater 78.5 

Relative permittivity of Tedlar layer εTedlar 2 

Relative permittivity of EVA layer εEVA 3 

Relative permittivity of air εair 1.0006 

TABLE II 

DATA REQUIREMENTS AND SOURCES FOR THE PROPOSED METHOD 

Data Requirements Data Sources 

Hourly historical and forecasted rainfall data Open-Meteo 

Terrain elevations SRTM 

Geographic information OpenStreetMap 

Inundation depths of DPVSs Waterlogging model 

Specific parameters of DPVSs Local power company 

DPVS Installed Area

10 kV Power LinesDistribution Network Area 110/10 kV Substation

Low-voltage Distribution Network   

Fig. 5 Spatial distribution of DPVSs within the distribution network area 

B. Analysis of Leakage Currents of DPVSs 

According to the basis of Section III, leakage currents of 

DPVSs are significantly impacted by the parasitic capacitance. 

Under extreme rainfall conditions, the parasitic capacitance of 

DPVSs is influenced by the inundation depth. Taking DPVSs 

with capacities of 30 kW and 50 kW as examples, the variation 

patterns of parasitic capacitance and leakage currents with inun-

dation depths of waterlogging are illustrated in Fig. 6. 

 
(a) 

 
(b) 

Fig. 6 Impacts of extreme rainfalls on electric leakages of DPVSs. (a) Relation-

ship between parasitic capacitance and inundation depths. (b) Relationship be-

tween leakage currents and inundation depths 

It can be observed from Fig. 6(a) that the parasitic capacitance 

of DPVSs tends to increase significantly as the inundation depth 

rises, and the parasitic capacitance of the DPVS with a capacity 

of 50 kW is bigger than that of the DPVS with a capacity of 30 

kW. Due to leakage currents of transformerless DPVSs should 

be limited to less than 300 mA, 300 mA can be regarded as the 

threshold to determine whether electric leakages have occurred. 

As shown in Fig. 6(b), the red line is the leakage current warning 

limit. Inundation depths corresponding to the intersection point 

of the red line and the leakage current curve represent the critical 

inundation depths of DPVSs. 𝑑𝑐𝑟𝑖−30𝑘𝑤 and 𝑑𝑐𝑟𝑖−50𝑘𝑤 are criti-

cal inundation depths inducing electric leakages of DPVSs with 

capacities of 30 kW and 50 kW, respectively. Once inundation 

depths exceed the critical value, it will cause electric leakages. 

C. Meteorological Interpolation and ESR Partitioning 

Based on the historical rainfall data from four meteorological 

stations within the distribution network, the Co-Kriging method 

is implemented to interpolate the rainfall intensity across differ-

ent zones of the distribution network. The results of the Co-

Kriging method based meteorological interpolation for the pre-

cipitation of an extreme rainfall event within the distribution net-

work area are shown in Fig. 7. It can be found from Fig. 7 that 

the Co-Kriging based meteorological interpolation method can 

fully reflect nonuniform spatial distributions and temporal vola-

tility of the extreme rainfall disaster. Compared with the rainfall 

data from nearby meteorological observation stations, meteoro-

logical interpolation results with high spatial and temporal reso-

lution can ensure the subsequent spatio-temporal ESR prediction 

accuracy of DPVSs under extreme rainfalls. 
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Fig. 7 Meteorological interpolation results for an extreme rainfall event 

Based on meteorological interpolation results of historical 

rainfall intensity incorporating the distribution of calculated his-

torical inundation depths, the FFCM driven partitioning algo-

rithm is utilized to divide DPVSs into multiple zones with 



 

 

different levels of waterlogging risks. Fig. 8 presents the ESR 

partitioning result of DPVSs within the distribution network. 

Different partitioned zones have different rainfall distributions 

and waterlogging risks that trigger variations of waterlogging de-

grees. For instance, in partitioned Zone 1, the average historical 

rainfall intensity is 5.6 mm/h, and the average inundation depth 

is 0.21 m. While in partitioned Zone 3, the average rainfall in-

tensity is 2.1 mm/h, and the average inundation depth is 0.08 m. 

This indicates that DPVSs located in Zone 1 are more prone to 

waterlogging and electrical leakages, evidently exhibiting higher 

ESR degrees compared to DPVSs located in Zone 2. 

  
Fig. 8 ESR partitioning result of DPVSs within the distribution network 

D. Spatio-Temporal ESR Prediction Results and Analysis 

The dataset for the STGCN is composed of 73 rainstorm 

events within the distribution network area, and the sampling fre-

quency is 1 hour. 𝐻 is set to 6 and 𝐴 is set to 1, which indicates 

that the last 6 steps of historical rainfall are used to predict the 

next 1 step inundation depths. The dataset is divided into the 

training set, validation set and test set in a ratio of 7: 2: 1, and 

normalized by the mean value and standard deviation of the 

training set, as follows, 

mean( )
ˆ

std( )

train

train

x x
x

x

−
=                              (43) 

where 𝑥 is the original data of the dataset; 𝑥̂ is the normalized 

data of the dataset; mean(𝑥𝑡𝑟𝑎𝑖𝑛) denotes calculating the mean 

value of the training set, std(𝑥𝑡𝑟𝑎𝑖𝑛)  implies calculating the 

standard deviation of the training set. The training set is used to 

train the model while the validation set is used for parameter 

fine-tuning. The simulation is performed on Python 3.10.9 with 

PyTorch 2.1.0 and runs on a computing platform with an RTX 

3070 GPU and 32 GB RAM. 

To verify the superior capability of data-driven STGCN in ex-

tracting spatio-temporal features, several comparative baselines 

including random forest (RF), support vector machine regression 

(SVR), eXtreme gradient boosting (XGBoost), gated recurrent 

unit (GRU), long short-term memory (LSTM), and graph neural 

network (GNN) are introduced. Comparative studies are imple-

mented in the case of a continuous extreme rainfall disaster last-

ing for three days in 2017. Fig. 9 illustrates predicted inundation 

depths of a certain DPVS which was rapidly disconnected due to 

high leakage currents during the heavy rain. The critical inunda-

tion depth 𝑑 -𝑐𝑟𝑖  of the DPVS triggering electric leakages is 

0.289 m. It can be found from Fig. 9 that inundation depths pre-

dicted by the STGCN are the closest to the real value. RF, SVR, 

and XGBoost are all traditional data-driven machine learning 

methods, which are incapable of learning the spatio-temporal 

correlations of inundation depths of different grids within the 

distribution network under the uneven spatial distributions and 

time-varying characteristics of extreme rainfalls. Compared with 

RF, SVR, and XGBoost, performances of GRU, LSTM, and 

GNN are feasible, owing to the capabilities of GRU and LSTM 

to cope with sequential data and GNN can learn the spatial fea-

ture of extreme rainfalls. However, neither GRU nor GNN can 

simultaneously learn the impacts of spatial and temporal charac-

teristics of extreme rainfalls on inundation depths. Therefore, the 

STGCN surpasses GRU and GNN in terms of prediction accu-

racy. 

 
Fig. 9 Predicted inundation depths of a DPVS with different methods 

Based on the predicted inundation depths of the DPVS, spatio-

temporal ESR degrees can be quantified by KDE, and the warn-

ing rolling cycle is set to one day. Fig. 10 illustrates PDFs and 

CDFs of ESR of the DPVS under the three-day continuous rain. 

It can be observed from Fig. 10 that PDFs and CDFs change with 

the spatio-temporal variability in the evolution of extreme rain-

falls as well as inundation depths of waterlogging over time.  

To compare the accuracy of the optimal bandwidth with ran-

domly selected bandwidths, the fitted PDFs under different 

bandwidths are evaluated using RMSE of the integral of the fit-

ted probability density and the discrete probability of inundation 

depths of the DPVS within the 𝑖-th interval. The comparative re-

sults are listed in Table III. It can be seen from Table III that the 

RMSE of the optimal bandwidth is the smallest, which demon-

strates the validity of the optimal bandwidth selection method. 

Furthermore, it can be deduced from CDF curves that the ESR 

degrees of the DPVS on Day 1 – Day 3 are 0.41, 0.79, and 0.08, 

respectively. 
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Fig. 10 PDFs and CDFs of time-varying ESRs of the DVPS 

TABLE III 

COMPARATIVE RESULTS OF ERRORS UNDER DIFFERENT BANDWIDTHS 

Days 
Bandwidths 

Optimal 0.23 0.54 0.79 

1 0.022 0.029 0.033 0.043 

2 0.017 0.018 0.023 0.018 

3 0.015 0.041 0.022 0.018 

Moreover, spatio-temporal distribution of waterlogging risks 



 

 

within the distribution network under the three-day continuous 

extreme rainfall event is illustrated in Fig. 11. Distribution net-

work areas are categorized into three levels of waterlogging risks: 

1) High-risk areas indicate that the maximum inundation depth 

on the day exceeds 0.3 m. Most DPVSs installed in these areas 

are prone to shutdowns due to waterlogging; 2) Medium-risk ar-

eas denote the maximum inundation depth on the day is greater 

than 0.1 m but less than 0.3 m. Some lower mounted DPVSs in 

these areas are prone to shutdowns due to waterlogging; 3) Low-

risk areas represent the maximum inundation depth on the day 

does not exceed 0.1 m, and most DPVSs in these areas are in 

normal operational status. 

Low risk

Medium risk

High risk

Day 1 Day 2 Day 3
 

Fig. 11 Spatio-temporal waterlogging risks within the distribution network 

According to the distribution of waterlogging risks, ESRs for 

all DPVSs can be quantified by the KDE. DPVSs with ESR 

probabilities exceeding 50% are considered to have high shut-

down risks due to waterlogging. Four comparative methods are 

performed to further validate the superiority of the proposed risk 

prediction method for DVPSs. 1) Method I is the proposed 

method; 2) Method II neglects spatio-temporal characteristics of 

extreme rainfalls, assuming that the rainfall intensity is the same 

for each DPVS; 3) Method III neglects the ESR partitioning, 

where all DPVSs are regarded as an entity to perform spatio-

temporal ESR prediction; 4) Method IV neglects both spatio-

temporal characteristics of extreme rainfalls and ESR partition-

ing. DPVSs which are identified as high risks are compared with 

real shutdown events of DPVSs induced by their high leakage 

currents due to waterlogging. The comparative results are listed 

in Table IV. It can be found from Table IV that method I exhibits 

superior performance in all evaluation metrics, and both method 

II and method III are superior to method IV. It demonstrates the 

consideration of spatio-temporal characteristics of extreme rain-

falls and risk partitioning is conducive to improving the ESR pre-

diction accuracy of DPVSs under extreme rainfalls. After ESR 

partitioning, the data-driven model can better learn the charac-

teristics of the partitioned area and make differentiated predic-

tions. Compared with method III, method II is slightly better. 

This is because the precise spatio-temporal distribution of ex-

treme rainfalls is the pivotal influence that directly affects leak-

age currents of DPVSs. 

TABLE IV 

COMPARATIVE ANALYSIS OF PREDICTION ACCURACY OF DIFFERENT METHODS 

 Method 
Accuracy 

(%) 

Precise 

(%) 

Recall 

(%) 

F1-score 

(%) 

Day 

1 

I 98.14 92.31 85.71 88.89 

II 96.89 84.62 78.57 81.48 

III 96.27 78.57 78.57 78.57 

IV 95.65 76.92 71.43 74.07 

Day 

2 

I 94.41 86.49 88.89 87.67 

II 92.55 83.33 83.33 83.33 

III 91.93 82.86 80.56 81.69 

IV 90.68 78.38 80.56 79.45 

Day 

3 

I 98.76 87.50 87.50 87.50 

II 98.14 85.71 75.00 80.00 

III 98.14 85.71 75.00 80.00 

IV 96.89 71.43 62.50 66.67 

V. CONCLUSION 

In this paper, a hybrid knowledge-based and data-driven ESR 

prediction method is proposed to identify high-risk areas induced 

by electric leakages of DPVSs in facing the uneven spatial dis-

tributions and time-varying characteristics of extreme rainfalls. 

The following are the key findings of this study: 1) With the con-

sideration of the impacts of inundation depths on the parasitic 

capacitance calculation model, the knowledge-based leakage 

current calculation model can theoretically analyze variation pat-

terns of leakage currents of DPVSs under waterlogging condi-

tions; 2) The STGCN can effectively capture the nonlinear rela-

tionship between the dynamic evolution of extreme rainfalls and 

the inundation depths within distribution networks; 3) Spatio-

temporal characteristics of extreme rainfalls and risk partitioning 

is conducive to improving the ESR prediction accuracy of 

DPVSs under extreme rainfalls. Compared with the ESR predic-

tion methods without the consideration of spatio-temporal char-

acteristics of extreme rainfalls and ESR partitioning, the pro-

posed can increase accuracy, precision, recall, and F1-score of 

ESR prediction up to 3.73%, 16.07%, 25.00%, and 20.83%; The 

case study results have demonstrated the superior effectiveness 

and applicability of the proposed hybrid data and knowledge 

driven method for spatio-temporal ESR prediction of DPVSs un-

der extreme rainfalls. 
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