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Robust Correspondence Imaging against Random
Disturbances with Single-Pixel Detection

Zhihan Xu, Yin Xiao, and Wen Chen

Abstract—Random disturbance has become a great challenge
for correspondence imaging (CI) due to dynamic and nonlinear
scaling factors. In this paper, we propose a robust CI against
random disturbances for high-quality object reconstruction. To
remove the effect of dynamic scaling factors induced by random
disturbance, a wavelet and total variation (WATYV) algorithm is
developed to estimate a series of varying thresholds. Then, light
intensities collected by a single-pixel detector are processed by
using the series of estimated varying thresholds. To realize high-
quality object reconstruction, the binarized light intensities and a
series of random patterns are fed into a plug-and-play priors
(PnP) algorithm with an iteration framework and a general
denoiser, called as CI-PnP. Theoretical descriptions are given in
detail to reveal the formation mechanism in CI under random
disturbance. Optical measurements are conducted to verify
robustness of the proposed CI against random disturbances. It is
demonstrated that the proposed method can remove the effect of
dynamic scaling factors induced by random disturbance, and can
realize high-quality object reconstruction. The proposed method
provides a promising solution to achieving ultra-high robustness
against random disturbances in CI, and is promising in various
applications.

Index Terms—Correspondence imaging, High-quality object
reconstruction, Random disturbance, Complex environments,
Single-pixel detection.

[. INTRODUCTION

MAGING systems usually received information-carrying

light fields by utilizing a pixelated sensor such as charge-
coupled device (CCD) or complementary metal-oxide-
semiconductor (CMOS) [1], [2], which can capture 2D images
related to the intensity distributions of light field. To
accurately extract useful information from the captured
images, disturbance induced by the environment or imaging
system needs to be avoided. However, random disturbance
could be inevitable in practice [3], such as thermal noise in
electronic devices [4], ambient light [5]-[8] and turbulence in
an optical channel [9]-[12], leading to noisy measurement and
inaccurate information extraction. Therefore, imaging against
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random disturbance has attracted much attention, especially
when imaging systems are deployed in complex or extreme
environments where random disturbance overwhelms, such as
satellite imagery [13]-[15], underwater imaging [16]-[18] and
capsule endoscopy [19], [20] etc. Random disturbance induced
in such environments introduces difficulties for the existing
imaging systems, and becomes a challenge to visualizing an
object or extracting clear information.

To overcome the challenges induced by random
disturbance, ghost imaging (GI) emerged as a promising
solution [21]-[23]. By projecting a series of illumination
patterns onto an unknown object and measuring light
intensities using a single-pixel detector, GI can
computationally realize object reconstruction [24]-[30]. The
advantages of GI lie in several aspects. For instance, single-
pixel detectors could precisely provide temporal resolution,
making it feasible in 3D imaging [31], [32] and ultrafast
imaging [33]. Compared to the pixelated detectors, single-
pixel detectors show the higher efficiency and sensitivity in a
wide spectrum (e.g., infrared [34], [35], terahertz [36], [37]
and X-ray [38], [39]). More importantly, GI encodes 2D
spatial information into a 1D signal to be processed in a
flexible manner. Moreover, it can provide advantages over 2D
imaging, when the disturbance exists. In recent years,
correspondence imaging (CI) has been developed as an
alternative [40]-[43], when a single-pixel detector is used.
Without the usage of single-pixel light intensities as
correlation coefficients, CI adopts a binarization of collected
light intensities with a constant threshold to divide the series
of illumination patterns into two groups. By superimposing the
classified illumination patterns in each group, two
reconstructed patterns can be obtained with positive and
negative contrasts respectively called as positive and negative
images. A higher-quality reconstructed object image can be
generated by subtracting the negative image from the positive
image [40], [41]. With the binarized light intensities, CI could
offer the higher efficiency in data storage, data transmission
and object reconstruction. Compared to GI, CI could also be
insensitive to nonlinear distortions occurring in noisy
environments [44].

Although CI was demonstrated to be promising for object
reconstruction, its feasibility under random disturbance is still
limited. Most existing studies focus on the applications of CI
in free space without disturbance. Although CI was studied
[441-[48], few studies focus on CI against random disturbance
from multiple sources which may lead to a high-level
fluctuation in the collected single-pixel light intensities. The
reconstruction with pattern superimposition in CI also suffers
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from low quality owing to a series of random patterns used for
the illumination [49], [50], posing a challenge for the potential
applications. Therefore, it is significant and desirable to
achieve the robustness of CI against random disturbance.

In this paper, we propose a robust CI against random
disturbances. To remove the effect of dynamic and nonlinear
scaling factors induced by random disturbance, a series of
varying thresholds are first estimated by using a wavelet and
total variation (WATV) algorithm. After single-pixel light
intensities are binarized by the series of estimated varying
thresholds, a plug-and-play (PnP) prior algorithm is developed
and applied via designing an iteration framework and the
block-matching and 3D filtering (BM3D), called as CI-PnP. A
series of optical experiments are conducted to illustrate
feasibility and effectiveness of the proposed method. It is
demonstrated that the estimated varying thresholds can
facilitate an accurate removal of the effect of dynamic scaling
factors induced by random disturbance, and high-quality
object reconstruction is realized.

The main contributions of our work are briefly summarized
as follows:

1) The robustness of CI is fully studied using the varying
thresholds, and ultra-high robustness against random
disturbances is achieved in complex environments.

2) A regularized computational algorithm in a PnP manner
is designed instead of linear correlations in conventional
methods, leading to the realization of high-fidelity object
reconstruction.

3) A detailed theoretical derivation of formation mechanism
of computational CI through complex scattering media with
random disturbances is presented. A series of experimental
results, i.e., under various random disturbances with different
parameters, are obtained to illustrate that the proposed method
outperforms conventional approaches in terms of performance
and efficiency.

The rest of the paper is organized as follows: The formation
mechanism of CI with random disturbances in complex
environments and the proposed principles are described in
detail in Section II. The optical setup, experimental settings
and experimental results are presented and discussed in
Section III. Finally, conclusions are drawn in Section IV.

II. PROBLEM FORMULATION AND METHODS

A. Problem Formulation

In CI without disturbance, a series of random patterns are
sequentially projected onto an unknown object O with the
light intensities collected by a single-pixel detector [51].

s = AX, (D

where A ell™" denotes a modulation matrix with M

vectorized patterns and N pixels in each pattern, x e[l V'

denotes the unknown object vectorized as a column vector, and
s=[s, s, 5,17 €™ denotes a vector with M light

intensities. It is given in Eq. (1) that there is a linear sampling

process with a sampling ratio defined by M /N, and the

problem related to the sampling ratio also needs to be solved.

It was demonstrated that single-pixel light intensities
collected without disturbance in free space obey a multivariate
Gaussian distribution [49], when the random patterns are
independent and identically distributed.

s~N (,X), 2)

where pell1™" and £ el denote a vector with mean

values and a covariance matrix of the multivariate Gaussian
distribution, respectively. The single-pixel light intensities in
s are independent and identically distributed, indicating that
the collected light intensities share one mean value and the
covariance between any two intensities is zero. Therefore, p

and X can be respectively described by

p=ul, (3)

X = diag(o1), @)

where 1€l ™" denotes a vector only with one, diag()

denotes an operator to generate a diagonal matrix with its
input as diagonal elements, and x4 and o denote the

parameters to be approximated by using an average value and
standard deviation of the single-pixel light intensities,
respectively.

To retrieve object information from the series of collected
single-pixel light intensities, a constant threshold is usually
calculated and applied in CI to binarize the light intensities.

s =Sign(s—p), (5)

where Sign(-) denotes an operator to return £1 depending on

the sign of its input and s €] denotes the binarized
light intensities with values of +1 and -1. A correspondence
image X can be recovered by averaging random patterns
conditionally depending on the signs of the binarized single-
pixel light intensities.

|
x=—A"s". (6)

When random disturbance exists in CI, the series of
collected single-pixel light intensities would fluctuate
significantly owing to dynamic and nonlinear scaling factors

induced by random disturbance.

s =Ks, (7
~ ~ ~ ~ 9T Mx1 :
where S=[5, &, 5, ] €l denotes a series of
single-pixel light intensities collected under random

disturbance, and K =diag(k) e[ denotes a diagonal
matrix generated from a vector consisting of scaling factors
k=[k Kk k, 1" €0 Random disturbance from

multiple sources could be inevitable in complex environments,



and a series of dynamic scaling factors could be induced
accordingly to significantly affect the collected single-pixel
light intensities.

According to a linear transform theorem for multivariate
Gaussian distributions, the light intensities collected under
random disturbances in complex environments obey a
different multivariate Gaussian distribution compared to that
in free space without disturbances.

§~N (ﬁ,i), (8)

where I and X denote a vector and a covariance matrix

respectively calculated by
fi=Kp, ©)
r=KzK". (10)

It can be seen in Eq. (9) that vector i is disturbed by
dynamic and nonlinear scaling factors. The covariance matrix

¥ is still a diagonal matrix, indicating that light intensities
collected under random disturbance are independent. Since p
is a constant vector irrelevant with dynamic scaling factors,
vector i is equivalent to dynamic scaling factors k with a

constant 4 described by

)]

Due to random disturbance, unknown dynamic scaling
factors k are randomly distributed in magnitude, and the
usage of one constant threshold in Eq. (5) cannot be effective.
It is demonstrated in Eq. (11) that vector fi can provide

n=Kp=puk

information related to the series of dynamic scaling factors k.
Therefore, to remove the effect of dynamic scaling factors
induced by random disturbance, it is feasible to estimate i as

a series of varying thresholds.

B. The Varying-threshold Estimation using WATV

It can be seen in Eq. (8) that single-pixel light intensities
collected under random disturbance obey a multivariate
Gaussian distribution, and can be reformulated as vector
Ji added by a zero-mean Gaussian distribution.

S~N(BEL)=a+N (0,X). (12)

The zero-mean Gaussian distribution has a diagonal
covariance matrix f‘., which can be treated as Gaussian white
noise. To estimate vector i as varying thresholds, a WATV

algorithm [52] is proposed and performed on the recorded
light intensities via solving an optimization model described

by
W =arg min {%"W§ - W||§ +0D(w)+ ﬂ"DWTw"l },

(13)

where W denotes a discrete wavelet transform matrix, w
denotes wavelet coefficients, A represents a regularization
parameter, (I)(W) represents a penalty function utilized to
promote sparsity and convexity of the objective function, and
D denotes a first-order difference matrix. By solving this
objective function, optimal wavelet coefficients W can be
obtained to further approximate vector fi by using inverse
wavelet transform.

ixfi=W'Ww. (14)
ia,]" is employed as a
series of varying thresholds for a binarization of the series of
single-pixel light intensities collected under random

disturbance. A binarizer using the estimated varying
thresholds can be described by

Then, vector fi=[g A,

§) =

(15)

It can be seen in Eq. (15) that using the proposed
algorithm, the binarized light intensities obtained by using the
series of estimated varying thresholds in CI under random
disturbance approximate to those obtained by using a constant
threshold in CI without any disturbances.

C. The CI-PnP

After the series of single-pixel light intensities is binarized
by using the estimated varying thresholds in Eq. (15), object
information can be further retrieved by using the binarized
light intensities and the series of random patterns. A
correspondence image recovered based on conventional CI in
Eq. (6) suffers from low quality, since it only considers
conditional averaging among the series of random patterns.
Here, with the binarization in Eq. (15), the nonlinearly inverse
problem cannot be completely solved by a linear operation in
Eq. (6). A CI-PnP method is further developed and applied by
designing an optimization model described by

f(:argmin{D(x)+R(x)}, (16)

where D(x) denotes a data-fidelity term to ensure that a

reconstructed object X is consistent with the measured data
(i.e., the light intensities binarized by the estimated varying
thresholds) defined by

D(x) = —%<Ax,§(i)>, (17)

and R (x) denotes a regularization term to preserve the pre-



defined properties, i.e., sparsity in spatial domain and a prior
Ru3p (x) implicitly defined by BM3D [53], [54], described
by

R(x)= a||x||1 +bR,,,5, (%), (18)

where ||, denotes the L1 norm, and a and b denote

regularization parameters. To solve the optimization model in
Eq. (16), a PnP priors approach is utilized by introducing an
iteration framework and BM3D [53], [54], and the details are
given in Algorithm 1. In Algorithm 1, L denotes the total
iteration number. A gradient descent step is introduced with a
step size ¥ in Line 2 of Algorithm 1 to minimize the data-

fidelity term D(x). To reduce the first component in Eq. (18),
a proximal operator is used in Line 3 of Algorithm 1 defined

by

Soft,, (x) = Sign(x) - max(|x| - a,,0). (19)

In Line 4 of Algorithm 1, a BM3D denoiser £, 0 is

chosen to suppress the artefacts of the estimated
reconstruction during the iterations. To avoid over-filtering, a
data fusion step is designed to combine the estimations in two
successive iterations with different weights, as shown in Line
5 of Algorithm 1. In addition, parameters are fine-tuned for
the next iteration in Lines 6-8 of Algorithm 1. After all the
iterations are completed, a high-quality reconstructed object
image can be rendered. It is worth noting that Algorithm 1
can be considered as a proximal-gradient version of PnP
because of the usage of a proximal operator in Eq. (19) and the
alternating minimization manner.

Algorithm 1: CI-PnP

Input: A, §, 7, 7, q"' =0
Initiating a,, b,, 6,, x’

1. for /<~ 0toL—-1do

2. X' «x' -WD(®)
7« Softa/(x’l)

q < fi(2)

x1+l P (1 _ gl)ql + qul—l
6,1 < 16,

a, < 1Nq

by, < nb,

e X AN AW

end

Output : X =x"

D. Algorithm Description
The proposed robust CI against random disturbances is

further shown in Fig. 1. A series of random patterns are
sequentially projected onto an unknown object with optical
waves propagating in free space under random disturbance
induced from multiple sources. The light field is measured by
using a single-pixel detector. A binarizer is designed and
applied to process the light intensities, and then the results are
fed into the CI-PnP to reconstruct an unknown object. Here, as
a typical example, random disturbance is generated
simultaneously from three sources, i.e., random disturbance in
light source, random disturbance in complex media, and
random disturbance in the detector.

0
CI-PnP
K Binarizer H
> 5>
§eLd
e g
Data Varying-threshold Object
acquisition estimation reconstruction

Fig. 1. A schematic for the proposed robust CI under random
disturbances. p':the ith illumination pattern; &/, &’ and &’ : dynamic
scaling factors induced by random disturbance respectively generated
in light source, complex media and the single-pixel detector; CM:
complex media; 5 : single-pixel light intensities recorded under
random disturbance; 2, : the estimated varying threshold; 5 : the
binarized light intensities obtained by using a series of estimated
varying thresholds; 0: a reconstructed object image.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. An Optical Setup

A series of optical experiments are conducted to show the
proposed robust CI against random disturbances in complex
environments. The experimental setup is shown in Figs. 2(a)
and 2(b).

A digital light projector (Texas Instrument, DLP4710EVM-
LC) is used, consisting of a 1920x1080 digital micromirror
device (DMD) and three light-emitting-diode (LED) channels.
The LED currents in three channels can be controlled
arbitrarily within a preset range, and brightness of the
projector can be arbitrarily adjusted in order to illustrate
random disturbance in light source. The larger adjustment
range of LED currents could represent a higher disturbance
level. All LED channels are switched on to sequentially
generate a series of random patterns (binary values of 0 and 1)
with 128x128 pixels during the measurements. The
illumination patterns are sampled to ensure that they are
independent and identically distributed. An unknown object is
placed in focus to be illuminated by random patterns. To
illustrate random disturbance generated in complex media,
optical waves propagate in a dynamic and turbid water
environment created by using a transparent polymethyl



methacrylate-made water tank with 10.0 cm (length) x 20.0
cm (width) x 30.0 cm (height) where 3000.0-ml pure water is
placed. During the measurements, a pear-shaped funnel is
used to continuously drop milk solutions composed of 200-ml
clean water and 40-ml milk into water tank, and a stirrer keeps
rotating with a speed of 500.0 rpm. After wave propagation
through complex media, the scrambled light field is collected

Water Controfler

tank

(b)
Fig. 2. (a) A schematic experimental setup for the proposed robust CI
against random disturbance in complex environments, and (b) a photo
of the actual setup. DLP: digital light projector; D: single-pixel
bucket detector; O: object.

by a lens with a focal length of 10.0 cm and then received by a
single-pixel detector (Thorlabs, PDA100A2). The detector has
switchable light responses among different gains
automatically controlled by a motorized precision rotation
mount (Thorlabs, PRM1Z8) and a DC servo motor controller
(Thorlabs, KDC101) to show random disturbance at the
receiver. More gain settings and a larger range of the
switching frequencies could represent a higher disturbance
level at the receiver. Random disturbance generated in the
detector by arbitrarily switching the gains is more severe
compared to others, such as background noise in the detection
and temperature drift. Finally, the single-pixel light intensities
are sequentially collected by recording the photocurrents with
the single-pixel detector via a data-acquisition device (ART
Technology, USB8586). All optical experiments reported here

are conducted under white light illumination rather than in a
dark room to illustrate robustness of the proposed CI system
against ambient light, and random disturbance is generated
simultaneously from multiple sources.
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Fig. 3. Experimental results in the CI under random disturbance to
test USAF 1951 resolution target (elements 5 and 6 of group -1): (a)
the normalized single-pixel light intensities, (b) a constant threshold
via calculating an average value of the normalized light intensities
and the varying thresholds estimated by using the proposed WATV
algorithm, (c) a correspondence image recovered by using CI with a
constant threshold, (d) a correspondence image obtained by using CI
with the estimated varying thresholds, and (e) a reconstructed object
obtained by using the proposed CI-PnP with the estimated varying
thresholds. The normalization operation is conducted by subtracting
an average value of collected light intensities and divided by standard
deviation. Here, random disturbance is generated simultaneously
from three sources, i.e., random disturbance in light source, random
disturbance in complex media, and random disturbance in the
detector.

B. A Resolution Target

Spatial resolution is defined as the ability of an imaging
system to resolve details of an object to be imaged, as a crucial
parameter to evaluate the imaging performance and associated
algorithms. A USAF 1951 resolution target is first tested in
optical experiments, consisting of several groups of line
elements with defined thicknesses and spacing. By identifying
the finest line elements in the recovered USAF 1951
resolution target, achievable resolution can be determined for
the designed experimental setup. The light field is collected by
a single-pixel detector under random disturbance as shown in
Fig. 3(a), and then is fed into the proposed algorithm for
object reconstruction. Element 6 of group -1 is well resolved
with a linewidth of 561.23 um as shown in Fig. 3(e), and the
number of realizations is 16384. In this experiment, LED
currents of the projector are controlled in a range of 200 mA-
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Fig. 4. Experimental results corresponding to the objects 1-3 in CI under random disturbances with different disturbance levels: (a)-(c) the
normalized single-pixel light intensities, (d)-(f) constant thresholds obtained by calculating an average value of the light intensities and the
varying thresholds estimated by using the developed WATV algorithm, (g)-(i) correspondence images obtained by using CI with a constant
threshold, (j)-(1) correspondence images obtained by using CI with the estimated varying thresholds, and (m)-(o) the reconstructed object
images obtained by using the proposed CI-PnP with the estimated varying thresholds. The random disturbance is created simultaneously from
three sources, i.e., random disturbance in light source, random disturbance in complex media, and random disturbance in the detector.

500 mA, and light responses of the detector are switched with
two gains of 0 dB and 10 dB. Gain switching frequencies are
arbitrarily chosen in a range of 0.5 min™! to 1.0 min™!,

Figure 3(a) shows the collected single-pixel light intensities
at the receiver. It can be seen in Fig. 3(a) that the collected
light intensities fluctuate significantly with multiple abrupt
changes owing to dynamic and nonlinear scaling factors
induced by random disturbance. An average value calculated
by using the normalized single-pixel light intensities is applied
as a constant threshold shown in Fig. 3(b). With the binarized
light intensities obtained by using the constant threshold, CI is
applied to recover a correspondence image with conditional

averaging, as shown in Fig. 3(c). No effective object
information can be visually rendered, since the usage of one
constant threshold ignores dynamic scaling factors induced by
random disturbance in the CI system. Therefore, conventional
CI performs a blind binarization on the collected light
intensities, and would fail under random disturbance. To
remove the effect of dynamic and nonlinear scaling factors
induced by random disturbance, varying thresholds are
estimated by using the proposed WATV algorithm, as shown
in Fig. 3(b). Using the series of estimated varying thresholds
to binarize light intensities, a correspondence image can be
retrieved based on conditional averaging, as shown in Fig.



3(d). Compared to the correspondence image in Fig. 3(c),
effective object information has been retrieved, verifying that
the estimated varying thresholds are accurate and can facilitate
a removal of the effect of the series of dynamic scaling factors
induced by random disturbance. It can be seen that the
correspondence image in Fig. 3(d) is still of low quality with
noise-like background. When the developed CI-PnP is applied
with the series of varying thresholds, a reconstructed object
image is shown in Fig. 3(e). It can be seen in Fig. 3(e) that the
elements are well resolved, and the proposed method
facilitates the realization of high-resolution and high-
robustness CI against random disturbance.

C. Robustness of the Proposed Method

To further verify robustness of the proposed CI against
random disturbance in complex environments, another three
objects, i.e., object 1 “bolt”, object 2 “paw” and object 3
“plane”, are tested by using the experimental setup in Fig.
2(a). These objects are fabricated by leveraging 3D-printing
with the feature sizes of 1.0 cm x 1.5 ¢cm, 1.5 cm X 1.5 ¢cm and
1.5 ecm x 1.5 cm, respectively. The objects are separately
tested, and each object is sequentially illuminated by a series
of random patterns with optical waves propagating through
complex media, as shown in Fig. 2(a). Here, random
disturbance is generated simultaneously from multiple sources
using different settings to study the robustness of the proposed
CI system. Experimental results are shown in Fig. 4.

In Fig. 4(a), LED currents of the projector are controlled in
a range of 200 mA-300 mA to create random disturbance in
light source. The light responses of the detector oscillate by
alternately using two gains of 20 dB and 30 dB with the
switching frequencies randomly selected in a range of 0.2 min
' to 0.4 min’!. Single-pixel light intensities collected under
random disturbance are normalized by subtracting an average
value of the collected light intensities and divided by standard
deviation, as shown in Fig. 4(a). A constant threshold is
obtained by calculating an average value of the normalized
light intensities, as shown in Fig. 4(d). By binarizing the
normalized light intensities with the constant threshold,
conventional CI cannot retrieve effective object information,
as shown in Fig. 4(g). On the contrary, a series of varying
thresholds are estimated by using the proposed WATV
algorithm, and are applied for the binarization of light
intensities. Then, the binarized light intensities are used to
recover a correspondence image using conditional averaging,
and a reconstructed object image is shown in Fig. 4(j). It is
experimentally illustrated that the varying thresholds
estimated by using the proposed WATV algorithm are
accurate and effective. When the proposed CI-PnP is used
with the estimated varying thresholds, a high-quality
reconstructed object image can be obtained, as shown in Fig.
4(m).

To increase the disturbance level, LED currents are
controlled to fluctuate in a larger range of 100 mA-300 mA in
Fig. 4(b). Two gains (i.e., 20 dB and 30 dB) are switched with
the higher switching frequencies arbitrarily chosen in a range
of 1.0 min"! to 1.5 min’'. Figure 4(b) shows the normalized

single-pixel light intensities obtained by subtracting an
average value of the collected light intensities and divided by
standard deviation. Then, a constant threshold is obtained by
calculating an average value of the normalized light
intensities, as shown in Fig. 4(e). In the proposed method, the
varying thresholds estimated by using the WATV algorithm
are shown in Fig. 4(e). The recovered correspondence images
are shown in Figs. 4(h) and 4(k), when the light intensities are
binarized by using the constant threshold and the estimated
varying thresholds, respectively. It is demonstrated that the
estimated varying thresholds are accurate and effective. When
the proposed CI-PnP with the estimated varying thresholds is
applied, high-quality object reconstruction can be realized, as
shown in Fig. 4(n).

The LED currents are controlled in a larger range of 100
mA-600 mA, and three gains of the detector (i.e., 10 dB, 20
dB and 30 dB) are switched with the higher switching
frequencies arbitrarily selected in a range of 1.5 min™! to 2.0
min!. After CI under random disturbance is conducted, the
normalized light intensities are obtained and shown in Fig.
4(c). More abrupt changes can be observed in the normalized
single-pixel light intensities, and this type of random
disturbance is applied to illustrate the feasibility of the
proposed method in an extremely complex environment. An
average value of the normalized light intensities is calculated
as a constant threshold, as shown in Fig. 4(f). A series of
varying thresholds are also estimated by using the proposed
WATV algorithm, as shown in Fig. 4(f). Figure 4(1) shows
effective object information rendered in the recovered
correspondence image using the estimated varying thresholds,
while no object information can be retrieved with a constant
threshold as shown in Fig. 4(i). The proposed CI-PnP
algorithm with a series of estimated varying thresholds is also
applied to realize high-quality object reconstruction, as shown
in Fig. 4(0o). The developed CI system is experimentally
verified to be highly robust against random disturbances with
varying disturbance levels using different experimental
settings, and high-fidelity object reconstruction can always be
implemented.

Different sampling ratios are further tested to verify the
proposed method. The reconstructed correspondence images
corresponding to object 1 are shown in Figs. 5(a)-5(e), when
sampling ratios of 1.0, 0.8, 0.6, 0.4 and 0.2 are used,
respectively. It can be seen in Figs. 5(a)-5(e) that the
reconstructed objects are of high quality with sharp outlines
and clear details. When the sampling ratio is low as 0.2,
features of the object are still preserved and visually rendered
in Fig. 5(e). The reconstructed correspondence images
corresponding to object 2 and object 3 are shown in Figs. 5(f)—
5G) and 5(k)-5(o). It is demonstrated that the proposed
method possesses ultra-high robustness against random
disturbance under different sampling ratios, and has superior
performance at low sampling ratios.
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(e)

Fig. 5. The recovered correspondence images obtained by using the
proposed CI-PnP with estimated varying thresholds under different
sampling ratios of 1.0, 0.8, 0.6, 0.4 and 0.2 corresponding to (a)-(e)
object 1, (f)-(j) object 2, and (k)-(0) object 3.

D. Comparisons among Different Methods

To show superior performance of the proposed method,
different methods are compared under random disturbance,
i.e., the proposed CI-PnP with estimated varying thresholds,
the method in Ref. [48], CI with a constant threshold, GI [55],
differential GI (DGI) [56] and normalized GI (NGI) [57].
Experimental results obtained by using the aforementioned
methods are shown in Fig. 6.

Figures 6(a)-6(c) show the reconstructed object images
using the proposed method (i.e., the CI-PnP with estimated
varying thresholds), and object features are clearly rendered.
In Figs. 6(d)-6(f), the reconstructed object images obtained by
using the method in Ref. [48] are of low quality due to
inaccurate varying-threshold estimations. Conventional CI
with a constant threshold fails as shown in Figs. 6(g)-6(1),
since the usage of a constant threshold cannot lead to a
removal of dynamic scaling factors induced by random
disturbance. The usage of one constant threshold introduces a
blind binarization on the collected single-pixel light intensities
and an incorrect conditional averaging among random
patterns. When the collected single-pixel light intensities are
applied as correlation coefficients in GI, no object information
can be retrieved as shown in Figs. 6(j)—6(1). Although it has
been reported that DGI and NGI can be employed for object
reconstruction, an inherent problem related to dynamic and
nonlinear scaling factors induced by random disturbance is not

solved. DGI and NGI also cannot work as shown in Figs.
6(m)—6(0) and 6(p)—6(r). It is demonstrated that the proposed
method is effective and highly robust against random
disturbance, and high-quality object reconstruction can be
realized in CI under random disturbance.

Object 1 Object 2 Object 3
d n ’
Propose T
(a) (b)
Ref. [48] (“ ¥,
(d) (e)
CI
(8) (h)
GI
DGI
NGI

®) @ G

Fig. 6. The reconstructed object images corresponding to object 1,
object 2, and object 3 obtained by using (a)-(c) the proposed CI-PnP
with the estimated varying thresholds, (d)-(f) the method in Ref. [48],
(g)-(1) CI with a constant threshold, (j)-(1) GI, (m)-(o) DGI, and (p)-(r)
NGI.

E. The CNR versus Sampling Ratios

To quantitatively evaluate the proposed method, contrast-to-
noise ratio (CNR) of the reconstructed object images is
employed and calculated by [58]-[62]

,Ll‘ f Hy

CNR =———,
(Gf+6b)/2

(20)

where u, and g, respectively denote average intensities of

feature part (i.e., area of interest) and background part in a
reconstructed object image, and o, and o, denote standard

deviation of feature part and background part, respectively.
Figures 7(a)-7(c) show the relationships between the
sampling ratios and CNR values of the reconstructed object



images, when CI with a constant threshold, CI with varying
thresholds and CI-PnP with varying thresholds are
respectively used. As can be seen in Figs. 7(a)-7(c), CNR
values of the reconstructed object images obtained by using
the CI-PnP with varying thresholds can increase with the
higher sampling ratios, and CNR values reach up to 38.16,
3393 and 38.50, respectively. CNR values of the
reconstructed object images obtained by using the proposed
CI-PnP with varying thresholds are much larger than those
obtained by using other methods. It is quantitatively illustrated
in Figs. 7(a)-7(c) that the estimation of a series of varying
thresholds is accurate, and the proposed method has superior
performance.

A —* CI with varying thresholds
CI with a constant threshold

=== C[-PnP with varying thresholds

02 03 04 05 06 07 08 09 1
Sampling ratio

@

A —* CI with varying thresholds
CI with a constant threshold
=== C[-PnP with varying thresholds

02 03 04 05 06 07 08 09 1
Sampling ratio

(b)

* CI with varying thresholds
CI with a constant threshold

A—

=——o—— C[-PnP with varying thresholds

02 03 04 05 06 07 08 09 1
Sampling ratio

©

Fig. 7. The relationships between the sampling ratios and CNR values
of the reconstructed object images respectively using CI with varying
thresholds, CI with a constant threshold and CI-PnP with varying
thresholds: (a) object 1, (b) object 2, and (c) object 3.

IV. CONCLUSION

In this paper, we have proposed a robust CI against random
disturbances. A series of varying thresholds are accurately
estimated by using the WATV algorithm, and are applied to
binarize a series of single-pixel light intensities. The binarized

light intensities and a series of random patterns are fed into the
proposed CI-PnP for object reconstruction. The detailed
theoretical descriptions have been given to reveal the
fundamentals and formation mechanism. It is demonstrated in
optical experiments that the proposed method can effectively
remove the effect of dynamic and nonlinear scaling factors
induced by random disturbances simultaneously from multiple
sources without the usage of temporal carriers, and the
reconstructed objects are of high quality. The proposed
method opens up an avenue for CI to achieve ultra-high
robustness against random disturbances in complex
environments, and could be promising in various applications.

REFERENCES

[11 A. Gnanasambandam and S. H. Chan, "Exposure-referred signal-to-
noise ratio for digital image sensors," /IEEE Trans. Comput. Imag., vol.
8, pp. 561-575, 2022.

[21 W. Guicquero, A. Dupret, and P. Vandergheynst, "An algorithm
architecture co-design for CMOS compressive high dynamic range
imaging," IEEE Trans. Comput. Imag., vol. 2, no. 3, pp. 190-203, 2016.

[3] M. Jia, Z. Wei, L. Yu, Z. Yuan, and F. Gao, "Noise-disentangled single-
pixel imaging under photon-limited conditions," /EEE Trans. Comput.
Imag., vol. 9, pp. 594-606, 2023.

[4] L. Vizioli, S. Moeller, L. Dowdle, M. Akgakaya, F. De Martino, E.
Yacoub, and K. Ugurbil, "Lowering the thermal noise barrier in
functional brain mapping with magnetic resonance imaging," Nat.
Commun., vol. 12, no. 1, pp. 5181-5181, 2021.

[S] B.Pan,D. Wu, and Y. Xia, "An active imaging digital image correlation
method for deformation measurement insensitive to ambient light," Opt.
Laser Technol., vol. 44, no. 1, pp. 204-209, 2012.

[6] D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, "Photon-efficient
computational 3-D and reflectivity imaging with single-photon
detectors," IEEE Trans. Comput. Imag., vol. 1, no. 2, pp. 112-125, 2015.

[71 W.Li, T. Xi, S. He, L. Liu, J. Liu, F. Liu, B. Wang, S. Wei, W. Liang,
Z. Fan, Y. Sun, Y. Wang, and X. Shao, "Single-shot imaging through
scattering media under strong ambient light interference," Opt. Lett., vol.
46, no. 18, pp. 4538-4541, 2021.

[8] B. Zhu, J. C. Rasmussen, and E. M. Sevick-Muraca, "Non-invasive
fluorescence imaging under ambient light conditions using a modulated
ICCD and laser diode," Biomed. Opt. Express, vol. 5, no. 2, pp. 562—
572,2014.

[91 Y. Mao, C. Flueraru, S. Chang, D. P. Popescu, and M. G. Sowa, "High-
quality tissue imaging using a catheter-based swept-source optical
coherence tomography systems with an integrated semiconductor optical
amplifier," IEEE Trans. Instrum. Meas., vol. 60, no. 10, pp. 3376-3383,
2011.

[10] M. Ma, L. Gu, Y. Shen, Q. Guan, C. Wang, H. Deng, X. Zhong, M. Xia,
and D. Shi, "Computational framework for turbid water single-pixel
imaging by polynomial regression and feature enhancement," [EEE
Trans. Instrum. Meas., vol. 72, pp. 1-11, 2023.

[11] S. Zhou, Z. Zhang, Y. Liu, and J. Tian, "Restoration on high turbidity
water images under near-field illumination using a light-field camera,"
IEEE Trans. Comput. Imag., vol. 10, pp. 984-999, 2024.

[12] S. Mukherjee, A. Vijayakumar, and J. Rosen, "Spatial light modulator
aided noninvasive imaging through scattering layers," Sci. Rep., vol. 9,
no. 1, pp. 17670-11, 2019.

[13] N. Chimitt, X. Zhang, Z. Mao, and S. H. Chan, "Real-time dense field
phase-to-space simulation of imaging through atmospheric turbulence,"
IEEE Trans. Comput. Imag., vol. 8, pp. 1159-1169, 2022.

[14] J. Li and Z. Liu, "Self-measurements of point-spread function for remote
sensing optical imaging instruments," [EEE Trans. Instrum. Meas., vol.
69, no. 6, pp. 3679-3686, 2020.

[15] M. Li, R. Li, S. Bao, Z. Xu, Q. Li, H. Feng, Y. Chen, and H. Chen,
"Imaging chain modeling and a scaling experiment for optical remote
sensing of lunar surface," IEEE Trans. Instrum. Meas., vol. 73, pp. 1-13,
2024.

[16] J. Fan, X. Wang, C. Zhou, Y. Ou, F. Jing, and Z. Hou, "Development,
calibration, and image processing of underwater structured light vision
system: A survey," [EEE Trans. Instrum. Meas., vol. 72, pp. 1-18, 2023.



[17]

(18]

[19]

[20]

(23]

[24

[}

[25]

[26]

[27]

(28]

[29]

[30]

[31

—

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Y. Ding, Z. Chen, Y. Ji, J. Yu, and J. Ye, "Light field-based underwater
3D reconstruction via angular re-sampling," [EEE Trans. Comput.
Imag., vol. 9, pp. 881-893, 2023.

M. Jian, X. Liu, H. Luo, X. Lu, H. Yu, and J. Dong, "Underwater image
processing and analysis: A review," Signal Processing. Image Commun.,
vol. 91, p. 116088, 2021.

I. De Falco, G. Tortora, P. Dario, and A. Menciassi, "An integrated
system for wireless capsule endoscopy in a liquid-distended stomach,"
IEEE Trans. Biomed. Eng., vol. 61, no. 3, pp. 794-804, 2014.

Q. Cao, R. Deng, Y. Pan, R. Liu, Y. Chen, G. Gong, J. Zou, H. Yang,
and D. Han, "Robotic wireless capsule endoscopy: recent advances and
upcoming technologies," Nat. Commun., vol. 15, no. 1, pp. 459721,
2024.

H. R. Shi, Q. Wang, Y. Zhao, and H. G. Zhang, "High-performance
fourier iteration ghost imaging under low sampling rate," IEEE Trans.
Instrum. Meas., vol. 73, pp. 1-9, 2024.

Z. Yang, G. Li, R. Yan, Y. Sun, L. A. Wu, and A. X. Zhang, "3-D
computational ghost imaging with extended depth of field for
measurement," /[EEE Trans. Instrum. Meas., vol. 68, no. 12, pp. 4906—
4912, 2019.

Y. He, Y. Zhou, J. Yu, H. Chen, H. Zheng, J. Liu, Y. Zhou, and Z. Xu,
"ADMMNet-based deep unrolling method for ghost imaging," IEEE
Trans. Comput. Imag., vol. 10, pp. 233-245, 2024.

L. Olivieri, J. S. Totero Gongora, L. Peters, V. Cecconi, A. Cutrona, J.
Tunesi, R. Tucker, A. Pasquazi, and M. Peccianti, "Hyperspectral
terahertz microscopy via nonlinear ghost imaging," Optica, vol. 7, no. 2,
pp. 186191, 2020.

J. Xiong, P. Zheng, Z. Gao, and H. C. Liu, "Algorithm-dependent
computational ghost encryption and imaging," Phys. Rev. Appl., vol. 18,
no. 3, p. 034023, 2022.

Z.D. Liu, Z. G. Li, Y. N. Zhao, S. H. Zhang, Z. Y. Ye, D. J. Zhang, H.
C. Liu, J. Xiong, and H. G. Li, "Fourier single-pixel imaging via
arbitrary illumination patterns," Phys. Rev. Appl., vol. 19, no. 4, p.
044025, 2023.

Z. Ye, J. Xiong, and H. C. Liu, "Ghost difference imaging using one
single-pixel detector," Phys. Rev. Appl., vol. 15, no. 3, p. 034035, 2021.
D. Liu, M. Tian, S. Liu, X. Dong, J. Guo, Q. He, H. Xu, and Z. Li,
"Ghost imaging with non-Gaussian quantum light," Phys. Rev. Appl.,
vol. 16, no. 6, p. 064037, 2021.

Y. Yu, J. Zheng, S. Chen, and Z. Yang, "Moving target imaging via
computational ghost imaging combined with artificial bee colony
optimization," Trans. Instrum. Meas., vol. 71, pp. 1-7,2022.

F. Rousset, N. Ducros, A. Farina, G. Valentini, C. D’Andrea, and F.
Peyrin, "Adaptive basis scan by wavelet prediction for single-pixel
imaging," IEEE Trans. Comput. Imag., vol. 3, no. 1, pp. 3646, 2017.

C. Pitsch, D. Walter, L. Gasparini, H. Biirsing, and M. Eichhorn, "3D
quantum ghost imaging," Appl. Opt., vol. 62, no. 23, pp. 6275-6281,
2023.

P. Hong and Y. Liang, "Three-dimensional microscopic single-pixel
imaging with chaotic light," Phys. Rev. A4, vol. 105, no. 2, p. 023506,
2022.

W. Zhao, H. Chen, Y. Yuan, H. Zheng, J. Liu, Z. Xu, and Y. Zhou,
"Ultrahigh-speed color imaging with single-pixel detectors at low light
level," Phys. Rev. Appl., vol. 12, no. 3, p. 034049, 2019.

H. Wu, B. Hu, L. Chen, F. Peng, Z. Wang, G. Genty, and H. Liang,
"Mid-infrared computational temporal ghost imaging," Light: Sci. Appl.,
vol. 13, no. 1, p. 124, 2024.

R. S. Aspden, N. R. Gemmell, P. A. Morris, D. S. Tasca, L. Mertens, M.
G. Tanner, R. A. Kirkwood, A. Ruggeri, A. Tosi, R. W. Boyd, G. S.
Buller, R. H. Hadfield, and M. J. Padgett, "Photon-sparse microscopy:
Visible light imaging using infrared illumination," Optica, vol. 2, no. 12,
pp. 1049-1052, 2015.

L. Olivieri, J. S. Totero Gongora, L. Peters, V. Cecconi, A. Cutrona, J.
Tunesi, R. Tucker, A. Pasquazi, and M. Peccianti, "Hyperspectral
terahertz microscopy via nonlinear ghost imaging," Optica, vol. 7, no. 2,
pp. 186-191, 2020.

J. S. Totero Gongora, L. Olivieri, L. Peters, J. Tunesi, V. Cecconi, A.
Cutrona, R. Tucker, V. Kumar, A. Pasquazi, and M. Peccianti, "Route to
intelligent imaging reconstruction via terahertz nonlinear ghost
imaging," Micromachines, vol. 11, no. 5, p. 521, 2020.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin,
"Experimental X-ray ghost imaging," Phys. Rev. Lett., vol. 117, no. 11,
p- 113902, 2016.

A. Schori and S. Shwartz, "X-ray ghost imaging with a laboratory
source," Opt. Express, vol. 25, no. 13, pp. 14822-14828,2017.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]
[56]

[57]

[58]

[59]

[60]

[61]

[62]

10

K. H. Luo, B. Q. Huang, W. M. Zheng, and L. A. Wu, "Nonlocal
imaging by conditional averaging of random reference measurements,"
Chin. Phys. Lett., vol. 29, no. 7, p. 074216, 2012.

H. Liu, H. Yang, J. Xiong, and S. Zhang, "Positive and negative ghost
imaging," Phys. Rev. Appl., vol. 12, no. 3, p. 034019, 2019.

L. Dou, L. Ren, D. Cao, and X. Song, "Positive-negative ghost imaging
with statistics of realizations," Phys. Rev. Appl., vol. 16, no. 4, p.
044013, 2021.

X. Yao, X. Liu, W. Yu, and G. Zhai, "Ghost imaging based on Pearson
correlation coefficients," Chinese physics B, vol. 24, no. 5, pp. 340-345,
2015.

M. Li, Y. Zhang, X. Liu, X. Yao, K. Luo, H. Fan, and L. A. Wu, "A
double-threshold technique for fast time-correspondence imaging," Appl.
Phys. Lett., vol. 103, no. 21, p. 211119, 2013.

M. F. Li, Y. R. Zhang, K. H. Luo, L. A. Wu, H. Fan, "Time-
correspondence differential ghost imaging," Phys. Rev. A4, vol 87, no. 3,
p. 033813, 2013.

S. C. Song, M. J. Sun, L. A. Wu, "Improving the signal-to-noise ratio of
thermal ghost imaging based on positive—negative intensity correlation,"
Opt. Commun., vol. 366, pp. 8-12, 2016.

Y. Xiao, L. Zhou, and W. Chen, "Correspondence imaging through
complex scattering media with temporal correction," Opt. Lasers Eng.,
vol. 174, p. 107957, 2024.

Z.Xu, Q. Song, and W. Chen, "High-fidelity correspondence imaging in
complex media with varying thresholds and 1-bit compressive sensing,"
Appl. Phys. Lett., vol. 124, no. 11, p. 111105, 2024.

J. Leng, W. Yu, and S. Wang, "Formation mechanism of correspondence
imaging with thermal light," Phys. Rev. A4, vol. 101, no. 3, p. 033835,
2020.

H. Yang, S. Wu, H. B. Wang, D. Z. Cao, S. H. Zhang, J. Xiong, K. G.
Wang, "Probability theory in conditional-averaging ghost imaging with
thermal light," Phys. Rev. 4, vol. 98, no. 5, p. 053853, 2018.

L. Bian, J. Suo, Q. Dai, and F. Chen, "Experimental comparison of
single-pixel imaging algorithms," J. Opt. Soc. Am. A4, vol. 35, no. 1, pp.
78-87,2018.

D. Yin and 1. W. Selesnick, "Artifact-free wavelet denoising: Non-
convex sparse regularization, convex optimization," [EEE Signal
Process. Lett., vol. 22, no. 9, pp. 1364-1368, 2015.

U. S. Kamilov, H. Mansour, and B. Wohlberg, "A plug-and-play priors
approach for solving nonlinear imaging inverse problems," /EEE Signal
Process. Lett., vol. 24, no. 12, pp. 1872—1876, 2017.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Image denoising
by sparse 3-D transform-domain collaborative filtering," IEEE Trans.
Image Process., vol. 16, no. 8, pp. 2080-2095, 2007.

J. H. Shapiro, "Computational ghost imaging," Phys. Rev. A4, vol. 78, no.
6, p. 061802, 2008.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, "Differential ghost
imaging," Phys. Rev. Lett., vol. 104, no. 25, p. 253603, 2010.

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett,
"Normalized ghost imaging," Opt. Express, vol. 20, no. 15, pp. 16892—
16901, 2012.

B. Redding, M. A. Choma, and H. Cao, "Speckle-free laser imaging
using random laser illumination," Nat. Photonics, vol. 6, no. 6, pp. 355—
359,2012.

Y. Hao and W. Chen, "A dual-modality optical system for single-pixel
imaging and transmission through scattering media," Opt. Lett., vol. 49,
no. 2, pp. 371-374, 2024.

Y. Xiao, L. Zhou, and W. Chen, "High-resolution ghost imaging through
complex scattering media via a temporal correction," Opt. Lett., vol. 47,
no. 15, pp. 3692-3695, 2022.

Z. Wang, T. Zhang, Y. Xiao, Z. Liu, and W. Chen, "Common-path ghost
imaging through complex media with dual polarization," Opt. Lett., vol.
50, no. 4, pp. 1152-1155, 2025.

Y. Hao and W. Chen, "Single-pixel complex-field imaging through
scattering media," Opt. Lett., vol. 50, no. 6, pp. 1949-1952, 2025.



	I. Introduction
	II. Problem Formulation and Methods
	A. Problem Formulation
	B. The Varying-threshold Estimation using WATV
	C. The CI-PnP
	D. Algorithm Description

	III. Experimental Results and Discussion
	A. An Optical Setup
	B. A Resolution Target
	C. Robustness of the Proposed Method
	D. Comparisons among Different Methods
	E. The CNR versus Sampling Ratios

	IV. Conclusion



