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Abstract

Background: Dysphagia affects more than half of older adults with dementia and is associated with a 10-fold increase in
mortality. The development of accessible, objective, and reliable screening tools is crucial for early detection and management.

Objective: This systematic scoping review aimed to (1) examine the current state of the art in artificial intelligence (AI) and
sensor-based technologies for dysphagia screening, (2) evaluate the performance of these AI-based screening tools, and (3) assess
the methodological quality and rigor of studies on AI-based dysphagia screening tools.

Methods: We conducted a systematic literature search across CINAHL, Embase, PubMed, and Web of Science from inception
to July 4, 2024, following the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension
for Scoping Reviews) framework. In total, 2 independent researchers conducted the search, screening, and data extraction.
Eligibility criteria included original studies using sensor-based instruments with AI to identify individuals with dysphagia or
unsafe swallow events. We excluded studies on pediatric, infant, or postextubation dysphagia, as well as those using
non–sensor-based assessments or diagnostic tools. We used a modified Quality Assessment of Diagnostic Accuracy Studies–2
tool to assess methodological quality, adding a “model” domain for AI-specific evaluation. Data were synthesized narratively.

Results: This review included 24 studies involving 2979 participants (1717 with dysphagia and 1262 controls). In total, 75%
(18/24) of the studies focused solely on per-individual classification rather than per–swallow event classification. Acoustic (13/24,
54%) and vibratory (9/24, 38%) signals were the primary modality sources. In total, 25% (6/24) of the studies used multimodal
approaches, whereas 75% (18/24) used a single modality. Support vector machine was the most common AI model (15/24, 62%),
with deep learning approaches emerging in recent years (3/24, 12%). Performance varied widely—accuracy ranged from 71.2%
to 99%, area under the receiver operating characteristic curve ranged from 0.77 to 0.977, and sensitivity ranged from 63.6% to
100%. Multimodal systems generally outperformed unimodal systems. The methodological quality assessment revealed a risk
of bias, particularly in patient selection (unclear in 18/24, 75% of the studies), index test (unclear in 23/24, 96% of the studies),
and modeling (high risk in 13/24, 54% of the studies). Notably, no studies conducted external validation or domain adaptation
testing, raising concerns about real-world applicability.
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Conclusions: This review provides a comprehensive overview of technological advancements in AI and sensor-based dysphagia
screening. While these developments show promise for continuous long-term tele-swallowing assessments, significant
methodological limitations were identified. Future studies can explore how each modality can target specific anatomical regions
and manifestations of dysphagia. This detailed understanding of how different modalities address various aspects of dysphagia
can significantly benefit multimodal systems, enabling them to better handle the multifaceted nature of dysphagia conditions.

(J Med Internet Res 2025;27:e65551) doi: 10.2196/65551
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Introduction

Background
Dysphagia, a condition characterized by difficulty in
swallowing, has been recognized as a significant geriatric
syndrome with extensive impacts on the health of older adults
and the health care system [1]. This syndrome or disorder is
particularly prevalent among older adults with dementia,
affecting 58% of this population [2]. The risk of dysphagia is
further amplified by some age-related conditions such as
Parkinson disease, stroke, postextubation, and other neurogenic
or neurodegenerative conditions [3].

The etiology of dysphagia is multifaceted. It could result from
disrupted neural pathways leading to poor muscle coordination
[4], as well as sarcopenia causing weakness in neck and tongue
muscles [5]. Aspiration, leading to aspiration pneumonia, is one
of the most severe complications associated with dysphagia.
Nearly one-fifth of the patients admitted for aspiration
pneumonia are diagnosed with dysphagia [6], and some patients
may experience silent aspiration, which does not manifest any
obvious signs [7]. The condition is further compounded by its
strong association with cognitive disorders [8], making it
challenging for individuals with dysphagia to comply with
swallowing instructions and training. With a prevalence rate of
60.9% in residential care homes [9], dysphagia significantly
impairs the activities of daily living of older adults [10] and
increases morbidity [1]. The risk of mortality is particularly
high, with patients with dysphagia experiencing a 13-fold higher
mortality rate [11]. Moreover, dysphagia is closely linked to
malnutrition, with 39.2% of patients at risk [12] and a 4.8 times
higher chance of experiencing malnutrition [13].

Early diagnosis of dysphagia is crucial as it facilitates prompt
treatment and appropriate management, such as specialized
meals with optimized bolus volume and viscosity [14].
Currently, the gold standards for dysphagia diagnosis are
instrumental assessments using the videofluoroscopic
swallowing study (VFSS) or fiberoptic endoscopic evaluation
of swallowing (FEES). However, these methods pose risks to
patients, require trained personnel, have limited accessibility,
and are unsuitable for routine screening [1,15]. Therefore, there
is a heavy reliance on noninstrumental bedside screening
methods, including clinical tests and questionnaires. The Eating
Assessment Tool is one of the most common screening
questionnaires, with a relatively low specificity of 0.59 [16].
Several surveys on dysphagia have been devised using
self-report questionnaires, including the Dysphagia Risk

Assessment for the Community-Dwelling Elderly [17], Sydney
Swallow Questionnaire [18], and Ohkuma questionnaire for
dysphagia [19]. However, these instruments have not
demonstrated sufficient quality of evidence regarding their
psychometric properties when used with older adults [20].
Clinical tests, such as water swallowing tests and the Gugging
Swallowing Screen, demonstrate wide variability in sensitivity
and specificity [21-23]. These accessible bedside methods
remain subjective and examiner dependent, potentially
underestimating dysphagia incidence. One report suggested that
questionnaire-based assessments may miss up to half of
dysphagia cases [9]. These limitations could be particularly
problematic in residential care homes, where dysphagia is often
underdiagnosed and undertreated due to resource constraints,
lack of routine screening [24], and limited staff awareness [25].
Given these challenges, there is a pragmatic demand for more
accessible, objective, and reliable screening tools that can be
easily implemented, especially in residential care home settings,
to improve early detection and management.

The emergence of advanced technologies, including sensors,
computer vision, and artificial intelligence (AI), has opened up
new avenues for the screening and diagnosis of dysphagia that
address some limitations regarding cost, accessibility, and the
need for specialized personnel despite the fact that their
performance has shown variability and potential bias [26].
However, a systematic review demonstrated a pooled diagnostic
odds ratio of 21.5 for wearable technology in identifying
aspiration, highlighting the potential of these devices to enhance
clinical detection of aspiration [27]. AI models, including
machine learning and deep learning, are increasingly being
integrated into dysphagia screening tools [26,27], especially in
the application of computer vision. Lai et al [28] used depth
video data and combined them with transformer models and
convolutional networks to classify swallowing tasks, whereas
Yamamoto et al [29] used a Kinect 3D camera to quantify
swallowing dynamics during bolus flow. In addition, soft sensors
or electronic skin incorporating materials such as carbon
nanotubes [30] and graphene [31] have shown potential in
monitoring swallowing activities. These technological
advancements, referred to as computer-aided dysphagia
screening or computational deglutition, hold significant promise
for improving early detection. As dysphagia is a gradual process,
the integration of these technologies to tackle the accessibility
issue could facilitate more frequent screening, thereby enabling
earlier detection.
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Objectives
To this end, the objective of this review was to explore the
current state-of-the-art AI-based instruments for dysphagia
screening. Specifically, this review will address the following
questions: (1) what are the current AI-based instruments and
their protocols for dysphagia screening? (2) How well do these
AI-based instrument screening tools perform? (3) Are the studies
on AI-based dysphagia screening tools well reported and
methodologically rigorous?

Methods

Eligibility Criteria
We followed the PRISMA-ScR (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses extension for Scoping
Reviews) [32] in the reporting of this study (Multimedia
Appendix 1). The search strategy was developed through the
collaborative effort of a multidisciplinary team comprising
experts from relevant fields, including biostatistics (DWCW),
occupational therapy (ATSC), speech therapy (DP), biomedical
engineering (JCWC), and geriatric medicine (TCYK). We
included original studies that identified individuals with
dysphagia, unsafe swallows from individuals without dysphagia,
or safe swallows using sensor-based instruments with AI models.
We focused on AI models designed for prediction. These models
are trained on datasets and then tested on separate data to ensure
their accuracy. This testing is done either by splitting the data
into training and testing sets or through a process called
cross-validation. They may include advanced statistical models,
traditional machine learning models, deep learning models, or
generative models. In addition, to be included, studies must
involve experiments or data sourced from human participants.
While some level of data augmentation or use of generative
data was acceptable, the foundation of the data must be derived
from human participants.

Studies on pediatric or infant dysphagia, as well as dysphagia
secondary to postextubation, would be excluded as these forms
of dysphagia have different considerations. In addition, studies
would be excluded if they focused on non–sensor-based bedside
clinical assessments, questionnaires, and prediction models
based on clinical data, as well as diagnostic tools such as the
VFSS, the FEES, manometry, and other medical imaging.

Search Strategy and Selection Criteria
The literature search was conducted on several databases:
CINAHL (via EBSCOhost), Embase (via Ovid), PubMed, and
Web of Science. The search included academic journal papers
(preprint and in-press inclusive) and full conference papers from
the inception of each database to the current date (July 4, 2024).
We limited our search to publications in English without
restricting the search by country of origin or publication source.

The literature search was conducted using a combination of
keywords related to 4 main domains: participants (ie,
dysphagia), models, instruments, and outcomes. To refine the

results, exclusion terms were applied using the NOT operator
to filter out studies on pediatric, infant, or postextubation
dysphagia. The full search terms and queries are provided in
Multimedia Appendix 2. The literature search, initial screening,
and eligibility assessment were independently carried out by 2
researchers (DWCW and JW). Any disagreements were resolved
through consensus with the corresponding author or, when
necessary, other coauthors. Duplicates were initially removed
using the automatic duplication detection function in the citation
and reference management tool EndNote (version 20; Clarivate
Analytics). The remaining entries were manually checked by 2
researchers (SMYC and DKHL) to remove any missed
duplicates. The initial screening was conducted by reviewing
the titles, abstracts, and keywords, whereas the eligibility
assessment was conducted by examining the full texts. In
addition, a snowball search was conducted on the reference lists
of eligible articles to uncover any potentially overlooked studies.
The references were managed using EndNote.

Data Extraction and Synthesis
For data extraction, we proposed a modified thematic framework
based on the traditional participants, index test, reference test,
and outcome model. Our adapted framework consisted of 5
main themes: participants, modalities, protocols, models, and
performance, which is more technologically oriented. In the
modified theme, the reference test component was subsumed
under the participants theme, whereas the protocols were
incorporated into the modalities theme. We used a Sankey
diagram to illustrate the relationship and mappings among
various components across different themes. For the
performance theme, we identified and extracted 5 common
metrics used for evaluating model performance. These were
accuracy, F1-score, area under the receiver operating
characteristic curve (AUC), sensitivity, and specificity. We
presented the models (per individual class) that performed the
best based on F1-score followed by accuracy and sensitivity.

To evaluate the methodological quality of the included studies,
we used a modified version of the Quality Assessment of
Diagnostic Accuracy Studies–2 (QUADAS-2) tool [33], dubbed
QUADAS-2+M. The original instrument assesses 4 key
domains: patient selection, index test, reference standard, and
flow and timing in terms of the risk of bias and applicability.
To address the specific needs of evaluating AI-based diagnostic
studies, we proposed an additional domain focused on the AI
model inspired by the Transparent Reporting of a Multivariate
Prediction Model for Individual Prognosis or Diagnosis +
Artificial Intelligence (TRIPOD+AI) guidelines [34]. The fifth
domain (model), as shown in Textbox 1, included signaling
questions on risk of bias covering the aspects of hyperparameter
tuning, handling of class imbalance, and missing data. The
applicability assessment focused on the models’ transferability,
specifically evaluating whether the model’s performance was
adaptable when deployed. We presented the assessment results
for the model domain separately from those of the original
QUADAS-2.
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Textbox 1. Quality Assessment of Diagnostic Accuracy Studies–2 dubbed assessment domain and signaling questions with expanded criteria including
the model domain.

Risk of bias—is there a possibility that the model’s development, training, or testing processes could have introduced bias?

• Signaling question 1: Was the model subjected to hyperparameter tuning, if applicable?

• Signaling question 2: If a significant class imbalance exists, were any measures taken to address it?

• Signaling question 3: If any data were missing, were appropriate methods used to handle them during model training?

Applicability—are there concerns regarding the model’s applicability in real-world scenarios?

• Signaling question: Were any attempts made to demonstrate the model’s applicability or generalizability through external testing, domain
adaptation, robust testing, or other methods?

Results

Search Results
As shown in Figure 1, the initial search yielded 1260 entries
(Multimedia Appendix 3), of which 648 (51.43%) proceeded
to preliminary abstract screening after duplicates were removed.
Initial screening based on title, abstract, and keywords excluded
607 articles based on the following criteria: ineligible article
types (eg, review, commentary, and protocol papers; n=48,
7.9%), irrelevance of lack of focus on dysphagia investigations
(n=180, 29.7%), studies on pediatric or postextubation-induced
dysphagia as per the exclusion criteria (n=14, 2.3%), focus on

bedside clinical tests and questionnaires (n=91, 15%), use of
diagnostic tools (n=94, 15.5%) and clinical prediction models
(n=8, 1.3%), studies not aiming at the classification of dysphagia
and nondysphagia (n=169, 27.8%), and absence of AI models
(n=3, 0.5%). Screening of the full texts for eligibility further
excluded 19 articles, with reasons including not aiming at the
classification of dysphagia and nondysphagia (n=16, 84%),
focus on bedside clinical tests and questionnaires (n=2, 11%),
and use of diagnostic tools (n=1, 5%). A total of 2 studies were
added from snowballing the references of the eligible articles.
Eventually, there were 24 articles eligible for this review
[35-58]. The eligible studies are shown in the timeline graph in
Figure 2 [35-58].

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart of the systematic search and screening. This
diagram illustrates the systematic literature search and screening and the number of eligible articles for review. AI: artificial intelligence.
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Figure 2. Timeline of publications on technological advancements for dysphagia screening [35-58]. AdaBoost: Adaptive Boosting; ANN: artificial
neural network; CNN: convolutional neural network; EMG: electromyography; HMM: hidden Markov model; KNN: k-nearest neighbor; L1: Lasso
regularization; LDA: linear discriminant analysis; LR: logistic regression; MDBN: multilayer deep belief network; MLP: multilayer perceptron; NN:
neural network; OPF: optimum-path forest; PNN: probabilistic neural network; SVM: support vector machine; XGBoost: Extreme Gradient Boosting.

A total of 12% (3/24) of the studies conducted classification at
both the individual and episode levels [36,44,48]. In other words,
they distinguished between individuals with dysphagia (at risk)
and without dysphagia, as well as between safe and unsafe
swallowing events. Another set of 12% (3/24) of the studies
focused on classifying safe and unsafe swallows among
individuals with dysphagia [45,47,56]. The remaining studies
(18/24, 75%) conducted the classification exclusively on a
per-individual basis.

Methodological Quality Assessment
Several discussions were held regarding inconsistencies in the
grading approach. We reached the following consensus and
made the following notes. To assess the risk of bias in patient
selection, the signaling questions focused on whether
consecutive or random samples were enrolled. We assigned an
“unclear” grade if the study did not address the sampling
methods, which was the case in most instances. To assess the
risk of bias in the index test, studies were graded as “unclear”
if they did not specify whether blinding was conducted. For the
reference test, we assigned an “unclear” grade in cases in which
screening tests were applied for making diagnoses or in which
the study did not describe how diagnoses were conducted.

As shown in Figure 3 [35-58], most of the studies exhibited an
unclear risk of bias, including in patient selection (18/24, 75%),
index test (23/24, 96%), reference standard (13/24, 54%), and
flow and timing (19/24, 79%). This was primarily because many
studies (18/24, 75%) did not describe their sampling approaches
or mention whether they had blinded the labels of the

case-control groups. In addition, studies reported enrolling
dysphagia cases but did not explain how these cases were
confirmed. While some studies (4/24, 17%) conducted the VFSS
concurrently with the index test (ie, flow and timing), they
indicated that the VFSS was used to segment the signal, leaving
it unclear whether it was also used to reconfirm the dysphagia
status.

Satisfactory results in the applicability of patient selection
(22/24, 92%), index test (16/24, 67%), and reference standard
(15/24, 62%) were obtained. These studies were case-control,
and we assumed that the diagnoses were confirmed. However,
some studies received high (5/24, 21%) or unclear (3/24, 12%)
risk ratings for the index test because the protocols for
conducting the screening differed between participants with and
without dysphagia. This discrepancy arose primarily because,
for tasks such as eating, researchers needed to control the
consistency and volume of food to ensure safety for the
participants with dysphagia.

In the new model domain, illustrated in the 2 rightmost columns
in Figure 3 [35-58], 54% (13/24) of the studies showed a high
risk of bias, and no study satisfied the applicability criterion.
This bias may be due to unclear or inadequate hyperparameter
tuning (12/24, 50%) or methods for addressing significant class
imbalance (7/24, 29%) whether between groups (dysphagia vs
nondysphagia), episodes (safe swallows vs unsafe swallows),
or different kinds of swallow or nonswallow tasks. Notably,
none of the studies conducted external testing or domain
adaptation testing, which significantly impacts the transferability
and applicability of the system.
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Figure 3. Assessment results of the modified Quality Assessment of Diagnostic Accuracy Studies–2 with an additional model domain [35-58]. Green
indicates low risk, red indicates high risk, and cyan indicates unclear risk. RoB: risk of bias.

Participant Characteristics
The 24 studies in this review included a total of 2979
participants: 877 male, 1054 female, and 1048 individuals whose
sex was not specified (Table 1). Of these participants, 1717
were individuals with dysphagia (confirmed, suspected, or at
risk), whereas 1262 were healthy controls without dysphagia.

In addition to the initial clinical diagnoses of dysphagia, 62%
(15/24) of the studies conducted additional reference tests to
confirm the dysphagia status, some of which were conducted
concurrently with the device or technology being evaluated. Of
these 15 studies, 11 (73%) used diagnostic tools such as the
VFSS and FEES, whereas 5 (33%) used bedside clinical
assessments or questionnaires. Using the VFSS, Lee et al [45]
assessed dysphagia through a 4-point bolus clearance scale
measuring the depth of airway invasion and bolus clearance
from the valleculae and the pyriform sinuses and established 3
sets of “ground truths” indicating the presence of dysphagia.

Conversely, Saab et al [52] characterized the “true” presence
of dysphagic condition through an evaluation conducted by a
trained examiner using the Toronto Bedside Swallowing
Screening Test [59]. This test included tasks to assess changes
in voice, evaluate repetitive swallowing, and screen for
dysphonia.

The mean age of the participants varied across the studies. In
the studies that provided this information, the mean age ranged
from 41.23 to 86.22 years in the dysphagia group and from 22.4
to 83.3 years in the nondysphagia group. Canada (6/24, 25%)
and China (4/24, 17%) were the predominant sources of the
studies, followed by the United States, Japan, and Colombia
(3/24, 12% each). Other countries included Brazil (2/24, 8%)
as well as Iran, Italy, Republic of Korea, and Spain (1/24, 4%
each). Figure 4 [35-58] shows a Sankey diagram that illustrates
the number of participants in each study and the evidence
mapping toward modality, protocol, and model.
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Table 1. Demographic information of the participants in the included studies.

Reference testaRemarksControls without dysphagia (healthy)Dysphagia (or suspected)Study

DetailsParticipants, nDetailsParticipants, n

VFSSc,d—b12 children (aged 3-16 y)
and 3 healthy adults (aged
35, 38, and 54 y)

15Aged 16-25 y11Aboofazeli
and Mous-
savi [35]

—Pooled: 12 male and 10
female participants aged

Per swallowing episodes:
116

11Number of swallowing

episodes: 108; GERDe
11Basiri et al

[36]
21-76 y; both per individ-
ual and per episode

——40 male and 40 female8013 male and 13 female26Cesarini et al
[37]

VFSS—22 male and 29 female;
mean age 67.21 (range 39-
87) y

5110 male and 10 female;
mean age 61.25 (range 35-

82) y; NDf

20Donohue et
al [38]

VFSS—28 male and 27 female;
mean age 39 y; per swal-
lowing episodes: 1650

5534 male and 19 female;
mean age 63 y; per swal-
lowing episodes: 963

53Dudik et al
[39]

WSTg and

EAT-10h

—17 male and 23 female;
mean age 82.6 (SD 6.98)
y

4020 male and 26 female;
mean age 84.3 (SD 5.45)
y

46He et al [40]

WST and EAT-
10

—17 male and 23 female;
mean age 82.6 (SD 6.98)
y

4020 male and 26 female;
mean age 84.3 (SD 5.45)
y

46He et al [41]

WST, MWSTj,

and RSWTk

—57 male and 83 female;
mean age 54.5 (SD 32.5;
range 20-89) y; per swal-
lowing episodes: 1241

14018 male and 37 female;
mean age 75.5 (SD 20.5;
range 60-99) y; per swal-
lowing episodes: 288

55iInoue et al
[42]

VFSSPooled age: mean 60.8
(SD 14.5) y

Mean age 60.8 (SD 14.5)
y

299Mean age 68.8 (SD 12.6)
y

290Kim et al
[43]

VFSSBoth per individual and
per episode

12 children (aged 3-16 y)
and 3 healthy adults (aged
35, 38, and 54 y)

15Aged 16-25 y11Lazareck
and Mous-
savi [44]

VFSS, x-ray,
and bolus clear-
ance scale

Classification per episode——22 male and 2 female;
mean age 64.8 (SD 18.6)

y; stroke or ABIl

24Lee et al
[45]

FEESm—17 male and 10 female;
mean age 22.4 (range 21-
47) y

2778 male and 65 female;
mean age 83.3 (range 25-
102) y

143Miyagi et al
[46]

VFSSClassification per
episode; safe (n=60) vs
unsafe (n=164) swallows

——15 male and 15 female;
mean age 65.47 (SD 13.4)

y; NGn

30Nikjoo et al
[47]

VFSSBoth per individual and
per episode

1 male; aged 24 y112 male and 2 female;
aged 43-83 y; head-neck
cancer

14Ramírez et
al [48]

——23 male and 23 female;
mean age 60.17 (SD
11.93) y

4623 male and 23 female;
mean age 60.04 (SD

12.37) y; NG and NMo

46Roldan-Vas-
co et al [49]

——15 male and 15 female;
mean age 39.10 (SD
15.05) y

3015 male and 15 female;
mean age 41.23 (SD
14.45) y; NG and NM

30Roldan-Vas-
co et al [50]

——17 male and 14 female;
mean age 45.29 (SD
16.22) y

3116 male and 13 female;
mean age 45.69 (SD
11.92) y; NG and NM

29Roldan-Vas-
co et al [51]
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Reference testaRemarksControls without dysphagia (healthy)Dysphagia (or suspected)Study

DetailsParticipants, nDetailsParticipants, n

TOR-BSSTp—16 male and 24 female;
mean age 67 (SD 16) y for
training and 65 (SD 16) y
for testing; stroke

4019 male and 9 female;
mean age 69 (SD 17) y for
training and 73 (SD 18) y
for testing; stroke

28Saab et al
[52]

MWST and VF-
SS

—67 male and 108 female;
mean age 82.57 (SD 8.01)
y

17561 male and 72 female;
mean age 86.22 (SD 7.47)
y; sarcopenia

133Sakai et al
[53]

———20NG20Spadotto et
al [54]

———20After CVAq20Spadotto et
al [55]

VFSSBefore dropout: 167 male
and 167 female; mean
age 72 y; classification
per episode

——Stroke or ABI305Steele et al
[56]

——35 male and 48 female;
mean age 83.3 (SD 5.3) y

8347 male and 96 female;
mean age 84.7 (SD 5.6) y

143Wang et al
[57]

——35 male and 48 female;
mean age 83.3 (SD 5.3) y

8347 male and 96 female;
mean age 84.7 (SD 5.6) y

143Zhao et al
[58]

aReference test in this context refers to the procedure used to confirm dysphagia in addition to the initial clinical diagnosis or history of medical diagnosis.
bNo remarks.
cVFSS: videofluoroscopic swallowing study.
dThe studies used VFSS for segmentation during the experiment, but it was not explicitly stated whether it was used to reconfirm the disease state
(reference test).
eGERD: gastroesophageal reflux disease.
fND: neurodegenerative.
gWST: water swallowing test.
hEAT-10: Eating Assessment Tool.
iThe number of participants reported in the paper was inconsistent.
jMWST: modified water swallowing test.
kRSWT: repetitive saliva swallowing test.
lABI: acquired brain injury.
mFEES: fiberoptic endoscopic evaluation of swallowing.
nNG: neurogenic.
oNM: neuromuscular.
pTOR-BSST: Toronto Bedside Swallowing Screening Test.
qCVA: cerebrovascular accident.
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Figure 4. Sankey diagram illustrating the mapping of key context of the reviewed papers and the study sample sizes [35-58]. CNN: convolutional
neural network; KNN: k-nearest neighbor; LDA: linear discriminant analysis; MLP: multilayer perceptron; OPF: optimum-path forest; sEMG: surface
electromyography; SVM: support vector machine.

Modality
In our included studies, acoustic and vibratory signals were the
primary modality sources used in dysphagia screening, as
evidenced in 54% (13/24) and 38% (9/24) of the studies,
respectively (Table 2). Additional sources included nasal airflow
(2/24, 8%), electromyography (EMG; 2/24, 8%), strain and
motion analysis (2/24, 8%), and optical method (1/24, 4%).
Notably, 25% (6/24) of the studies used multimodal approaches,
whereas the remaining 75% (18/24) focused on a single
modality. The timeline trend shown in Figure 2 [35-58] indicates
a consistent presence of acoustic modalities across various
studies in general.

In our reviewed studies, various types of sound sensors (or
microphones) were used to measure sound vibrations, including
contact microphones [38,46,54,55], headset microphones
[37,49], voice recorders from smart devices [36,43,52],
accelerometers [35,44], and piezoelectric transducers [42].
Although there were variations in sensor placement across the
studies, the suprasternal notch, thyroid cartilage, and cricoid
cartilage were common anatomical landmarks for sensor
placement. Inoue et al [42] introduced a multimodal system that
incorporated nasal airflow measurements with laryngeal motion
and sound analysis. In addition to a nasal cannula flow sensor,
the system used a custom-designed piezoelectric sensor attached
to the thyroid cartilage to detect throat motion and sound.
Studies using accelerometers as acoustic transducers (2/24, 8%)
typically focused on tracheal breathing sounds, positioning
sensors at the suprasternal notch [35,44] and the intercostal

space [44]. In contrast, studies using contact microphones (4/24,
17%) often emphasized vocal and swallowing sounds, placing
sensors just below the level of cricoid cartilage [38] and at the
level of thyroid cartilages [54,55]. Different algorithms were
also introduced for signal segmentation, such as the discrete
wavelet transform [55], the waveform dimension algorithm
[44], and the hidden Markov model [35].

Accelerometers (8/24, 33%) were the most commonly used
sensors in this review. Both dual-axial [45,47,56] and triaxial
[38,39,50] accelerometers were used, aligned along the
anterior-posterior and superior-inferior directions, with triaxial
accelerometers additionally measuring the medial-lateral
direction. Similar to the acoustic sensors, these sensors were
typically placed at the level of the cricoid cartilage and just
below the thyroid cartilage. Signal preprocessing primarily
involved bandpass filtering and amplification in addition to
denoising techniques such as finite impulse response filters [39]
and mother wavelet transforms [50]. Signal segmentation or
clipping was conducted either manually or automatically. In
addition, some studies (2/24, 8%) developed custom biomotion
or biophysical sensors. Ramírez et al [48] designed a flexible
strain sensor using piezoresistive material composed of
palladium nanoislands on single-layer graphene, which was
applied to the submental region below the chin. On the other
hand, Inoue et al [42] used a custom-made piezoelectric bending
sensor to measure laryngeal motion that was positioned on the
thyroid cartilage. However, the authors did not provide details
on the sensors.
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Table 2. Instrument modalities and screening protocols of the included studies.

ProtocolTask typeInstrumentSourceStudy

Accelerometer
(measured trachea
sound)

AcousticsAboofazeli and
Moussavi [35]

• Eating or drinking: 5-mL boluses of semisolid, thick
liquid, and thin liquid

• Eating or drinking
• Others

• Others: breathing sound was recorded

Voice recorderAcousticsBasiri et al [36] • Swallowing: —a• Swallowing
• Others • Others: breathing

Headset microphoneAcousticsCesarini et al [37] • Pronouncing the vowels “/a/” and “/e/” until breath
shortening

• Speaking

• Reading 3 sentences in Italian with different consonant
preponderance

Contact micro-
phone+triaxial ac-
celerometer

Acoustic+vibra-
tory

Donohue et al [38] • 3-mL thin liquid boluses• Drinking
• Self-selected “comfortable” cup sips of thin liquid

Triaxial accelerome-
ter

VibratoryDudik et al [39] • Water, nectar-thick liquid, and honey-thick liquid• Drinking
• Head in neutral and chin-tuck position

Vibration transducer
used in a bone con-
duction headset

VibratoryHe et al [40] • Pronouncing 3 vowels• Speaking
• Reading a simple text
• Reading a complicated tongue twister

Vibration transducerAcousticsHe et al [41] • Pronouncing the vowels “/a/,” “/e/,” and “/o/”• Speaking

Nasal cannula pres-
sure sensor+piezo-

Nasal air-
flow+laryngeal

Inoue et al [42] • Several types of test food and water• Eating or drinking

electric sensor (tomotion+acous-
tics record both motion

and sound)

Microphone of iPad
(voice recorder)

AcousticsKim et al [43] • Speaking: sustained vowel “/e/” for 3 s, pitch elevation
with “/eee/” from a low to a high pitch, and counting
from 1 to 5

• Speaking
• Others

• Others: voluntary coughing with maximal effort

Accelerome-
ter+nasal cannula
pressure sensor

Acoustics+nasal
airflow

Lazareck and Mous-
savi [44]

• 5-10 spoons of 5-mL semisolid• Eating or drinking
• Single-bolus-sized sip of thick and thin liquid

Dual-axial ac-
celerometer+nasal

Vibratory+nasal
airflow

Lee et al [45] • Thin liquid, nectar, spoon-thick liquid, and solid• Eating or drinking

cannula pressure
sensor

Contact microphoneAcousticsMiyagi et al [46] • 3 mL of water• Drinking

Dual-axial ac-
celerometer

VibratoryNikjoo et al [47] • 2-3 teaspoons of thin liquid barium• Drinking
• Neutral head position

Piezoresis-

tive+sEMGb
Strain+myoelec-
tric

Ramírez et al [48] • 10 mL of water, 15 mL of yogurt, and 6 g of crackers• Eating or drinking

Headset microphoneAcousticsRoldan-Vasco et al
[49]

• Sustaining vowels “/a/,” “/e/,” “/i/,” “/o/,” and “/u/”
for at least 3 s

• Speaking

• Rapid repetition of the syllables “pa-ta-ka”
• Spontaneous monologue of approximately 90 s

Triaxial accelerome-
ter+sEMG

Vibratory+myo-
electric

Roldan-Vasco et al
[50]

• 5, 10, and 20 mL of water and yogurt• Eating or drinking

sEMGMyoelectricRoldan-Vasco et al
[51]

• 5, 10, and 20 mL of yogurt, water, and saliva and 3 g
of cracker

• Eating or drinking
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ProtocolTask typeInstrumentSourceStudy

• Performing speech components of the NIHSSc, includ-
ing tests of articulation, naming, repetition, and com-
prehension

• Sustaining vowels “/a/,” “/e/,” “/i/,” “/o/,” and “/u/”
for at least 3 s

• SpeakingMicrophone of
iPhone (voice
recorder)

AcousticsSaab et al [52]

• Sitting upright with chin in neutral position• OthersCamera (photo) of
iPad

OpticalSakai et al [53]

• 10 mL of water• DrinkingContact (electret)
microphone

AcousticsSpadotto et al [54]

• 10 mL of water• DrinkingContact microphoneAcousticsSpadotto et al [55]

• 6 sips of water
• 4 oz of thin liquid barium
• 3 sips of 4 oz of mildly thick, a teaspoon of moderately

thick, and a teaspoon of extremely thick barium

• DrinkingDual-axial ac-
celerometer

VibratorySteele et al [56]

—• SpeakingVibration transducer
of bone conduction
headset

VibratoryWang et al [57]

• Pronouncing the vowel “/a/” for as long as possible• SpeakingVibration transducer
of bone conduction
headset

VibratoryZhao et al [58]

aInformation not available.
bsEMG: surface electromyography.
cNIHSS: National Institutes of Health Stroke Scale.

Nasal airflow measurement and EMG were additional modalities
used to identify dysphagia, both of which were featured in 8%
(2/24) of the studies. Nasal airflow monitoring was facilitated
by a nasal cannula connected to a pressure transducer [42,44,45].
This method provided insights into the respiratory-swallowing
coordination, laryngeal closure timing, risk of aspiration, and
dysphagic compensatory mechanisms such as prolonged
swallow apnea [60,61]. Conversely, EMG studies primarily
focused on the infrahyoid muscle [50,51] and suprahyoid muscle
groups [48,50,51], including the mylohyoid and geniohyoid
muscles. The suprahyoid muscles initiate swallowing and protect
the airway during the process, whereas the infrahyoid muscles
stabilize the hyoid bone and assist in lowering the larynx after
swallowing [62]. They play an important role in the positioning
of the hyoid bone, swallowing, and speech.

Protocol
To identify dysphagia, the screening protocols can be broadly
categorized into swallowing and nonswallowing tasks.
Swallowing tasks, which appeared in 62% (15/24) of the studies,
involved activities such as eating, drinking, and saliva
swallowing. Nonswallowing tasks, featured in 46% (11/24) of
the studies, included speaking and other maneuvers, such as
coughing or simply breathing.

The swallowing tasks exhibited considerable variation in
protocols, particularly regarding the volume and consistency
(viscosity) of the food or liquid to be swallowed. Some studies
(3/24, 13%) used relatively simple protocols in which
participants were instructed to swallow 10 mL of water [54,55]
or thin liquid barium [47]. Donohue et al [38] asked the
participants to swallow 3 mL of thin liquid and then

self-selecting the volume of the sips they would swallow of that
liquid. Several studies (4/24, 17%) evaluated the influence of
different liquid thicknesses. Steele et al [56] tested 6 sips of
water followed by 6 sips of thin liquid barium and 3 sips each
of mildly thick, moderately thick, and extremely thick barium.
Similarly, Dudik et al [39] presented participants with water,
nectar-thick liquid, and honey-thick liquid. Some protocols
incorporated a spectrum of consistencies from liquid to solid.
The studies conducted by Aboofazeli and Moussavi [35] and
Lazareck and Moussavi [44] asked participants to swallow a
5-mL semisolid bolus and sips of thick and thin liquid. Lee et
al [45] progressively fed participants thin, nectar-thick, and
spoon-thick liquids followed by solids. Other studies involved
saliva swallowing, different volumes of water, yogurt, and
crackers in their protocols [48,50,51]. Notably, Dudik et al [39]
compared the neutral head and chin-tuck positions during the
swallowing tasks.

Pronouncing vowels is the most common nonswallowing task,
which appeared in 29% (7/24) of the studies
[37,40,41,43,49,52,58] despite some variations. Participants
were typically asked to articulate the vowels “/a/,” “/e/,” “/i/,”
“/o/,” and “/u/” (in phonemic alphabets: “/e /,” “/iː/,” “/a /,“
“/o /,” and “/u:/”). Some studies (3/7, 33%) required participants
to pronounce only 2 or 3 of these vowels. The protocols varied,
with 33% (2/6) of the studies simply asking participants to
articulate the vowels [40,41], whereas the others (4/6, 67%)
required them to speak at different pitch levels (high-pitch
gliding) [43], sustain the vowel sound for 3 seconds [43,52], or
pronounce the vowel for as long as possible [58] or until they
needed to take a breath [37]. In addition, participants were tested
on consonants [37] and syllables [49]. More complex reading
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tasks were also introduced, including text reading [40], counting
(1 to 5) [43], tongue twisters [40], and reading a monologue for
90 seconds [49]. Furthermore, Saab et al [52] administered the
speech components of the National Institutes of Health Stroke
Scale [63], which included tests of articulation, naming,
repetition, and comprehension.

Model
In synthesizing the review of the models, we can categorize
those used in the included studies into deep learning (3/24, 12%)
and traditional machine learning models (21/24, 88%). Dudik
et al [39] created a complex neural network that combines 2
directions of accelerometric data. This network has multiple
layers that process the data in different ways before making a
final classification. On the other hand, some studies (2/24, 8%)
converted the collected signals into “images,” which were then
processed using convolutional neural networks. Saab et al [52]
converted signals into red-green-blue mel-spectrogram images,
with color indicating the spectral (intensity of the frequency
component) magnitude of the time-frequency domain (image
space) and 3-channel mel-spectrogram images involving the
depth-wise concatenation of 3 monochrome mel-spectrograms.
These were input into an ensemble network of the DenseNet121
and ConvNeXtTiny models to identify dysphagia. Similarly,
Kim et al [43] converted acoustic signals to short-time Fourier
transform and mel-frequency cepstral coefficient (MFCC)
spectrograms via fast Fourier transform, mel filter bank, and
inverse fast Fourier transform. The MFCC was derived by
applying a discrete cosine transform to the log mel-spectrogram.
The researchers then input the short-time Fourier transform and
MFCC into a convolution-batch normalization–rectified linear
unit block and DenseNet121 block, respectively, merging them
using concatenation followed by fully connected layers. They
created models for each task, evaluated them separately, and
ensembled the models using a soft voting method.

Feature extraction is an important step in traditional machine
learning. The included studies highlighted a diverse range of
predetermined features to characterize signals, particularly in
acoustics and accelerometry. In the time domain, commonly
extracted features such as SD, variance, root mean square,
waveform length, and zero-crossings could provide insights
into the amplitude and behavior of the signal. Frequency domain
features such as peak, mean, and median frequency, as well as
total energy, were extracted for spectral representation of
signals. Spectrograms and wavelet analyses in the
time-frequency domain could capture both temporal and spectral
variations of the signals. Some studies (2/24, 8%) considered
information-theoretical domain features, which included
dispersion ratio, normality, Lempel-Ziv complexity, and entropy
[38,47]. For acoustics and airflow information, domain-specific
features were also used. Audio (acoustic) domain features
included jitter, shimmer, pitch, amplitude, and pitch perturbation
quotients [37,49,57,58], whereas airflow features encompassed
maximum hyolaryngeal excursion and air volume [45]. After
collecting data, researchers need to choose which aspects of the
data (ie, features) are most important. This process, known as
feature selection or reduction, helps manage the large amount
of information collected [64]. Principal-component analysis is
one of the famous methods for feature selection to retain most

of the original variance [36,50,57,58]. Some studies (4/24, 17%)
used statistical methods such as t tests or regressions to evaluate
the feature importance in relation to the target variable
[40,44,49,53]. These statistical methods help identify the most
relevant feature and reduce computational demand. There were
other feature selection methods used, such as the minimum
redundancy, maximum relevancy method [50,51] and precise
matching analysis [40]. Other feature domains and feature
extraction and selection methods are detailed in Multimedia
Appendix 4 [35-58].

Support vector machine (SVM) was used in 62% (15/24) of the
studies as the traditional machine learning model, although
different kernel functions were applied across these studies.
SVM handles nonlinear data by using the kernel function to
identify an optimal hyperplane in the high-dimensional space
for classification. The radial basis function kernel was used on
the SVM model in 25% (6/24) of the studies
[37,42,46,49,54,58], whereas Roldan-Vasco et al [49] conducted
a comparison of the radial basis function with linear and sigmoid
kernels. In addition, Nikjoo et al [47] constructed SVMs on
each feature domain and ensembled the models using a
reputational classification approach. Linear discriminant analysis
(LDA), which was featured in 21% (5/24) of the studies
[44,45,49,56], shares similarities to SVM as both methods
construct a decision boundary to classify the feature space.
However, unlike SVM, which maximizes the margin between
classes, LDA seeks to maximize the ratio of between-class
variance to within-class variance. In one study, Lazareck and
Moussavi [44] conducted LDA using 11 features extracted from
the time-frequency domain of signals, which were segmented
based on the waveform dimension trajectory. In another study,
Lee et al [45] trained and calibrated the LDA model using
variant measures of Euclidean and Mahalanobis distance.

Statistical models such as logistic regression and Bayesian
methods offer probabilistic output and better interpretability,
in addition to lower computational cost. For instance, Spadotto
et al [55] conducted a time-frequency analysis based on the
discrete wavelet transform and classified the signal using the
Bayesian method. On the other hand, Donohue et al [38]
extracted 22 features from the time, frequency, time-frequency,
and information-theoretical domains after principal-component
analysis and evaluated the classification performance of naïve
Bayes and logistic regression comparing them with SVM and
decision tree. Tree-based models, including decision tree,
random forest, and boosting models such as Adaptive Boosting
(AdaBoost) and Extreme Gradient Boosting (XGBoost), are
potent and interpretable models that perform classification tasks
using hierarchical structures of conditional control algorithms.
In this review, Roldan-Vasco et al [49] assessed the performance
of decision tree and random forest on the features extracted
from the audio, articulation, diadochokinetic, and prosody
domains. Boosting models, on the other hand, combine weaker
learners (or trees) to form stronger learners. Both AdaBoost and
XGBoost were featured in our reviewed studies [48,50,51,57],
demonstrating their effectiveness in classifying dysphagia.
Neural networks, which are computer systems modeled after
the human brain, can learn complex patterns. However, they
require large amounts of data and significant computing power
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to function effectively. Examples of such networks used in this
review included multilayer perceptron, artificial neural network,
and probabilistic neural network [45,49,58].

Performance
Figure 5 [35-44,46,48-55,57,58] (more detailed information is
available in Multimedia Appendix 5 [35-58]) shows the
performance of a model that was evaluated on an individual
basis and was deemed the best-performing model in the study.
This figure includes a list of 88% (21/24) of the studies along
with specific settings such as selected features and tasks. Most
of the studies reported the accuracy metric (17/21, 81%),
whereas fewer reported the F1-score and AUC. Both accuracy
and F1-score represent the proportion of correctly classified
observations. However, the F1-score, which is the harmonic

mean of precision and recall, is more robust to class imbalance
even though it is more challenging to interpret. On the other
hand, the AUC measures the performance of a binary classifier
at different thresholds and serves as a metric to represent the
model’s discriminative power or separability. Sensitivity and
specificity were reported in 71% (15/21) and 52% (11/21) of
the studies, respectively. While both sensitivity and specificity
are crucial parameters in the evaluation of diagnostic or
screening tests, their relative importance can vary depending
on the context of the application. In the context of dysphagia
screening, we attributed a higher degree of importance to
sensitivity. When an individual tests positive in the screening,
they may undergo additional tests for confirmation. However,
missing a diagnosis could lead to higher costs, both financially
and in terms of patient health outcomes.

Figure 5. Heat map comparing the classification performance between models in the included studies [35-44,46,48-55,57,58]. *The study involved
multimodality. **The study reported that all models reached an accuracy of >90% but did not provide their exact values. Acc: accuracy; AdaBoost:
Adaptive Boosting; AUC: area under the receiver operating characteristic curve; CNN: convolutional neural network; EM: ensemble model; EMG:
electromyography; HMM: hidden Markov model; L1: Lasso regularization; LDA: linear discriminant analysis; LR: logistic regression; MDBN: multilayer
deep belief network; OPF: optimum-path forest; Sn: sensitivity; Sp: specificity; SVM: support vector machine; XGBoost: Extreme Gradient Boosting.

The models in the included studies generally exhibited high
performance. Among the multimodal studies, Donohue et al
[38] demonstrated exceptional performance, with a logistic
regression model achieving an accuracy of 0.99 when integrating
sound and vibration data. Similarly, Inoue et al [42] explored
the combination of nasal airflow, biomotion, and sound,
achieving a sensitivity of 0.824 and specificity of 0.86, In the
context of multimodal studies involving EMG, Roldan-Vasco
et al [49] achieved an accuracy of 0.90 using an ensemble model
that incorporated various features across all tasks. In addition,
Roldan-Vasco et al [50] demonstrated the efficacy of XGBoost
in analyzing vibration and EMG data, achieving an accuracy of
0.87. Regarding unimodal sound studies, Basiri et al [36]
reported an excellent accuracy of 0.9565 using SVM, whereas
Aboofazeli and Moussavi [35] achieved an accuracy of 0.855
using the hidden Markov model.

The models using vibration as a modality exhibited a range of
classification accuracy, from 0.712 to 0.913. Dudik et al [39]
used a multilayer deep belief network and achieved an accuracy
of 0.913 with a sensitivity of 0.949. He et al [40] used SVM,
reporting an accuracy of 0.892 and an AUC of 0.977. In contrast,
8% (2/24) of the studies achieved a lower accuracy of 0.721
[58] and 0.712 [57] using the ensemble model and AdaBoost,
respectively.

Multimodal studies demonstrated superior performance
compared to unimodal studies. Specifically, multimodal studies
incorporating sound achieved an accuracy of 0.99, which is
higher than that of unimodal studies focusing solely on sound
(0.88-0.90). A similar trend was observed for EMG. Studies
that combined EMG with other modalities attained an accuracy
between 0.86 and 0.87, whereas EMG alone achieved an
accuracy of 0.78. Inoue et al [42] compared their own
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multimodal results with their unimodal findings. The multimodal
performance was comparable to that of acoustic measurements
but notably superior to that of airflow and biomotion
measurements in isolation. Furthermore, Roldan-Vasco et al
[50] demonstrated that integrating accelerometry and surface
EMG improved accuracy by 5% to 21% compared to using
either method independently.

It should be noted that 12% (3/24) of the studies [45,47,56],
which solely classified per episodes (ie, safe vs unsafe
swallows), were not included in Figure 5
[35-44,46,48-55,57,58]. Nikjoo et al [47] achieved a promising
accuracy of 80.48% and a sensitivity of 97.1%, with a moderate
specificity of 64%. By using the Mahalanobis linear discriminant
classifier, which was the best model, Lee et al [45] achieved an
accuracy of 84.2% when the bolus clearance of the pyriform
sinus scale was used as the ground truth. Steele et al [56] focused
on impaired thin liquid swallowing safety, achieving an
identification sensitivity of 90.4% and a specificity of 60.0%.
In total, 8% (2/24) of the studies [57,58], which used throat
vibration sensors, demonstrated relatively poor performance,
as illustrated in Figure 5 [35-44,46,48-55,57,58]. The authors
attributed this suboptimal performance to the high individual
variation in vibration-based speech features, potentially
influenced by factors such as age.

Discussion

Principal Findings
This systematic scoping review analyzed 24 studies on AI and
sensor-based dysphagia screening, illustrating important context
and concepts regarding modalities, protocols, and models
(Figure 6). Acoustic-based modalities were the most prevalent,

with various instruments, such as contact microphones, headset
microphones, voice recorders, and accelerometers, being used.
In addition, EMG appears to be gaining recognition in recent
studies. SVM emerged as the most frequently used AI model,
although different kernel functions were used across the studies.
Multimodal systems that used multiple types of data appeared
to be superior to unimodal systems. Performance metrics varied
widely, with accuracy ranging from 71.2% to 99%, AUC
ranging from 0.77 to 0.977, and sensitivity ranging from 63.6%
to 100%. However, it is crucial to note that the validity of these
metrics may be compromised in some studies due to the small
testing sample size, particularly for the dysphagia group. Most
studies (17/24, 71%) had <60 participants in the dysphagia
group. While no clear performance trends were observed
between traditional machine learning and deep learning
approaches, more recent publications showed a tendency toward
using deep learning and ensemble models. The primary focus
of this review was on the classification of individuals as having
dysphagia or not. Some studies (3/24, 13%) used a 2-step
approach, initially classifying swallows as safe or unsafe before
making a final determination regarding dysphagia. This 2-step
approach could be advantageous as individuals with dysphagia
might not always produce “unsafe” swallowing episodes.
Testing various swallowing tasks provides additional evidence
to support the screening results. On the other hand, our
methodological quality assessment raised several concerns
regarding the studies reviewed. These concerns included
inadequate declaration of sampling approaches, lack of blinding
in class label assignment, insufficient hyperparameter tuning
and handling of class imbalances, and limited external testing
or validation. These methodological issues highlight the need
for more transparent reporting and to enhance the reliability and
generalizability of the research in future studies.
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Figure 6. A fan chart illustrating the context and concepts of the 3 key domains of models, modalities, and protocols. AI: artificial intelligence; CNN:
convolutional neural network; EMG: electromyography; LDA: linear discriminant analysis; SVM: support vector machine.

Implications and Perspectives
While our review primarily focused on geriatric dysphagia, it
is crucial to consider the unique challenges faced by specific
subpopulations, particularly patients with dementia and children.
For patients dementia, the progressive decline in cognitive
function can affect their ability to understand and respond to
questionnaires or follow complex instructions during clinical
examinations. Currently, noninstrumental clinical observation
and questionnaires remain the primary screening methods for
this population. The modified Mann Assessment of Swallowing
Ability was designed to assess dysphagia in patients with mild
to moderate dementia [65]. However, it might fail to account
for individuals with severe cognitive impairment, and its
performance varies across different levels of cognitive decline
[66].

Dysphagia is a complex disorder with diverse manifestations
originating from the oral, pharyngeal, and esophageal regions,
as well as neurological, coordination, structural, and sarcopenic
factors [67]. This complexity necessitates a thoughtful selection
of screening modalities as the right combination can not only
improve overall screening accuracy but also help pinpoint the
specific anatomical regions affected and the underlying nature

of the swallowing difficulty. For oral and pharyngeal regions,
cervical auscultation or acoustic-based techniques are more
common. These techniques detect abnormal sound or vibration
patterns linked to alteration in laryngeal vestibule closure and
opening and hyoid bone movement [68,69]. Temporal analysis
of these swallowing sounds or vibratory biomotion signals could
identify neurological and coordination factors of dysphagia. To
assess structural abnormalities in the oral, pharyngeal, and
esophageal regions, ultrasound imaging offers real-time
visualization and is particularly useful for identifying anatomical
changes that may contribute to swallowing difficulties [70]. For
suspected sarcopenia, which could affect the swallowing
mechanism, optical or camera-based systems can assess muscle
mass and morphological changes in different stages of
swallowing [53]. In addition, EMG can offer valuable insights
into muscle weakness, activation patterns, and coordination
issues [71]. It also has the potential to be further developed into
a biofeedback tool for dysphagia rehabilitation [72]. Considering
the complex nature of dysphagia, a multimodal approach that
integrates various sensing technologies can effectively capture
the full range of swallowing abnormalities across different
regions and underlying causes. By leveraging AI, this approach
can be further enhanced through the integration of diverse data
types, extraction of relevant features from each modality, and
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temporal and spatial analysis of swallowing patterns, ultimately
providing personalized risk assessments.

The integration of AI and multimodal sensor-based technologies
in dysphagia screening has the potential to revolutionize clinical
practice, offering numerous benefits for both patients and health
care providers [26,73]. First, these advanced screening methods
can enhance the detection of subtle abnormalities, providing
objective and consistent assessments, which may ultimately
lead to improved accuracy and early intervention. Second, an
AI-based sensor system could automate screening and triage
processes, significantly alleviating the workload of health care
professionals. Third, the incorporation of these technologies in
the form of wearables could enable continuous monitoring. This
allows for the capture of intermittent or subtle difficulties that
might be overlooked in a one-off traditional assessment given
that dysphagia can be a dynamic condition that presents
differently in the same individual under different circumstances.
Fourth, this functionality could pave the way for more
personalized treatment plans and facilitate remote monitoring,
which is particularly beneficial for patients in underserved areas
or during a pandemic. The potential for tele-swallowing
assessments [74] and home-based screening not only improves
accessibility but also enhances patient comfort by reducing the
need for travel and minimizing the anxiety associated with
traditional invasive procedures such as the VFSS and FEES
[75].

From a health care cost perspective, the implementation of AI
and sensor-based screening methods could reduce the reliance
on costly diagnostic procedures, and early identification could
potentially prevent complications such as aspiration pneumonia,
thereby decreasing hospital admissions and enhancing patient
outcomes. Furthermore, the reduced need for specialists such
as speech or occupational therapists for bedside screenings or
tests could contribute to cost-effectiveness. The integration of
electronic health record systems presents additional
opportunities for these technologies given that dysphagia can
be associated with different underlying factors and comorbidities
such as malnutrition, intubation, stroke, brain injury, dementia,
and sarcopenia [76,77], requiring a holistic management and
treatment plan [67]. Future studies might leverage language
models to facilitate automated clinical reports and adaptive
treatment planning [78-81].

Hurdles and Opportunities
Despite the promising potential for AI-based dysphagia
screening, several technological challenges have hindered the
pathway toward the anticipated impact. Key challenges include
issues of generalizability, robustness, limitations in sample size,
biases in model training, variations in screening protocols, and
the need for real-time processing capabilities. Our review
revealed an absence of external tests across all studies. While
many models demonstrated good performance in internal tests,
their ability to maintain accuracy across different screening
environments, protocols, or patient populations and, thus, their
generalizability or external validity remain uncertain, posing
challenges to real-world applicability. Sample size, for both
training and testing, presents another set of challenges. Small
datasets can lead to overfitting and induced bias in the

performance evaluation. Wang et al [82] suggested that a test
sample size of 98 might be necessary for deep learning, as
estimated based on statistical heuristics. Data augmentation and
other techniques such as undersampling, penalization, and Monte
Carlo simulation could be used to address class imbalance
problem because of scarcity of patients with dysphagia in the
dataset. The fact that some patients with dysphagia cannot
perform certain swallowing tasks or maintain certain postures,
resulting in missing data, could contribute to model bias. For
instance, one study regulated the consistencies and volume of
the food to be swallowed to maintain a safe level for the patient
group [50], whereas others had their protocols controlled by the
attending clinicians [45,47]. The model may tend to
inadvertently learn to correlate the lack of specific data with
the classification of an individual as a patient rather than
identifying pertinent features from the data that have been
collected [83]. A standardized screening protocol is indeed
essential. There have been protocols proposed for this
application [84], and some studies have referenced various
relevant protocols such as the International Dysphagia Diet
Standardisation Initiative [85] and National Institutes of Health
Stroke Scale [63]. Nonetheless, additional research is required
to understand the relationship among intake consistency; intake
volume; and their impact on swallowing function, biomechanics,
and physiology [86,87].

Efforts should be directed toward creating large, more diverse
datasets of dysphagia presentations. Prioritizing external
validation studies is also crucial to assess the generalizability
and robustness of AI models across diverse clinical settings and
patient populations [88]. Moreover, all studies in this review
focused on a single swallowing assessment. However, a
long-term continuous assessment could be more beneficial as
geriatric dysphagia is a gradual deterioration process. The need
for real-time processing capabilities presents a significant hurdle
in translating AI-based dysphagia screening from research to
clinical practice. The integration of AI models into Internet of
Things systems, the implementation of edge computing, the
development of lightweight models suitable for real-time
analysis, and usability tests in clinical settings are crucial steps
[89,90] that have yet to be fully addressed. Tsujimoto et al [91]
explored the use of a smartphone-based, neck-worn monitoring
device for swallowing activities (NeW–Monitoring Device for
Swallowing Activities, GOKURI neckband; PLIMES Inc) to
monitor the swallowing frequency of food of different
consistencies in daily life and demonstrated its feasibility in
continuous monitoring. In addition, the advent of soft and
flexible materials in sensor technology could significantly
improve comfort and compliance, while also reducing noise
and motion artifacts. These advances pave the way for more
extensive long-term analysis [92-94], whereas noncontact
methods such as optical and depth cameras might have similar
advantages [28,29]. However, a critical challenge remains in
ensuring both consistent sensor placement and proper
prestretching of the device, particularly for devices adhered to
the neck region. Addressing this issue is crucial to enable
reliable repeated measurements to track disease progression or
treatment efficacy. Broader challenges include issues such as
data privacy, user compliance, maintenance, user-friendliness,
and technological resistance. Wearable technologies and other
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assistive technologies have faced compliance issues among
older adults, especially those with dementia and agitation
[95,96]. Designing user-friendly interfaces and incorporating
persuasive features for older adults could enhance usability and
adherence [97].

Future research should explore innovative AI architectures and
advanced sensing technologies, with a particular focus on
multimodal approaches that integrate data from diverse sensors
to enhance accuracy and robustness [98]. The clinical utility of
the system could be further improved through model distillation
[99] against electronic health records, demographic information,
psychographic data, and environmental factors [100,101]. This
comprehensive approach could lead to more precise assessments,
advancing the field toward precision telemedicine. Apart from
screening and monitoring swallowing function, these sensor
technologies have potential applications as biofeedback-based
controllers. Such applications could also enable novel
approaches to swallowing rehabilitation through various
modalities of serious games, such as biofeedback-based video
and virtual reality games [102-104].

Comparison to Prior Reviews
This review extends the existing body of literature. While
previous reviews have focused on specific aspects, our study
provides a comprehensive overview of the current state of the
research in dysphagia classification using AI and instruments.
Lai et al [27] conducted a meta-analysis on the diagnostic
accuracy of wearable technology for identifying aspiration risk
exacerbated by dysphagia, whereas So et al [26] reviewed
acoustics and accelerometric instruments for classifying swallow
and nonswallow tasks. Li et al [68] conducted a narrative review
of the acoustic theory foundation and applications for monitoring
swallowing sound. We found additional modalities in our
review, such as nasal airflow, EMG, and biomotion measured
using piezoresistive sensors, providing a broader perspective.
Another narrative review by Wu et al [73] provided a
comprehensive overview on different noninvasive sensors for
swallowing assessments. Consistent with previous reviews, we
found that SVM was the most common model used across the
studies. The variations in screening protocols, the limitation of
small sample sizes, and the lack of external tests were also
common problems. On the other hand, Rafeedi et al [93]
reviewed proof-of-concept studies from an engineering
perspective, exploring the application of soft sensors (referred
to as “epidermal sensors”) for potential long-term swallowing
monitoring.

Limitations of This Review
This review has several limitations. First, our search strategy
was restricted to papers in English, potentially excluding
relevant studies published in other languages. We also excluded
certain types of publications, such as conference abstracts,
commentaries, perspectives, and book chapters, which may
have contained relevant information. The scope of our review
was further limited by the exclusion of studies focusing on
pediatric or infant dysphagia, as well as postextubation-induced
dysphagia. While necessary to maintain focus, it may have
omitted important findings and applications in these specific
populations. A significant challenge in this review was the

heterogeneity among the studies, particularly in terms of signal
processing, feature extraction, and feature selection
methodologies. This heterogeneity made it difficult to synthesize
and compare results across studies effectively. In addition, our
focus on classification studies may have led to the exclusion of
relevant studies that used AI models for other purposes, such
as signal segmentation or severity quantification [91,105-108].

While the assessment of the quality of the included studies is a
strength of our scoping review, the application of the
QUADAS-2 has limitations as this tool might not be optimally
designed for evaluating AI-based studies. The problem of
reporting guidelines for medical AI research, underscored by
Kolbinger et al [109], emphasizes the necessity for a more
suitable quality assessment tool in this field. In this review, we
addressed this issue by adapting the QUADAS-2 and
incorporating a relevant model domain (ie, QUADAS-2+M) to
provide additional information. However, this modification still
necessitates further validation. In addition, the original
QUADAS-2 and our proposed QUADAS-2+M framework
aggregate multiple signaling questions into a single risk-of-bias
grade for each domain. While this approach provides a
comprehensive overview, it may obscure specific areas of
concern. A more granular breakdown of signaling questions
could offer valuable insights. Specifically, disaggregating the
assessment of hyperparameter tuning, class imbalance, and
missing data handling would provide a better understanding of
potential biases in AI studies. In brief, the absence of sufficient
hyperparameter tuning can lead to suboptimal model
configurations, potentially failing to balance the bias-variance
trade-off [110]. This may result in models that either fail to
capture important patterns in the data or overfit to noise and
irrelevant features, leading to biased predictions. Class
imbalance, if not adequately addressed, can introduce significant
bias as models tend to focus more on the majority class,
potentially overlooking important patterns in the minority class
[111]. This is particularly crucial in medical contexts where the
minority class often represents the condition of interest [111].
Furthermore, failing to address missing data appropriately can
introduce several significant biases, including selection bias
and reduced statistical power [112]. These biases can
collectively distort effect estimates and lead to invalid
conclusions, potentially impacting the clinical applicability of
AI models in dysphagia screening.

Moreover, we encountered challenges in data extraction from
some materials science–oriented studies that focused primarily
on sensor fabrication and characterization, with limited details
on participant testing protocols or AI models. In some cases,
critical information was moved to the supplementary materials
or left out entirely, making comprehensive analysis challenging.

Conclusions
This systematic scoping review highlights the emerging potential
of AI and sensor-based technologies in dysphagia screening.
The reviewed studies demonstrate promising advancements in
developing more accessible, objective, and reliable screening
tools that address some limitations of traditional methods. Key
findings include the following:
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1. A diverse range of modalities were used, with microphones
and accelerometers being the most common sensors used.

2. Most studies (18/24, 75%) focused on per-individual
classification rather than swallow event classification. A
2-step approach, from per swallow to per individual, might
further improve screening accuracy.

3. Classic machine learning models, particularly SVM, were
frequently used, whereas deep learning approaches have
been gaining traction. Multimodal systems appeared to
perform better than unimodal systems.

4. Performance metrics varied widely across the studies, with
some reporting high accuracy and AUC values but often
lacking comprehensive evaluation across all relevant
metrics. It is also worth noting that the validity of
evaluations for studies with a very small testing sample
may be limited.

Several challenges remain. The methodological quality
assessment revealed a high risk of bias in many studies,
particularly in patient selection, blinding procedures, and model
development. In addition, many studies did not test their AI
systems in different settings or with different populations (ie,
external validation and domain adaptation testing), which raises
concerns about the transferability and real-world applicability
of these AI-based systems. Future research should focus on
improving methodological rigor (eg, sampling and blinding),
addressing class imbalance issues, and conducting robust
external validation studies. These technologies have potential
to significantly enhance early detection and management of
dysphagia, particularly in resource-constrained settings such as
residential care homes.

Acknowledgments
This study was supported by the Health and Medical Research Fund (reference 19200461 and 21221871) from the Health Bureau
of Hong Kong, China. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation
of the manuscript. The authors declare that generative artificial intelligence tools were used solely for language improvement
and writing enhancement in this manuscript. The authors attest that there was no use of generative artificial intelligence technology
in the generation of text, figures, or other informational content of this manuscript.

Authors' Contributions
DWCW, JCWC, and TCYK contributed to the conceptualization of the study. DWCW, ATSC, DP, JCWC, and TCYK developed
the methodology. DWCW and JW were responsible for the investigation. DWCW, JW, SMYC, and DKHL curated the data.
DWCW and JW performed the formal analysis. SMYC, DKHL, ATSC, DP, and TCYK validated the results. SMYC and DKHL
were responsible for data visualization. DWCW and JW wrote the original draft of the manuscript. JCWC and TCYK reviewed
and edited the manuscript. JCWC supervised the study and was responsible for project administration and funding acquisition.

Conflicts of Interest
None declared.

Multimedia Appendix 1
PRISMA-ScR checklist.
[PDF File (Adobe PDF File), 655 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Full search terms and queries for the systematic database search.
[DOCX File , 17 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Search queries, hits, and entries from various databases.
[DOCX File , 21 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Feature extraction, artificial intelligence model, and model training settings in the included studies.
[DOCX File , 29 KB-Multimedia Appendix 4]

Multimedia Appendix 5
Model performance.
[DOCX File , 30 KB-Multimedia Appendix 5]

References

J Med Internet Res 2025 | vol. 27 | e65551 | p. 18https://www.jmir.org/2025/1/e65551
(page number not for citation purposes)

Wong et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v27i1e65551_app1.pdf&filename=55e2dd6eba1fe0f35e7bb50faf8963e5.pdf
https://jmir.org/api/download?alt_name=jmir_v27i1e65551_app1.pdf&filename=55e2dd6eba1fe0f35e7bb50faf8963e5.pdf
https://jmir.org/api/download?alt_name=jmir_v27i1e65551_app2.docx&filename=168f7b11a36aa0fbcdb69af228354d94.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e65551_app2.docx&filename=168f7b11a36aa0fbcdb69af228354d94.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e65551_app3.docx&filename=20f1b3e20eb94dd9c052ef9ab8bfb334.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e65551_app3.docx&filename=20f1b3e20eb94dd9c052ef9ab8bfb334.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e65551_app4.docx&filename=1bf7553f1d69be3814ccf709f04a27ce.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e65551_app4.docx&filename=1bf7553f1d69be3814ccf709f04a27ce.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e65551_app5.docx&filename=82fe76d0d6ba624f7ded2ae377a3ba80.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e65551_app5.docx&filename=82fe76d0d6ba624f7ded2ae377a3ba80.docx
http://www.w3.org/Style/XSL
http://www.renderx.com/


1. Baijens LW, Clavé P, Cras P, Ekberg O, Forster A, Kolb GF, et al. European Society for Swallowing Disorders – European
Union Geriatric Medicine Society white paper: oropharyngeal dysphagia as a geriatric syndrome. Clin Interv Aging. Oct
2016;Volume 11:1403-1428. [doi: 10.2147/cia.s107750]

2. Putri AR, Chu YH, Chen R, Chiang KJ, Banda KJ, Liu D, et al. Prevalence of swallowing disorder in different dementia
subtypes among older adults: a meta-analysis. Age Ageing. Mar 01, 2024;53(3):afae037. [doi: 10.1093/ageing/afae037]
[Medline: 38536471]

3. Warnecke T, Dziewas R, Langmore S. Special findings in neurogenic dysphagia. In: Neurogenic Dysphagia. Cham,
Switzerland. Springer; 2021.

4. Ahmed RM, Ke YD, Vucic S, Ittner LM, Seeley W, Hodges JR, et al. Physiological changes in neurodegeneration -
mechanistic insights and clinical utility. Nat Rev Neurol. May 23, 2018;14(5):259-271. [doi: 10.1038/nrneurol.2018.23]
[Medline: 29569624]

5. Chen KC, Lee TM, Wu WT, Wang TG, Han DS, Chang KV. Assessment of tongue strength in sarcopenia and sarcopenic
dysphagia: a systematic review and meta-analysis. Front Nutr. Jun 24, 2021;8:684840. [FREE Full text] [doi:
10.3389/fnut.2021.684840] [Medline: 34249993]

6. Mittal A, Patel M, Wang D, Khrais A, Chyn ET. Does dysphagia predict inpatient morbidity and mortality in geriatric
patients admitted for aspiration pneumonia? Cureus. May 2023;15(5):e39223. [FREE Full text] [doi: 10.7759/cureus.39223]
[Medline: 37337491]

7. Nativ-Zeltzer N, Nachalon Y, Kaufman MW, Seeni IC, Bastea S, Aulakh SS, et al. Predictors of aspiration pneumonia and
mortality in patients with dysphagia. Laryngoscope. Jun 27, 2022;132(6):1172-1176. [doi: 10.1002/lary.29770] [Medline:
34313344]

8. Dehaghani SE, Doosti A, Zare M. Association between swallowing disorders and cognitive disorders in adults: a systematic
review and meta-analysis. Psychogeriatrics. Jul 02, 2021;21(4):668-674. [doi: 10.1111/psyg.12704] [Medline: 33934446]

9. Roberts H, Lambert K, Walton K. The prevalence of dysphagia in individuals living in residential aged care facilities: a
systematic review and meta-analysis. Healthcare (Basel). Mar 13, 2024;12(6):649. [FREE Full text] [doi:
10.3390/healthcare12060649] [Medline: 38540613]

10. Xue W, He X, Su J, Li S, Zhang H. Association between dysphagia and activities of daily living in older adults: a systematic
review and meta-analysis. Eur Geriatr Med. Dec 06, 2024;15(6):1555-1571. [doi: 10.1007/s41999-024-00999-8] [Medline:
38842653]

11. Altman KW, Yu GP, Schaefer SD. Consequence of dysphagia in the hospitalized patient: impact on prognosis and hospital
resources. Arch Otolaryngol Head Neck Surg. Aug 16, 2010;136(8):784-789. [doi: 10.1001/archoto.2010.129] [Medline:
20713754]

12. Ueshima J, Momosaki R, Shimizu A, Motokawa K, Sonoi M, Shirai Y, et al. Nutritional assessment in adult patients with
dysphagia: a scoping review. Nutrients. Feb 27, 2021;13(3):778. [FREE Full text] [doi: 10.3390/nu13030778] [Medline:
33673581]

13. Saleedaeng P, Korwanich N, Muangpaisan W, Korwanich K. Effect of dysphagia on the older adults' nutritional status and
meal pattern. J Prim Care Community Health. Feb 28, 2023;14:21501319231158280. [FREE Full text] [doi:
10.1177/21501319231158280] [Medline: 36852733]

14. Riera SA, Marin S, Serra-Prat M, Tomsen N, Arreola V, Ortega O, et al. A systematic and a scoping review on the
psychometrics and clinical utility of the volume-viscosity swallow test (V-VST) in the clinical screening and assessment
of oropharyngeal dysphagia. Foods. Aug 16, 2021;10(8):1900. [FREE Full text] [doi: 10.3390/foods10081900] [Medline:
34441677]

15. Langmore SE, Scarborough DR, Kelchner LN, Swigert NB, Murray J, Reece S, et al. Tutorial on clinical practice for use
of the fiberoptic endoscopic evaluation of swallowing procedure with adult populations: part 1. Am J Speech Lang Pathol.
Jan 18, 2022;31(1):163-187. [doi: 10.1044/2021_ajslp-20-00348]

16. Zhang PP, Yuan Y, Lu DZ, Li TT, Zhang H, Wang HY, et al. Diagnostic accuracy of the eating assessment tool-10 (EAT-10)
in screening dysphagia: a systematic review and meta-analysis. Dysphagia. Feb 18, 2023;38(1):145-158. [FREE Full text]
[doi: 10.1007/s00455-022-10486-6] [Medline: 35849209]

17. Miura H, Kariyasu M, Yamasaki K, Arai Y. Evaluation of chewing and swallowing disorders among frail community-dwelling
elderly individuals. J Oral Rehabil. Jun 20, 2007;34(6):422-427. [doi: 10.1111/j.1365-2842.2007.01741.x] [Medline:
17518976]

18. Holland G, Jayasekeran V, Pendleton N, Horan M, Jones M, Hamdy S. Prevalence and symptom profiling of oropharyngeal
dysphagia in a community dwelling of an elderly population: a self-reporting questionnaire survey. Dis Esophagus. Sep
2011;24(7):476-480. [doi: 10.1111/j.1442-2050.2011.01182.x] [Medline: 21385285]

19. Kawashima K, Motohashi Y, Fujishima I. Prevalence of dysphagia among community-dwelling elderly individuals as
estimated using a questionnaire for dysphagia screening. Dysphagia. Sep 2004;19(4):266-271. [doi: 10.1007/bf02638594]

20. Magalhães Junior HV, Pernambuco LD, Lima KC, Ferreira MA. Screening for oropharyngeal dysphagia in older adults: a
systematic review of self-reported questionnaires. Gerodontology. Apr 03, 2018;35(3):162-169. [doi: 10.1111/ger.12333]
[Medline: 29611876]

J Med Internet Res 2025 | vol. 27 | e65551 | p. 19https://www.jmir.org/2025/1/e65551
(page number not for citation purposes)

Wong et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.2147/cia.s107750
http://dx.doi.org/10.1093/ageing/afae037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38536471&dopt=Abstract
http://dx.doi.org/10.1038/nrneurol.2018.23
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29569624&dopt=Abstract
https://europepmc.org/abstract/MED/34249993
http://dx.doi.org/10.3389/fnut.2021.684840
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34249993&dopt=Abstract
https://europepmc.org/abstract/MED/37337491
http://dx.doi.org/10.7759/cureus.39223
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37337491&dopt=Abstract
http://dx.doi.org/10.1002/lary.29770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34313344&dopt=Abstract
http://dx.doi.org/10.1111/psyg.12704
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33934446&dopt=Abstract
https://www.mdpi.com/resolver?pii=healthcare12060649
http://dx.doi.org/10.3390/healthcare12060649
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38540613&dopt=Abstract
http://dx.doi.org/10.1007/s41999-024-00999-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38842653&dopt=Abstract
http://dx.doi.org/10.1001/archoto.2010.129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20713754&dopt=Abstract
https://www.mdpi.com/resolver?pii=nu13030778
http://dx.doi.org/10.3390/nu13030778
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33673581&dopt=Abstract
https://journals.sagepub.com/doi/abs/10.1177/21501319231158280?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1177/21501319231158280
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36852733&dopt=Abstract
https://www.mdpi.com/resolver?pii=foods10081900
http://dx.doi.org/10.3390/foods10081900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34441677&dopt=Abstract
http://dx.doi.org/10.1044/2021_ajslp-20-00348
https://europepmc.org/abstract/MED/35849209
http://dx.doi.org/10.1007/s00455-022-10486-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35849209&dopt=Abstract
http://dx.doi.org/10.1111/j.1365-2842.2007.01741.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17518976&dopt=Abstract
http://dx.doi.org/10.1111/j.1442-2050.2011.01182.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21385285&dopt=Abstract
http://dx.doi.org/10.1007/bf02638594
http://dx.doi.org/10.1111/ger.12333
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29611876&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


21. Bours GJ, Speyer R, Lemmens J, Limburg M, de Wit R. Bedside screening tests vs. videofluoroscopy or fibreoptic endoscopic
evaluation of swallowing to detect dysphagia in patients with neurological disorders: systematic review. J Adv Nurs. Mar
03, 2009;65(3):477-493. [doi: 10.1111/j.1365-2648.2008.04915.x] [Medline: 19222645]

22. Jiang JL, Fu SY, Wang WH, Ma YC. Validity and reliability of swallowing screening tools used by nurses for dysphagia:
a systematic review. Tzu Chi Med J. Jun 2016;28(2):41-48. [FREE Full text] [doi: 10.1016/j.tcmj.2016.04.006] [Medline:
28757720]

23. Trapl M, Enderle P, Nowotny M, Teuschl Y, Matz K, Dachenhausen A, et al. Dysphagia bedside screening for acute-stroke
patients: the Gugging Swallowing Screen. Stroke. Nov 2007;38(11):2948-2952. [doi: 10.1161/strokeaha.107.483933]

24. Estupiñán Artiles C, Regan J, Donnellan C. Dysphagia screening in residential care settings: a scoping review. Int J Nurs
Stud. Feb 2021;114:103813. [FREE Full text] [doi: 10.1016/j.ijnurstu.2020.103813] [Medline: 33220569]

25. Beattie E, O'Reilly M, Strange E, Franklin S, Isenring E. How much do residential aged care staff members know about
the nutritional needs of residents? Int J Older People Nurs. Mar 11, 2014;9(1):54-64. [doi: 10.1111/opn.12016] [Medline:
23398776]

26. So BP, Chan TT, Liu L, Yip CC, Lim HJ, Lam WK, et al. Swallow detection with acoustics and accelerometric-based
wearable technology: a scoping review. Int J Environ Res Public Health. Dec 22, 2022;20(1):170. [FREE Full text] [doi:
10.3390/ijerph20010170] [Medline: 36612490]

27. Lai DK, Cheng ES, Lim HJ, So BP, Lam WK, Cheung DS, et al. Computer-aided screening of aspiration risks in dysphagia
with wearable technology: a systematic review and meta-analysis on test accuracy. Front Bioeng Biotechnol. Jun 27,
2023;11:1205009. [FREE Full text] [doi: 10.3389/fbioe.2023.1205009] [Medline: 37441197]

28. Lai DK, Cheng ES, So BP, Mao YJ, Cheung SM, Cheung DS, et al. Transformer models and convolutional networks with
different activation functions for swallow classification using depth video data. Mathematics. Jul 12, 2023;11(14):3081.
[doi: 10.3390/math11143081]

29. Yamamoto Y, Sato H, Kanada H, Iwashita Y, Hashiguchi M, Yamasaki Y. Relationship between lip motion detected with
a compact 3D camera and swallowing dynamics during bolus flow swallowing in Japanese elderly men. J Oral Rehabil.
Apr 19, 2020;47(4):449-459. [doi: 10.1111/joor.12916] [Medline: 31778226]

30. Guan J, Zhang D, Li T. Flexible pressure sensor based on molybdenum diselide/multi-walled carbon nanotubes for human
motion detection. IEEE Sensors J. May 1, 2021;21(9):10491-10497. [doi: 10.1109/jsen.2021.3060425]

31. Li Z, Li B, Chen B, Zhang J, Li Y. 3D printed graphene/polyurethane wearable pressure sensor for motion fitness monitoring.
Nanotechnology. Jul 09, 2021;32(39):395503. [doi: 10.1088/1361-6528/ac0b1b] [Medline: 34126609]

32. Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews
(PRISMA-ScR): checklist and explanation. Ann Intern Med. Oct 02, 2018;169(7):467-473. [FREE Full text] [doi:
10.7326/M18-0850] [Medline: 30178033]

33. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality
assessment of diagnostic accuracy studies. Ann Intern Med. Oct 18, 2011;155(8):529-536. [FREE Full text] [doi:
10.7326/0003-4819-155-8-201110180-00009] [Medline: 22007046]

34. Collins GS, Moons KG, Dhiman P, Riley RD, Beam AL, Van Calster B, et al. TRIPOD+AI statement: updated guidance
for reporting clinical prediction models that use regression or machine learning methods. BMJ. Apr 16, 2024;385:e078378.
[FREE Full text] [doi: 10.1136/bmj-2023-078378] [Medline: 38626948]

35. Aboofazeli M, Moussavi Z. Analysis of swallowing sounds using hidden Markov models. Med Biol Eng Comput. Apr 14,
2008;46(4):307-314. [doi: 10.1007/s11517-007-0285-8] [Medline: 18000695]

36. Basiri B, Vali M, Agah S. Classification of normal and dysphagia in patients with GERD using swallowing sound analysis.
In: Proceedings of the Artificial Intelligence and Signal Processing Conference. 2017. Presented at: AISP 2017; October
25-27, 2017; Shiraz, Iran. [doi: 10.1109/aisp.2017.8324095]

37. Cesarini V, Casiddu N, Porfirione C, Massazza G, Saggio G, Costantini G. A machine learning-based voice analysis for
the detection of dysphagia biomarkers. In: Proceedings of the IEEE International Workshop on Metrology for Industry 4.0
& IoT. 2021. Presented at: MetroInd4.0&IoT 2021; June 7-9, 2021; Rome, Italy. [doi:
10.1109/metroind4.0iot51437.2021.9488503]

38. Donohue C, Khalifa Y, Perera S, Sejdić E, Coyle JL. A preliminary investigation of whether HRCA signals can differentiate
between swallows from healthy people and swallows from people with neurodegenerative diseases. Dysphagia. Aug
2021;36(4):635-643. [FREE Full text] [doi: 10.1007/s00455-020-10177-0] [Medline: 32889627]

39. Dudik JM, Coyle JL, El-Jaroudi A, Mao ZH, Sun M, Sejdić E. Deep learning for classification of normal swallows in
adults. Neurocomputing (Amst). Apr 12, 2018;285:1-9. [FREE Full text] [doi: 10.1016/j.neucom.2017.12.059] [Medline:
29755210]

40. He F, Hu X, Zhu C, Li Y, Liu Y. Multi-scale spatial and temporal speech associations to swallowing for dysphagia screening.
IEEE/ACM Trans Audio Speech Lang Process. 2022;30:2888-2899. [doi: 10.1109/taslp.2022.3203235]

41. He F, Liu Y, Shen D, Jiang Y, Li Y, Zhu C. Multi-band speech tensor decomposition for interactive feature extraction in
early dysphagia screening. In: Proceedings of the 2024 IEEE International Conference on Acoustics, Speech and Signal
Processing. 2024. Presented at: ICASSP 2024; April 14-19, 2024; Seoul, Korea. [doi: 10.1109/icassp48485.2024.10447365]

J Med Internet Res 2025 | vol. 27 | e65551 | p. 20https://www.jmir.org/2025/1/e65551
(page number not for citation purposes)

Wong et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1111/j.1365-2648.2008.04915.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19222645&dopt=Abstract
https://europepmc.org/abstract/MED/28757720
http://dx.doi.org/10.1016/j.tcmj.2016.04.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28757720&dopt=Abstract
http://dx.doi.org/10.1161/strokeaha.107.483933
https://linkinghub.elsevier.com/retrieve/pii/S0020-7489(20)30299-6
http://dx.doi.org/10.1016/j.ijnurstu.2020.103813
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33220569&dopt=Abstract
http://dx.doi.org/10.1111/opn.12016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23398776&dopt=Abstract
https://www.mdpi.com/resolver?pii=ijerph20010170
http://dx.doi.org/10.3390/ijerph20010170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36612490&dopt=Abstract
https://europepmc.org/abstract/MED/37441197
http://dx.doi.org/10.3389/fbioe.2023.1205009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37441197&dopt=Abstract
http://dx.doi.org/10.3390/math11143081
http://dx.doi.org/10.1111/joor.12916
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31778226&dopt=Abstract
http://dx.doi.org/10.1109/jsen.2021.3060425
http://dx.doi.org/10.1088/1361-6528/ac0b1b
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34126609&dopt=Abstract
https://www.acpjournals.org/doi/abs/10.7326/M18-0850?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.7326/M18-0850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30178033&dopt=Abstract
https://www.acpjournals.org/doi/abs/10.7326/0003-4819-155-8-201110180-00009?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.7326/0003-4819-155-8-201110180-00009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22007046&dopt=Abstract
https://www.bmj.com/lookup/pmidlookup?view=long&pmid=38626948
http://dx.doi.org/10.1136/bmj-2023-078378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38626948&dopt=Abstract
http://dx.doi.org/10.1007/s11517-007-0285-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18000695&dopt=Abstract
http://dx.doi.org/10.1109/aisp.2017.8324095
http://dx.doi.org/10.1109/metroind4.0iot51437.2021.9488503
https://europepmc.org/abstract/MED/32889627
http://dx.doi.org/10.1007/s00455-020-10177-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32889627&dopt=Abstract
https://europepmc.org/abstract/MED/29755210
http://dx.doi.org/10.1016/j.neucom.2017.12.059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29755210&dopt=Abstract
http://dx.doi.org/10.1109/taslp.2022.3203235
http://dx.doi.org/10.1109/icassp48485.2024.10447365
http://www.w3.org/Style/XSL
http://www.renderx.com/


42. Inoue K, Yoshioka M, Yagi N, Nagami S, Oku Y. Using machine learning and a combination of respiratory flow, laryngeal
motion, and swallowing sounds to classify safe and unsafe swallowing. IEEE Trans Biomed Eng. Nov 2018;65(11):2529-2541.
[doi: 10.1109/TBME.2018.2807487] [Medline: 29993526]

43. Kim H, Park HY, Park D, Im S, Lee S. Non-invasive way to diagnose dysphagia by training deep learning model with
voice spectrograms. Biomed Signal Process Control. Sep 2023;86:105259. [doi: 10.1016/j.bspc.2023.105259]

44. Lazareck LJ, Moussavi ZM. Classification of normal and dysphagic swallows by acoustical means. IEEE Trans Biomed
Eng. Dec 2004;51(12):2103-2112. [doi: 10.1109/TBME.2004.836504] [Medline: 15605857]

45. Lee J, Steele CM, Chau T. Classification of healthy and abnormal swallows based on accelerometry and nasal airflow
signals. Artif Intell Med. May 2011;52(1):17-25. [doi: 10.1016/j.artmed.2011.03.002] [Medline: 21549579]

46. Miyagi S, Sugiyama S, Kozawa K, Moritani S, Sakamoto SI, Sakai O. Classifying dysphagic swallowing sounds with
support vector machines. Healthcare (Basel). Apr 21, 2020;8(2):103. [FREE Full text] [doi: 10.3390/healthcare8020103]
[Medline: 32326267]

47. Nikjoo MS, Steele CM, Sejdić E, Chau T. Automatic discrimination between safe and unsafe swallowing using a
reputation-based classifier. BioMed Eng OnLine. Nov 15, 2011;10:100. [doi: 10.1186/1475-925x-10-100]

48. Ramírez J, Rodriquez D, Qiao F, Warchall J, Rye J, Aklile E, et al. Metallic nanoislands on graphene for monitoring
swallowing activity in head and neck cancer patients. ACS Nano. Jun 26, 2018;12(6):5913-5922. [FREE Full text] [doi:
10.1021/acsnano.8b02133] [Medline: 29874030]

49. Roldan-Vasco S, Orozco-Duque A, Suarez-Escudero JC, Orozco-Arroyave JR. Machine learning based analysis of speech
dimensions in functional oropharyngeal dysphagia. Comput Methods Programs Biomed. Sep 2021;208:106248. [doi:
10.1016/j.cmpb.2021.106248] [Medline: 34260973]

50. Roldan-Vasco S, Restrepo-Uribe JP, Orozco-Duque A, Suarez-Escudero JC, Orozco-Arroyave JR. Analysis of
electrophysiological and mechanical dimensions of swallowing by non-invasive biosignals. Biomed Signal Process Control.
Apr 2023;82:104533. [doi: 10.1016/j.bspc.2022.104533]

51. Roldan-Vasco S, Orozco-Duque A, Orozco-Arroyave JR. Swallowing disorders analysis using surface EMG biomarkers
and classification models. Digit Signal Process. Mar 2023;133:103815. [doi: 10.1016/j.dsp.2022.103815]

52. Saab R, Balachandar A, Mahdi H, Nashnoush E, Perri LX, Waldron AL, et al. Machine-learning assisted swallowing
assessment: a deep learning-based quality improvement tool to screen for post-stroke dysphagia. Front Neurosci.
2023;17:1302132. [FREE Full text] [doi: 10.3389/fnins.2023.1302132] [Medline: 38130696]

53. Sakai K, Gilmour S, Hoshino E, Nakayama E, Momosaki R, Sakata N, et al. A machine learning-based screening test for
sarcopenic dysphagia using image recognition. Nutrients. Nov 10, 2021;13(11):4009. [FREE Full text] [doi:
10.3390/nu13114009] [Medline: 34836264]

54. Spadotto AA, Pereira JC, Guido RC, Papa JP, Falcao AX, Gatto AR. Oropharyngeal dysphagia identification using wavelets
and optimum path forest. In: Proceedings of the 3rd International Symposium on Communications, Control and Signal
Processing. 2008. Presented at: ISCCSP 2008; March 12-14, 2008; Saint Julian's, Malta. [doi: 10.1109/isccsp.2008.4537320]

55. Spadotto AA, Gatto AR, Guido RC, Montagnoli AN, Cola PC, Pereira JC, et al. Classification of normal swallowing and
oropharyngeal dysphagia using wavelet. Appl Math Comput. Jan 2009;207(1):75-82. [doi: 10.1016/j.amc.2007.10.065]

56. Steele CM, Mukherjee R, Kortelainen JM, Pölönen H, Jedwab M, Brady SL, et al. Development of a non-invasive device
for swallow screening in patients at risk of oropharyngeal dysphagia: results from a prospective exploratory study. Dysphagia.
Oct 5, 2019;34(5):698-707. [FREE Full text] [doi: 10.1007/s00455-018-09974-5] [Medline: 30612234]

57. Wang S, Jiang Y, Zhao H, Yang X, Zhang Z, Zhu C. Smart dysphagia detection system with adaptive boosting analysis of
throat signals. In: Proceedings of the IEEE International Symposium on Circuits and Systems. 2021. Presented at: ISCAS
2021; May 22-28, 2021; Daegu, Korea. [doi: 10.1109/iscas51556.2021.9401353]

58. Zhao H, Jiang Y, Wang S, He F, Ren F, Zhang Z, et al. Dysphagia diagnosis system with integrated speech analysis from
throat vibration. Expert Syst Appl. Oct 2022;204:117496. [doi: 10.1016/j.eswa.2022.117496]

59. Martino R, Silver F, Teasell R, Bayley M, Nicholson G, Streiner DL, et al. The Toronto Bedside Swallowing Screening
Test (TOR-BSST): development and validation of a dysphagia screening tool for patients with stroke. Stroke. Feb
2009;40(2):555-561. [doi: 10.1161/strokeaha.107.510370]

60. Pinto CF, Balasubramanium RK, Acharya V. Nasal airflow monitoring during swallowing: evidences for
respiratory-swallowing incoordination in individuals with chronic obstructive pulmonary disease. Lung India.
2017;34(3):247-250. [FREE Full text] [doi: 10.4103/lungindia.lungindia_117_16] [Medline: 28474650]

61. Allen K, Galek K. The influence of airflow via high-flow nasal cannula on duration of laryngeal vestibule closure. Dysphagia.
Aug 01, 2021;36(4):729-735. [FREE Full text] [doi: 10.1007/s00455-020-10193-0] [Medline: 33006075]

62. Pearson WGJ, Langmore SE, Yu LB, Zumwalt AC. Structural analysis of muscles elevating the hyolaryngeal complex.
Dysphagia. Dec 26, 2012;27(4):445-451. [FREE Full text] [doi: 10.1007/s00455-011-9392-7] [Medline: 22278076]

63. Okubo PC, Fábio SR, Domenis DR, Takayanagui OM. Using the National Institute of Health Stroke Scale to predict
dysphagia in acute ischemic stroke. Cerebrovasc Dis. Apr 25, 2012;33(6):501-507. [doi: 10.1159/000336240] [Medline:
22538772]

64. Altman N, Krzywinski M. The curse(s) of dimensionality. Nat Methods. Jun 31, 2018;15(6):399-400. [doi:
10.1038/s41592-018-0019-x] [Medline: 29855577]

J Med Internet Res 2025 | vol. 27 | e65551 | p. 21https://www.jmir.org/2025/1/e65551
(page number not for citation purposes)

Wong et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1109/TBME.2018.2807487
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29993526&dopt=Abstract
http://dx.doi.org/10.1016/j.bspc.2023.105259
http://dx.doi.org/10.1109/TBME.2004.836504
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15605857&dopt=Abstract
http://dx.doi.org/10.1016/j.artmed.2011.03.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21549579&dopt=Abstract
https://www.mdpi.com/resolver?pii=healthcare8020103
http://dx.doi.org/10.3390/healthcare8020103
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32326267&dopt=Abstract
http://dx.doi.org/10.1186/1475-925x-10-100
https://europepmc.org/abstract/MED/29874030
http://dx.doi.org/10.1021/acsnano.8b02133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29874030&dopt=Abstract
http://dx.doi.org/10.1016/j.cmpb.2021.106248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34260973&dopt=Abstract
http://dx.doi.org/10.1016/j.bspc.2022.104533
http://dx.doi.org/10.1016/j.dsp.2022.103815
https://europepmc.org/abstract/MED/38130696
http://dx.doi.org/10.3389/fnins.2023.1302132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38130696&dopt=Abstract
https://www.mdpi.com/resolver?pii=nu13114009
http://dx.doi.org/10.3390/nu13114009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34836264&dopt=Abstract
http://dx.doi.org/10.1109/isccsp.2008.4537320
http://dx.doi.org/10.1016/j.amc.2007.10.065
https://europepmc.org/abstract/MED/30612234
http://dx.doi.org/10.1007/s00455-018-09974-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30612234&dopt=Abstract
http://dx.doi.org/10.1109/iscas51556.2021.9401353
http://dx.doi.org/10.1016/j.eswa.2022.117496
http://dx.doi.org/10.1161/strokeaha.107.510370
https://europepmc.org/abstract/MED/28474650
http://dx.doi.org/10.4103/lungindia.lungindia_117_16
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28474650&dopt=Abstract
https://europepmc.org/abstract/MED/33006075
http://dx.doi.org/10.1007/s00455-020-10193-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33006075&dopt=Abstract
https://europepmc.org/abstract/MED/22278076
http://dx.doi.org/10.1007/s00455-011-9392-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22278076&dopt=Abstract
http://dx.doi.org/10.1159/000336240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22538772&dopt=Abstract
http://dx.doi.org/10.1038/s41592-018-0019-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29855577&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


65. Ji EK, Wang HH, Jung SJ, Lee KB, Kim JS, Hong BY, et al. Is the modified Mann Assessment of Swallowing Ability
useful for assessing dysphagia in patients with mild to moderate dementia? J Clin Neurosci. Dec 2019;70:169-172. [doi:
10.1016/j.jocn.2019.08.031] [Medline: 31416733]

66. Kwon S, Sim J, Park J, Jung Y, Cho KH, Min K, et al. Assessment of aspiration risk using the Mann assessment of swallowing
ability in brain-injured patients with cognitive impairment. Front Neurol. Dec 3, 2019;10:1264. [FREE Full text] [doi:
10.3389/fneur.2019.01264] [Medline: 31866926]

67. Clavé P, Shaker R. Dysphagia: current reality and scope of the problem. Nat Rev Gastroenterol Hepatol. May 7,
2015;12(5):259-270. [doi: 10.1038/nrgastro.2015.49] [Medline: 25850008]

68. Li D, Wu J, Jin X, Li Y, Tong B, Zeng W. A review on intelligent aid diagnosis for dysphagia using swallowing sounds.
Interdiscip Nurs Res. 2023;2(4):250-256. [doi: 10.1097/NR9.0000000000000040]

69. Dudik JM, Kurosu A, Coyle JL, Sejdić E. Dysphagia and its effects on swallowing sounds and vibrations in adults. Biomed
Eng Online. May 31, 2018;17(1):69. [FREE Full text] [doi: 10.1186/s12938-018-0501-9] [Medline: 29855309]

70. Miura Y, Tamai N, Kitamura A, Yoshida M, Takahashi T, Mugita Y, et al. Diagnostic accuracy of ultrasound examination
in detecting aspiration and pharyngeal residue in patients with dysphagia: a systematic review and meta-analysis. Jpn J
Nurs Sci. Apr 11, 2021;18(2):e12396. [doi: 10.1111/jjns.12396] [Medline: 33843140]

71. Wang YC, Chou W, Lin BS, Wang JJ, Lin BS. The use of surface electromyography in dysphagia evaluation. Technol
Health Care. Oct 23, 2017;25(5):1025-1028. [doi: 10.3233/thc-170892]

72. Benfield JK, Hedstrom A, Everton LF, Bath PM, England TJ. Randomized controlled feasibility trial of swallow strength
and skill training with surface electromyographic biofeedback in acute stroke patients with dysphagia. J Oral Rehabil. Jun
07, 2023;50(6):440-451. [doi: 10.1111/joor.13437] [Medline: 36810785]

73. Wu Y, Guo K, Chu Y, Wang Z, Yang H, Zhang J. Advancements and challenges in non-invasive sensor technologies for
swallowing assessment: a review. Bioengineering (Basel). Apr 27, 2024;11(5):430. [FREE Full text] [doi:
10.3390/bioengineering11050430] [Medline: 38790297]

74. Bidmead E, Reid T, Marshall A, Southern V. “Teleswallowing”: a case study of remote swallowing assessment. Clin Gov.
2015;20(3):155-168. [doi: 10.1108/CGIJ-06-2015-0020]

75. Verdonschot RJ, Baijens L, Vanbelle S, Florie M, Kremer B, Leue C. The relationship between fiberoptic endoscopic
evaluation of swallowing outcome and symptoms of anxiety and depression in dysphagic patients. Laryngoscope. May 09,
2016;126(5):E199-E207. [doi: 10.1002/lary.25698] [Medline: 26451747]

76. da Silva AF, Moreira EA, Barni GC, Panza VS, Furkim AM, Moreno YM. Relationships between high comorbidity index
and nutritional parameters in patients with Oropharyngeal Dysphagia. Clin Nutr ESPEN. Aug 2020;38:218-222. [doi:
10.1016/j.clnesp.2020.04.008] [Medline: 32690161]

77. Roden DF, Altman KW. Causes of dysphagia among different age groups: a systematic review of the literature. Otolaryngol
Clin North Am. Dec 2013;46(6):965-987. [doi: 10.1016/j.otc.2013.08.008] [Medline: 24262954]

78. Nachalon Y, Broer M, Nativ-Zeltzer N. Using ChatGPT to generate research ideas in dysphagia: a pilot study. Dysphagia.
Jun 31, 2024;39(3):407-411. [doi: 10.1007/s00455-023-10623-9] [Medline: 37907728]

79. Yang X, Chen A, PourNejatian N, Shin HC, Smith KE, Parisien C, et al. A large language model for electronic health
records. NPJ Digit Med. Dec 26, 2022;5(1):194. [FREE Full text] [doi: 10.1038/s41746-022-00742-2] [Medline: 36572766]

80. Van Veen D, Van Uden C, Blankemeier L, Delbrouck JB, Aali A, Bluethgen C, et al. Adapted large language models can
outperform medical experts in clinical text summarization. Nat Med. Apr 27, 2024;30(4):1134-1142. [doi:
10.1038/s41591-024-02855-5] [Medline: 38413730]

81. Lu X, Huang Z, Duan H. Supporting adaptive clinical treatment processes through recommendations. Comput Methods
Programs Biomed. Sep 2012;107(3):413-424. [doi: 10.1016/j.cmpb.2010.12.005] [Medline: 21255860]

82. Wang J, Zheng Y, Luo J, Tin-Yan Lee T, Li P, Zhang YQ, et al. Applications of deep learning models on the medical
images of osteonecrosis of the femoral head (ONFH): a comprehensive review. IEEE Access. 2024;12:57613-57632. [doi:
10.1109/access.2024.3389669]

83. Cowley HP, Robinette MS, Matelsky JK, Xenes D, Kashyap A, Ibrahim NF, et al. Using machine learning on clinical data
to identify unexpected patterns in groups of COVID-19 patients. Sci Rep. Feb 08, 2023;13(1):2236. [FREE Full text] [doi:
10.1038/s41598-022-26294-9] [Medline: 36755135]

84. Lim HJ, Lai DK, So BP, Yip CC, Cheung DS, Cheung JC, et al. A comprehensive assessment protocol for swallowing
(CAPS): paving the way towards computer-aided dysphagia screening. Int J Environ Res Public Health. Feb 08,
2023;20(4):2998. [FREE Full text] [doi: 10.3390/ijerph20042998] [Medline: 36833691]

85. Steele CM, Namasivayam-MacDonald AM, Guida BT, Cichero JA, Duivestein J, Hanson B, et al. Creation and initial
validation of the international dysphagia diet standardisation initiative functional diet scale. Arch Phys Med Rehabil. May
2018;99(5):934-944. [FREE Full text] [doi: 10.1016/j.apmr.2018.01.012] [Medline: 29428348]

86. Bernardes RA, Cruz A, Neves H, Parola V, Catela N. Screening tools designed to assess and evaluate oropharyngeal
dysphagia in adult patients: a scoping review. Nurs Rep. Apr 02, 2022;12(2):245-258. [FREE Full text] [doi:
10.3390/nursrep12020025] [Medline: 35466245]

J Med Internet Res 2025 | vol. 27 | e65551 | p. 22https://www.jmir.org/2025/1/e65551
(page number not for citation purposes)

Wong et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1016/j.jocn.2019.08.031
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31416733&dopt=Abstract
https://europepmc.org/abstract/MED/31866926
http://dx.doi.org/10.3389/fneur.2019.01264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31866926&dopt=Abstract
http://dx.doi.org/10.1038/nrgastro.2015.49
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25850008&dopt=Abstract
http://dx.doi.org/10.1097/NR9.0000000000000040
https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-018-0501-9
http://dx.doi.org/10.1186/s12938-018-0501-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29855309&dopt=Abstract
http://dx.doi.org/10.1111/jjns.12396
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33843140&dopt=Abstract
http://dx.doi.org/10.3233/thc-170892
http://dx.doi.org/10.1111/joor.13437
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36810785&dopt=Abstract
https://www.mdpi.com/resolver?pii=bioengineering11050430
http://dx.doi.org/10.3390/bioengineering11050430
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38790297&dopt=Abstract
http://dx.doi.org/10.1108/CGIJ-06-2015-0020
http://dx.doi.org/10.1002/lary.25698
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26451747&dopt=Abstract
http://dx.doi.org/10.1016/j.clnesp.2020.04.008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32690161&dopt=Abstract
http://dx.doi.org/10.1016/j.otc.2013.08.008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24262954&dopt=Abstract
http://dx.doi.org/10.1007/s00455-023-10623-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37907728&dopt=Abstract
https://doi.org/10.1038/s41746-022-00742-2
http://dx.doi.org/10.1038/s41746-022-00742-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36572766&dopt=Abstract
http://dx.doi.org/10.1038/s41591-024-02855-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38413730&dopt=Abstract
http://dx.doi.org/10.1016/j.cmpb.2010.12.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21255860&dopt=Abstract
http://dx.doi.org/10.1109/access.2024.3389669
https://doi.org/10.1038/s41598-022-26294-9
http://dx.doi.org/10.1038/s41598-022-26294-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36755135&dopt=Abstract
https://www.mdpi.com/resolver?pii=ijerph20042998
http://dx.doi.org/10.3390/ijerph20042998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36833691&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0003-9993(18)30085-6
http://dx.doi.org/10.1016/j.apmr.2018.01.012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29428348&dopt=Abstract
https://www.mdpi.com/resolver?pii=nursrep12020025
http://dx.doi.org/10.3390/nursrep12020025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35466245&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


87. Steele CM, Alsanei WA, Ayanikalath S, Barbon CE, Chen J, Cichero JA, et al. The influence of food texture and liquid
consistency modification on swallowing physiology and function: a systematic review. Dysphagia. Feb 25, 2015;30(1):2-26.
[FREE Full text] [doi: 10.1007/s00455-014-9578-x] [Medline: 25343878]

88. Riley RD, Ensor J, Snell KI, Debray TP, Altman DG, Moons KG, et al. External validation of clinical prediction models
using big datasets from e-health records or IPD meta-analysis: opportunities and challenges. BMJ. Jun 22, 2016;353:i3140.
[FREE Full text] [doi: 10.1136/bmj.i3140] [Medline: 27334381]

89. Gupta PM. Integration of edge and fog computing in IoT-based healthcare applications - a review. J Posit Sch Psychol.
2022;6(12):1940-1957. [FREE Full text]

90. Suganyadevi S, Shamia D, Balasamy K. An IoT-based diet monitoring healthcare system for women. In: Hafizul Islam
SK, Samanta D, editors. Smart Healthcare System Design: Security and Privacy Aspects. Beverly, MA. Scrivener Publishing
LLC; 2021.

91. Tsujimoto M, Hisajima T, Matsuda S, Tanaka S, Suzuki K, Shimokakimoto T, et al. Exploratory analysis of swallowing
behaviour in community-dwelling older adults using a wearable device: differences by age and ingestant under different
task loads. Digit Health. Jul 25, 2024;10:20552076241264640. [FREE Full text] [doi: 10.1177/20552076241264640]
[Medline: 39070893]

92. Suo J, Yang X, Leung YO, Wang J, Chen M, Liu Y, et al. Enabling natural human–computer interaction through ai-powered
nanocomposite IoT throat vibration sensor. IEEE Internet Things J. Jul 15, 2024;11(14):24761-24774. [doi:
10.1109/jiot.2024.3382101]

93. Rafeedi T, Abdal A, Polat B, Hutcheson KA, Shinn EH, Lipomi DJ. Wearable, epidermal devices for assessment of
swallowing function. npj Flex Electron. Dec 20, 2023;7:52. [doi: 10.1038/s41528-023-00286-9]

94. Shin B, Lee SH, Kwon K, Lee YJ, Crispe N, Ahn SY, et al. Automatic clinical assessment of swallowing behavior and
diagnosis of silent aspiration using wireless multimodal wearable electronics. Adv Sci (Weinh). Sep 09,
2024;11(34):e2404211. [doi: 10.1002/advs.202404211] [Medline: 38981027]

95. Holthe T, Halvorsrud L, Lund A. Digital assistive technology to support everyday living in community-dwelling older
adults with mild cognitive impairment and dementia. Clin Interv Aging. Apr 2022;Volume 17:519-544. [doi:
10.2147/cia.s357860]

96. Cheung JC, So BP, Ho KH, Wong DW, Lam AH, Cheung DS. Wrist accelerometry for monitoring dementia agitation
behaviour in clinical settings: a scoping review. Front Psychiatry. Sep 16, 2022;13:913213. [FREE Full text] [doi:
10.3389/fpsyt.2022.913213] [Medline: 36186887]

97. Liu N, Yin J, Tan SS, Ngiam KY, Teo HH. Mobile health applications for older adults: a systematic review of interface
and persuasive feature design. J Am Med Inform Assoc. Oct 12, 2021;28(11):2483-2501. [FREE Full text] [doi:
10.1093/jamia/ocab151] [Medline: 34472601]

98. Shieh WY, Khan MA, Shieh YC. Developing a swallow-state monitoring system using nasal airflow, surface
electromyography, and thyroid cartilage movement detection. Bioengineering (Basel). Jul 16, 2024;11(7):721. [FREE Full
text] [doi: 10.3390/bioengineering11070721] [Medline: 39061803]

99. Alkhulaifi A, Alsahli F, Ahmad I. Knowledge distillation in deep learning and its applications. PeerJ Comput Sci. 2021;7:e474.
[FREE Full text] [doi: 10.7717/peerj-cs.474] [Medline: 33954248]

100. Jauk S, Kramer D, Veeranki SP, Siml-Fraissler A, Lenz-Waldbauer A, Tax E, et al. Evaluation of a machine learning-based
dysphagia prediction tool in clinical routine: a prospective observational cohort study. Dysphagia. Aug 10,
2023;38(4):1238-1246. [FREE Full text] [doi: 10.1007/s00455-022-10548-9] [Medline: 36625964]

101. Gugatschka M, Egger NM, Haspl K, Hortobagyi D, Jauk S, Feiner M, et al. Clinical evaluation of a machine learning-based
dysphagia risk prediction tool. Eur Arch Otorhinolaryngol. Aug 14, 2024;281(8):4379-4384. [doi:
10.1007/s00405-024-08678-x] [Medline: 38743079]

102. So BP, Lai DK, Cheung DS, Lam WK, Cheung JC, Wong DW. Virtual reality-based immersive rehabilitation for cognitive-
and behavioral-impairment-related eating disorders: a VREHAB framework scoping review. Int J Environ Res Public
Health. May 10, 2022;19(10):5821. [FREE Full text] [doi: 10.3390/ijerph19105821] [Medline: 35627357]

103. Hou M, Zhao Y, Zhao L, Yuan X, Liu Z, Li H. Efficacy of game training combined with surface electromyography
biofeedback on post-stroke dysphagia. Geriatr Nurs. Jan 2024;55:255-262. [doi: 10.1016/j.gerinurse.2023.11.019] [Medline:
38091711]

104. Battel I, Calvo I, Walshe M. Interventions involving biofeedback to improve swallowing in people with Parkinson disease
and dysphagia: a systematic review. Arch Phys Med Rehabil. Feb 2021;102(2):314-322. [doi: 10.1016/j.apmr.2020.06.033]
[Medline: 32861667]

105. Donohue C, Khalifa Y, Mao S, Perera S, Sejdić E, Coyle JL. Characterizing swallows from people with neurodegenerative
diseases using high-resolution cervical auscultation signals and temporal and spatial swallow kinematic measurements. J
Speech Lang Hear Res. Sep 14, 2021;64(9):3416-3431. [FREE Full text] [doi: 10.1044/2021_JSLHR-21-00134] [Medline:
34428093]

106. Donohue C, Mao S, Sejdić E, Coyle JL. Tracking hyoid bone displacement during swallowing without videofluoroscopy
using machine learning of vibratory signals. Dysphagia. Apr 2021;36(2):259-269. [FREE Full text] [doi:
10.1007/s00455-020-10124-z] [Medline: 32419103]

J Med Internet Res 2025 | vol. 27 | e65551 | p. 23https://www.jmir.org/2025/1/e65551
(page number not for citation purposes)

Wong et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://europepmc.org/abstract/MED/25343878
http://dx.doi.org/10.1007/s00455-014-9578-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25343878&dopt=Abstract
https://www.bmj.com/lookup/pmidlookup?view=long&pmid=27334381
http://dx.doi.org/10.1136/bmj.i3140
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27334381&dopt=Abstract
https://www.researchgate.net/publication/367188595_Integration_Of_Edge_And_Fog_Computing_In_IoT-Based_Healthcare_Applications_-_A_Review
https://journals.sagepub.com/doi/10.1177/20552076241264640?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1177/20552076241264640
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39070893&dopt=Abstract
http://dx.doi.org/10.1109/jiot.2024.3382101
http://dx.doi.org/10.1038/s41528-023-00286-9
http://dx.doi.org/10.1002/advs.202404211
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38981027&dopt=Abstract
http://dx.doi.org/10.2147/cia.s357860
https://europepmc.org/abstract/MED/36186887
http://dx.doi.org/10.3389/fpsyt.2022.913213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36186887&dopt=Abstract
https://europepmc.org/abstract/MED/34472601
http://dx.doi.org/10.1093/jamia/ocab151
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34472601&dopt=Abstract
https://www.mdpi.com/resolver?pii=bioengineering11070721
https://www.mdpi.com/resolver?pii=bioengineering11070721
http://dx.doi.org/10.3390/bioengineering11070721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39061803&dopt=Abstract
https://europepmc.org/abstract/MED/33954248
http://dx.doi.org/10.7717/peerj-cs.474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33954248&dopt=Abstract
https://europepmc.org/abstract/MED/36625964
http://dx.doi.org/10.1007/s00455-022-10548-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36625964&dopt=Abstract
http://dx.doi.org/10.1007/s00405-024-08678-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38743079&dopt=Abstract
https://www.mdpi.com/resolver?pii=ijerph19105821
http://dx.doi.org/10.3390/ijerph19105821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35627357&dopt=Abstract
http://dx.doi.org/10.1016/j.gerinurse.2023.11.019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38091711&dopt=Abstract
http://dx.doi.org/10.1016/j.apmr.2020.06.033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32861667&dopt=Abstract
https://europepmc.org/abstract/MED/34428093
http://dx.doi.org/10.1044/2021_JSLHR-21-00134
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34428093&dopt=Abstract
https://europepmc.org/abstract/MED/32419103
http://dx.doi.org/10.1007/s00455-020-10124-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32419103&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


107. Sabry A, Mahoney AS, Mao S, Khalifa Y, Sejdić E, Coyle JL. Automatic estimation of laryngeal vestibule closure duration
using high- resolution cervical auscultation signals. Perspect ASHA Spec Interest Groups. Dec 17, 2020;5(6):1647-1656.
[FREE Full text] [doi: 10.1044/2020_persp-20-00073] [Medline: 35937555]

108. Zhang Y, Zhang J, Li W, Yin H, He L. Automatic detection system for velopharyngeal insufficiency based on acoustic
signals from nasal and oral channels. Diagnostics (Basel). Aug 21, 2023;13(16):2714. [FREE Full text] [doi:
10.3390/diagnostics13162714] [Medline: 37627973]

109. Kolbinger FR, Veldhuizen GP, Zhu J, Truhn D, Kather JN. Reporting guidelines in medical artificial intelligence: a systematic
review and meta-analysis. Commun Med (Lond). Apr 11, 2024;4(1):71. [FREE Full text] [doi: 10.1038/s43856-024-00492-0]
[Medline: 38605106]

110. Kocak B, Kus EA, Kilickesmez O. How to read and review papers on machine learning and artificial intelligence in
radiology: a survival guide to key methodological concepts. Eur Radiol. Apr 01, 2021;31(4):1819-1830. [doi:
10.1007/s00330-020-07324-4] [Medline: 33006018]

111. Leevy JL, Khoshgoftaar TM, Bauder RA, Seliya N. A survey on addressing high-class imbalance in big data. J Big Data.
Nov 1, 2018;5:42. [doi: 10.1186/s40537-018-0151-6]

112. Emmanuel T, Maupong T, Mpoeleng D, Semong T, Mphago B, Tabona O. A survey on missing data in machine learning.
J Big Data. Oct 27, 2021;8(1):140. [FREE Full text] [doi: 10.1186/s40537-021-00516-9] [Medline: 34722113]

Abbreviations
AdaBoost: Adaptive Boosting
AI: artificial intelligence
AUC: area under the receiver operating characteristic curve
EMG: electromyography
FEES: fiberoptic endoscopic evaluation of swallowing
LDA: linear discriminant analysis
MFCC: mel-frequency cepstral coefficient
PRISMA-ScR: Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping
Reviews
QUADAS-2: Quality Assessment of Diagnostic Accuracy Studies–2
QUADAS-2+M: modified version of the Quality Assessment of Diagnostic Accuracy Studies–2 including a fifth
domain (model)
SVM: support vector machine
TRIPOD+AI: Transparent Reporting of a Multivariate Prediction Model for Individual Prognosis or Diagnosis
+ Artificial Intelligence
VFSS: videofluoroscopic swallowing study
XGBoost: Extreme Gradient Boosting

Edited by N Cahill; submitted 19.08.24; peer-reviewed by RS Rech, T Zhang, T Huang; comments to author 23.12.24; revised version
received 30.12.24; accepted 25.03.25; published 05.05.25

Please cite as:
Wong DW-C, Wang J, Cheung SM-Y, Lai DK-H, Chiu AT-S, Pu D, Cheung JC-W, Kwok TC-Y
Current Technological Advances in Dysphagia Screening: Systematic Scoping Review
J Med Internet Res 2025;27:e65551
URL: https://www.jmir.org/2025/1/e65551
doi: 10.2196/65551
PMID:

©Duo Wai-Chi Wong, Jiao Wang, Sophia Ming-Yan Cheung, Derek Ka-Hei Lai, Armstrong Tat-San Chiu, Dai Pu, James
Chung-Wai Cheung, Timothy Chi-Yui Kwok. Originally published in the Journal of Medical Internet Research
(https://www.jmir.org), 05.05.2025. This is an open-access article distributed under the terms of the Creative Commons Attribution
License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work, first published in the Journal of Medical Internet Research (ISSN 1438-8871), is properly
cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright
and license information must be included.

J Med Internet Res 2025 | vol. 27 | e65551 | p. 24https://www.jmir.org/2025/1/e65551
(page number not for citation purposes)

Wong et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://europepmc.org/abstract/MED/35937555
http://dx.doi.org/10.1044/2020_persp-20-00073
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35937555&dopt=Abstract
https://www.mdpi.com/resolver?pii=diagnostics13162714
http://dx.doi.org/10.3390/diagnostics13162714
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37627973&dopt=Abstract
https://doi.org/10.1038/s43856-024-00492-0
http://dx.doi.org/10.1038/s43856-024-00492-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38605106&dopt=Abstract
http://dx.doi.org/10.1007/s00330-020-07324-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33006018&dopt=Abstract
http://dx.doi.org/10.1186/s40537-018-0151-6
https://europepmc.org/abstract/MED/34722113
http://dx.doi.org/10.1186/s40537-021-00516-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34722113&dopt=Abstract
https://www.jmir.org/2025/1/e65551
http://dx.doi.org/10.2196/65551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

