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Abstract—This paper proposes a hybrid knowledge-based and
data-driven electrical safety risk (ESR) prediction method consid-
ering spatio-temporal characteristics of extreme rainfalls to identify
distributed photovoltaic systems (DPVSs) with high risks of shut-
downs induced by waterlogging. Firstly, a two-dimensional hydro-
dynamic partial differential model of DPVS waterlogging is formu-
lated to deduce dynamic distributions of inundation depths under
temporal-spatial heterogeneity of extreme rainfalls. A fast image
segmentation driven risk partitioning algorithm is developed to ex-
tract nonuniform spatial distributions and temporal volatility of
rainstorms as well as waterlogging for dividing DPVSs into multiple
zones with different degrees of ESRs. Then, a knowledge-based an-
alytical approach for leakage currents concerning inundation
depths and parasitic capacitance is mathematically presented to re-
veal the underlying impacts of extreme rainfalls on ESRs of DPVSs.
A data-driven spatio-temporal graph convolutional network is im-
plemented to predict inundation depts of DVPSs for improving ESR
prediction accuracy with limited extreme rainfall events and obser-
vation samples. Furthermore, probability density functions of spa-
tio-temporal ESRs are formed to dynamically quantify ESR de-
grees triggering shutdowns of DPVSs in different partitioned zones.
Finally, simulation results have validated the effectiveness of the
proposed method for the spatio-temporal ESR prediction of DPVSs
under extreme rainfalls.

Index Terms—Distributed photovoltaics, deep learning, distribu-
tion networks, electrical safety, risk prediction.

I. INTRODUCTION

A. Motivation

XTREME rainfall events are becoming increasingly fre-

quent with the dramatic global meteorological change, pos-
ing a great threat to high economic losses and widespread ad-
verse impacts on distribution networks [1], [2]. Distributed pho-
tovoltaic system (DPVS) equipment needs to be installed out-
doors for receiving solar energy and is more susceptible to ex-
treme natural disasters [3]. According to the snapshot of global
PV markets 2023 [4] published by the International Energy
Agency, the installed capacity of PVs around the world has
reached 1,185GW by the end of 2022. However, the operational
performance and reliability of PV modules are still potential is-
sues due to failures and electric leakages in the field. For instance,
from 2002 to 2015, approximately 2500 fire incidents were rec-
orded in nearly 550,000 PV systems in Italy. In May 2019, a
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severe flooding disaster completely destroyed a DPVS with a to-
tal installed capacity of 100 kW in Sanming City, China. Mean-
while, there have been occasional reports related to personal in-
jury or casualties resulting from electric leakages caused by
DPVSs. DPVSs are widely scattered across multiple locations
within distribution networks, which increases the difficulty of
their operations and maintenance, and thus it is becoming a
pressing need to investigate the electrical safety risks (ESRs) of
DPVSs under extreme climates.

In transformerless DPVSs, the common-mode circuit will re-
sult in leakage current flowing through parasitic capacitances to
the ground [5], and the waterlogging caused by extreme rainfalls
can lead to an increase in the parasitic capacitance of DPVSs.
According to international standards IEC 62109-2:2011 [6] and
DIN VDE-0126-1-1 [7], it is mandatory to ensure that the leak-
age currents of transformerless DPVSs do not exceed 300 mA.
Once leakage currents exceed the limit value, DPVSs must be
disconnected from distribution networks within 0.3 s through
rapid shutdown devices (RSDs). A large number of shutdowns
of DPVSs will further adversely affect the overall stability of
distribution networks [8], [9]. Extreme rainfalls feature numer-
ous centers of intense rainfalls and frequent occurrences of lo-
calized heavy downpours, exhibiting highly spatio-temporal het-
erogeneous distribution of precipitation [ 10]. These intricate spa-
tio-temporal variations underscore the complex nature of ex-
treme rainfalls, making the occurrence and interaction of water-
logging and ESRs of DPVSs more diverse and complex. Conse-
quently, this paper aims to investigate an ESR prediction method
for DPVSs considering spatio-temporal characteristics of ex-
treme rainfalls to identify DPVSs with high shutdown risks, and
strives to provide guidance for electrical operators for formulat-
ing waterlogging prevention strategies against potential wide-
scale shutdowns of DPVSs.

B. Relevant Background

So far, extensive research works have been devoted to inves-
tigating the adverse impacts of extreme meteorological disasters
on DPVSs. The impacts of typhoons on the operation status and
stability of DPVSs were assessed in [11], [12], aiming to opti-
mize the design and installation positions of DPVSs for enhanc-
ing resilience against typhoons. To assess the risks of DPVSs
under lightning hazards, a high-precision equivalent circuit
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method considering the coupling effects and the influence of
metal frames is developed in [13], which demonstrates the con-
sideration of coupling effects in the design of DPVS lightning
protection systems can mitigate the risks of lightning strikes.
Nevertheless, the mechanisms of electric leakages of DPVSs are
revealed in [5]. By incorporating the effects of water on parasitic
capacitance, the model provides insights into how rainfall-in-
duced waterlogging can affect the leakage current of DPVSs.
Additionally, the adverse impacts of operational risks of DPVSs
on distribution networks are studied in [8]-[9], [14]-[15]. Exten-
sive shutdowns of DPVSs would result in a modification of the
power flow, leading to voltage fluctuations and adversely affect-
ing the overall stability of distribution networks. Current studies
have made efforts to investigate the impacts of extreme weather
conditions, such as lightning and typhoons on the operational
risks of DPVSs, while investigations on waterlogging-triggered
shutdown risks of DPVSs under extreme rainfalls have not been
involved yet.

With the continuous development of big data technology,
data-driven methods have been widely implemented in the field
of risk prediction in distribution networks [16]-[18] and renewa-
ble generation systems [19]-[21], which generally demonstrate

higher prediction accuracy compared with traditional approaches.

However, data-driven methods lack clear physical significance,
meaning that the underlying physical mechanisms or relation-
ships may not be explicitly captured or explained, and the supe-
rior performance of deep learning relies heavily on a large col-
lection of sample data with high quality [22]-[23]. Thus, to com-
pensate for the above limitations and enhance models’ interpret-
ability, field knowledge is often integrated into data-driven
methods, and an amount of hybrid data and knowledge methods
are proposed. The hybrid mode of knowledge and data driven
technology contains the following four categories: 1) Cascading
mode [24]: Utilizing knowledge-based approaches to process
data and using the results as the input of data-driven methods; 2)
Parallel mode [25]: Knowledge-based and data-driven methods
are parallelly executed, and the results are outputted through
methods such as weighted averaging; 3) Feedback mode [26]:
Using data-driven approaches to correct certain unknown mech-

anisms within knowledge-driven models; 4) Informed mode [27]:

Leveraging the knowledge from physical models to reconstruct
the loss function of data-driven methods. Satisfactory combina-
tions of the complementary domain knowledge and data were
proposed in [28], [29] for calendar health prognostics of Lith-
ium-Ion batteries, and the introduction of domain knowledge can
significantly improve the forecast performance compared to pure
data-driven methods. In [24], a knowledge augmented training
method was adopted to improve the sample efficiency and avoid
the overfitting of data-driven models. The data insufficiency is-
sue can be effectively solved and thus achieve a higher sample
efficiency. A knowledge-based model is proposed in [25] to as-
sess damage probabilities of transmission line-tower systems,
and the data-driven method is developed based on historical
damage data to learn correction factors, and the damage proba-
bilities are predicted by combining outputs of both data-driven
and model-driven. Moreover, a hybrid physical model-driven
and data-driven framework for linearizing branch power flow
was proposed in [26], in which the data-driven method is utilized
to obtain the linearized errors and improve the approximation
accuracy of the physical-equation-based linearization.

Taking a comprehensive view of the existing studies, they
have only considered the impacts of water on the electric leakage

risk of an individual DPVS, while neglecting the large-scale
shutdowns of DPVSs induced by electric leakages within distri-
bution networks under extreme rainfalls. Waterlogging-prone
DPVSs and their corresponding locations cannot be visually
identified, and it is hard to provide effective guidance for the op-
eration and maintenance personnel of DPVSs to carry out differ-
entiated strategies and implement waterlogging prevention plans
during the rainy season. Moreover, DPVSs are spatially located
in distribution networks, where spatio-temporal distributions of
rainfalls vary greatly between different zones. The spatio-tem-
poral heterogeneity and volatility of extreme rainfalls have been
not taken into account yet in previous studies, and the spatio-
temporal ESR prediction methodology for DPVSs under ex-
treme rainfalls is still in a technological gap, lacking well-devel-
oped techniques and methods.

C. Contribution

In this paper, a hybrid knowledge-based and data-driven ESR
prediction methodology for DPVSs considering spatio-temporal
characteristics of extreme rainfalls is proposed to identify
DPVSs with high risks of shutdowns induced by electric leak-
ages. The pivotal contributions of this paper are threefold:

1) A risk partitioning algorithm is proposed to extract uneven
spatial distributions and temporal volatility of rainstorms as well
as waterlogging for improving ESR prediction accuracy of
DPVSs. A two-dimensional hydrodynamic partial differential
model of waterlogging is formulated to deduce dynamic distri-
butions of inundation depths of DPVSs, and a fast fuzzy c-means
(FFCM) based segmentation algorithm is utilized to partition
DPVSs into multiple zones with different spatio-temporal char-
acteristics of extreme rainfalls as well as inundation depths.

2) A knowledge-based analytical approach for leakage cur-
rents with respect to inundation depths is presented to reveal the
impacts of extreme rainfalls on ESRs of DPVSs. A mathematical
expression of leakage currents concerning inundation depths and
parasitic capacitance is derived to calculate leakage currents of
DVPSs for the subsequent ESR prediction. Then, the impacts of
inundation depths on parasitic capacitance and leakage currents
are analyzed under different extreme rainfall conditions.

3) A data-driven ESR prediction method is proposed to iden-
tify DPVSs with high risks of shutdowns induced by electric
leakages under rainstorms. The spatio-temporal graph convolu-
tional network (STGCN) is implemented to predict waterlogging
risks within distribution networks, which can convert input data
to advanced graphical representation and has strong spatio-tem-
poral feature extraction capability to improve prediction accu-
racy with limited extreme rainfall events. The kernel density es-
timation (KDE) is utilized to quantify spatio-temporal ESR de-
grees triggering shutdowns of DPVSs.

II. ESR PARTITIONING WITH SPATIO-TEMPORAL
VOLATILITY OF RAINFALLS

A. Spatio-Temporal Characteristics of Extreme Rainfalls

Electric leakages of DPVSs are mainly caused by extreme
rainfall-induced waterlogging [5]. Spatio-temporal characteris-
tics of extreme rainfalls and waterlogging are two critical factors
directly influencing ESR variations of DPVSs. As DPVSs are
widely located in distribution networks, in which spatio-tem-
poral distributions of rainfalls vary greatly between different
zones, the refined characterization of spatio-temporal volatility
of extreme rainfalls is crucial for ESR prediction. However, due



to the limited installed capacities of DPVSs, there are no special-
ized meteorological monitoring devices, and wide-area meteor-
ological data tend to be coarser-grained and have lower lati-
tude/longitude resolution, resulting in the lower ESR prediction
accuracy of DPVSs under extreme rainfalls. Hence, the Co-
Kriging [30] based spatial interpolation method is utilized to ob-
tain high-resolution rainfall data for refined nonuniform spatial
distributions and temporal volatility of rainstorms. The area
scope is meshed with multiple grids, and the rainfall intensity of
grid points is given by (1).
/
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where qf ; denotes the rainfall intensity of grid (x;, x;) at time t;
x; and x; represent spatial coordinates on the horizontal plane;
qt, is measured rainfall amounts of meteorological observation
station m at time t; g; ; is the elevation data of grid (x;, x;),
which can be derived from the digital elevation model (DEM),
m,, and m, are the global average elevation and precipitation
within the distribution network area; 4, is the weight of the me-
teorological observation station m; « is the weight of covariate
variables. 1, and a can be obtained by the Lagrange multiplier
method. Then, the uneven spatial distributions and time-varying
features of extreme rainfalls and undulation of terrains are char-
acterized as (2).
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where qf‘j = [q%j, qu, ) qit’j] is the time-sequential rainfall in-
tensity of the grid (x;, x;); t is the time-sequential index; Q™ de-
notes the spatial distribution of rainfall intensity matrix under the
n-th extreme rainfall events; y" is the set of historical extreme
rainfall events.

Due to historical rainfall samples are of inconsistent time-se-
ries lengths and challenging to visually express characteristics of
rainfalls in different zones. Thus, statistical features are adopted
to characterize the temporal-spatial heterogeneity of extreme
rainfalls. Typically, the rainfall intensity follows the logarithmic
normal distribution [31], as shown in (3).
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where q; ; is the rainfall intensity of grid (x;,x;); 0y and y; ;
denote the location parameters and scale parameters, which can
be obtained by the maximum likelihood estimation (MLE). On
this basis, temporal-spatial features of extreme rainfalls can be
represented by o; ; and y; ;, and the rainfall feature dimensional-
ity of each grid is reduced into two dimensions.

Consequently, the spatio-temporal volatility of extreme rain-
falls characterized by (2) can be reformulated as follows,
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where X, M denote matrices composed of g; ;, 1; ;, respectively.

Coordinating X and M, the temporal-spatial heterogeneity of ex-
treme rainfalls can be characterized.

B. DPVS Waterlogging Model Under Extreme Rainfalls

The water level monitoring system for urban waterlogging de-
tection can record real-time inundation depths under extreme
rainfalls. However, due to the limited number of waterlogging
monitors, historical inundation depth samples are usually small.
Additionally, inundation depths of urban regions without water-
logging monitors cannot be recorded. The two-dimensional hy-
drodynamic model with partial differential equations can accu-
rately reflect spatio-temporal variations of inundation depths,
which is widely used for waterlogging simulations under ex-
treme rainfalls [32], and thus it is utilized to generate waterlog-
ging samples under historical rainfalls for increasing the histori-
cal sample size and fill in the data gaps in the areas with missing
data. Because the terrains of installation locations of DPVSs are
relatively flat, this paper considers water is balanced by the
forces in the vertical direction and neglects the effects of wind,
Coriolis force, and it is assumed that water is only subject to the
pressure of the surrounding water and the frictional resistance of
the ground. The above assumptions can significantly reduce
computation time while maintaining computational accuracy.
The modified hydrodynamic model with two-dimensional partial
differential equation for DPVS waterlogging is formulated as
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where d{ ; refers to the inundation depth of DPVSs located on
grid (i, ) at time t; h; ; denotes the water surface elevation, and
satisfies h; j=g; j+d; j; k is the unit conversion factor; m is the
Manning coefficient; g is the gravitational acceleration; w de-
notes the water surface elevation; 6 is the coverage of buildings

within grids; A is the connection ratio of two neighboring grids,

which can be approximated as 1-\/? . 0 is the average coverage
of buildings within two grids. The finite difference method is
used to solve two-dimensional partial differential equations. For
convenience, it is assumed that the water can only flow between
grids connected across the edges, as shown in Fig. 1.
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Fig. 1 Schematic diagram of the flood flowing direction
Take water flow from grid (i, j) to grid (i, j+1) as an example,
0h; j/0x is approximated as (h; j41 — h;;)/Ax, while 0h; ;/dy
is approximated as %[(hi,j_1 = hij+1) /28y + (hi—qj41 —
hit1,j+1)/28y], where Ax and Ay denote the length and width
of the grid, respectively. Then, water flow Q;;+ from grid



(i,)) to grid (i, j+1) is formulated as (8-9), and water flow Q;+ ;
from grid (i, j) to grid (i+1,j) is derived as (10-11).
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Similarly, Q; ;- and Q;-; which respectively denote water
flow from grid (i,j) to grid (i,j-1) and grid (i-1,j) can be
derived by modifying (8-11), and the inundation depth of grid
(i,7) is calculated by (12-13),

di'=d + 0r *9,+9,*0, 4, +q; ;A
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where A, represents drainage capacity of grid (i,j); ¢ denotes
the number of drainage wells; § is the drainage factor; S, im-
plies the cross-sectional area of drainage wells. Consequently,

inundation depths of DPVSs can be deduced by the waterlogging
distributions of the grids where they are located.

(12)
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where df; = [d};,df}, ..., d;] represents the time-sequential

inundation depths of the grid (x;, x;); D" denotes the spatial dis-
tribution of inundation depth of the n-th extreme rainfall events;
B" is a set that combines actual measured waterlogging distribu-
tions and model-generated waterlogging distributions.

C. FFCM Algorithm Driven ESR Partitioning for DPVSs

Due to significant variations of rainfall intensity and water-
logging across different zones of the distribution network,
DPVSs located in zones with heavier rainfalls and deeper inun-
dation depths are more susceptible to triggering higher degrees
of ESRs, thereby leading to rapid shutdowns owing to the high
leakage currents. Treating all DPVSs in the distribution network
as an entity to predict the ESRs of DPVSs would result in sub-
stantial errors. Thus, it is vital to partition DPVSs into multiple
zones with different rainfall intensities and inundation depths to
identify waterlogging-prone areas for improving ESR prediction
accuracy.

On the basis of Section II-A and II-B, spatio-temporal charac-
teristics of historical rainfalls are formulated as two matrices X
and M according to their distribution characteristics, and inun-
dation depths of DPVSs under n-th rainstorms are formulated as
D". As inundation depths do not follow a specific distribution,
the average inundation depth D under historical rainstorm events
is calculated to represent the distribution characteristics of

waterlogging. Coordinating X, M, and D, the temporal-spatial
heterogeneity of extreme rainfalls and waterlogging for ESR par-
titioning can be characterized as follows,
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where F is a feature matrix that unites ¥, M, and D, and it can
characterize the spatio-temporal volatility of extreme rainfalls as
well as waterlogging triggering ESR variations of DPVSs.

F is used as the input for the ESR partitioning algorithm. It is
worth noting that the feature matrix F contains three sub-matri-
ces X, M, D, and each element of the matrix can be regarded as
a pixel point. Thus, F can be regarded as the pixel matrix of a
color image with three channels of X, M, D, which contains spa-
tio-temporal characteristics of extreme rainfalls and waterlog-
ging. Consequently, the image segmentation algorithm is imple-
mented to subdivide the three-channel image F for partitioning
distribution networks into multiple zones with different rainfalls
and waterlogging depths. In the computer version field, super-
pixels are irregular blocks composed of neighboring pixels with
similar features [33]. Superpixel algorithms are usually used to
obtain adaptive neighboring information of an image for incor-
porating adaptive local spatial information and improving the
segmentation effect. To generate superpixels, the image is pro-
jected into CIE Lab color space [34], and each pixel point is
transferred to a 5-dimensional vector V[L, a, b, x, y]. Simple lin-
ear iterative clustering (SLIC) [35] is utilized to generate super-
pixels. Firstly, the initial clustering center is defined as,

Vi:[li’ai’bi7‘xi’yi]T (16)
where [; is the brightness of the color space; a; and b; denote the
chromaticity coordinates of clustering center i; x; and y; repre-
sent the spatial coordinates of clustering center i;

Then, a clustering process is performed by searching for all
pixel points within a range of twice the step size around the clus-
ter center. The distances between each pixel point and the cluster
centroids are calculated as follows,

d, =\/(lj_li)2+(aj_ai)2+(bj —~b)’ a7
d, = Ji; %) + (v, -3’ (18)
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where d, and dg implies the chromaticity and spatial coordi-
nates of pixel j and clustering center i, respectively; m denotes
fixed factor; S = /p/n is the length of the sides of the square
grid, p is the number of pixels, n is the number of superpixels.
Subsequently, the FFCM clustering [36] algorithm driven im-
age segmentation method is utilized to divide the color image
constructed by multiple superpixels. Because the number of su-
perpixels is far less than that of pixels in an image, it is faster to
implement FFCM on the generated superpixels than original
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Fig. 2 The proposed hybrid data and knowledge driven ESR prediction methodology for DPVSs under extreme rainfalls

pixels for color image segmentation. The objective function of
FFCM is defined as follows,

J,=min >SS, 11/8) Y x,) <, I

i=1 j=1 PER;

(20)

where n is the number of generated superpixels; i denotes the
color level and subjects to 1 < i < n; m is the number of clus-
ters; [ is the weighting exponent; u}i represents the fuzzy mem-
bership matrix between the i-th superpixel and the j-th cluster-
ing center; S; implies the number of pixels in the i-th superpixel
R;, and x,, is the color pixel within the i-th region of the super-
pixel image; ¢; is the j-th clustering centroid.

By implementing the Lagrange multiplier method, the afore-
mentioned optimization problem can be reformulated as an un-
constrained optimization problem as (21),

L(une, )= 203 S 1(78) Y x,) = IF = u, =) (1)
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where A is the Lagrange multiplier, 4; and ¢; can be derived by

OL(uji, cj,A)/0c; = 0 and OL(ujy, ¢j, A)/dpj; = 0, respectively.

Solutions of yj; and ¢; are shown in (22-23),
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PER;
A convergence coefficient 77 is set to assess the convergence
condition of FFCM. When the membership partition matrix U
composed of u;; satisfies U! — U™ < 1. Then, the color image
composed of pixels representing rainfalls and inundation depths
is segmented into multiple sub-images. DPVSs located on the
same sub-image are partitioned in a zone, and all DPVSs are par-
titioned into multiple zones with different rainfall and inundation
depths triggering the different ESR degrees.

PER;

III. HYBRID DATA AND KNOWLEDGE DRIVEN
ESR PREDICTION METHOD

The proposed hybrid data and knowledge driven ESR
prediction methodology for DPVSs under extreme rainfalls is
shown in Fig. 2, which contains the following parts: 1) The study
area for ESR prediction of DPVSs is extracted based on the
electrical topology of the distribution network, other areas
outside the distribution network are not taken into consideration;
2) The waterlogging model is implemented to deduce inundation

depths within the distribution network, and the dataset for risk
partitioning is constructed based on the fusion of actual limited
measured inundation depth distributions and numerous model-
generated inundation depth distributions; 3) The data-driven
FFCM algorithm is utilized to divide the distribution network
into multiple zones based on historical rainfalls and waterlog-
ging; 4) Critical inundation depths inducing ESRs of DPVSs are
derived from the mathematical expression of leakage currents
concerning inundation depths; 5) The data-driven STGCN is im-
plemented to predict waterlogging risks for the distribution net-
work. 6) The KDE is utilized to fit the time-varying PDFs of
inundation depths of DPVSs and dynamically quantify spatio-
temporal ESR degrees triggering shutdowns of DPVSs under
rainstorms. Parts I and II have been presented in Section I, and
the remaining parts of the proposed methodology will be
described in detail in the following Sections.

A. Knowledge-based Leakage Currents Calculation Model

Leakage currents are generated due to the parasitic capacitors
between DPVSs and the ground. When a loop is formed between
parasitic capacitors, the PV system, and the power grid, the com-
mon-mode voltage will create leakage currents in parasitic ca-
pacitors. The expression for leakage currents and parasitic ca-

pacitance is shown below,
PV

i =(Cl O =
where if{ imposes leakage currents of DPVS i at time t; U/} is
the common-mode voltage across PV parasitic capacitors of
DPVS i at time t; C;, { , Cf, and C;{ denote the parasitic capaci-
tance between the PV cell and the frame, the PV cell and the rack,
PV cell and the ground, respectively. The parasitic capacitors of
a PV panel under waterlogging are shown in Fig. 3.

The common-mode voltage Ul-’_D Y across parasitic capacitors of
the PV panel is related to the rated parameters, and less suscep-
tible to the external environment. Conversely, parasitic capaci-
tors are formed between the PV cell and the surrounding envi-
ronment, which are vulnerable to extreme rainfall-inducing wa-
terlogging, and the impedance in transformerless DPVSs is rela-
tively small, making it easy to generate large leakage currents.
Therefore, the parasitic capacitance of PV panels is utilized as a
bridge to investigate the impacts of extreme rainfalls on the leak-
age currents of DPVSs. For instance, the parasitic capacitance
Cf f between the PV cell and the ground is calculated as (25-28).
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air//water

where €7 indicates the parasitic capacitance between the

bottom of the PV panel and the ground; C lc f ~PP denotes the par-
asitic capacitance between the top of the PV panel and the
ground; Wpy, is the width of the PV panel; Hpy, is the width of
the PV cell; d; imposes the distance between the intersection of
the PV panel and the extension of the PV panel to the ground;
Bpy is the angle between the PV panel and the ground; Lpy,f is
the calculated length of frame capacitance; &, is the absolute per-
Mittivity; €gya, Ewaters Eair IMply relative permittivity of EVA
layer, water, and air, respectively; Tgy, and Treqiqr are the
thickness of the EVA layer and Tedlar layer, respectively. Addi-

tionally, the calculation method for Cf { and C{{ can be referred

to [5].
Glass
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Fig. 3 Parasitic capacitors of a PV panel. (a) Schematic diagram of parasitic ca-
pacitors. (b) Two-dimensional schematic diagram of a PV panel.

Since PV arrays are arranged in several strings in a DPVS,
parasitic capacitance cannot be revealed by a single equivalent
capacitance model. The m-shaped equivalent circuit for PV ar-
rays is utilized to calculate leakage currents of DPVSs, as illus-
trated in Fig. 4. This equivalent circuit not only considers the
parasitic capacitance of the DPVS but also considers the panel
equivalent inductance Ly, L, the equivalent conductor G¢g4, G4,
and cable parameters L., C.. By calculating theoretical leakage
currents of DPVSs under all extreme rainfall events occurring in
the distribution network area, the dataset formed by spatio-tem-
poral rainfall data and corresponding time-sequential leakage
currents of DPVSs can be obtained for the training process of the
data-driven STGCN.

Fig. 4 Equivalent m-shaped circuit for a PV panel with parasitic capacitance

B. Data-Driven Waterlogging Risk Prediction Method

Knowledge-based inundation depth risk prediction models
with clear physical mechanisms are prone to result in remarkable
errors due to the uneven spatial distribution and temporal
variability of extreme rainfalls. In contrast, data-driven methods
can mine the relationship between extreme rainfalls and the time-
sequential inundation depths from historical data to simplify the
prediction process, thereby providing capabilities to handle
models’ uncertainties and enhancing computational efficiency.
Thus, a data-driven STGCN [37] is implemented to predict
waterlogging risks of distribution networks, which can convert
input data to an advanced graphical structure and has the
capability to learn shared representations across nodes in the
graph, allowing it to transfer knowledge from observed samples
to unseen ones. This transferability property enables GNNs to
make accurate predictions and generalize well in application
scenarios with limited training datasets [38]. Assuming meshed
grids of distribution networks as nodes and correlations between
nodes as edges, each partitioned region can be represented as a
spatio-temporal graph as G =<V,E >.V = {v;}. E ={e;;}. V
is the node set consisting of meshed grids. E is the edge set,
representing the correlation between node v; and v;. v; and v;
can only be connected to each other if they exhibit a high
correlation, and the connection relationship between nodes can
be represented as an adjacency matrix A € RV*N  which is
calculated as follows,

exp(—dist(v;,v;)), dist(v,,v;) >k
o, dist(v,,v,) <k

where A;; denotes the correlation coefficient between v; and v;;
dist(v;, v;) represents the Euclidean distance between v; and v;;
k is the threshold, inferring that two nodes with a small
correlation coefficient are considered to be unconnected for
reducing computational complexity.

The STGCN presented in this paper is composed of
Chebyshev graph convolution networks (CGCNs) and one-
dimensional temporal convolution networks (TCNs), where
CGCNs are utilized to extract spatial features of extreme
rainfalls and TCNs are implemented to learn the impacts of
extreme rainfalls on time-varying inundation depths of
distribution networks. In CGCNs, due to the non-Euclidean
nature of graphs, it is not possible to perform convolution
operations in the vertex domain. The graph features are firstly
converted to the spectral domain, and the convolution operation
is then performed. The Laplace matrix is defined as,

L=D-A=1,-D"*4D" (30)
where Iy, represents the n-th order identity matrix; D € RV*V is
the degree matrix of the previously defined graph. The
eigenvalue decomposition of L is as follows,

L=UAU" (31)
where U denotes the basis composed of eigenvectors; A € RV*N
is the diagonal matrix consisting of eigenvalues 4;, i € [1, N].

The Fourier transform matrix X, of graph features X, € RV*!
can be calculated as,
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X, =U"X, (32)
Analogous to the traditional function convolution, the graph
convolution formula is defined as,

(X, *g)s =U(U' 90U X,) =Ug,U" X,  (33)
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where symbol “®” represents Hadamard product; denotes
graph convolution; g is the convolution kernel; gg is the learna-
ble convolutional kernel, which satisfies gg = UTg; (Xg * g)G
implies graph convolution applied in graph G.

Due to the heavy computational burden in performing graph
convolution, the Chebyshev polynomial is used to fit the convo-
lution kernel to speed up computation, which is as follows,

2,=2,(M)= > 6T,(R) (34)
h=0
T,(x) = 23T, , ()T, (%) 35)

where A = 2A/Amax — Iv> Amax is the maximum eigenvalue of
L; Ty (+) denotes the k-th order Chebyshev polynomial; 8, rep-
resents the Chebyshev coefficient.

Consequently, the graph convolution can be reformulated as,

k=1
g * X, = Z@ka(L)Xg
k=0

where L = 2L /Apax — Iy = UAUT; (URUT)" = URFUT,

The TCN is designed as a dilated causal convolution followed
by a gated linear unit (GLU) layer, which can extract temporal
features for time-sequential data of different lengths. Given a
one-dimensional time series B € RT (T is the time step) as the
input and a filter f € RX (K is the kernel size), the dilated causal
convolutional form of B and f can be represented as,

B*f(1)= 3 1(5)B(1-d,s)

where symbol * denotes the dilated causal convolution form; d
implies the dilated factor; s denotes the index of the kernel.

Suppose P denotes the output of dilated causal convolution,
and the output of GLU can be represented as,

h=0,(0,*P+b)©00,(0,*P+c) (38)
where 0, (-) and o0,(-) denote sigmoid and tangent hyperbolic
activation function, respectively; 0,, 0,, b, ¢ are learnable pa-
rameters of STGCN.

Waterlogging risk prediction for distribution networks can be
considered to be a multivariate time series prediction problem
considering spatial dependence. Meshed grids are considered to
be nodes while rainfall intensity and inundation depths are re-
garded as the input features and labels of the nodes, respectively.
Then, connecting nodes with high correlations, the graph G, =<
V., E. > for waterlogging risk prediction can be formed. V. =
{qi¢, i;¢}, where q; . and d; ; denote the rainfall intensity and in-
undation depth of grid i, which are both spatio-temporal sequen-
tial data; E. = {w;;} denotes the correlation between nodes i
and j, which can be obtained by (29). The data-driven STGCN
based model of waterlogging risk prediction for distribution net-
works can be represented as a learning function f mapping H
steps historical rainfalls to K steps future inundation depths, as
follows,

{(’Ii,t—HH si 25595 G} #){di,tﬂ P dz',t+2 PRTEH di,t+K} (39)
where {qir pi1, Qie—trzr - Qi) € RVHXF represents the H
steps historical rainfalls of grid i; {di,t+1'di,t+2! ...,dLHA} €
RV*4%1 denotes the K steps future inundation depths of grid i;
N is the number of nodes; F is the feature dimension of nodes.
C. ESR Modelling for DPVSs under Extreme Rainfalls

It is obligated in international standards [6]-[7] of the opera-
tion and maintenance of DPVSs with peak leakage currents

(36)

(37

exceeding 300 mA must be rapidly disconnected. Otherwise, it
may occur electric leakage accidents. Critical inundation depths
d-cri of DPVSs triggering electric leakages can be derived from
the knowledge-based leakage current calculation model (24-28),
and the ESR degrees of DVPSs can be qualified by the probabil-
ities of inundation depths exceeding their critical values. Since
the nonparametric KDE does not require any assumptions about
the distribution of data, it is more flexible in dealing with uncer-
tain inundation depth distributions under uneven spatial and
time-varying features of rainfalls. Thus, the KDE is implemented
to fit the PDFs of predicted inundation depths and quantify spa-
tio-temporal ESR degrees of DPVSs under extreme rainfalls [39].
The PDF of inundation depths is estimated as follows,

A 1 d-D
fh(d):EZK(T‘) (40)
d-D, 1 _(d—D,)2

where D, = {d;¢,d;¢11,.., di,t+Lp} represents the inundation
depths from time slot ¢ to t + L,; L, is the ESR warning rolling
cycle; h denotes the bandwidth, determining the smoothness of
fitted distributions; K () implies the kernel function, and the
Gaussian kernel function is adopted in this paper. The bandwidth
h has a significant impact on the quality of the KDE. Thus, the
principle of minimizing the asymptotic mean integrated squared
error (AMISE) is used for optimizing the bandwidth of the KDE.
Then, the cumulative distribution functions (CDFs) of inunda-
tion depths exceeding critical depths are formed to dynamically
quantify spatio-temporal ESR degrees of DPVSs i in different
partitioned zones. As inundation depths are time-varying with
the evolution of extreme rainfalls, FF is variable at different

warning rolling cycles R.
1 (d-D)

FR=q_[" _
i 1 .[0 z\/;nh exp[ 2

=1

1dd 42)

IV. CASE STUDIES

A. Network Data

A typical distribution network, located in a hilly area, is intro-
duced to verify the performance of the proposed hybrid data and
knowledge driven ESR prediction method for DPVSs under ex-
treme rainfalls. There are a number of DPVSs installed within
the distribution network. As rooftop PVs are not susceptible to
waterlogging, we only consider ground mounted DPVSs. Rele-
vant parameters of DPVSs are obtained from the local power
company. The spatial distribution of DPVSs within the distribu-
tion network area is illustrated in Fig. 5. Moreover, the specific
parameters of a typical ground mounted DPVS are listed in Table
I, and all data requirements and sources are summarized in Table
I1. The hourly historical rainfall data is collected from the Open-
Meteo platform [40]. With its historical weather API, we have
access to over 80 years of hourly rainfall data, covering any lo-
cation on earth, all at a 10-kilometer resolution. It also provides
forecasted rainfalls for up to 16 days. Terrain elevations of the
distribution network area are obtained from shuttle radar topog-
raphy mission version 3 (SRTM3) [41], the spatial resolution of
which is 90 meters. Other geographic information is obtained
from OpenStreetMap [42]. According to the classification crite-
ria of rainfalls by the China Meteorological Administration
(CMA), an amount of precipitation exceeding 30 mm within a
12-hour period or exceeding 50 mm within a 24-hour period is



considered a rainstorm event. Since 2004, a total of 73 rainstorm
events have been observed in the studied area.

TABLEI
SPECIFIC PARAMETERS OF A TYPICAL GROUND MOUNTED DPVS
Parameters Symbol Value
Width of PV panels Wpy 920mm
Thickness of EVA layer Teya 0.5mm
Thickness of Tedlar layer Ttediar 0.2mm
Thickness of PV cells Hpy 0.2mm
Effective length of PV panels Lpyer 30mm
Distance between PV panel and ground dpy 50mm
Installation angle Lrev 40°
Absolute permittivity £ 8.85%107"2
Relative permittivity of water Evater 78.5
Relative permittivity of Tedlar layer ETedlar 2
Relative permittivity of EVA layer EEvA 3
Relative permittivity of air Eair 1.0006

TABLE II
DATA REQUIREMENTS AND SOURCES FOR THE PROPOSED METHOD
Data Requirements

Data Sources

Hourly historical and forecasted rainfall data Open-Meteo
Terrain elevations SRTM
Geographic information OpenStreetMap
Inundation depths of DPVSs Waterlogging model

Specific parameters of DPVSs Local power company
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Fig. 5 Spatial distribution of DPVSs within the distribution network area

B. Analysis of Leakage Currents of DPVSs

According to the basis of Section III, leakage currents of
DPVSs are significantly impacted by the parasitic capacitance.
Under extreme rainfall conditions, the parasitic capacitance of
DPVSs is influenced by the inundation depth. Taking DPVSs
with capacities of 30 kW and 50 kW as examples, the variation
patterns of parasitic capacitance and leakage currents with inun-
dation depths of waterlogging are illustrated in Fig. 6.
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Fig. 6 Impacts of extreme rainfalls on electric leakages of DPVSs. (a) Relation-
ship between parasitic capacitance and inundation depths. (b) Relationship be-
tween leakage currents and inundation depths

It can be observed from Fig. 6(a) that the parasitic capacitance
of DPVSs tends to increase significantly as the inundation depth
rises, and the parasitic capacitance of the DPVS with a capacity
of 50 kW is bigger than that of the DPVS with a capacity of 30
kW. Due to leakage currents of transformerless DPVSs should
be limited to less than 300 mA, 300 mA can be regarded as the
threshold to determine whether electric leakages have occurred.
As shown in Fig. 6(b), the red line is the leakage current warning
limit. Inundation depths corresponding to the intersection point
of the red line and the leakage current curve represent the critical
inundation depths of DPVSs. dT=3%KW and d°Ti=50k% are criti-
cal inundation depths inducing electric leakages of DPVSs with
capacities of 30 kW and 50 kW, respectively. Once inundation
depths exceed the critical value, it will cause electric leakages.

C. Meteorological Interpolation and ESR Partitioning

Based on the historical rainfall data from four meteorological
stations within the distribution network, the Co-Kriging method
is implemented to interpolate the rainfall intensity across differ-
ent zones of the distribution network. The results of the Co-
Kriging method based meteorological interpolation for the pre-
cipitation of an extreme rainfall event within the distribution net-
work area are shown in Fig. 7. It can be found from Fig. 7 that
the Co-Kriging based meteorological interpolation method can
fully reflect nonuniform spatial distributions and temporal vola-
tility of the extreme rainfall disaster. Compared with the rainfall
data from nearby meteorological observation stations, meteoro-
logical interpolation results with high spatial and temporal reso-
lution can ensure the subsequent spatio-temporal ESR prediction

accuracy of DPVSs under extreme rainfalls.
precipitation (mm/h)

N i s
9.6
E
(5
= 8.4
72
(¢=18h)
6.0
7
< 48
BN
3.6

0 4 8§ 12 16 20 240
x (km) x (km)
(t=36h) (t=52h)

Fig. 7 Meteorological interpolation results for an extreme rainfall event

Based on meteorological interpolation results of historical
rainfall intensity incorporating the distribution of calculated his-
torical inundation depths, the FFCM driven partitioning algo-
rithm is utilized to divide DPVSs into multiple zones with



different levels of waterlogging risks. Fig. 8 presents the ESR
partitioning result of DPVSs within the distribution network.
Different partitioned zones have different rainfall distributions
and waterlogging risks that trigger variations of waterlogging de-
grees. For instance, in partitioned Zone 1, the average historical
rainfall intensity is 5.6 mm/h, and the average inundation depth
is 0.21 m. While in partitioned Zone 3, the average rainfall in-
tensity is 2.1 mm/h, and the average inundation depth is 0.08 m.
This indicates that DPVSs located in Zone 1 are more prone to
waterlogging and electrical leakages, evidently exhibiting higher

Partitioned Zones

Zone |
Zone 2
Zone 3

Fig. 8 ESR partitioning result of DPVSs within the distribution network

D. Spatio-Temporal ESR Prediction Results and Analysis

The dataset for the STGCN is composed of 73 rainstorm
events within the distribution network area, and the sampling fre-
quency is 1 hour. H is set to 6 and A is set to 1, which indicates
that the last 6 steps of historical rainfall are used to predict the
next 1 step inundation depths. The dataset is divided into the
training set, validation set and test set in a ratio of 7: 2: 1, and
normalized by the mean value and standard deviation of the
training set, as follows,

_ x—mean(x,,,)
std(x

train )

(43)

=<

where x is the original data of the dataset; X is the normalized
data of the dataset; mean(x;,4;,) denotes calculating the mean
value of the training set, std(x;.qin) implies calculating the
standard deviation of the training set. The training set is used to
train the model while the validation set is used for parameter
fine-tuning. The simulation is performed on Python 3.10.9 with
PyTorch 2.1.0 and runs on a computing platform with an RTX
3070 GPU and 32 GB RAM.

To verify the superior capability of data-driven STGCN in ex-
tracting spatio-temporal features, several comparative baselines
including random forest (RF), support vector machine regression
(SVR), eXtreme gradient boosting (XGBoost), gated recurrent
unit (GRU), long short-term memory (LSTM), and graph neural
network (GNN) are introduced. Comparative studies are imple-
mented in the case of a continuous extreme rainfall disaster last-
ing for three days in 2017. Fig. 9 illustrates predicted inundation
depths of a certain DPVS which was rapidly disconnected due to
high leakage currents during the heavy rain. The critical inunda-
tion depth d-cri of the DPVS triggering electric leakages is
0.289 m. It can be found from Fig. 9 that inundation depths pre-
dicted by the STGCN are the closest to the real value. RF, SVR,
and XGBoost are all traditional data-driven machine learning
methods, which are incapable of learning the spatio-temporal

correlations of inundation depths of different grids within the
distribution network under the uneven spatial distributions and
time-varying characteristics of extreme rainfalls. Compared with
RF, SVR, and XGBoost, performances of GRU, LSTM, and
GNN are feasible, owing to the capabilities of GRU and LSTM
to cope with sequential data and GNN can learn the spatial fea-
ture of extreme rainfalls. However, neither GRU nor GNN can
simultaneously learn the impacts of spatial and temporal charac-
teristics of extreme rainfalls on inundation depths. Therefore, the
STGCN surpasses GRU and GNN in terms of prediction accu-
racy.

This paper
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Fig. 9 Predicted inundation depth; (J)f a DPVS with different methods

Based on the predicted inundation depths of the DPVS, spatio-
temporal ESR degrees can be quantified by KDE, and the warn-
ing rolling cycle is set to one day. Fig. 10 illustrates PDFs and
CDFs of ESR of the DPVS under the three-day continuous rain.
It can be observed from Fig. 10 that PDFs and CDFs change with
the spatio-temporal variability in the evolution of extreme rain-
falls as well as inundation depths of waterlogging over time.
To compare the accuracy of the optimal bandwidth with ran-
domly selected bandwidths, the fitted PDFs under different
bandwidths are evaluated using RMSE of the integral of the fit-
ted probability density and the discrete probability of inundation
depths of the DPVS within the i-th interval. The comparative re-
sults are listed in Table III. It can be seen from Table III that the
RMSE of the optimal bandwidth is the smallest, which demon-
strates the validity of the optimal bandwidth selection method.
Furthermore, it can be deduced from CDF curves that the ESR
degrees of the DPVS on Day 1 — Day 3 are 0.41, 0.79, and 0.08,
respectively.
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Fig. 10 PDFs and CDFs of time-varying ESRs of the DVPS
TABLE III
COMPARATIVE RESULTS OF ERRORS UNDER DIFFERENT BANDWIDTHS
Davs Bandwidths
Y Optimal 0.23 0.54 0.79
1 0.022 0.029 0.033 0.043
2 0.017 0.018 0.023 0.018
3 0.015 0.041 0.022 0.018

Moreover, spatio-temporal distribution of waterlogging risks



within the distribution network under the three-day continuous
extreme rainfall event is illustrated in Fig. 11. Distribution net-

work areas are categorized into three levels of waterlogging risks:

1) High-risk areas indicate that the maximum inundation depth
on the day exceeds 0.3 m. Most DPVSs installed in these areas
are prone to shutdowns due to waterlogging; 2) Medium-risk ar-
eas denote the maximum inundation depth on the day is greater
than 0.1 m but less than 0.3 m. Some lower mounted DPVSs in
these areas are prone to shutdowns due to waterlogging; 3) Low-
risk areas represent the maximum inundation depth on the day
does not exceed 0.1 m, and most DPVSs in these areas are in

normal operational status.
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Fig. 11 Spatio-temporal waterlogging risks within the distribution network

According to the distribution of waterlogging risks, ESRs for
all DPVSs can be quantified by the KDE. DPVSs with ESR
probabilities exceeding 50% are considered to have high shut-
down risks due to waterlogging. Four comparative methods are
performed to further validate the superiority of the proposed risk
prediction method for DVPSs. 1) Method I is the proposed
method; 2) Method II neglects spatio-temporal characteristics of
extreme rainfalls, assuming that the rainfall intensity is the same
for each DPVS; 3) Method III neglects the ESR partitioning,
where all DPVSs are regarded as an entity to perform spatio-
temporal ESR prediction; 4) Method IV neglects both spatio-
temporal characteristics of extreme rainfalls and ESR partition-
ing. DPVSs which are identified as high risks are compared with
real shutdown events of DPVSs induced by their high leakage
currents due to waterlogging. The comparative results are listed
in Table IV. It can be found from Table IV that method I exhibits
superior performance in all evaluation metrics, and both method
IT and method III are superior to method IV. It demonstrates the
consideration of spatio-temporal characteristics of extreme rain-
falls and risk partitioning is conducive to improving the ESR pre-
diction accuracy of DPVSs under extreme rainfalls. After ESR
partitioning, the data-driven model can better learn the charac-
teristics of the partitioned area and make differentiated predic-
tions. Compared with method III, method II is slightly better.
This is because the precise spatio-temporal distribution of ex-
treme rainfalls is the pivotal influence that directly affects leak-
age currents of DPVSs.

TABLE IV
COMPARATIVE ANALYSIS OF PREDICTION ACCURACY OF DIFFERENT METHODS
Accurac Precise Recall Fl-score
Method o™ ) (%) (%)
1 98.14 92.31 85.71 88.89
Day 11 96.89 84.62 78.57 81.48
1 11 96.27 78.57 78.57 78.57
v 95.65 76.92 71.43 74.07
I 94.41 86.49 88.89 87.67
Day I 92.55 83.33 83.33 83.33
2 11 91.93 82.86 80.56 81.69
v 90.68 78.38 80.56 79.45
I 98.76 87.50 87.50 87.50
Day 1I 98.14 85.71 75.00 80.00
3 11 98.14 85.71 75.00 80.00
v 96.89 71.43 62.50 66.67

V. CONCLUSION

In this paper, a hybrid knowledge-based and data-driven ESR
prediction method is proposed to identify high-risk areas induced
by electric leakages of DPVSs in facing the uneven spatial dis-
tributions and time-varying characteristics of extreme rainfalls.
The following are the key findings of this study: 1) With the con-
sideration of the impacts of inundation depths on the parasitic
capacitance calculation model, the knowledge-based leakage
current calculation model can theoretically analyze variation pat-
terns of leakage currents of DPVSs under waterlogging condi-
tions; 2) The STGCN can effectively capture the nonlinear rela-
tionship between the dynamic evolution of extreme rainfalls and
the inundation depths within distribution networks; 3) Spatio-
temporal characteristics of extreme rainfalls and risk partitioning
is conducive to improving the ESR prediction accuracy of
DPVSs under extreme rainfalls. Compared with the ESR predic-
tion methods without the consideration of spatio-temporal char-
acteristics of extreme rainfalls and ESR partitioning, the pro-
posed can increase accuracy, precision, recall, and F1-score of
ESR prediction up to 3.73%, 16.07%, 25.00%, and 20.83%; The
case study results have demonstrated the superior effectiveness
and applicability of the proposed hybrid data and knowledge
driven method for spatio-temporal ESR prediction of DPVSs un-
der extreme rainfalls.
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