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Abstract—Adversarial training (AT) is widely considered the
state-of-the-art technique for improving the robustness of deep
neural networks (DNNs) against adversarial examples (AEs).
Nevertheless, recent studies have revealed that adversarially
trained models are prone to unfairness problems. Recent works
in this field usually apply class-wise regularization methods
to enhance the fairness of AT. However, this paper discovers
that these paradigms can be sub-optimal in improving robust
fairness. Specifically, we empirically observe that the AEs that
are already robust (referred to as “easy AEs” in this paper)
are useless and even harmful in improving robust fairness.
To this end, we propose the hard adversarial example mining
(HAM) technique which concentrates on mining hard AEs while
discarding the easy AEs in AT. Specifically, HAM identifies
the easy AEs and hard AEs with a fast adversarial attack
method. By discarding the easy AEs and reweighting the hard
AEs, the robust fairness of the model can be efficiently and
effectively improved. Extensive experimental results on four
image classification datasets demonstrate the improvement of
HAM in robust fairness and training efficiency compared to
several state-of-the-art fair adversarial training methods. Our
code is available at https://github.com/yyl-github-1896/HAM.

Index Terms—Adversarial training, robust fairness, hard ad-
versarial example mining, convolutional neural network.

I. INTRODUCTION

Deep Neural Networks (DNNs) have rapidly advanced,
reaching a level beyond human intelligence in many areas.
However, several studies [1], [2] have discovered that when
exposed to specifically designed imperceptible perturbations
added to the original inputs, known as adversarial examples
(AEs), the accuracy of DNNs can drop dramatically.
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Various approaches have been proposed to enhance the
defense capabilities of DNNs against AEs. Among these,
adversarial training (AT) has been demonstrated as one of the
most effective strategies [3]. Nevertheless, recent research [4],
[5] have identified that the adversarially trained models usually
suffer from a serious unfairness problem, i.e., adversarially
trained models exhibit a noticeable disparity in both clean
accuracy and robust accuracy across different classes, even
when the training data distribution is class-wise balanced.
Additionally, AT methods incur substantial computational
overhead, typically requiring 10× more resources than stan-
dard training methods. The above intriguing phenomenon and
challenges restrict the applicability of AT methods in real-
world applications.

Many recent works address the issue of robust fairness by
regularizing the class-wise fairness disparity during adversarial
training [4]–[7]. However, this paper reveals that these recent
class-wise regularization techniques are not optimal. Instead
and interestingly, we find that the root of the robust fairness
issue in DNN models lies at the sample level. By reweighting
the training examples, we can mitigate this issue, even though
our method does not explicitly regularize class-wise disparity
as previous works do.

To enhance the fairness of AT, we propose the following
motivations: (1) The computational cost of AT arises because it
requires the model to prioritize the optimization of the already
robust AEs (referred to as “easy AEs” in this paper), rather
than non-robust ones (referred to as “hard AEs”). Easy AEs
can interfere with the optimization of hard AEs, which finally
leads to fairness issues. (2) By dropping the easy AEs, both
the robust fairness and training efficiency of the model can be
improved.

Specifically, we distinguish the easy adversarial examples
(easy AEs) as the AEs that can still be correctly classified after
the first M steps of an adversarial attack. The hard adversarial
examples (hard AEs) are the rest of the AEs. Through formal
analysis and experimental investigation, we first observe a
strong positive correlation between the proportion of easy AEs
of a certain class and the severity of the unfairness problem
for that class. In other words, classes with a higher portion
of easy AEs have a higher robust accuracy. This observation
motivates us to drop the easy AEs to solve the fairness issue.
Second, we also observe that the robust overfitting issue of
adversarial training is caused by the conflict of the training
gradients between easy AEs and hard AEs. By dropping the
easy AEs, the training conflicts will be mitigated and the
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Fig. 1. Pipeline of HAM. The easy and hard AEs are distinguished in terms of the PGD attack with M iterations. After that, the easy AEs are discarded
and the hard AEs are reweighted with the step size-based reweighting module.

overall robust accuracy of the adversarially trained models
can be preserved. Besides, dropping the easy AEs can also
speed up the training convergence. The detailed analysis and
investigation can be found in Section III. In sum, dropping the
easy AEs is beneficial in addressing both robust overfitting and
robust fairness issues, which motivates us to propose the Hard
Adversarial example Mining (HAM) approach inspired by the
sample mining techniques [8]–[10].

HAM is an efficient adversarial training technique that
improves robust fairness without increasing the training over-
head. As illustrated in Figure 1, HAM firstly distinguishes
easy AEs and hard AEs with a fast adversarial attack method,
namely the M-step PGD attack, in which examples unable
to cross the decision boundary would be identified as easy
AEs. These identified easy AEs would be discarded from the
subsequent training process. The preserved hard AEs will be
re-weighted in the loss function to place different priorities
on the hard AE training examples. The re-weighting factors
are computed in terms of the attack strength (measured by the
logits value difference) such that the HAM training process
would place even higher priority on the most challenging hard
AEs. Besides, dropping easy AEs makes HAM an efficient
training algorithm that reduces the training time by 45%
compared to conventional PGD adversarial training [3].

To comprehensively evaluate the effectiveness of HAM,
we conduct experiments on four popular datasets, including
CIFAR-10, CIFAR-100, SVHN, and Imagenette. The exper-
imental results show that, compared to state-of-the-art class-
wise fair adversarial training methods, HAM can achieve better
clean fairness as well as robust fairness with less computa-
tional overhead. For example, compared to the conventional
PGD-AT on CIFAR-10, the HAM reduces the maximum class
Discrepancy (a fairness metric, lower is better) by more than
20% while reducing the overall training time cost by 45%.
Besides, HAM is a plug-n-play module that can be combined
with other adversarial training frameworks like MART [11],
and AWP [12] to fix their fairness issues.

In sum, our contributions are as follows:
• We reveal that the class-wise regularization techniques

adopted in recent fair adversarial training methods are
sub-optimal and propose the hard adversarial example
mining (HAM) method to improve the robust fairness of
the model from the sample level.

• The proposed HAM method first distinguishes easy AEs
and hard AEs by applying a fast adversarial attack. The
easy AEs are dropped and the hard AEs are reweighted.
The HAM can enhance robust fairness while saving the
computational cost.

• We conduct experimental evaluations on four datasets,
and the results show that our HAM significantly outper-
forms state-of-the-art fair adversarial training methods in
terms of robust fairness and computational cost without
sacrificing the overall adversarial robustness.

II. RELATED WORK

A. Adversarial training

Adversarial training is widely recognized as the most effec-
tive defense against adversarial attacks [13]. The mainstream
AT methods typically use PGD attack [3] to generate AEs
and various methods have been proposed to improve its per-
formance from different aspects. For instance, TRADES [14]
divides the original loss function into two parts, representing
the accuracy for a clean sample and the robustness for mali-
cious disturbance. According to the entropy of its predicted
distribution, Entropy entropy-weighted AT scheme [15] re-
weighs each AE to increase the robustness accuracy. HAT
[16] proposes to generate an additional sample with a larger
perturbation and give it an “error” label as a helper for
achieving better robustness. DAT [17] explores the use of
discrete adversarial training methods to improve visual feature
robustness. Wang et al. [18] demonstrate how diffusion models
could enhance robustness in adversarial settings by generating
more complex adversarial examples. Jin et al. [19] use the
small Gaussian noise and Taylor expansion method to generate
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random weights, which improves the robustness of the neural
network and has a good effect in balancing robustness and
correctness. UIAT [20] proposes using inverse adversarial
examples to improve robustness by leveraging adversarial
features that aid learning in adversarial training. Additionally,
HFAT [21] introduces an iterative evolutionary optimization
strategy to streamline the optimization process. It incorporates
an auxiliary model to effectively expose hidden adversarial
examples, integrating the optimization pathways of traditional
adversarial training with a strategy to mitigate the effect of
concealed attacks.

Despite their successes, these approaches generally fail
to address the critical issues of fairness and computational
overhead in AT. High computational cost and fairness dis-
parity, where the accuracy and robustness vary significantly
across different classes, remain significant challenges for the
widespread applicability of adversarial training.

B. Fairness issue of AT methods
Recent studies have observed a serious fairness problem

in AT, where there is a noticeable disparity in accuracy and
robustness across different classes of adversarially trained
models. To address this issue, recent works have typically
employed class-wise regularization techniques to enhance the
fairness of AT models. For instance, Sun et al. [22] demon-
strate that the trade-off between fairness, robustness, and
model accuracy can introduce a great challenge for robust
deep learning. They propose a fair and robust classification
method by modifying the input data and models. Xu et al.
[4] empirically find the serious deficiency of AT in fairness
and attempt to mitigate this problem using the proposed fair
robust learning (FRL) framework. More recently, Sun et al.
[6] propose balance adversarial training (BAT) to improve
robust fairness by balancing the source-class and target-class
fairness. Ma et al. [7] theoretically study the trade-offs between
adversarial robustness and class-wise fairness, and a fairly
adversarial training (FAT) method is proposed to mitigate the
unfairness problem. WAT [23] focuses on the worst class
during the adversarial training, ultimately improving overall
robustness across all classes. FAAL [24] introduces a new
fairness-aware adversarial learning paradigm to address robust
fairness through distributional robust optimization. We provide
a detailed description and analysis of the above fair AT
methods in Appendix A.

Although several approaches have been proposed to study
the robust unfairness problem in AT, the fairness of the
adversarially trained models is still not satisfying and needs
further improvement. Our contribution lies in demonstrating
that a sample-level reweighting paradigm can be more effec-
tive and efficient than recent class-wise regularization methods
in enhancing the robust fairness of models. By focusing on
reweighting individual samples rather than applying broad
class-wise adjustments, our approach provides a finer-grained
and more efficient solution to the fairness issue in AT.

C. Efficient adversarial training
To reduce the huge amount of computation consumed by

multiple iterations of PGD during AT, several methods have

been proposed [25]–[27]. For instance, Free AT [28] recycles
the gradient information when updating model parameters
during AT to improve the AT efficiency. Fast AT [29] finds
that the specifically designed FGSM AT can achieve compa-
rable performance with PGD AT while reducing the training
overhead. YOPO [25] significantly reduces the computational
burden by restricting most forward and backward propaga-
tions to the first layer during adversarial updates. ATTA
[30] enhances the efficiency and effectiveness of adversarial
training by leveraging the high transferability of adversarial
examples between neighboring epochs. While these methods
significantly reduce the adversarial training time, they often
do so at the expense of sacrificing the fairness and robustness
of the AT models. Instead, our proposed method focuses on
improving the robust fairness and computational efficiency of
AT without compromising its overall robustness.

D. Hard negative mining

Hard negative mining techniques [31], [32] have been
extensively utilized in object detection to address the issue of
imbalance in the proportion of positive and negative samples.
The online hard example mining (OHEM) [8] method extends
hard negative mining by using an online selection process
with both hard negatives and hard positives, which reduces
the training time considerably and improves the performance.

Recent research highlights advancements in example mining
and balancing methods that could further inform adversarial
training strategies. For instance, Cui et al. [33] propose a
continual representation learning approach to address compat-
ibility across Lifelong Person Re-identification tasks, which
could inspire methods for adaptive example mining in dy-
namic environments. Additionally, Xia et al. [34] introduce
a high-discrepancy sample selection method for noisy labels.
Furthermore, Waseda et al. [35] analyze the different kinds of
prediction mistakes caused by transfer attacks, revealing that
the difference can be attributed to non-robust features exploited
uniquely by each model.

The success of the hard example mining mechanism [36],
[37] across various tasks has motivated us to investigate
adversarial training from the perspective of example mining.
This paper applies the hard example mining techniques in ad-
versarial training and focuses on the hard adversarial examples
during AT training to address the fairness issue and reduce the
training complexity.

III. METHODOLOGY

A. Preliminaries

This fairness issue denotes the phenomenon that the average
performance (prediction accuracy, latency, robustness, etc.)
of a machine-learning model on a certain group of samples
is largely different from that of the other groups, while the
property of that group should not be regarded as a reasonable
judgment for making a decision (for instance, age, gender,
race, etc.). The robust fairness issue denotes that the robustness
of a certain group of samples is largely diverged from other
samples. This paper focuses on the robust fairness issue of
adversarially trained image recognition models, which have
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Fig. 2. For an AT model, classes with a higher proportion of easy AEs have
higher robustness in most cases.

also been widely adopted by recent fairness studies. For a
DNN model, the fairness requirement can be formalized as
that the average accuracy of a certain class c should not be
largely diverged from the whole average accuracy:

|
∑nc

i I(fθ(xi,c) = c)

nc
−

∑n
i I(fθ(xi) = yi)

n
| ≤ ϵ1, (1)

where nc is the number of test samples of the c-th class,
I is the counting function, n is size of the whole test set,
and the ϵ1 and ϵ2 are pre-defined thresholds. Similarly, the
robust fairness requirement can be formalized as the average
robustness disparity of a certain class c from the average
robustness:

|
∑nc

i I(fθ(xi,c + δi,c) = c)

nc
−
∑n

i I(fθ(xi + δi) = yi)

n
| ≤ ϵ2,

(2)
where δ denotes the generated adversarial perturbation.

B. Our motivation

Our motivation is to distinguish between easy AEs and
hard AEs during the AT process and explore how mining
these AEs can address the fairness and robust overfitting
issues in AT. This subsection first defines easy/hard AEs and
then provides analysis and numerical results to support the
correlation between easy/hard AEs and the above two issues.

Defination of easy/hard AEs. We define the easy adver-
sarial examples (easy AEs) as the AEs that can still be
correctly classified after the first few steps of an adversarial
attack. The hard adversarial examples (hard AEs) are the
rest of the AEs. Intuitively, to enhance the robust fairness of
a model, one direct way is to set higher priorities on the
non-robust examples in the low-robustness classes (in other
words, hard examples) and turn them into easy examples. In
the following, we will show why this sample-level reweighting
strategy is more effective than the previously proposed class-
wise reweighting strategies in improving robust fairness.

Correlation with the fairness issue. The objective towards
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Fig. 3. Illustrattion of the robust overfitting issue on an AT model on CIFAR-
10. Confidence scores of adversarial examples and corresponding clean ex-
amples in adversarially trained WideResNet-34-10. Darker points mean that it
has much larger adversarial confidence than clean confidence. Brighter points
represent examples with larger clean confidence than adversarial confidence.

a fair and robust model can be formalized as [4]:

min
θ,ϕ

L(fθ, ϕ) = Rnat(fθ) +Rbndy(fθ)

+

Y∑
i=1

ϕi
nat(Rnat(fθ, i)−Rnat(fθ)− τ1) (3)

+

Y∑
i=1

ϕi
bndy(Rbndy(fθ, i)−Rbndy(fθ)− τ1),

where the Rnat and the Rbndy denote the clean error rate and
the boundary error rate, respectively (Please refer to [4] for
a detailed definition of them). The ϕ denotes the Lagrangian
multiplier, the Y denotes the total number of classes, and the
τ denotes the pre-defined threshold.

Please recall that the definition of the easy example, then
we can discover that easy examples contribute zero to the
Rnat(fθ, i) and Rbndy(fθ, i), in other words, training on easy
examples will not improve the robust fairness. On the contrary,
the gradient of the easy examples may contradict that of the
hard examples, leading to an inferior robust fairness. The
shortage of class-wise reweighting methods like FRL is that
they do not consider the contradiction between easy samples
and hard examples within the same class, which can be fixed
by dropping easy AEs. We verify the above analysis with the
following two experimental observations.

(1) The proportion of easy AEs of a certain class shows a
strong positive correlation with the severity of the unfairness
problem for that class. Figure 2 plots the distribution of easy
AEs and robust accuracy across different classes in a PGD-
AT model on CIFAR-10. We can observe that the class-
wise distribution of fairness and robust overfitting are highly
consistent. For instance, the plane and car classes exhibit the
highest proportion of easy AEs, along with the highest robust
accuracy, whereas the cat and deer classes show the lowest
proportion of easy AEs and the lowest robust accuracy. Similar
trends were observed in more advanced AT models (detailed in
Appendix C), where the robust overfitting issue was even more
pronounced. We suppose that the class-wise AE confidence
disparity causes AT to prioritize classes with a higher ratio
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TABLE I
THE ERROR RATE OF WORST-CLASS STANDARD AND ROBUST RESULTS OF

TRAINING WITH CONFIDENCE-WISE AES DROP.

Drop rate (%) 0 (full-AT) 10 20 30

Worst Std. (%) 33.0 31.6 33.0 30.4
Worst Rob. (%) 85.8 82.8 85.0 85.2
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Fig. 4. (a) The angle between gB and gA is obtuse, gB will produce a
component in the horizontal. (b) The horizontal component generated by gB
cancels out gA, leading to the final gradient direction tending towards gB .

of easy AE while neglecting others, resulting in the class-
wise robust unfairness. Numerical evidence will be provided
to support this hypothesis.

(2) We verify the above hypothesis by showing that the
fairness issue in AT models can be mitigated by simply
dropping easy AEs. We conducted adversarial training and
reported both the worst class standard error rate and the worst
class robust error rate with varying drop rates of easy AEs in
Table I. A lower worst-class error rate denotes better fairness.
The results show that dropping easy AEs enhances both
clean and robust fairness, verifying our motivation that the
distinction between easy and hard AEs is strongly correlated
with fairness issues in AT models.

Correlation with the robust overfitting issue. Robust over-
fitting occurs when in an AT model, the prediction confidence
of AEs is even higher than that of the corresponding clean
examples. We qualitatively illustrate this phenomenon in Fig-
ure 3, which plots the confidence of AE (denoted as adversarial
confidence) and the corresponding clean confidence of each
test example on an AT model using CIFAR-10. Points above
the diagonal line are over-confident AEs where adversarial
confidence is even higher than their clean confidence. We
can observe that a large number of examples fall above this
line, indicating the widespread occurrence of over-confident
AEs during AT. We hypothesize that the interference between
easy and hard AEs during training exacerbates this issue, and
propose addressing it by discarding easy AEs.

(1) We hypothesize that the training gradients of easy and
hard AEs are in conflict, leading to the robust overfitting
issue in AT models. This conflict can be measured using
cosine similarity [38], where two gradients are considered
contradictory to each other if and only if their cosine similarity
is below zero, i.e., the vector angle between gradient A (gA)
and B (gB) is obtuse, as illustrated in Figure 4. Specifically,
we exhaustively compute the gradient cosine similarity of
each <easy AE, hard AE> pair and the average gradient
cosine similarity is -0.1105. This negative value indicates that
the angle between easy and hard AE gradients is obtuse,
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Fig. 5. The model trained by AT with easy AEs discarded has a faster
convergence speed and a better robust generalization capability than the one
trained by standard AT.

which means that these two training gradients are conflicted,
supporting our hypothesis of gradient contradiction.

(2) The gradient contradiction can be addressed by simply
discarding the easy AEs, which leads to a faster convergence
speed and better robust generalization. We measure the robust
generalization with the robust accuracy on the CIFAR-10 test
set. As shown in Figure 5, under the same training conditions
(120 epochs), AT with easy AEs discarded achieves signifi-
cantly better robust generalization (50.53%) compared to stan-
dard AT (43.50%). These results demonstrate that discarding
easy AEs effectively addresses the gradient contradiction issue
in AT models, leading to improved performance.

C. HAM overview

We consider a robust classification task with a given dataset
X = {xi|i = 1, 2, · · · , N} and a perturbation budget ϵ. AT is
expected to solve the following min-max objective:

min
fθ

N∑
i=1

max
∥x̃K

i −xi∥
p
≤ϵ

L(fθ(x̃K
i ), yi), (4)

where fθ(·) is the DNN parameterized with θ, yi is the true
label corresponding to input xi, L(·) is the loss function,∥∥x̃K

i − xi

∥∥
p

is the lp-norm used to bound the adversarial
perturbation (p = 2 or ∞), and x̃i is the adversarial example
corresponding to clean example xi. Take PGD-AT for instance,
which adopts a K-step PGD attack iterations process to obtain
the x̃K

i , which can be formalized as:

x̃j+1
i = Clipϵ(x̃

j
i + α · sign(∇x̃j

i
L(fθ(x̃j

i ), yi))), (5)

where α is the step size of each iteration, and Clip(·) is the
projection operation that guarantees x̃i is within the lp-ball.

The intuition of the HAM is to reweight AEs in the
adversarial training procedure, whose training objective can
be formalized as:

min
fθ

N∑
i=1

hard(xi, yi, fθ) · L(fθ(x̃K
i ), yi), (6)

where hard(xi, yi, fθ) is the weight for each AE.
Figure 1 illustrates the pipeline of our proposed HAM

framework. HAM judges an AE as easy or hard in terms of
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whether the AE crosses the decision boundary in M attack
iterations. Hard AEs are utilized in the subsequent training
procedure, while easy AEs will be discarded. Different weights
are allocated to each hard AE when calculating the loss
function. To further save the computational cost of HAM, an
early-dropping mechanism is applied to the easy AEs, which
prevents them from following training. The early-dropped easy
AEs have zero weights in Equation 6.

D. Hard adversarial example mining

HAM consists of an easy AE early-dropping stage and a
hard AE reweighting stage. Easy AEs and hard AEs are dis-
tinguished in the first stage to prevent them from wasting the
computational budget. Hard AEs are utilized and reweighted
in the second training stage.
Easy AE early-dropping. In the early-dropping stage, given
the total number of PGD iterations K, HAM first identifies
easy AEs with M -step PGD (M < K). AEs that fail to cross
the decision boundary within the M PGD attack steps are
identified as easy AEs, which will be dropped in this training
epoch and will not participate in the following (K − M)-
step AE generation process. The easy AE early-dropping
mechanism saves the computational budget and prevents AT
from paying too much attention to the already-robust easy
AEs.
Hard AE reweighting. HAM reweights the hard AEs in terms
of the following metric:

hard(xi, yi, fθ)=


ω( max

1≤j≤K

∥∥∥∆fθ(x̃
j
i )
∥∥∥
1
), fθ(x̃

M
i ) ̸= yi

0, fθ(x̃
M
i ) = yi

(7)
where ∆fθ(x̃

j
i ) = fθ(x̃

j+1
i ) − fθ(x̃

j
i ) is the logits variant

between two adjacent attack steps, ω(·) is a monotonically
increasing function ω(z) = sigmoid(z + λ) with hyperparam-
eter λ, x̃j

i represents the M -step AE used to distinguish the
easy AE and hard AE. The AEs that fail to cross the decision
boundary (fθ(x̃M

i ) = yi) will be identified as easy AEs and
will be assigned zero weights.

The hard AEs with non-zero weights are utilized in the
adversarial training. As illustrated in Figure 6, hard AEs with
larger maximum adversarial step-sizes (adversarial step-sizes
denote the logits variants between two adjacent adversarial
attack steps) will be assigned with larger weights, and vice
versa. We adopt this reweighting strategy because AEs with
different maximum step sizes pose varying threat levels to the
model. For instance, an AE with a large maximum adversarial
step size is much more vulnerable to the model, even when
facing a single-step attack like FGSM. Thus, they deserve
more attention in the training process. Besides, we do not
directly use the predicted score or cross-entropy loss for
reweighting because a hard example with a higher predicted
score has a large loss value of its own. If assigned a larger
weight, the model is prone to overfitting it. Our reweighting
method in Eq.7 prevents such overfitting.

We summarize the proposed algorithm in Algorithm 1. In
addition, HAM is a general plug-n-play technique that can

Clean example
Easy AE
Hard AE with small step
Hard AE with large step
Step during AE generation
Decision boundary

Large step

Small step

Fig. 6. The intuition behind HAM.

Algorithm 1 Pseudo-code of HAM
Input: Network fθ, data S = {(xi, yi)}ni=1, batch size nbs,
number of batches nb, learning rate η, training epochs T ,
whole attack step K, early-dropping step M
Output: Robust model fθ

1: for epoch = 1, · · · , T do
2: Sample a mini-batch {(xi, yi)}nbs

i=1 from S
3: for mini-batch = 1, · · · , nb do
4: Generate {x̃M

i }nbs
i=1 with M -step PGD

5: Construct hard AE set: HM = {x̃M
j : fθ(x̃

M
j ) ̸= yj}

6: Finish hard AE generation with (K−M) step PGD:
HK = {x̃K

j : x̃M
j ∈ HM}

7: Update hard(xi, yi, fθ), i = 1, · · · , nbs by Equation
7

8: Update θ with SGD by Equation 6
9: end for

10: end for

be integrated with existing AT-based frameworks to mitigate
the adversarial confidence overfitting issue and thus offers
advantages in terms of both fairness and computational cost,
as validated in Appendix D.
Fairness benefits of HAM. As has been discussed, the class-
wise unfairness problem can be attributed to the phenomenon
that AT pays more attention to the classes with higher ratios
of over-confident AEs and less attention to other classes. As
illustrated in Figure 2, the largely diverged proportion of over-
confident easy AEs of each class and the robust overconfidence
issue are the root causes of the robust unfairness problem. By
mitigating the adversarial overconfidence issue with sampling
mining techniques, HAM thus makes AT pay enough attention
to the less-confident class and mitigates the robust unfairness
problem.
Efficiency benefits of HAM. The early-dropping mechanism
in HAM effectively reduces computational expenses of AT
while maintaining unaltered robust fairness, which is sup-
ported by the results in Figure 7. We can see that the vast
majority of AEs that successfully attack the model succeed
within the initial steps. This indicates that the early-dropping
mechanism can identify easy AEs with a low false positive
rate, which in turn does not compromise the final model’s
robust fairness. As a result, early-dropping easy AEs will
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attack.

significantly improve AT efficiency.

IV. EXPERIMENTS

To evaluate the proposed HAM, we perform several ex-
periments on four widely adopted image datasets CIFAR-10,
SVHN [39], Imagenette, and CIFAR-100. Section IV-B evalu-
ates the fairness improvement of HAM models. Section IV-C
presents the efficiency results of HAM. Parameter sensitivity
results are in the Appendix E.

TABLE II
ERROR RATE(%) OF AVERAGE & WORST-CLASS STANDARD, BOUNDARY,
AND ROBUSTNESS FOR OUR HAM AND OTHER METHODS ON CIFAR-10,
SVHN, AND IMAGENETTE. THE BEST RESULTS ARE IN BOLD, AND THE

SECOND BEST RESULTS ARE MARKED WITH UNDERLINES.

Dataset Method Avg. Rob. (↓) Worst Rob. (↓) Maximum class
discrepancy (↓)

CIFAR-10

PGD-AT 56.62 (±0.11) 85.50 (±0.25) 51.20 (±0.28)
FRL 56.37 (±0.21) 80.10 (±0.35) 44.30 (±0.36)
BAT 49.84 (±0.16) 75.90 (±0.28) 50.80 (±0.31)
FAT 56.37 (±0.24) 83.90 (±0.32) 51.10 (±0.38)
CFA 44.10 (±0.31) 66.40 (±0.44) 44.90 (±0.47)

HAM 48.05 (±0.19) 64.20 (±0.26) 30.90 (±0.29)

SVHN

PGD-AT 49.13 (±0.27) 65.90 (±0.63) 31.81 (±0.72)
FRL 49.62 (±0.31) 64.27 (±0.52) 33.64 (±0.66)
BAT 34.28 (±0.42) 57.40 (±0.21) 46.11 (±0.42)
FAT 58.30 (±0.24) 75.60 (±0.46) 29.30 (±0.53)
CFA 44.70 (±0.21) 60.78 (±0.54) 37.42 (±0.67)

HAM 38.33 (±0.32) 47.04 (±0.31) 32.93 (±0.43)

Imagenette

PGD-AT 64.48 (±0.43) 79.23 (±0.24) 40.00 (±0.54)
FRL 66.40 (±0.32) 78.75 (±0.43) 39.78 (±0.46)
BAT 63.85 (±0.42) 88.08 (±0.73) 51.67 (±0.32)
FAT 63.44 (±0.43) 80.05 (±0.55) 38.25 (±0.58)
CFA 66.33 (±0.24) 84.48 (±0.31) 29.30 (±0.52)

HAM 60.99 (±0.42) 73.03 (±0.51) 36.87 (±0.42)

A. Experimental setup

All the following experiments are performed on an Ubuntu
20.04 System with Intel Xeon Gold 6226R CPUs and RTX
3090 GPUs. When evaluating the training efficiency, we use
a single GPU for a fair comparison. The deep learning frame-
work we use is PyTorch 1.9. Our experiments were repeated
three times, and the mean values are reported in II. We list
the hyper-parameter settings on each dataset as follows.

CIFAR-10 & Imagenette. The experiments on CIFAR-
10 and Imagenette share the same experimental settings. For

all the AT methods compared in this section, we trained
PreActResNet-18 [40] for 120 epochs with a batch size of 128.
The optimizer is SGD with a momentum of 0.9 and a weight
decay of 2×10−4. The initial learning rate is 0.1. At the 60th,
90th, and 110th epochs, the learning rate is decayed to 10%,
1%, and 0.5%, respectively. We adopt the commonly used
reprocessing and augmentation methods. Images on CIFAR-
10 are normalized to [0, 1] and augmented with random crop
and random flip. We use the l∞-norm PGD attack with the
perturbation budget of 8/255 to generate adversarial examples.
10-step PGD is used in the training stage and 20-step PGD is
used in the test stage, which is consistent with previous works
[13], [41]–[43]. The step size of the PGD attack is 2/255.
Our HAM method is started only after the 50th epoch, and
the early-dropping hyper-parameter M = 3.

SVHN. For SVHN, the initial learning rate is 0.01. The
early-dropping hyper-parameter of HAM is set to M = 5. All
the other settings remain the same as on CIFAR-10.

Baseline method. We calculate the fairness and efficiency
and compare our HAM with traditional PGD-AT (denoted as
AT in the following) as well as several state-of-the-art fair
adversarial training methods, including FRL [4], BAT [6], FAT
[7] and CFA [44]. All these methods follow their original
settings.

Evaluation metric. For evaluating the fairness, we follow
the previous work [4], [6], [45] to use the maximum class-
wise discrepancy (which represents the discrepancy of the
maximum and minimum accuracy of class), and the worst
class error rates (Worst Std., Worst Bndy. and Worst Rob.).
Models with a lower maximum class-wise discrepancy and
lower worst-class error rates are fairer.

Worst Std. = max
i∈N

(1−Acc.istd), (8)

Worst Rob. = max
i∈N

(1−Acc.irob), (9)

Worst Bndy. = max
i∈N

((1−Acc.irob)− (1−Acc.istd)), (10)

Where N denotes the total number of classes, and Acc.i de-
notes the accuracy of the i-th class. Specifically, test accuracy
on the standard dataset of the i-th class is denoted by Acc.istd,
while Acc.irob denotes the test accuracy on the adversarial
examples dataset.

For evaluating the clean accuracy and the robust accuracy,
we follow the previous work [4] to use the average standard
error (Avg.Std.) and the average boundary error (Avg.Bndy.),
respectively. Please note that the robust error (Avg.Rob.) is the
sum of the Avg.Std. and the Avg.Bndy.

Avg.Std. =
1

N

N∑
i=1

(1−Acc.istd), (11)

Avg.Rob. =
1

N

N∑
i=1

(1−Acc.irob), (12)

Avg.Bndy. = Avg.Rob.−Avg.Std., (13)
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Fig. 8. Fairness: Adversarial error under PGD-20 attack in each class of three datasets.

B. Fairness of HAM

This section reports the experimental results that evaluate
the fairness of HAM. We report the same fairness metric as
the previous fair AT works [4], [6] for a fair comparison.
The results on CIFAR-10, SVHN, and Imagenette are reported
in Table II. The results on CIFAR-100 are reported in the
Appendix B. We can see that the class-wise robust fairness
performance of HAM significantly outperforms other state-
of-the-art methods on all three datasets, achieving the best
or second-to-the best on three different fairness metrics. We
analyze the experimental results on each dataset as follows.

CIFAR-10. As shown in Table II, HAM significantly re-
duces the worst robust error of PGD-AT by 21.3%. Compared
to the FRL and BAT methods, the improvements are 15.9%,
and 11.7%, respectively. In addition, HAM performs the best
or second-to-the best among PGD-AT, FRL, BAT, and FAT on
average robust error and maximum class-wise discrepancy.

SVHN. Similar improvements can be observed on the
SVHN dataset, as shown in Table II. Compared to PGD-
AT, HAM achieves an 18.8% reduction to the worst robust
error. HAM also significantly improves BAT by 10.3%. And
HAM performs better than FRL (best one) regarding the worst
robust error with 17.2%. In terms of maximum class-wise
discrepancy, HAM improves FRL, BAT, and CFA methods
by a large margin and achieves comparable performance to
FAT. These results highlight that HAM improves the class-
wise robust fairness while not sacrificing the average robust
performance and maximum class-wise discrepancy.

Imagenette. As with the previous two datasets, HAM
performs best on the average robustness error and the worst
robustness error of all the methods in our evaluation, as
shown in Table II. Compared to the standard PGD-AT, HAM
reduces the Worst Rob. error by 6.2%. Besides, our HAM does
not severely degrade the maximum class-wise discrepancy
performance compared to CFA, which is trivial compared to
our Avg. Rob. and Worst Rob. reduction.

In addition, we report the robust performance of AT methods
on each class in Figure 8, we can see that HAM outperforms
other methods on several classes, especially those that get
inferior in fairness evaluation when trained with baseline AT
methods, e.g. cat, deer, dog, and frog (CIFAR-10) and #1, #2,

TABLE III
COMPARING THE FAIRNESS(%) AND EFFICIENCY(SECONDS) OF HAM
WITH BASELINE AT METHODS. THE BEST RESULTS ARE IN BOLD. WE

REPORT THE IMPROVEMENT MAGNITUDE OF EACH METHOD COMPARED
WITH PGD-AT (DENOTED AS AT) IN THE BRACKETS.

Algorithm Worst Bndy. (↓) Worst Rob. (↓) Training time (↓)

AT 57.90 85.50 142
BAT 53.20 (-4.7) 75.90 (-9.6) 498 (+250%)
Fast AT 48.70 (-9.2) 86.30 (+0.8) 16 (-88%)
HAM 35.30 (-22.6) 64.20 (-21.3) 78 (-45%)

TABLE IV
THE ROBUST FAIRNESS(%) AND TRAINING EFFICIENCY(SECONDS) OF

HAM WHEN BEING COMBINED WITH OTHER POPULAR AT METHODS, I.E.,
MART AND AWP. THE BEST RESULTS ARE IN BOLD.

Algorithm Worst Bndy. (↓) Worst Rob. (↓) Training time (↓)

AT 57.9 85.5 142
HAM 35.3 (-22.6) 64.2 (-21.3) 78 (-45%)

MART 49.5 75.5 131
MART-HAM 21.9 (-27.6) 51.0 (-24.5) 99 (-24%)

AWP 38.2 75.3 203
AWP-HAM 21.1 (-17.1) 50.6 (-24.7) 146 (-28%)

#3, #7, and #8 (SVHN). The models with HAM may exhibit
lower defence scores in certain classes, but note that a fairer
model does not necessarily mean it achieves higher scores in
every class. Take 8a, for instance, although BAT achieves a
lower error rate on “car”, its robustness disparity on the best
class (car) and worst class (cat) is much larger than that of
HAM. The results in 8 show HAM is the fairest method.

C. Efficiency and scalability of HAM

The training time of HAM and other AT methods on
CIFAR-10 is reported to verify the efficiency advantage of
HAM. We also verify the scalability of HAM by combining it
with other popular AT methods, MART [11] and AWP. [12]

The training time in Table III represents the time (seconds)
it takes PreActResNet-18 to train an epoch on CIFAR-10. We
can see that accelerated AT (Fast AT) greatly saves training
time while worsening the AT fairness. On the contrary, fair AT
(BAT) improves fairness while sacrificing training efficiency,
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TABLE V
FAIRNESS COMPARISON OF HAM AND TRAINING WITH A RANDOM DROP

ON CIFAR-10.

Method Random drop rate (%) HAM0(AT) 10 20 30 40

Worst Std.(%) 33.00 34.20 32.20 33.50 33.40 28.90
Worst Bndy.(%) 57.90 56.38 57.30 55.60 55.10 35.30
Worst Rob.(%) 85.50 84.80 83.70 84.30 83.50 64.20

TABLE VI
FAIRNESS COMPARISON OF HAM AND TRAINING WITH A RANDOM DROP

ON SVHN.

Method Random drop rate (%) HAM0(AT) 10 20 30 40

Worst Std.(%) 12.17 12.00 11.62 11.65 12.17 11.62
Worst Bndy.(%) 55.06 48.37 54.09 53.97 55.00 35.66
Worst Rob.(%) 65.90 65.96 64.81 64.81 65.84 47.04
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Fig. 9. Influence of early dropping step on fairness.

TABLE VII
ROBUSTNESS AND FAIRNESS(%) COMPARISON OF HAM AND INVERSE

HAM (DISCARDING THE HARD AES) ON CIFAR-10.

Method Avg. Rob.(↓) Worst Rob.(↓)

HAM 48.05 64.20
Inverse HAM 52.94 83.90

making the already inefficient AT slower. HAM improves both
results simultaneously.

In addition, HAM is a generic method, which means it
can be easily combined with other AT methods to improve
fairness and efficiency. Table IV shows the results of HAM
being extended to MART and AWP. HAM reduces the Worst
Bndy. error and Worst Rob. error of MART by 27.6% and
24.5%, respectively, while also reducing training time by 24%.
Besides, AWP combined with HAM outperforms in Worst
Bndy. error and Worst Rob. error.

D. Ablation study

Comparison with random dropping. To further confirm
the contribution of our HAM method in improving class-
wise robust fairness, we compare the HAM with the random
dropping AT on CIFAR-10 (Table V) and SVHN (Table VI).
Random dropping means that we randomly drop AEs in the
training procedure without identifying the easy/hard AEs. We
can see that the random dropping groups do not improve the
fairness performance compared to the naive PGD-AT method,
which highlights the contribution of our HAM method.
Hyper-parameters sensitivity. The early-dropping strategy
benefits the time efficiency, while the attack step M of early-

dropping directly affects the model performance. Therefore,
we explore the relationship between different steps and model
fairness. Additionally, the hyper-parameter analysis of the
HAM start epoch can be found in the Appendix E. It can
be seen in Figure 9 that on both two datasets, too few steps
can negatively affect the final fairness of the model. As
the step increases above 3, the negative impact diminishes
substantially. Based on these findings, selecting a step from
3 to 5 can not only satisfy the model fairness but also
significantly save training time.
Validating the effectiveness of HAM by discarding the
hard AEs. This subsection validates the effectiveness of HAM
from the opposite perspective, that is, discarding the hard
AEs during the training procedure, instead of easy AEs as
done in HAM and observing its impact on robustness and
fairness performance. The results, presented in Table VII, show
that both the robustness error rate (Avg. Rob.) (48.05% →
52.94%) and the unfairness rate (Worst Rob.) (64.20% →
83.90%)are increased after switching the discarding strategy
to discarding hard AEs. These results validate the rationality
and effectiveness of the HAM approach of discarding easy
AEs.

V. LIMITATIONS AND FUTURE WORK

Despite the above achievements, several limitations remain
that deserve to be solved in future work.

Evaluation of HAM on large-scale datasets like Im-
ageNette. Due to computational constraints, most existing
research on fair adversarial training, including our work, has
focused on medium-sized datasets like CIFAR-10 and SVHN.
While these datasets are widely used, they do not fully capture
the complexities and scale of real-world applications. Future
research should aim to extend the scope of evaluations to
large-scale datasets such as ImageNette, which would provide
a more comprehensive understanding of the model’s fairness,
robustness, and generalizability. Addressing this challenge will
require more efficient optimization techniques or access to
greater computational resources. Investigating how fairness in
adversarial training scales with larger, more diverse datasets
will be crucial to advancing this field.

Fair adversarial training beyond image classification.
Currently, most research on fair adversarial training is centered
on image classification tasks. However, fairness in adversar-
ial robustness could extend beyond classification into other
domains, such as object detection and semantic segmenta-
tion, which present different challenges due to their inherent
complexity and diversity. Exploring whether these tasks face
similar robust fairness issues, and developing methods to
address them, would significantly broaden the impact of fair
adversarial training.

VI. CONCLUSION

This paper focuses on improving the robust fairness and
efficiency of AT while maintaining satisfactory overall robust-
ness. We first reveal the limitations of class-wise reweighting
methods used in recent fair adversarial training techniques,
demonstrating that sample-level reweighting can be a more
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effective and efficient method in enhancing the robust fairness
of the model. This observation motivates us to propose Hard
Adversarial Example Mining (HAM), which mitigates the
unfairness issues by dropping easy AEs and reweighting
the rest hard AEs during the adversarial training process.
Despite HAM does not explicitly regularize the fairness of
the model, extensive evaluation of HAM on multiple datasets
verifies the superiority of HAM compared to state-of-the-art
fair adversarial training methods in efficiently training a robust
model while ensuring fairness.

APPENDIX

A. Detailed descriptions of other robust fairness literature

The robust fairness issue is first found in the classification
task, which makes the machine learning models exhibit differ-
ent clean accuracy and adversarial accuracy among different
classes [46]. Later on, Nanda et al. [47] studied the robust
fairness issue on the discriminative features of the input sample
group. They found machine learning models exhibit a different
level of robustness among different groups of individuals,
which may lead to discriminative decisions in terms of age,
skin color, gender, etc. We will briefly describe the design
principle of each fair adversarial training method below. Please
note that all of these methods regularize the fairness of the
model from the perspective of class-wise disparity, which is
different from the sample-level regularization scheme of our
HAM.
Fair robust learning (FRL) [4]. FRL addresses the robust
fairness issue of adversarial training, which studies both the
clean accuracy fairness and the adversarial accuracy fairness of
the model. FRL defines and regularizes the robust fairness of
the model with a class-wise regularization objective function,
which is formalized as:

min
θ,ϕ

L(fθ, ϕ) = Rnat(fθ) +Rbndy(fθ)

+

Y∑
i=1

ϕi
nat(Rnat(fθ, i)−Rnat(fθ)− τ1) (14)

+

Y∑
i=1

ϕi
bndy(Rbndy(fθ, i)−Rbndy(fθ)− τ1),

where the Rnat and the Rbndy denote the clean error rate and
the boundary error rate, respectively (Please refer to [4] for
a detailed definition of them). The ϕ denotes the Lagrangian
multiplier, the Y denotes the total number of classes, and the
τ denotes the pre-defined threshold. FRL has two different
regularization variants, FRL-reweight, and FRL-remargin. The
FRL-reweighing readjusts the weights of each adversarial
example used in the original cross-entropy loss function. The
FRL-remargin adaptively adjusts the size of the perturbation
during the adversarial training. Our HAM applies a sample-
level regularization scheme, which is different from the class-
wise regularization of FRL.
Fairly adversarial training (FAT) [7]. Based on the theoret-
ical framework of FRL, FAT expands it to a more general
setting. Specifically, FAT investigates both clean accuracy
fairness and adversarial accuracy fairness from the perspective

of robust radii, which measures the fairness issue with the
variance of class-wise adversarial risk (VCAR):

V CAR(f) =
1

L

L∑
i=1

(Radv(f, i)− R̂adv(f))
2, (15)

where Radv(f, i) denotes the adversarial accuracy of the i-th
class, and the R̂adv denotes the overall average adversarial
accuracy.
Fair and robust classification (FRoC) [22]. FRoC is designed
to achieve both fair and robust models, but it only addresses the
clean accuracy disparity and does not discuss the robustness
disparity. FRoC defines the fairness disparity as the differences
between the accuracy across different groups of examples,
which is the same as our HAM. FRoC has two variants, FRoC-
In and FRoC-PRE, designed for different scenarios. FRoC-In
regularizes fairness during the model training stage with a
class-wise regularization term, which is formulated as (take
a binary classification task for example):

F(A,X) = |
∑n

i=1 (1− ai)Mc(xi)∑n
i=1(1− ai)

−
∑n

i=1 aiMc(xi)∑n
i=1 ai

|, (16)

where ai = 0, 1 is the label, Mc is the measurement of
the classification tasks, such as the accuracy or the F1-score,
and xi denotes the input examples. FRoC-PRE enhances the
fairness of the model by preprocessing the training dataset.
FRoC-PRE consists of two types of data modification: label
flipping and adversarial data augmentation. The class-wise
disparity is also directly applied in the decision process.
Balance adversarial training (BAT) [6]. BAT observes that
two unfair phenomena may be the cause of the fairness issue of
adversarial training: (1) different difficulties in generating ad-
versarial examples from each class (source-class fairness) and
disparate target class tendencies when generating adversarial
examples (target class fairness). Based on the TRADES [14]
framework, BAT uses the following objective function to
improve the source-class fairness:

Lsource−class = min
θ

n∑
i=1

CE(fθ(xclean,i, yi)

+βmaxKL(fθ(xi), fθ(xadv,i))),

where CE denotes the cross-entropy loss, KL is the Kull-
back–Leibler (KL) divergence, and β is a balancing parameter.
BAT improves the target-class fairness with the following
regularization term:

CD(θ) =
1

n

n∑
i=1

(δi − δ̂idθ(xi)), (17)

where δi is the adversarial perturbation of xi, δ̂i is the average
value of the adversarial perturbation, and dθ(xi) indicates the
distance of xi to the decision boundary of f . Please note that
BAT is still a class-wise regularization scheme and our HAM
fundamentally differs from BAT.
Class-wise calibrated fair adversarial training (CFA) [44].
CFA aims to enhance the fairness of the model without sacri-
ficing its overall robustness from the perspective of the hyper-
parameter configurations of adversarial training, including the
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Fig. 11. For an AT model, classes with a higher proportion of easy AEs have
higher robustness in most cases.

perturbation margin, regularization, and weight averaging.
CFA can automatically optimize the configurations during
adversarial training to realize better fairness.
Fair adversarial robustness distillation (Fair-ARD) [48].
Fair-ARD studies the robust fairness under the transfer-
learning setting and finds that student models only partially
inherit the robust fairness of the teacher model. Fair-ADR
addresses this challenge by reweighting the training examples
of different classes in terms of the class-wise difficulties,
which is formulated as:

min
θS

1

C

C∑
i=1

1

ni

ni∑
j=1

(ωiLARD(S, T, xj
i , yi, τ, α)), (18)

where ωi is the reweighting parameter determined by the
difficulty of each class; S and T denote the student and teacher
models, respectively; C is the number of classes, LARD is the
distillation loss function; τ and α are hyper-parameters.

B. Experimental results on CIFAR-100

The fairness results for CIFAR-100 are provided in the
appendix. It’s worth noting that the performance of HAM on
CIFAR-100 may be influenced by the constrained amount of
training data in this dataset (500 images in each class). Given
HAM’s characteristic of discarding easy adversarial examples,
the relatively small number of training examples per class
could potentially impact its performance. We acknowledge this
limitation on the CIFAR-100 dataset and add some weights to

TABLE VIII
ERROR RATE(%) OF AVERAGE & WORST-CLASS STANDARD, BOUNDARY

AND ROBUST FOR OUR HAM AND OTHER METHODS ON CIFAR-100. THE
BEST RESULTS ARE IN BOLD, AND THE SECOND BEST RESULTS ARE

MARKED WITH UNDERLINES.

Method Avg. Rob. (↓) Worst Rob. (↓) Maximum class-wise discrepancy (↓)

PGD-AT 79.40 (±0.88) 100.00 (±0.00) 73.00 (±0.54)
FRL 83.00 (±0.32) 100.00 (±0.43) 73.00 (±0.46)
BAT 77.10 (±0.42) 100.00 (±0.73) 71.00 (±0.32)
FAT 79.50 (±0.43) 99.00 (±0.55) 65.00 (±0.58)
CFA 80.10 (±0.24) 100.00 (±0.31) 67.00 (±0.52)

HAM(Ours) 77.00 (±0.42) 99.00 (±0.51) 75.00 (±0.42)

the clean examples in the experiment. We plan to address it in
our future work. The experimental results are shown in Table
VIII. It can be seen that HAM exhibits superior performance
compared to other state-of-the-art methods in terms of Avg.
Rob. and Worst Rob. Although HAM achieves the highest
value on the maximum class-wise discrepancy, since Worst
Rob. across methods were approximate, this demonstrates
that HAM possesses superior robustness compared to other
methods.

C. Adversarial over-confidence phenomenon on popular AT
methods

To further validate the existence of the adversarial over-
confidence phenomenon, we conduct an additional experiment
using an advanced AT-based method, AWP. As shown in 10
and 11, the over-confidence phenomenon is also evident in
other state-of-the-art methods. Notably, Fig.10 illustrates that
such over-confidence examples represent a larger proportion
compared to standard PGD-AT.

D. MART-HAM and AWP-HAM Algorithms

As mentioned in Section IV-C in the main paper, HAM is
a general method that can be combined with other AT-based
methods. This section describes how to integrate HAM into
MART [11] and AWP [12] and summarizes the process in
Algorithm 2 and Algorithm 3.

MART-HAM is a modified version of MART with the
proposed HAM. It can be easily realized using the MART
loss function:

lossMART
i (xi, yi, fθ) = BCE(p(x̃i, fθ), yi)

+ λ ·KL((xi, fθ) ∥ p(x̃i, fθ)) · (1− pyi
(xi, fθ))

(19)

and it is described in detail in Algorithm 2.
AWP can also be modified to a version with the proposed

HAM. It can be summarized in Algorithm 3.

E. Analysis of Starting epoch selection

Executing HAM from the very beginning will lead to the
fluctuation of the model training and the problem of difficult
convergence. Hence, determining the optimal activation timing
for the HAM method becomes crucial and needs investigation.
In this section, we fix M and analyze the selection of the
starting epoch. Figure 12 shows that there exists a suitable
range for the starting epoch. In a total of 120 epochs of
training, with the learning rate being reduced to 10% of the
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Algorithm 2 Pseudo-code of MART-HAM
Input: Network fθ, data S = {(xi, yi)}ni=1, batch size nbs,
number of batches nb, learning rate η, training epochs T ,
whole attack step K, early-dropping step M
Output: Robust model fθ

1: for epoch = 1, · · · , T do
2: Sample a mini-batch {(xi, yi)}nbs

i=1 from S
3: for mini-batch = 1, · · · , nb do
4: Generate {x̃M

i }nbs
i=1 with M -step PGD

5: Construct hard AE set: HM = {x̃M
j : fθ(x̃

M
j ) ̸= yj}

6: Finish hard AE generation with (K−M) step PGD:
HK = {x̃K

j : x̃M
j ∈ HM}

7: Update hard(xi, yi, fθ), i = 1, · · · , nbs by Equation
7

8: Update θ with SGD by Equation 19
9: end for

10: end for

Algorithm 3 Pseudo-code of AWP-HAM
Input: Network fθ, data S = {(xi, yi)}ni=1, batch size nbs,
number of batches nb, learning rate η, training epochs T ,
whole attack step K, early-dropping step M , AWP steps A,
AWP step size ηAWP

Output: Robust model fθ
1: for epoch = 1, · · · , T do
2: Sample a mini-batch {(xi, yi)}nbs

i=1 from S
3: for mini-batch = 1, · · · , nb do
4: Generate {x̃M

i }nbs
i=1 with M -step PGD

5: Construct hard AE set: HM = {x̃M
j : fθ(x̃

M
j ) ̸= yj}

6: Finish hard AE generation with (K−M) step PGD:
HK = {x̃K

j : x̃M
j ∈ HM}

7: Update hard(xi, yi, fθ), i = 1, · · · , nbs by Equation
7

8: for a = 1, · · · , A do

9: v=Clip(v + ηAWP

∇v
1

|H|
∑
i
loss(fθ+v(x̃i),yi)∥∥∥∥∇v

1
|H|

∑
i
loss(fθ+v(x̃i),yi)

∥∥∥∥)∥θ∥
10: end for
11: Update θ with SGD by Equation 6
12: end for
13: end for

maximum rate at the 60th epoch and the starting epoch set
between 40 and 60, superior performance is observed. Based
on these observations, we infer that initiating the HAM process
slightly prior to the initial reduction in learning rate leads to
optimal outcomes.
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