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Robust Correspondence Imaging against Random 
Disturbances with Single-Pixel Detection

Zhihan Xu, Yin Xiao, and Wen Chen 

 Abstract—Random disturbance has become a great challenge 
for correspondence imaging (CI) due to dynamic and nonlinear 
scaling factors. In this paper, we propose a robust CI against 
random disturbances for high-quality object reconstruction. To 
remove the effect of dynamic scaling factors induced by random 
disturbance, a wavelet and total variation (WATV) algorithm is 
developed to estimate a series of varying thresholds. Then, light 
intensities collected by a single-pixel detector are processed by 
using the series of estimated varying thresholds. To realize high-
quality object reconstruction, the binarized light intensities and a 
series of random patterns are fed into a plug-and-play priors 
(PnP) algorithm with an iteration framework and a general 
denoiser, called as CI-PnP. Theoretical descriptions are given in 
detail to reveal the formation mechanism in CI under random 
disturbance. Optical measurements are conducted to verify 
robustness of the proposed CI against random disturbances. It is 
demonstrated that the proposed method can remove the effect of 
dynamic scaling factors induced by random disturbance, and can 
realize high-quality object reconstruction. The proposed method 
provides a promising solution to achieving ultra-high robustness 
against random disturbances in CI, and is promising in various 
applications. 

Index Terms—Correspondence imaging, High-quality object 
reconstruction, Random disturbance, Complex environments, 
Single-pixel detection. 

I. INTRODUCTION

MAGING systems usually received information-carrying 
light fields by utilizing a pixelated sensor such as charge-

coupled device (CCD) or complementary metal-oxide-
semiconductor (CMOS) [1], [2], which can capture 2D images 
related to the intensity distributions of light field. To 
accurately extract useful information from the captured 
images, disturbance induced by the environment or imaging 
system needs to be avoided. However, random disturbance 
could be inevitable in practice [3], such as thermal noise in 
electronic devices [4], ambient light [5]–[8] and turbulence in 
an optical channel [9]–[12], leading to noisy measurement and 
inaccurate information extraction. Therefore, imaging against 
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random disturbance has attracted much attention, especially 
when imaging systems are deployed in complex or extreme 
environments where random disturbance overwhelms, such as 
satellite imagery [13]–[15], underwater imaging [16]–[18] and 
capsule endoscopy [19], [20] etc. Random disturbance induced 
in such environments introduces difficulties for the existing 
imaging systems, and becomes a challenge to visualizing an 
object or extracting clear information. 

To overcome the challenges induced by random 
disturbance, ghost imaging (GI) emerged as a promising 
solution [21]–[23]. By projecting a series of illumination 
patterns onto an unknown object and measuring light 
intensities using a single-pixel detector, GI can 
computationally realize object reconstruction [24]–[30]. The 
advantages of GI lie in several aspects. For instance, single-
pixel detectors could precisely provide temporal resolution, 
making it feasible in 3D imaging [31], [32] and ultrafast 
imaging [33]. Compared to the pixelated detectors, single-
pixel detectors show the higher efficiency and sensitivity in a 
wide spectrum (e.g., infrared [34], [35], terahertz [36], [37] 
and X-ray [38], [39]). More importantly, GI encodes 2D 
spatial information into a 1D signal to be processed in a 
flexible manner. Moreover, it can provide advantages over 2D 
imaging, when the disturbance exists. In recent years, 
correspondence imaging (CI) has been developed as an 
alternative [40]–[43], when a single-pixel detector is used. 
Without the usage of single-pixel light intensities as 
correlation coefficients, CI adopts a binarization of collected 
light intensities with a constant threshold to divide the series 
of illumination patterns into two groups. By superimposing the 
classified illumination patterns in each group, two 
reconstructed patterns can be obtained with positive and 
negative contrasts respectively called as positive and negative 
images. A higher-quality reconstructed object image can be 
generated by subtracting the negative image from the positive 
image [40], [41]. With the binarized light intensities, CI could 
offer the higher efficiency in data storage, data transmission 
and object reconstruction. Compared to GI, CI could also be 
insensitive to nonlinear distortions occurring in noisy 
environments [44]. 

Although CI was demonstrated to be promising for object 
reconstruction, its feasibility under random disturbance is still 
limited. Most existing studies focus on the applications of CI 
in free space without disturbance. Although CI was studied 
[44]–[48], few studies focus on CI against random disturbance 
from multiple sources which may lead to a high-level 
fluctuation in the collected single-pixel light intensities. The 
reconstruction with pattern superimposition in CI also suffers 
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from low quality owing to a series of random patterns used for 
the illumination [49], [50], posing a challenge for the potential 
applications. Therefore, it is significant and desirable to 
achieve the robustness of CI against random disturbance. 

In this paper, we propose a robust CI against random 
disturbances. To remove the effect of dynamic and nonlinear 
scaling factors induced by random disturbance, a series of 
varying thresholds are first estimated by using a wavelet and 
total variation (WATV) algorithm. After single-pixel light 
intensities are binarized by the series of estimated varying 
thresholds, a plug-and-play (PnP) prior algorithm is developed 
and applied via designing an iteration framework and the 
block-matching and 3D filtering (BM3D), called as CI-PnP. A 
series of optical experiments are conducted to illustrate 
feasibility and effectiveness of the proposed method. It is 
demonstrated that the estimated varying thresholds can 
facilitate an accurate removal of the effect of dynamic scaling 
factors induced by random disturbance, and high-quality 
object reconstruction is realized. 

The main contributions of our work are briefly summarized 
as follows: 

1) The robustness of CI is fully studied using the varying 
thresholds, and ultra-high robustness against random 
disturbances is achieved in complex environments. 

2) A regularized computational algorithm in a PnP manner 
is designed instead of linear correlations in conventional 
methods, leading to the realization of high-fidelity object 
reconstruction. 

3) A detailed theoretical derivation of formation mechanism 
of computational CI through complex scattering media with 
random disturbances is presented. A series of experimental 
results, i.e., under various random disturbances with different 
parameters, are obtained to illustrate that the proposed method 
outperforms conventional approaches in terms of performance 
and efficiency. 

The rest of the paper is organized as follows: The formation 
mechanism of CI with random disturbances in complex 
environments and the proposed principles are described in 
detail in Section II. The optical setup, experimental settings 
and experimental results are presented and discussed in 
Section III. Finally, conclusions are drawn in Section IV. 

II. PROBLEM FORMULATION AND METHODS 

A. Problem Formulation 
In CI without disturbance, a series of random patterns are 

sequentially projected onto an unknown object O  with the 
light intensities collected by a single-pixel detector [51]. 

 ,s Ax=  (1) 

where A M N×∈  denotes a modulation matrix with M 
vectorized patterns and N pixels in each pattern, 1x N×∈  
denotes the unknown object vectorized as a column vector, and 

T 1
1 2[ ]s M

Ms s s ×= ∈  denotes a vector with M light 
intensities. It is given in Eq. (1) that there is a linear sampling 

process with a sampling ratio defined by / ,M N and the 
problem related to the sampling ratio also needs to be solved.  

It was demonstrated that single-pixel light intensities 
collected without disturbance in free space obey a multivariate 
Gaussian distribution [49], when the random patterns are 
independent and identically distributed. 

  ( )~ , ,s μ ΣN  (2) 

where 1μ M ×∈  and Σ M M×∈  denote a vector with mean 
values and a covariance matrix of the multivariate Gaussian 
distribution, respectively. The single-pixel light intensities in 
s  are independent and identically distributed, indicating that 
the collected light intensities share one mean value and the 
covariance between any two intensities is zero. Therefore, μ  
and Σ  can be respectively described by 

  ,μ 1µ=  (3) 

   ( )2diag ,Σ 1σ=  (4) 

where 11 M ×∈  denotes a vector only with one, diag( )⋅  
denotes an operator to generate a diagonal matrix with its 
input as diagonal elements, and µ  and σ  denote the 
parameters to be approximated by using an average value and 
standard deviation of the single-pixel light intensities, 
respectively.  

To retrieve object information from the series of collected 
single-pixel light intensities, a constant threshold is usually 
calculated and applied in CI to binarize the light intensities. 

       ( )( ) Sign ,s s μ± = −  (5) 

where Sign( )⋅  denotes an operator to return 1±  depending on 

the sign of its input and ( ) 1s M± ×∈  denotes the binarized 
light intensities with values of +1 and -1. A correspondence 
image x  can be recovered by averaging random patterns 
conditionally depending on the signs of the binarized single-
pixel light intensities. 

   T ( ) .1x A s
M

±=  (6) 

When random disturbance exists in CI, the series of 
collected single-pixel light intensities would fluctuate 
significantly owing to dynamic and nonlinear scaling factors 
induced by random disturbance. 

  ,s Ks=  (7) 

where T 1
1 2[ ]s M

Ms s s ×= ∈      denotes a series of 
single-pixel light intensities collected under random 
disturbance, and diag( )K k M M×= ∈  denotes a diagonal 
matrix generated from a vector consisting of scaling factors 

T 1
1 2 .[ ]k M

Mk k k ×= ∈   Random disturbance from 
multiple sources could be inevitable in complex environments, 
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and a series of dynamic scaling factors could be induced 
accordingly to significantly affect the collected single-pixel 
light intensities. 

According to a linear transform theorem for multivariate 
Gaussian distributions, the light intensities collected under 
random disturbances in complex environments obey a 
different multivariate Gaussian distribution compared to that 
in free space without disturbances. 

  ( )~ , ,s μ Σ N  (8) 

where μ  and Σ  denote a vector and a covariance matrix 
respectively calculated by 

  ,μ Kμ=  (9) 

   T .Σ KΣK=  (10) 

It can be seen in Eq. (9) that vector μ  is disturbed by 
dynamic and nonlinear scaling factors. The covariance matrix 
Σ  is still a diagonal matrix, indicating that light intensities 
collected under random disturbance are independent. Since μ  
is a constant vector irrelevant with dynamic scaling factors, 
vector μ  is equivalent to dynamic scaling factors k  with a 
constant µ  described by 

    .μ Kμ kµ= =  (11) 

Due to random disturbance, unknown dynamic scaling 
factors k  are randomly distributed in magnitude, and the 
usage of one constant threshold in Eq. (5) cannot be effective. 
It is demonstrated in Eq. (11) that vector μ  can provide 
information related to the series of dynamic scaling factors .k  
Therefore, to remove the effect of dynamic scaling factors 
induced by random disturbance, it is feasible to estimate μ  as 
a series of varying thresholds.  

B. The Varying-threshold Estimation using WATV 
It can be seen in Eq. (8) that single-pixel light intensities 

collected under random disturbance obey a multivariate 
Gaussian distribution, and can be reformulated as vector 
μ added by a zero-mean Gaussian distribution. 

      ( ) ( )~ , 0, .s μ Σ μ Σ= +   N N  (12) 

The zero-mean Gaussian distribution has a diagonal 
covariance matrix ,Σ  which can be treated as Gaussian white 
noise. To estimate vector μ  as varying thresholds, a WATV 
algorithm [52] is proposed and performed on the recorded 
light intensities via solving an optimization model described 
by 

 ( )2 T T
2 1

1ˆ arg min ,
2w

w Ws w λ Φ w DW wβ = − + + 
 

       

                                                                                              (13) 

where W  denotes a discrete wavelet transform matrix, w  
denotes wavelet coefficients, λ  represents a regularization 
parameter, ( )Φ w  represents a penalty function utilized to 
promote sparsity and convexity of the objective function, and 
D  denotes a first-order difference matrix. By solving this 
objective function, optimal wavelet coefficients ŵ  can be 
obtained to further approximate vector μ  by using inverse 
wavelet transform. 

      Tˆ ˆ .μ μ W w≈ =  (14) 

Then, vector T
1 2ˆ ˆ ˆ ˆ[ ]μ Mµ µ µ=   is employed as a 

series of varying thresholds for a binarization of the series of 
single-pixel light intensities collected under random 
disturbance. A binarizer using the estimated varying 
thresholds can be described by 

         

( ) ( ) ( )
( )
( )
( )

( )

Sign Sign

Sign

(Sign

Sign

ˆ

)

s s μ s μ

Ks Kμ

K s μ

s μ

s

±

±=

− −= ≈

=

=

−

=

−

−

   

. (15) 

It can be seen in Eq. (15) that using the proposed 
algorithm, the binarized light intensities obtained by using the 
series of estimated varying thresholds in CI under random 
disturbance approximate to those obtained by using a constant 
threshold in CI without any disturbances.  

C. The CI-PnP 
After the series of single-pixel light intensities is binarized 

by using the estimated varying thresholds in Eq. (15), object 
information can be further retrieved by using the binarized 
light intensities and the series of random patterns. A 
correspondence image recovered based on conventional CI in 
Eq. (6) suffers from low quality, since it only considers 
conditional averaging among the series of random patterns. 
Here, with the binarization in Eq. (15), the nonlinearly inverse 
problem cannot be completely solved by a linear operation in 
Eq. (6). A CI-PnP method is further developed and applied by 
designing an optimization model described by 

        { }ˆ arg min ( ) ( ) ,
x

x x x= +D R  (16) 

where ( )xD  denotes a data-fidelity term to ensure that a 
reconstructed object x̂  is consistent with the measured data 
(i.e., the light intensities binarized by the estimated varying 
thresholds) defined by 

       ( )1( ) , ,x Ax s
M

±= − D  (17) 

and ( )xR  denotes a regularization term to preserve the pre-
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defined properties, i.e., sparsity in spatial domain and a prior 
3 ( )BM D xR  implicitly defined by BM3D [53], [54], described 

by 
     

1 3 ,( ) ( )BM Da b= +x x xR R  (18) 

where 1⋅‖‖  denotes the L1 norm, and a  and b  denote 
regularization parameters. To solve the optimization model in 
Eq. (16), a PnP priors approach is utilized by introducing an 
iteration framework and BM3D [53], [54], and the details are 
given in Algorithm 1. In Algorithm 1, L denotes the total 
iteration number. A gradient descent step is introduced with a 
step size γ  in Line 2 of Algorithm 1 to minimize the data-
fidelity term ( ).xD  To reduce the first component in Eq. (18), 
a proximal operator is used in Line 3 of Algorithm 1 defined 
by 

 Soft ( ) Sign( ) max( ,0).x x x
l la a= −⋅  (19) 

In Line 4 of Algorithm 1, a BM3D denoiser ( )
lbf ⋅ is 

chosen to suppress the artefacts of the estimated 
reconstruction during the iterations. To avoid over-filtering, a 
data fusion step is designed to combine the estimations in two 
successive iterations with different weights, as shown in Line 
5 of Algorithm 1. In addition, parameters are fine-tuned for 
the next iteration in Lines 6–8 of Algorithm 1. After all the 
iterations are completed, a high-quality reconstructed object 
image can be rendered. It is worth noting that Algorithm 1 
can be considered as a proximal-gradient version of PnP 
because of the usage of a proximal operator in Eq. (19) and the 
alternating minimization manner.  

Algorithm 1: CI-PnP 

Input: ( ) 1, ,, ,s 0A qη γ± − =      
Initiating 0 0 0

0, , , xba θ  

 0 to 1 l L← −1. for do  
( )l l lγ′ −← ∇x2  x x. D  

Soft ( )l l′←3. z x  
( )l lf←4. q z  

1 1(1 ) l
l

l
l

lθ θ+ −← − +5. x q q  

1 llθ ηθ+ ←6.  

1 lla aη+ ←7.  

1 llb bη+ ←8.  
9. end  

ˆ L=Output : x x  

D. Algorithm Description 
The proposed robust CI against random disturbances is 

further shown in Fig. 1. A series of random patterns are 
sequentially projected onto an unknown object with optical 
waves propagating in free space under random disturbance 
induced from multiple sources. The light field is measured by 
using a single-pixel detector. A binarizer is designed and 
applied to process the light intensities, and then the results are 
fed into the CI-PnP to reconstruct an unknown object. Here, as 
a typical example, random disturbance is generated 
simultaneously from three sources, i.e., random disturbance in 
light source, random disturbance in complex media, and 
random disturbance in the detector. 

 

 

 

 
 
 

 
Fig. 1. A schematic for the proposed robust CI under random 
disturbances. :iP the ith illumination pattern; 1,ik 2

ik and 3 :ik  dynamic 
scaling factors induced by random disturbance respectively generated 
in light source, complex media and the single-pixel detector; 𝐶𝐶𝐶𝐶: 
complex media; :is single-pixel light intensities recorded under 
random disturbance; ˆ :iµ the estimated varying threshold; ( )±is : the 
binarized light intensities obtained by using a series of estimated 
varying thresholds; ˆ :O  a reconstructed object image. 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

A. An Optical Setup 
A series of optical experiments are conducted to show the 

proposed robust CI against random disturbances in complex 
environments. The experimental setup is shown in Figs. 2(a) 
and 2(b). 

A digital light projector (Texas Instrument, DLP4710EVM-
LC) is used, consisting of a 1920×1080 digital micromirror 
device (DMD) and three light-emitting-diode (LED) channels. 
The LED currents in three channels can be controlled 
arbitrarily within a preset range, and brightness of the 
projector can be arbitrarily adjusted in order to illustrate 
random disturbance in light source. The larger adjustment 
range of LED currents could represent a higher disturbance 
level. All LED channels are switched on to sequentially 
generate a series of random patterns (binary values of 0 and 1) 
with 128×128 pixels during the measurements. The 
illumination patterns are sampled to ensure that they are 
independent and identically distributed. An unknown object is 
placed in focus to be illuminated by random patterns. To 
illustrate random disturbance generated in complex media, 
optical waves propagate in a dynamic and turbid water 
environment created by using a transparent polymethyl 

l
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methacrylate-made water tank with 10.0 cm (length) × 20.0 
cm (width) × 30.0 cm (height) where 3000.0-ml pure water is 
placed. During the measurements, a pear-shaped funnel is 
used to continuously drop milk solutions composed of 200-ml 
clean water and 40-ml milk into water tank, and a stirrer keeps 
rotating with a speed of 500.0 rpm. After wave propagation 
through complex media, the scrambled light field is collected 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. (a) A schematic experimental setup for the proposed robust CI 
against random disturbance in complex environments, and (b) a photo 
of the actual setup. DLP: digital light projector; D: single-pixel 
bucket detector; O: object. 

by a lens with a focal length of 10.0 cm and then received by a 
single-pixel detector (Thorlabs, PDA100A2). The detector has 
switchable light responses among different gains 
automatically controlled by a motorized precision rotation 
mount (Thorlabs, PRM1Z8) and a DC servo motor controller 
(Thorlabs, KDC101) to show random disturbance at the 
receiver. More gain settings and a larger range of the 
switching frequencies could represent a higher disturbance 
level at the receiver. Random disturbance generated in the 
detector by arbitrarily switching the gains is more severe 
compared to others, such as background noise in the detection 
and temperature drift. Finally, the single-pixel light intensities 
are sequentially collected by recording the photocurrents with 
the single-pixel detector via a data-acquisition device (ART 
Technology, USB8586). All optical experiments reported here 

are conducted under white light illumination rather than in a 
dark room to illustrate robustness of the proposed CI system 
against ambient light, and random disturbance is generated 
simultaneously from multiple sources. 

 

 

 

 

 

 

 

 

Fig. 3. Experimental results in the CI under random disturbance to 
test USAF 1951 resolution target (elements 5 and 6 of group -1): (a) 
the normalized single-pixel light intensities, (b) a constant threshold 
via calculating an average value of the normalized light intensities 
and the varying thresholds estimated by using the proposed WATV 
algorithm, (c) a correspondence image recovered by using CI with a 
constant threshold, (d) a correspondence image obtained by using CI 
with the estimated varying thresholds, and (e) a reconstructed object 
obtained by using the proposed CI-PnP with the estimated varying 
thresholds. The normalization operation is conducted by subtracting 
an average value of collected light intensities and divided by standard 
deviation. Here, random disturbance is generated simultaneously 
from three sources, i.e., random disturbance in light source, random 
disturbance in complex media, and random disturbance in the 
detector. 

B. A Resolution Target 
Spatial resolution is defined as the ability of an imaging 

system to resolve details of an object to be imaged, as a crucial 
parameter to evaluate the imaging performance and associated 
algorithms. A USAF 1951 resolution target is first tested in 
optical experiments, consisting of several groups of line 
elements with defined thicknesses and spacing. By identifying 
the finest line elements in the recovered USAF 1951 
resolution target, achievable resolution can be determined for 
the designed experimental setup. The light field is collected by 
a single-pixel detector under random disturbance as shown in 
Fig. 3(a), and then is fed into the proposed algorithm for 
object reconstruction. Element 6 of group -1 is well resolved 
with a linewidth of 561.23 μm as shown in Fig. 3(e), and the 
number of realizations is 16384. In this experiment, LED 
currents of the projector are controlled in a range of 200 mA- 
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Fig. 4. Experimental results corresponding to the objects 1-3 in CI under random disturbances with different disturbance levels: (a)-(c) the 
normalized single-pixel light intensities, (d)-(f) constant thresholds obtained by calculating an average value of the light intensities and the 
varying thresholds estimated by using the developed WATV algorithm, (g)-(i) correspondence images obtained by using CI with a constant 
threshold, (j)-(l) correspondence images obtained by using CI with the estimated varying thresholds, and (m)-(o) the reconstructed object 
images obtained by using the proposed CI-PnP with the estimated varying thresholds. The random disturbance is created simultaneously from 
three sources, i.e., random disturbance in light source, random disturbance in complex media, and random disturbance in the detector. 

500 mA, and light responses of the detector are switched with 
two gains of 0 dB and 10 dB. Gain switching frequencies are 
arbitrarily chosen in a range of 0.5 min-1 to 1.0 min-1. 

Figure 3(a) shows the collected single-pixel light intensities 
at the receiver. It can be seen in Fig. 3(a) that the collected 
light intensities fluctuate significantly with multiple abrupt 
changes owing to dynamic and nonlinear scaling factors 
induced by random disturbance. An average value calculated 
by using the normalized single-pixel light intensities is applied 
as a constant threshold shown in Fig. 3(b). With the binarized 
light intensities obtained by using the constant threshold, CI is 
applied to recover a correspondence image with conditional 

averaging, as shown in Fig. 3(c). No effective object 
information can be visually rendered, since the usage of one 
constant threshold ignores dynamic scaling factors induced by 
random disturbance in the CI system. Therefore, conventional 
CI performs a blind binarization on the collected light 
intensities, and would fail under random disturbance. To 
remove the effect of dynamic and nonlinear scaling factors 
induced by random disturbance, varying thresholds are 
estimated by using the proposed WATV algorithm, as shown 
in Fig. 3(b). Using the series of estimated varying thresholds 
to binarize light intensities, a correspondence image can be 
retrieved based on conditional averaging, as shown in Fig. 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (l) 

(m) (n) (o) 
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3(d). Compared to the correspondence image in Fig. 3(c), 
effective object information has been retrieved, verifying that 
the estimated varying thresholds are accurate and can facilitate 
a removal of the effect of the series of dynamic scaling factors 
induced by random disturbance. It can be seen that the 
correspondence image in Fig. 3(d) is still of low quality with 
noise-like background. When the developed CI-PnP is applied 
with the series of varying thresholds, a reconstructed object 
image is shown in Fig. 3(e). It can be seen in Fig. 3(e) that the 
elements are well resolved, and the proposed method 
facilitates the realization of high-resolution and high-
robustness CI against random disturbance. 

C. Robustness of the Proposed Method 
To further verify robustness of the proposed CI against 

random disturbance in complex environments, another three 
objects, i.e., object 1 “bolt”, object 2 “paw” and object 3 
“plane”, are tested by using the experimental setup in Fig. 
2(a). These objects are fabricated by leveraging 3D-printing 
with the feature sizes of 1.0 cm × 1.5 cm, 1.5 cm × 1.5 cm and 
1.5 cm × 1.5 cm, respectively. The objects are separately 
tested, and each object is sequentially illuminated by a series 
of random patterns with optical waves propagating through 
complex media, as shown in Fig. 2(a). Here, random 
disturbance is generated simultaneously from multiple sources 
using different settings to study the robustness of the proposed 
CI system. Experimental results are shown in Fig. 4. 

In Fig. 4(a), LED currents of the projector are controlled in 
a range of 200 mA-300 mA to create random disturbance in 
light source. The light responses of the detector oscillate by 
alternately using two gains of 20 dB and 30 dB with the 
switching frequencies randomly selected in a range of 0.2 min-

1 to 0.4 min-1. Single-pixel light intensities collected under 
random disturbance are normalized by subtracting an average 
value of the collected light intensities and divided by standard 
deviation, as shown in Fig. 4(a). A constant threshold is 
obtained by calculating an average value of the normalized 
light intensities, as shown in Fig. 4(d). By binarizing the 
normalized light intensities with the constant threshold, 
conventional CI cannot retrieve effective object information, 
as shown in Fig. 4(g). On the contrary, a series of varying 
thresholds are estimated by using the proposed WATV 
algorithm, and are applied for the binarization of light 
intensities. Then, the binarized light intensities are used to 
recover a correspondence image using conditional averaging, 
and a reconstructed object image is shown in Fig. 4(j). It is 
experimentally illustrated that the varying thresholds 
estimated by using the proposed WATV algorithm are 
accurate and effective. When the proposed CI-PnP is used 
with the estimated varying thresholds, a high-quality 
reconstructed object image can be obtained, as shown in Fig. 
4(m). 

To increase the disturbance level, LED currents are 
controlled to fluctuate in a larger range of 100 mA-300 mA in 
Fig. 4(b). Two gains (i.e., 20 dB and 30 dB) are switched with 
the higher switching frequencies arbitrarily chosen in a range 
of 1.0 min-1 to 1.5 min-1. Figure 4(b) shows the normalized 

single-pixel light intensities obtained by subtracting an 
average value of the collected light intensities and divided by 
standard deviation. Then, a constant threshold is obtained by 
calculating an average value of the normalized light 
intensities, as shown in Fig. 4(e). In the proposed method, the 
varying thresholds estimated by using the WATV algorithm 
are shown in Fig. 4(e). The recovered correspondence images 
are shown in Figs. 4(h) and 4(k), when the light intensities are 
binarized by using the constant threshold and the estimated 
varying thresholds, respectively. It is demonstrated that the 
estimated varying thresholds are accurate and effective. When 
the proposed CI-PnP with the estimated varying thresholds is 
applied, high-quality object reconstruction can be realized, as 
shown in Fig. 4(n). 

The LED currents are controlled in a larger range of 100 
mA-600 mA, and three gains of the detector (i.e., 10 dB, 20 
dB and 30 dB) are switched with the higher switching 
frequencies arbitrarily selected in a range of 1.5 min-1 to 2.0 
min-1. After CI under random disturbance is conducted, the 
normalized light intensities are obtained and shown in Fig. 
4(c). More abrupt changes can be observed in the normalized 
single-pixel light intensities, and this type of random 
disturbance is applied to illustrate the feasibility of the 
proposed method in an extremely complex environment. An 
average value of the normalized light intensities is calculated 
as a constant threshold, as shown in Fig. 4(f). A series of 
varying thresholds are also estimated by using the proposed 
WATV algorithm, as shown in Fig. 4(f). Figure 4(l) shows 
effective object information rendered in the recovered 
correspondence image using the estimated varying thresholds, 
while no object information can be retrieved with a constant 
threshold as shown in Fig. 4(i). The proposed CI-PnP 
algorithm with a series of estimated varying thresholds is also 
applied to realize high-quality object reconstruction, as shown 
in Fig. 4(o). The developed CI system is experimentally 
verified to be highly robust against random disturbances with 
varying disturbance levels using different experimental 
settings, and high-fidelity object reconstruction can always be 
implemented. 

Different sampling ratios are further tested to verify the 
proposed method. The reconstructed correspondence images 
corresponding to object 1 are shown in Figs. 5(a)–5(e), when 
sampling ratios of 1.0, 0.8, 0.6, 0.4 and 0.2 are used, 
respectively. It can be seen in Figs. 5(a)–5(e) that the 
reconstructed objects are of high quality with sharp outlines 
and clear details. When the sampling ratio is low as 0.2, 
features of the object are still preserved and visually rendered 
in Fig. 5(e). The reconstructed correspondence images 
corresponding to object 2 and object 3 are shown in Figs. 5(f)–
5(j) and 5(k)–5(o). It is demonstrated that the proposed 
method possesses ultra-high robustness against random 
disturbance under different sampling ratios, and has superior 
performance at low sampling ratios. 

 



8 
 

 
Fig. 5. The recovered correspondence images obtained by using the 
proposed CI-PnP with estimated varying thresholds under different 
sampling ratios of 1.0, 0.8, 0.6, 0.4 and 0.2 corresponding to (a)-(e) 
object 1, (f)-(j) object 2, and (k)-(o) object 3. 

D. Comparisons among Different Methods 
To show superior performance of the proposed method, 

different methods are compared under random disturbance, 
i.e., the proposed CI-PnP with estimated varying thresholds, 
the method in Ref. [48], CI with a constant threshold, GI [55], 
differential GI (DGI) [56] and normalized GI (NGI) [57]. 
Experimental results obtained by using the aforementioned 
methods are shown in Fig. 6. 

Figures 6(a)–6(c) show the reconstructed object images 
using the proposed method (i.e., the CI-PnP with estimated 
varying thresholds), and object features are clearly rendered. 
In Figs. 6(d)–6(f), the reconstructed object images obtained by 
using the method in Ref. [48] are of low quality due to 
inaccurate varying-threshold estimations. Conventional CI 
with a constant threshold fails as shown in Figs. 6(g)–6(i), 
since the usage of a constant threshold cannot lead to a 
removal of dynamic scaling factors induced by random 
disturbance. The usage of one constant threshold introduces a 
blind binarization on the collected single-pixel light intensities 
and an incorrect conditional averaging among random 
patterns. When the collected single-pixel light intensities are 
applied as correlation coefficients in GI, no object information 
can be retrieved as shown in Figs. 6(j)–6(l). Although it has 
been reported that DGI and NGI can be employed for object 
reconstruction, an inherent problem related to dynamic and 
nonlinear scaling factors induced by random disturbance is not 

solved. DGI and NGI also cannot work as shown in Figs. 
6(m)–6(o) and 6(p)–6(r). It is demonstrated that the proposed 
method is effective and highly robust against random 
disturbance, and high-quality object reconstruction can be 
realized in CI under random disturbance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The reconstructed object images corresponding to object 1, 
object 2, and object 3 obtained by using (a)-(c) the proposed CI-PnP 
with the estimated varying thresholds, (d)-(f) the method in Ref. [48], 
(g)-(i) CI with a constant threshold, (j)-(l) GI, (m)-(o) DGI, and (p)-(r) 
NGI. 

E. The CNR versus Sampling Ratios 
To quantitatively evaluate the proposed method, contrast-to-

noise ratio (CNR) of the reconstructed object images is 
employed and calculated by [58]–[62] 

     CNR ,
( ) / 2

−
=

+f

f b

b

µ µ

σ σ
   (20) 

where fµ  and bµ  respectively denote average intensities of 
feature part (i.e., area of interest) and background part in a 
reconstructed object image, and fσ  and bσ  denote standard 
deviation of feature part and background part, respectively. 

Figures 7(a)–7(c) show the relationships between the 
sampling ratios and CNR values of the reconstructed object 
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images, when CI with a constant threshold, CI with varying 
thresholds and CI-PnP with varying thresholds are 
respectively used. As can be seen in Figs. 7(a)–7(c), CNR 
values of the reconstructed object images obtained by using 
the CI-PnP with varying thresholds can increase with the 
higher sampling ratios, and CNR values reach up to 38.16, 
33.93 and 38.50, respectively. CNR values of the 
reconstructed object images obtained by using the proposed 
CI-PnP with varying thresholds are much larger than those 
obtained by using other methods. It is quantitatively illustrated 
in Figs. 7(a)–7(c) that the estimation of a series of varying 
thresholds is accurate, and the proposed method has superior 
performance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7. The relationships between the sampling ratios and CNR values 
of the reconstructed object images respectively using CI with varying 
thresholds, CI with a constant threshold and CI-PnP with varying 
thresholds: (a) object 1, (b) object 2, and (c) object 3. 

IV. CONCLUSION 
In this paper, we have proposed a robust CI against random 

disturbances. A series of varying thresholds are accurately 
estimated by using the WATV algorithm, and are applied to 
binarize a series of single-pixel light intensities. The binarized 

light intensities and a series of random patterns are fed into the 
proposed CI-PnP for object reconstruction. The detailed 
theoretical descriptions have been given to reveal the 
fundamentals and formation mechanism. It is demonstrated in 
optical experiments that the proposed method can effectively 
remove the effect of dynamic and nonlinear scaling factors 
induced by random disturbances simultaneously from multiple 
sources without the usage of temporal carriers, and the 
reconstructed objects are of high quality. The proposed 
method opens up an avenue for CI to achieve ultra-high 
robustness against random disturbances in complex 
environments, and could be promising in various applications. 
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