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Abstract: Inland waterway transportation is critical for the movement of hazardous liquid
cargoes. To prevent contamination when transporting different types of liquids, certain
shipments necessitate tank cleaning at designated stations between tasks. This process
often requires detours, which can decrease operational efficiency. This study addresses the
Tank Cleaning Station Location and Cleaning Task Assignment (TCSL-CTA) problem, with
the objective of minimizing total system costs, including the construction and operational
costs of tank cleaning stations, as well as the detour costs incurred by ships visiting these
stations. We formulate the problem as a mixed-integer programming (MIP) model and
prove that it can be reformulated into a partially relaxed MIP model, preserving optimality
while enhancing computational efficiency. We further analyze key mathematical properties,
showing that the assignment constraint matrix is totally unimodular, enabling efficient
relaxation, and that the objective function exhibits submodularity, reflecting diminishing
returns in facility investment. A case study on the Yangtze River confirms the model’s
effectiveness, where the optimized plan resulted in detour costs accounting for only 5.2%
of the total CNY 4.23 billion system cost and achieved an 89.1% average station utiliza-
tion. Managerial insights reveal that early construction and balanced capacity allocation
significantly reduce detour costs. This study provides a practical framework for long-term
tank cleaning infrastructure planning, contributing to cost-effective and sustainable inland
waterway logistics.

Keywords: mathematical modeling; totally unimodular; submodularity; inland waterway
transportation; tank cleaning station location and cleaning task assignment

MSC: 90-10

1. Introduction
Inland waterway transportation is a critical component of many countries’ freight

networks, offering considerable economic and environmental advantages over road and
rail transport alternatives [1]. It is especially crucial for transporting hazardous liquid
cargoes. However, transporting different hazardous liquids consecutively presents distinct
operational challenges, notably the necessity of thorough tank cleaning between shipments
to prevent contamination and ensure compliance with safety standards [2]. Tank cleaning
is generally performed at dedicated shore-based stations or through third-party service
providers located at ports. Although some large ships have onboard cleaning facilities,
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such capabilities remain uncommon, highlighting the importance of strategically located
shore-based tank cleaning stations [3].

Despite the critical function of tank cleaning operations, they frequently encounter
issues such as high service costs, inconsistent operational standards, improper wastewater
treatment, and illegal discharge of wash water, leading to environmental hazards and
operational inefficiencies [4–6]. Strategically positioning tank cleaning stations near ports
with high demand can significantly reduce pollution risks, enhance operational safety,
and minimize detour sailing costs associated with ships traveling to distant cleaning
facilities [7].

Nevertheless, determining optimal locations for tank cleaning stations is challenging
due to significant initial investment costs, annual operational expenses, and indirect costs
arising from ship detours [8]. Existing studies focus on estimating the volume and spatial
distribution of tank-washing wastewater, providing a direct analytical basis for determining
the number, location, and capacity of tank cleaning stations in high-demand inland port
regions. However, these studies exhibit several notable limitations, as summarized below:

1. Xu et al. [9] propose a data-driven model to estimate cleaning demand based on
wastewater generation. While this work provides a foundation for understanding
spatial demand distribution, it does not consider the subsequent optimization of
facility siting or ship-to-station assignment, thereby limiting its applicability in com-
prehensive infrastructure planning.

2. Shu et al. [10] develop a high-resolution model to quantify coastal shipborne greywater
and sewage discharges, while Chen et al. [11] construct an inland waterway sewage
generation inventory using gridded GIS and AIS-derived activity data. These studies
effectively capture spatial environmental loads but do not incorporate economic,
operational, or logistical considerations needed to inform investment decisions or
facility-level service strategies.

3. Lin et al. [12] develop linear optimization models that minimize total costs under the
assumption of full demand coverage. Although this approach enables cost-efficient
planning under idealized conditions, it assumes static one-time construction and does
not support phased investment, multi-period decisions, or constraints arising from
budget allocation over time.

4. Wang et al. [13] propose a genetic algorithm-based siting method incorporating poten-
tial demand indices. While their heuristic framework allows flexibility in selecting
facility locations, it does not explicitly model ship detour costs or account for an-
nual investment and cleaning capacity limitations, which are essential for practical
deployment.

5. Xu and Zhu [14] formulate a bi-objective optimization model that balances ship
detour costs and station utilization. Although this approach advances multi-criteria
infrastructure planning, it assumes a single-period planning horizon and overlooks
dynamic construction schedules, budget accumulation, and time-dependent demand
fluctuations.

To address these gaps comprehensively, this study formulates a novel Tank Cleaning
Station Location and Cleaning Task Assignment (TCSL-CTA) problem. The TCSL-CTA
problem jointly optimizes the strategic construction of tank cleaning station sites within in-
land waterway transportation networks and the operational assignment of ships to cleaning
stations for specific cleaning tasks. A mixed-integer programming (MIP) model is devel-
oped to support integrated decision-making across multiple years, incorporating practical
constraints such as cumulative annual budgets, construction and operational costs, cleaning
capacity limits, and accurate detour cost calculations. To enhance computational efficiency,
this study further introduces a partially relaxed mixed-integer programming (PRMIP)
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model by leveraging the totally unimodular (TU) properties of the assignment constraint
matrix, which significantly reduces computational complexity without compromising opti-
mality [15]. Together, these models offer a scalable and implementable solution framework
for sustainable tank cleaning infrastructure planning in inland waterway logistics systems.

In particular, the multifaceted contributions of this paper are outlined as follows:

1. We establish an MIP model for strategically determining the location, timing, and
quantity of tank cleaning stations in the planning horizon, subject to cumulative
annual budget constraints and cleaning capacity limits, which is essential to minimize
total system costs, including construction, operation, and detour costs.

2. A computationally efficient PRMIP model is developed by leveraging the totally
TU property of the assignment constraint matrix, allowing for continuous relax-
ation of tank cleaning assignment variables without compromising optimality. The
model is validated through a real-world case study, which shows that the PRMIP
achieves identical optimal solutions to the MIP model with significantly reduced
computational time.

3. We prove the necessity of maintaining integrality for construction decision variables
and demonstrate that the objective function is submodular with respect to the number
of constructed stations, revealing diminishing returns from additional facilities. This
finding highlights the principle of diminishing returns with each additional facil-
ity, thereby underscoring the strategic importance of optimal station placement in
maximizing efficiency.

4. Sensitivity analyses on annual budget, station capacity, and sailing time ratio are con-
ducted to examine their effects on total cost, facility deployment, and key performance
indicators. The results reveal several important insights: increasing the budget allows
for earlier construction and reduces detour costs; higher station capacity decreases
the required number of facilities but may increase detour distances due to spatial
sparsity; and a higher sailing time ratio (i.e., lower speed) reduces detour costs by mit-
igating fuel penalties. These findings provide actionable guidance for infrastructure
investment strategies under varying operational conditions.

5. A case study on the Yangtze River yields three major managerial insights: (i) aligning
construction timing with budget availability is essential for long-term cost efficiency,
as early investment under adequate funding can significantly reduce detour costs;
(ii) selecting appropriate station capacity requires balancing spatial coverage and
infrastructure concentration to avoid under- or over-building; and (iii) incorporating
operational flexibility, such as permitting moderate detours or longer sailing times,
can alleviate infrastructure pressure and reduce total system costs under constrained
investment scenarios.

The remainder of this paper is structured as follows. Section 2 provides an overview
of the relevant literature on tank cleaning infrastructure and facility location optimization.
Section 3 presents the problem description, formulates the MIP and PRMIP models, and
analyzes their theoretical properties, including the necessity of integrality for construction
decision variables, total unimodularity of the tank cleaning assignment constraint matrix,
and submodularity of the objective function. Section 4 describes the experimental setup,
reports the basic optimization results, and performs sensitivity analyses on key parameters.
Finally, Section 5 concludes the paper and outlines future research directions.

2. Literature Review
To comprehensively understand the context and methodologies relevant to tank clean-

ing station planning, we first review the literature on the specific TCSL-CTA within inland
waterway networks, which addresses the dual challenges of infrastructure siting and op-



Mathematics 2025, 13, 1598 4 of 34

erational task allocation. Then, given that the TCSL-CTA problem falls within the scope
of facility location problems, we also review the broader facility location problem (FLP)
and state-of-the-art algorithms to solve it. This section is divided into three subsections:
inland tank cleaning station planning, classification of FLPs, and algorithms for facility
location optimization.

2.1. Tank Cleaning Station Planning in Inland Waterways

With the increasing demand for transporting hazardous chemicals along inland wa-
terways, especially in China’s Yangtze River basin, tank cleaning between cargo changes
has become a critical safety and environmental requirement. Over 12.6% of ships reg-
ularly change cargo types, particularly among oils, acids, and chemicals [16]. Tank
washing is mandatory to avoid cargo incompatibility and contamination. Improper
disposal of tank washing wastewater causes significant pollution, prompting stricter
environmental regulations.

Several studies highlight the urgent need for additional tank cleaning facilities. Ac-
cording to government targets, 13 tank cleaning stations were planned for construction
along the Yangtze River by 2020 [17]. However, siting these stations remains technically
and economically challenging. These facilities are capital-intensive and often characterized
by long payback horizons. Smid et al. [18] explore cost sensitivity in intermodal inland
waterway terminals using a scenario-based approach, stressing cost optimization. However,
their work overlooks sailing detour costs and service coverage, which can reduce efficiency.

Senol and Yasli [19] use a Fuzzy Bayesian Network to assess risks in chemical cargo
tank cleaning, noting that the utilization of tank cleaning stations largely depends on ships’
willingness to incur detours, influenced primarily by void sailing distances. Therefore,
effectively siting stations requires a careful balance between minimizing detour costs,
achieving broad service coverage, and meeting environmental objectives. Meanwhile,
Kato and Kansha [20] review industrial wastewater treatment techniques, highlighting
the environmental risks of improper wastewater disposal from tank cleaning. Khalidi-
Idrissi et al. [21] explore biological treatment methods for wastewater containing emerging
pollutants from pharmaceutical discharges, though their work does not address location
planning. In response to this gap, several recent studies integrate demand estimation
with siting optimization. Lin et al. [12] address the site selection issue by formulating
an optimization model based on linear system theory. They introduce the concept of a
linear system to delineate tank cleaning demand along 23 major ports on the Yangtze River,
establishing a model to determine optimal distribution points under uniform conditions.
Through data-driven analysis and predictive modeling, their approach generates a siting
scheme that ensures comprehensive regional coverage, focusing on minimizing the total
maintenance and operation costs of the washing stations. Wang et al. [13] propose a distinct
approach using a dual-discrete-variable genetic algorithm, which optimizes the locations
and scales of tank cleaning stations along the Yangtze River. They introduce a “washing
heat value” (WHV) as a metric to quantify the potential demand for cleaning services
at each port. The genetic algorithm leverages this metric in initial candidate selection,
combined with adaptive crossover and elite retention strategies, significantly improving
computational efficiency. Their results notably indicate that siting stations at ports with
high WHV effectively reduces empty sailing distances, demonstrating clear advantages
over traditional solver-based methods for large-scale scenarios. Xu and Zhu [14] introduce
a bi-objective optimization model that simultaneously minimizes ship detour costs and the
load deviation of cleaning stations. This model uniquely incorporates a proximity-based
assignment rule, ensuring ships are allocated to stations that minimize their void sailing
costs. By integrating realistic constraints such as facility capacity and expected utilization
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rates, their case study in the Pearl River Delta region highlights the practicality of balancing
station capacity and ship routing efficiency, providing a robust basis for decision-making
in facility location planning.

The siting of tank cleaning stations is inherently a discrete location problem due
to hydrological, geographical, and regulatory constraints. Brandeau and Chiu [8] and
Lin et al. [22] support this view, emphasizing the need to combine engineering feasibility
with service accessibility. Recent studies apply bi-objective and multi-objective frameworks,
such as Nondominated Sorting Genetic Algorithm II (NSGA-II), to minimize void sailing
costs and mismatches between station capacity and demand [23,24]. These studies utilize
NSGA-II to address bi-objective facility location and location-routing problems, providing
valuable insights for optimizing tank cleaning station siting.

However, most existing studies treat the TCSL-CTA as a single-stage facility location
problem, making all location decisions at once without considering the temporal evolution
of infrastructure deployment. These models fail to capture the complexities of multi-
stage construction planning, where decisions must be made sequentially over a multi-year
horizon under budget and operational constraints. They also tend to be region-specific
(e.g., focusing on the Pearl River Delta), thus lacking generalizability. As a result, they often
overlook the need for dynamic planning over time, phased construction planning, and
port infrastructure limitations, indicating a clear research gap in temporally adaptive and
operationally grounded tank cleaning station planning.

2.2. Classification of Facility Location Problems

The TCSL-CTA investigated in this study is a specialized form of the FLP. As a
core topic in operations research, FLPs aim to optimize the placement and operation
of facilities to serve spatially distributed demand under various constraints. The TCSL-CTA
inherits the general structure of FLPs but introduces additional complexity by considering
time-dependent construction decisions, cost-efficient task assignment, and annual budget
constraints. In this section, we classify the TCSL-CTA within the standard FLP framework
based on objective functions, variable domains, and modeling structures.

From the objective perspective, FLPs are commonly classified into profit-oriented,
demand-oriented, and environment-oriented models. The TCSL-CTA studied in this
study clearly falls under the profit-oriented category, as its objective is to minimize the
total system cost, which includes the construction cost of tank cleaning stations, their
operating cost, and the detour cost incurred by ships. Profit-oriented models are widely
used in logistics and commercial applications, where efficiency and cost-effectiveness
are prioritized [25,26]. In contrast, demand-oriented models emphasize coverage or
accessibility [27,28], and environment-oriented models incorporate sustainability goals
such as emissions reduction [29], which, although relevant to tank cleaning infrastructure,
are not the primary focus of our model.

In terms of variable domains, FLPs are categorized into discrete and continuous
models. Our TCSL-CTA model belongs to the discrete FLP class, as it assumes a predefined
and finite set of candidate locations—namely, ports along the inland waterway—where
tank cleaning stations may be constructed. This assumption reflects real-world constraints
such as port suitability, land-use regulations, and environmental compatibility [30]. In
contrast, continuous FLP models allow facilities to be located anywhere in a continuous
spatial domain, which is often unrealistic in river-based infrastructure planning due to
regulatory and geographic limitations [31].

From the modeling standpoint, FLPs range from classical models such as p-median
and set-covering to more advanced structures like bi-level, hierarchical, or multi-stage
formulations. The TCSL-CTA in this study belongs to the class of advanced, multi-stage
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facility location models, as it explicitly incorporates multi-period construction decisions,
budget evolution over time, and operational assignment of cleaning tasks in each year.
These features reflect the layered and dynamic nature of real-world planning, where
long-term infrastructure decisions must be coordinated with short-term service needs
and financial constraints [32,33]. Incorporating uncertainty into facility location models
is another critical aspect addressed by recent studies. Wu et al. [34] propose a two-stage
model with an improved clustering algorithm to handle uncertainty in distribution center
locations, which can effectively accommodate demand fluctuations and optimize site
selections. Such approaches underscore the importance of capturing demand uncertainties,
which is relevant to the TCSL-CTA problem, as inland waterway demand also exhibits
dynamic characteristics. In addition to optimization-based models, several studies have
explored evaluation-driven approaches for facility location. Wang et al. [35] introduce a
composite multi-criteria decision-making method for cross-dock terminal site selection,
combining indicator weighting, efficiency evaluation, and ranking mechanisms. This
approach provides enhanced decision support in complex logistic environments where
multiple conflicting criteria must be considered.

A critical modeling factor is the spatial structure of demand. In conventional FLPs,
demand is often point-based, reflecting discrete customer or service locations. However, in
river-based logistics systems like tank cleaning networks, demand is more appropriately
modeled as line-based, with service needed along navigation paths rather than fixed land
nodes. This line-based formulation better reflects the spatial continuity of inland shipping
operations, as emphasized in studies by Erdemir et al. [36] and Mahdavinia [37]. Unlike
traditional point demand, line-based models can capture the continuous and dynamic
nature of waterway transport, where vessels require services at flexible points along their
trajectories. This perspective is crucial for ensuring realistic estimation of service demand,
routing costs (e.g., void sailing), and facility utilization, particularly for facilities like tank
cleaning stations that serve moving targets rather than fixed land-based users.

In summary, while the TCSL-CTA problem builds upon the structural foundations
of conventional FLPs, it introduces a distinctive integration of features that are rarely
considered within a unified modeling framework. Specifically, it pursues a profit-oriented
objective by minimizing the total system cost, including construction, operation, and
detour costs, over a discrete set of candidate locations constrained by hydrological and
regulatory factors. It further incorporates a multi-stage decision-making structure that
captures temporally phased construction and task assignment under evolving annual
budget limits. Moreover, it adopts a line-based demand representation that reflects the
spatial continuity and dynamic nature of inland waterway transport. Despite the extensive
FLP literature, no existing study has concurrently addressed all of these elements within a
single model. This highlights a clear methodological gap and underscores the novelty and
practical relevance of the TCSL-CTA formulation.

2.3. Algorithms for Facility Location Optimization

To solve our TCSL-CTA problem, we review and refer to the solving approaches for
general FLPs. The complexity of FLPs gives rise to a wide range of solution techniques,
primarily categorized as exact methods, heuristics, and metaheuristics. The complexity
of FLPs gives rise to a wide range of solution techniques, primarily categorized as exact
methods, heuristics, and metaheuristics.

Exact algorithms, including branch-and-bound, Lagrangian relaxation, and MIP, offer
mathematically optimal solutions, but often suffer from computational inefficiency when
applied to large-scale, multi-objective, or time-dependent problems [30]. This is especially
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true for dynamic or stochastic FLPs involving long-term planning horizons and multiple
decision periods.

To address these limitations, heuristic and metaheuristic methods have gained in-
creasing attention. Genetic algorithms prove effective in solving dual-objective location
problems, including tank cleaning station planning that simultaneously considers cost and
accessibility [18]. Tabu search and simulated annealing are frequently employed to escape
local optima in complex solution spaces. Variable neighborhood search provides a system-
atic way of exploring increasingly larger neighborhood structures and is used in emergency
warehouse siting with national-scale datasets [38]. NSGA-II, a widely used multi-objective
evolutionary algorithm, enables the generation of Pareto-optimal solutions and is applied
to optimize tank cleaning station siting under conflicting objectives such as coverage and
cost [25,39]. Xiao et al. [40] provide a comprehensive survey of approximation algorithms
for universal facility location problems, underscoring the continuous advancements and
theoretical robustness achieved by combining various methodological frameworks. These
insights can provide theoretical foundations and methodological references for optimizing
tank cleaning station locations within complex inland waterway networks.

While these methods provide practical tools for FLP resolution, they also come with
certain limitations. Many fail to incorporate key elements of inland hazardous logistics,
including line-based demand structures, time-phased construction scheduling, evolving
policy constraints, and environmental permit considerations. As Xu and Guo [16] suggest,
there is an urgent need for integrated planning models that align macro-level regulatory
planning with micro-level operational feasibility.

2.4. Summary

Although tank cleaning station planning shares foundational elements with general
FLPs, it presents a distinct set of challenges rooted in the operational and environmental
complexities of inland waterway logistics. Existing studies provide valuable insights into
spatial demand estimation and facility siting, yet they are often limited to static, single-
stage formulations and lack consideration for phased investment, operational feasibility, or
cumulative budget constraints over time.

From a methodological perspective, the TCSL-CTA problem clearly falls within the FLP
framework but incorporates a unique combination of features rarely integrated in existing
models. These include a profit-oriented objective structure that minimizes construction,
operation, and detour costs; discrete and constrained location options reflecting regulatory
and geographical feasibility; a multi-stage temporal decision framework aligned with
evolving annual budgets; and a line-based demand structure capturing the dynamic nature
of inland shipping trajectories. Despite a rich body of FLP literature, no existing study
addresses all these elements concurrently, revealing a significant research gap.

To fill this gap, this study develops both an MIP model and a PRMIP model to jointly
optimize tank cleaning station construction and task assignment across multiple years.
The models incorporate realistic constraints, such as budget continuity, station capacity,
location limits, and service demand allocation, and are validated through a real-world
case on the Yangtze River. By integrating construction timing, operational assignment,
and financial planning into a unified framework, the proposed approach offers a scalable
and practically applicable solution for sustainable hazardous cargo transport planning.
Table 1 summarizes key studies on TCSL-CTA and related facility location optimization,
highlighting their objectives, methodologies, and limitations.
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Table 1. Key studies on TCSL-CTA problem and related facility location optimization.

Paper

Objective

Model
Solving
Method LimitationsConstruction

Cost
Operational

Cost
Transportation

Cost
Load

Deviation Cost

Lin
et al. [12] ✓ ✓

LP model for
location

allocation

Exact
algorithm

Single-stage
model, ignores

multi-year planning

Wang
et al. [13] ✓

Discrete facility
location model

Genetic
algorithm

Ignores routing
behavior;

static demand

Xu and
Zhu [14] ✓ ✓

Bi-Objective
P-Median

model
NSGA-II

Relies on
quarterly data;

high complexity

Smid
et al. [18] ✓

Cost sensitivity
model for

Intermodal
terminals

Scenario
analysis

Not specific to
tank-cleaning;

lacks service logic

Resende and
Werneck [38] ✓

P-Median
Model Hybrid GRASP Generic model; not

domain-specific

Deb
et al. [39] ✓ ✓ ✓

Multi-objective
Optimization
Framework

NSGA-II
Computationally

intensive for
large populations

Our Work ✓ ✓ ✓
MIP model;

PRMIP model
Exact

algorithm

Ignores disruptions;
lacks real-time

adaptability

Note: (1) The “✓” in the table indicates that the respective paper considers the corresponding objective costse;
(2) GRASP: Greedy Randomized Adaptive Search Procedure; (3) MOEA: Multi-Objective Evolutionary Algorithm.

3. Problem Formulation
In this section, we first introduce the problem background and describe the challenges

in TCSL-CTA in Section 3.1. Following that, we formulate the problem using an MIP model
in Section 3.2. Finally, Section 3.3 provides a detailed description of model analysis.

3.1. Problem Description

The transportation of liquid cargo via inland waterways represents a critical com-
ponent of many countries’ freight systems, offering cost-effective and environmentally
friendly alternatives to road and rail transport. However, this mode of transportation faces
unique operational challenges, particularly when ships must transport different types of
liquid cargo consecutively. One of the most significant challenges is the need for thorough
tank cleaning between shipments to prevent cross-contamination, especially when tran-
sitioning from lower-quality to higher-quality products. Specifically, if a ship transports
regular kerosene and then needs to transport premium kerosene, tank cleaning is required
to prevent contamination of the higher-quality cargo. However, if a ship transports pre-
mium kerosene first and then regular kerosene afterward, cleaning may not be necessary
since the lower-quality cargo won’t be affected by residue from the premium cargo. These
cleaning requirements create the need for appropriately located tank cleaning stations
throughout the inland waterway network.

The strategic placement of tank cleaning stations presents a significant optimization
challenge due to several competing factors. Constructing these stations requires substantial
investment and incurs ongoing operational costs for maintenance, staffing, and utilities.
Meanwhile, ships requiring cleaning services often need to deviate from their optimal
routes to reach these tank cleaning stations, resulting in additional fuel consumption. This
detour problem becomes particularly critical in extensive waterway networks where poorly
positioned cleaning stations can lead to considerable inefficiencies. For this study, we
assume that tank cleaning is required after each transportation task, with consecutive
shipments that do not require cleaning between them being modeled as a single trans-
portation task. This approach allows us to focus on the critical cleaning operations while
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maintaining model tractability. In light of these considerations, it is crucial to precisely
determine the optimal timing, location, and quantity of tank cleaning station constructions
to minimize total system costs while guaranteeing sufficient cleaning capacity is available
at the necessary times and locations across the network.

Consider the tank cleaning station location problem within an inland waterway trans-
portation network during a multi-year planning horizon. The set of years in the planning
horizon is denoted by T (indexed by t). The river network consists of various ports where
ships load and unload liquid cargoes. The set of ports is denoted by V (indexed by v). The
shipping distance between two ports v1 ∈ V and v2 ∈ V is represented by dv1v2 . Tank clean-
ing stations can be constructed at the locations of these ports in V to service ships between
transportation tasks. Without ambiguity, we use “port” and “location” interchangeably in
the sequel.

A set S (indexed by s) of ships transporting liquid cargoes require tank cleaning
services at ports along the river. We denote the set of ships by S (indexed by s). Each
ship s undertakes |M st|+1 transportation tasks in the t-th year, where Mst (indexed by m)
represents the set of tasks after which tank cleaning is required, and task m = |M st|+1 is
the last task after which tank cleaning is not needed in the plan. For each ship s, the last
task in each year does not require tank cleaning, as there is no subsequent task. At the end
of each year or the beginning of the next, vessels typically undergo scheduled maintenance
and inspection, which includes necessary tank cleaning. Since this maintenance is not
related to the inter-task detour optimization addressed in this study, it is beyond the scope
of our study. For each transportation task m of ship s in the t-th year, there is an origin port
vorig

stm and a destination port vdest
stm . After a ship completes a transportation task, it needs to

visit a tank cleaning station if it needs to carry more expensive liquid cargoes at the next
port. If a detour is required, we define the detour distance as dD

stmv, which is calculated as
the sum of the distance from the current task’s destination vdest

stm to the cleaning station at
location v, plus the distance from the cleaning station to the next task’s origin port vorig

st(m+1),

minus the direct distance from vdest
stm to vorig

st(m+1), i.e., dD
stmv = dvdest

stm v + d
vvorig

st(m+1)
− d

vdest
stm vorig

st(m+1)
.

The detour cost when ship s visits the tank cleaning station at location v after the m-th
transportation task in the t-th year is represented by CD

stmv.
Constructing tank cleaning stations requires substantial investment, represented by

the construction cost Ctv for building a tank cleaning station at location v in the t-th year.
Additionally, once constructed, each station incurs annual cost Otv, which denotes the
operational cost of a tank cleaning station at location v in the t-th year, including labor
expenses, utilities (such as electricity and water), waste disposal for hazardous residues,
and routine maintenance of mechanical and environmental systems. Each candidate tank
cleaning station at location v has a cleaning capacity parameter bv, which represents the
maximum number of ships that the station can serve annually. Each location v ∈ V is
assigned a maximum number of tank cleaning stations Kv that can be constructed due
to resource and space limitations. All tank cleaning stations at the same location v are
considered homogeneous, meaning they have the same construction cost, operational
cost, and cleaning capacity in the same year. This assumption simplifies the modeling
process by reducing dimensional complexity. However, the model still captures inter-
location heterogeneity by allowing these parameters to vary across different ports and years.
Moreover, the framework can be extended to accommodate intra-location heterogeneity
by introducing type-specific indices for construction and capacity variables, enabling
the differentiation of stations with distinct technologies, service levels, or environmental
compliance standards within the same location. Under this extension, the integer variable
xtv is no longer sufficient. Instead, a set of binary variables xtvk is introduced to indicate
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whether the k-th tank cleaning station at location v is constructed in the t-th year, allowing
the model to explicitly represent intra-location heterogeneity.

The construction of tank cleaning stations is subject to an annual budget constraint
Bt, which limits the total construction expenditure each year. Any unused budget from
the previous year is carried forward to the next year. This allows for strategic planning
of construction timing to optimize resource utilization while ensuring adequate cleaning
capacity is available when needed.

The objective function of this study is to minimize the total cost in the planning
horizon, including the construction cost of tank cleaning stations, the operating cost of tank
cleaning stations, and the detour cost for ships to visit cleaning stations. To this end, we
need to decide how many tank cleaning stations to construct at each candidate location
each year. The primary decision variable is denoted as xtv, which represents the number of
tank cleaning stations constructed at location v in the t-th year. The assignment of ships to
tank cleaning stations is represented by the binary decision variable ystmv, which equals 1 if
ship s goes to the tank cleaning station at location v after the m-th transportation task in the
t-th year, and 0 otherwise. The remaining budget at the end of the t-th year is represented
by the continuous decision variable Rt.

While the current model assumes deterministic parameters and uninterrupted facility
operations, it can be extended to account for real-world uncertainties such as port closures
or equipment failure. In particular, the assignment variables ystmv can be adapted in future
extensions to account for the dynamic availability of facilities under uncertain conditions.
In such cases, ystmv can be set to 0 to represent that ship s cannot visit the tank cleaning
station at location v after the m-th transportation task in the t-th year.

3.2. Model Formulation

In this subsection, we develop an MIP model according to the problem setting. The
model effectively captures the multi-period planning decisions required for the construction
of tank cleaning stations across a network of ports. It focuses on strategic decisions for
constructing tank cleaning stations and operational decisions on which stations ships
should visit for cleaning during cargo transitions. This comprehensive framework aims
to minimize the total system costs while adhering to practical constraints such as budget
limitations, capacity requirements, and location-specific restrictions. Table 2 summarizes
the notations used in the model.

Table 2. Notations used in the model formulation.

Sets

T The set of years in the planning horizon
S The set of ships transporting liquids

V The set of candidate locations where ports are situated and tank cleaning
stations can be constructed

Mst
The set of transportation tasks of ship s in the t-th year that requiring tank
cleaning, m ∈ Mst, ∀s ∈ S, ∀t ∈ T

Indices

t Index for years in T
s Index for ships in S
v Index for locations in V
m Index for transportation tasks in Mst, s ∈ S, t ∈ T
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Table 2. Cont.

Parameters

Kv
The maximum number of tank cleaning stations that can be constructed at
location v

Ctv
The cost of constructing a candidate tank cleaning station at location v in the
t-th year

Otv
The operating cost of a candidate tank cleaning station at location v in
the t-th year

bv The tank cleaning capacity of a candidate tank cleaning station at location v
Bt The budget available for constructing tank cleaning station in the t-th year

CD
stmv

The detour cost when ship s visits the tank cleaning station at location v after
the m-th transportation task in the t-th year

dv1v2 The shipping route distance from location v1 to location v2

dD
stmv

The detour distance for ship s visits the tank cleaning station at location v after
the m-th transportation task in the t-th year

vorig
stm

The location of the origin port for the m-th transportation task of ship s in the
t-th year (vorig

stm ∈ V)

vdest
stm

The location of the destination port for the m-th transportation task of ship s in
the t-th year (vdest

stm ∈ V)

Decision Variables

xtv
Integer variable, indicating the number of tank cleaning station constructed at
location v in the t-th year, i.e., xtv ∈ {0, 1, . . . , Kv}

ystmv
Binary variable, which equals 1 if ship s visits the tank cleaning station at
location v after the m-th transportation task in the t-th year, and 0 otherwise

Rt Continuous variable, indicating the remaining budget at the end of the t-th year

The MIP model is developed to optimize the construction of tank cleaning stations
and the assignment of ships to these stations, which can be written as follows:

min∑
t∈T

∑
v∈V

Ctvxtv +∑
t∈T

∑
v∈V

|T|

∑
τ=t

Oτvxtv +∑
s∈S

∑
t∈T

∑
m∈Mst

∑
v∈V

CD
stmvystmv (1)

s.t.∑
v∈V

ystmv = 1 ∀s ∈ S, ∀t ∈ T, ∀m ∈ Mst (2)

∑
s∈S

∑
m∈Mst

ystmv ≤
t

∑
τ=1

bvxτv ∀t ∈ T, ∀v ∈ V (3)

∑
t∈T

xtv ≤ Kv ∀v ∈ V (4)

R1 = B1 − ∑
v∈V

C1vx1v (5)

Rt = Bt + Rt−1 − ∑
v∈V

Ctvxtv ∀t ∈ T\{1} (6)

xtv ∈ {0, 1, . . . , Kv} ∀t ∈ T, ∀v ∈ V (7)

∀s ∈ S, ∀t ∈ T, ∀m ∈ Mst, ∀v ∈ V (8)

Rt ≥ 0 ∀t ∈ T (9)



Mathematics 2025, 13, 1598 12 of 34

The objective function (1) minimizes the total cost, which consists of three components:
the construction cost of tank cleaning stations, the operating cost of tank cleaning stations,
and the detour cost for ships to visit cleaning stations. Constraints (2) mean that for each
transportation task requiring cleaning, a ship must select exactly one location for tank
cleaning. Constraints (3) denote that the total cleaning capacity of all constructed stations
at a location must be sufficient to handle the cleaning demand assigned to that location.
Constraints (4) require that the total number of tank cleaning stations constructed at each
location cannot exceed the maximum allowed number. Constraints (5) and (6) represent
the budget requirements, where the remaining budget in each year equals the new budget
allocation plus any remaining budget from the previous year minus the construction costs
in the current year, and the remaining budget must be non-negative. Constraints (7)–(9)
are the decision variable constraints. Constraints (7) ensure that the variable xtv takes an
integer value representing the number of stations built at location v in the t-th year. This
value is bounded between 0 and the location-specific maximum Kv, reflecting the practical
requirement that stations must be constructed in whole, indivisible units and respecting
site limitations.

Figure 1 illustrates the annual decision-making flow of our MIP model.
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3.3. Model Analysis

In this section, we introduce some critical properties regarding the MIP model pre-
sented in Section 3.2.

3.3.1. Integrality Necessity of Integer Variables xtv

To ensure that the model solutions can be meaningfully implemented in real-world
planning, it is essential to verify whether the variables denoting the number of tank
cleaning stations constructed at each port in each year must be restricted to integer values.
Relaxing these variables could potentially improve computational efficiency but may result
in solutions that are infeasible in practice. Therefore, to improve the solving efficiency
of the MIP model, we first investigate whether the integer variables xtv can be relaxed.
However, through meticulous analysis, we establish Theorem 1.

Theorem 1. The integer variables xtv cannot be relaxed to continuous ones, as non-integer solutions
will emerge and violate practical feasibility.

Proof. We demonstrate this via a synthetic counterexample. Assume there are two ports,
i.e., |V| = 2. The maximum number of tank cleaning stations that can be constructed at
each port v is set as Kv = 1, and the cleaning capacity of each candidate tank cleaning
station is bv = 2. We consider a scenario with one ship (|S| = 1) and a one-year plan-
ning horizon (|T| = 1), where the construction and operation costs are identical for both
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ports: Cv1 = Cv2 = 10, Ov1 = Ov2 = 1. The budget is set as B1 = 15. There is only
one transportation task m = 1 ∈ M11 from v1 to v2 which needs tank cleaning after this
task. The origin port of the last task after which tank cleaning is not needed in the plan
is v2. Then, for the original model, there will be three possible tank station construction
strategies: (1) Constructing no stations. This solution is infeasible, as the ship’s cleaning
demand remains unmet. (2) Constructing a tank cleaning station at port v2, i.e., x1v2 = 1.
Since the ship finishes its task at v2, visiting a tank cleaning station there avoids detours,
which have no detour costs. And the objective value in this case is Cv2x1v2 + Ov2x1v2 = 11.
(3) Constructing a tank cleaning station at port v1. In this case, the ship will conduct clean-
ing task at v1, which induces a detour calculated as dD

111v1
= d

v2v1
+ dv1v2 − dv2v2 = 2dv1v2 ,

resulting in additional detour costs and thus increasing the objective function value to
Cv1x1v1 + Ov1x1v1 + CD

stmv = 11 + CD
stmv

(
CD

stmv > 0
)
. We can conclude that the station con-

struction decision (2) is optimal. However, if we relax the integer variables xtv to continuous
ones, x1v2 = 0.5 will also be feasible as bv2 x1v2 = 2 × 0.5 = 1 also satisfies the cleaning
demand. The objective function value then can be calculated as Cv2x1v2 + Ov2x1v2 = 5.5.
This relaxed LP solution yields a smaller objective value compared to that with the integer
solution x1v2 = 1 within the relaxation framework. Critically, x1v2 = 0.5 is practically
invalid as we cannot build a station by half. Hence, LP relaxation of xtv inherently produces
non-integer solutions conflicting with the real-world integer construction requirement,
proving xtv cannot be freely relaxed. □

3.3.2. Totally Unimodular Property of the Coefficient Matrix of Variables ystmv

Efficiently solving large-scale optimization models often depends on the ability to
relax binary or integer variables without sacrificing solution accuracy. In the context of
our model, understanding the structure of the constraints related to the assignment of
ships to cleaning stations is crucial. By analyzing the underlying mathematical properties
of the corresponding coefficient matrix, we can identify conditions under which certain
variables may be relaxed, thereby improving computational tractability while preserving
solution validity.

In this section, we explore the properties of variables ystmv. The TU property [15] of a
matrix is an essential concept in the field of optimization, particularly within the realms
of linear programming (LP) and combinatorial optimization. A matrix is said to be totally
unimodular if every square submatrix of it has a determinant of 0, 1, or −1. This attribute
ensures that if the right-hand side of a linear system composed of such a matrix are integers,
then every basic feasible solution of the problem will also be integers.

The TU property is crucial when dealing with integer linear programming (ILP)
problems, as it allows for the relaxation of integer constraints without the loss of optimality
in the solutions, significantly simplifying computational efforts. In practical terms, this
means that the ILP that would typically require complex and computationally expensive
techniques can instead be solved more efficiently using simpler LP methods. This relaxation
is particularly useful because solving an LP is polynomially bounded in time complexity,
whereas solving an ILP is NP-hard in general. This advantage makes the TU property
highly desirable in various applications, such as network flow problems, scheduling, and
resource allocation, where the matrices involved (like incidence matrices of bipartite graphs)
often exhibit this property.

We give the following theorem regarding the coefficient matrix of variables ystmv

∀s ∈ S, ∀t ∈ T, ∀m ∈ Mst, ∀v ∈ V

Theorem 2. The coefficient matrix of the variables ystmv, ∀s ∈ S,∀t ∈ T, ∀m ∈ Mst, ∀v ∈ V is TU.
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Proof. For ease of explanation, we denote A as the coefficient matrix of variables ystmv,
which includes A1 associating with constraints (2) and A2 associating with constraints (3).
The structure of A can be presented as follows:
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Firstly, according to [15], a sufficient condition for a matrix M to be TU is: row indices

of matrix M can be partitioned into two sets such that the following four conditions are all
satisfied: (i) each entry mij of M satisfies mij ∈ {0, 1,−1}; (ii) each column of M contains
at most two non-zero entries; (iii) if a column has two entries of the same sign, their row
indices are in different sets; and (iv) if a column has two entries of different signs, their row
indices are in the same set.

For our matrix A, we consider dividing it naturally into two sets A1 and A2. For A1

and A2, each column contains only one 1, respectively. This implies that there are no more
than two nonzero entries per column in the matrix A. Therefore, conditions (i)–(ii) are
satisfied immediately. Then, we can partition all rows of A1 into a set and that of A2 into
another, meeting the criteria (iii) and (iv). Thus, we conclude that matrix A is TU. □

The primary benefit of this TU property lies in its ability to relax integer variables
to continuous ones without changing the integer nature of the optimal solutions, thus
reducing the computational time of the MIP model. Specifically, given any fixed integer
variables xtv, ∀t ∈ T, ∀v ∈ V, and integer parameters bv, ∀v ∈ V, the right-hand side of
the constraints (3) are always integers. Considering that the coefficient matrix of ystmv is
TU and the right-hand side of constraints (2) and (3) are integers, the binary variables ystmv

can be relaxed to continuous variables.

3.3.3. Submodular Property of the Objective Function

For effective and cost-efficient decision-making in infrastructure planning, it is im-
portant to understand how the objective function behaves as more tank cleaning stations
are built. Specifically, uncovering whether the model exhibits diminishing returns with
additional facilities provides valuable guidance for resource allocation and investment
decisions. To this end, we investigate the mathematical structure of the objective function
to reveal any inherent properties that could impact strategic planning.

A set function f : 2W → R defined on the subsets of a finite set W is called submod-
ular if it satisfies the diminishing returns property: for every W1 ⊆ W2 ⊆ W and every
w ∈ W ∖W2, it holds that f (W1 ∪ {w})− f (W1) ≥ f (W2 ∪ {w})− f (W2) [41]. In simple
terms, a submodular function is a set function that describes the relationship between a
set of inputs and an output, where adding more of one input has a decreasing additional
benefit (diminishing returns). This property essentially means that the marginal gain from
adding an element to a smaller set is at least as great as the gain from adding the same
element to a larger set. Submodular functions are particularly interesting because they help
model a variety of naturally occurring phenomena, such as economies of scale, network
effects, or the spread of information in social networks.

For notation convenience, we denote x = (xtv)t∈T, v∈V and y = (ystmv) s∈S,t∈T, m∈Mst,v∈V ,
which are restricted in the feasible region Ω. Then, the objective function can be pre-
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sented by a function of x and y, denoted by FΩ(x, y). We then give the following theorem
about FΩ(x, y).

Theorem 3. The objective function FΩ(x, y) is submodular regarding variables x.

Proof. Assuming that the annual budgets Bt and the construction capacity Kv at each
location v are large enough, we can model our problem as a variant of the multi-dimensional
set covering problem. Here, the objective is to minimize the cost of selecting a subset of
locations xtv to cover all required service elements ∑v∈V ystmv. The set covering function is
known to be submodular [41], which suggests that our objective function FΩ(x, y) is also
submodular with respect to the variables x.

In the subsequent contents, we prove this submodularity by a more rigorous step-by-
step analysis.

Step 1: The integer variables xtv that indicates the number of tank cleaning stations
constructed at location v in the t-th year can be equivalently transformed intro binary
variables χtvk that indicate whether the k-th tank cleaning station is constructed at lo-
cation v in the t-th year. Define χ1 and χ2 as two subsets of constructed tank cleaning
stations and let χ1 ⊆ χ2 ⊆ χ, where each χtvk ∈ χ, ∀t ∈ T, v ∈ V, k ∈ Kv, is 1. Then,
for any χt′v′k′ /∈ χ2, the marginal gain by adding another tank cleaning station χt′v′k′ to
χ1 can be defined as FΩ(χ1, y)− FΩ(χ1

⋃
{1}, y). We note that the marginal gain is rep-

resented by FΩ(χ1, y)− FΩ(χ1
⋃
{1}, y) since the objective function is the cost. Similarly,

FΩ(χ2, y)− FΩ(χ2
⋃
{1}, y) is the marginal gain by adding the same tank cleaning station.

Step 2: Since χ1 ⊆ χ2, any potential cost reduction in service coverage by adding
χt′v′k′ to χ2 is also possible when added to χ1, but may remain unchanged due to already
covered demands with the same cost. Therefore, the marginal gain is by adding another
tank cleaning station χt′v′k′ to the existing subsets of stations χ1 is greater than or equal to
adding it to χ2.

Step 3: If the annual budgets or construction capacities are not sufficient, the possibility
of exceeding these constraints when adding χt′v′k′ to χ2 is higher than adding it to χ1,
potentially yielding zero additional gain.

Conclusively, we always have FΩ(χ1, y)− FΩ(χ1
⋃
{1}, y)≥ FΩ(χ2, y)− FΩ(χ2

⋃
{1}, y),

which completes the proof. □

4. Experiments
This section conducts computational experiments to verify the effectiveness of our

proposed model. The experiments were conducted on a desktop computer equipped with
3.40 GHz of 13th Gen Intel Core i7 CPU and 32 GB of RAM, and the MIP model was solved
by the Gurobi Optimizer 10.0.1 via the Python 3.11.5 API. We first set initial values for
parameters to obtain basic results. Furthermore, sensitivity analyses are conducted to
examine the impact of these parameters.

4.1. Experiment Settings

Taking the Yangtze River as an example, we select twenty-six ports (|V| = 26) along
the river as candidate locations where tank cleaning stations could be constructed. We focus
on the river segment that starts from Chongqing, flows downstream through intermediate
locations, and ends at Shanghai. Table 3 presents the distances from Chongqing to each
port, with data sourced from J.H. Shipping Center [42]. Given that the river can be regarded
as a line and the ports as points along this line, the distances between any two ports can
be calculated based on Table 3. The map of the region under consideration is presented in
Figure 2.
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Table 3. The distance from Chongqing to downstream locations.

Port
ID Destination Distance

(km)
Port
ID Destination Distance

(km)
Port
ID Destination Distance

(km)

1 Chongqing 0 10 Hankou 1274 19 Ma’anshan 1959
2 Fuling 120 11 Yangluo 1306 20 Nanjing 2007
3 Wanxian 327 12 Huangshi 1417 21 Zhenjiang 2094
4 Badong 538 13 Wuxue 1493 22 Gaogang 2152
5 Yichang 648 14 Jiujiang 1543 23 Jiangyin 2211
6 Zhicheng 704 15 Anqing 1707 24 Zhangjiagang 2229
7 Shashi 796 16 Chizhou 1767 25 Nantong 2271
8 Chenglingji 1043 17 Tongling 1803 26 Shanghai 2399
9 Honghu 1095 18 Wuhu 1911
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Table 4 summarizes the notations used in the experiment.

Table 4. Notations used in the experiment.

η Annual growth rate of tank cleaning demand

Cbase
v

Baseline cost of constructing a candidate tank cleaning station at location v
in the first year of planing horizon

λt
Inflation rate in the t-th year which affects the construction cost of tank
cleaning stations

δt
The reduction rate of construction costs due to technological progress and
labor cost decline in the t-th year

αv
The ratio of the annual operating cost to the construction cost of tank
cleaning stations at location v

ustan Standard speed of all ships

uD
stmv

Sailing speed for ship s visits the tank cleaning station at location v after the
m-th transportation task in the t-th year

τstmv

Time between the arrival of ship s at the destination port of task m and its
arrival at the origin port of the next task in the t-th year, during which the
ship visits a tank cleaning station at location v

γst Unit fuel price of ship s in the t-th year
Utv The utilization rate of tank cleaning stations at location v in the t-th year

Uv
The average annual utilization rate of tank cleaning stations at location v in
the planing horizon

r The ratio of the actual sailing time of each cleaning task to its original
sailing time at standard speed

We categorize the parameters into the following three types:

• Capacity-Related Parameters. The planning period for this study is from 2025 to 2030,
i.e., |T| = 6. The strategic placement of tank cleaning stations along the Yangtze River
must adhere to the Yangtze River Waterway Tank Cleaning Station Layout Plan [17],
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which mandates proximity to chemical industrial clusters, shipyards, and hazardous
cargo anchorages while maintaining distance from urban centers. Stations must
also align with regional land use plans and possess integrated wastewater treatment
infrastructure. For instance, ports like Nanjing and Yangluo (Wuhan) host large-
scale chemical parks (e.g., Nanjing Chemical Industrial Park and Wuhan Chemical
Industry Zone) and existing wastewater treatment facilities, satisfying both demand
and regulatory thresholds. Conversely, ports adjacent to ecologically sensitive zones
(e.g., Badong, Honghu) or dominated by non-hazardous cargo (e.g., Chizhou) are
excluded due to environmental and operational incompatibility. Shanghai is prohibited
from establishing tank cleaning stations due to its status as a densely populated urban
core, which violates the distance from city centers mandate. Additionally, strict
ecological red line restrictions, such as those in the Chongming Wetland Reserve,
contribute to this prohibition. Based on the above criteria, Table 5 categorizes the
maximum allowable number of tank cleaning stations for each port, grouped by
identical Kv values.

• Demand-Related Parameters. According to [17], the annual tank cleaning demand
growth rate is derived from a baseline demand of 8100 ship-times in 2025. The term
“ship-times” refers to the total number of tank cleaning events for all ships within a
given year. The annual tank cleaning demand η is projected to increase at a compound
annual growth rate (CAGR) of 5.0%. This projection is supported by recent data from
the Yangtze River shipping sector, where the mainline port cargo throughput reached
4.02 billion tons in 2024, marking a 3.9% year-on-year increase, and the pilotage cargo
volume rose by 6% over the same period [43]. These figures indicate a consistent
upward trend in inland waterway freight transport, particularly in the Yangtze River
region, which is a significant driver of demand for tank cleaning services. Therefore, a
5.0% CAGR for tank cleaning demand is a reasonable estimate, reflecting the overall
growth in cargo volumes and the associated increase in cleaning requirements. Based
on this growth rate, the annual tank cleaning demand is expected to reach 10,338 ship-
times by 2030. The annual tank cleaning demand for each year is shown in Table 6.
This linear extrapolation assumes synchronized growth between hazardous cargo
volumes and cleaning demand. According to the baseline capacity for the initially
planned stations as specified in [17], the parameter bv of the tank cleaning capacity of
each candidate station is fixed at 600 ship-times per year.

• Cost-Related Parameters. For the parameter Ctv, the construction cost of a candidate
tank cleaning station at location v is calculated using a time-variant adjustment model,
which is expressed as:

Ctv = Cbase
v · ∏t

τ=2(1 + λτ)(1 − δτ), (10)

where Cbase
v represents 2025 baseline cost of constructing a candidate tank cleaning

station at location v derived from engineering bids (CNY 2.9 billion for upstream
ports like Yichang [44], CNY 3.0 billion for midstream ports like Yueyang [45], and
exceeding 2.0 billion CNY/station for downstream ports like Nanjing [46], with this
study defining the baseline cost for downstream ports as CNY 2.5 billion). Upstream
ports include Chongqing to Badong, midstream ports include Yichang to Jiujiang, and
downstream ports include Anqing to Shanghai. The inflation rate λt is set at 2.8%
based on China’s Construction Price Index [47]. δt represents the annual decrease in
construction costs due to technological advancements and reductions in labor costs.
We set it at 5% per annum. For parameter Bt, we set Bt = CNY 20 million (∀t ∈ T).
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Table 5. Maximum number of tank cleaning stations can be constructed at location v.

Port Location Kv

Nanjing, Yangluo, Nantong 3
Chongqing, Fuling, Yichang, Zhicheng, Chenglingji,

Jiujiang, Zhenjiang, Gaogang, Jiangyin 2

Wanxian, Shashi, Hankou, Huangshi, Anqing, Tongling,
Wuhu, Ma’anshan, Zhangjiagang 1

Shanghai, Badong, Honghu, Wuxue, Chizhou 0

Table 6. Projected annual tank cleaning demand from 2025 to 2030.

Year Projected Tank Cleaning Demand (Ship-Times)

2025 8100
2026 8505
2027 8930
2028 9377
2029 9846
2030 10,338

The operating cost of a candidate tank cleaning station at location v in the t-th year is
modeled as a time-dependent function, calculated as:

Otv = Ctv · αv, ∀t ∈ T, ∀v ∈ V, (11)

where αv is a regional adjustment factor. For downstream ports where labor and energy
costs are higher, αv is set at 0.15. Conversely, upstream and midstream ports have a lower
αv of 0.10 due to more less stringent environmental enforcement and the advantage of
lower labor costs. This factor allows for a more accurate representation of the operational
costs in relation to the unique circumstances of each port’s location.

According to [17], as of the beginning of 2025, there have been 15 existing tank cleaning
stations located at specific ports within the set of candidate locations considered in this
study. The locations and the number of tank cleaning stations at each port are detailed in
Table 7.

Table 7. Existing tank cleaning stations in 2025.

Port Location Number of Tank Cleaning Stations

Chongqing 2
Chenglingji 1

Yichang 1
Yangluo 1
Jiujiang 1
Anqing 1
Nanjing 3

Zhenjiang 1
Gaogang 1
Jiangyin 1
Nantong 2

Total 15

The construction costs of these pre-existing stations are not included in the model.
However, their annual operating costs from 2025 to 2030 contribute to the total cost cal-
culation. The model focuses on determining the optimal locations, timing, and number
of new tank cleaning stations to be constructed from 2025 to 2030, building upon this
existing infrastructure.
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In this study, the Yangtze River’s cargo fleet is categorized into three classes based on
tonnage: small ships with a tonnage of less than 1000 tons, medium ships with a tonnage
ranging from 1000 to 3000 tons, and large ships with a tonnage exceeding 3000 tons. All
three ship classes are powered by diesel engines. Referring to [48], the hourly consumption
of ship s sailing at speed u is expressed as:

fs(u) = C0
s + C1

s ·uns , (12)

where ns is the class-specific speed exponent, which is 3.5 for small ships, 4.0 for medium
ships, and 4.5 for large ships. C0

s and C1
s are coefficients determined by the tonnage of ship s.

Essentially, Equation (12) captures how a ship’s fuel consumption per hour increases more
rapidly than its speed increases, due to the speed exponent ns being considerably larger
than 1. This highlights the substantial fuel consumption when ships must travel faster to
finish transportation tasks on time. In the fleet under consideration, small ships account for
30%, medium ships account for 40%, and large ships account for 30%. Table 8 illustrates the
parameter values for three classes of ships, with C0

s and C1
s coefficients derived from the

median of the value ranges provided in [48]. The table specifies the types of fuel used by
each ship class and their standard operating speeds. Additionally, it provides the calculated
fuel consumption rates for each ship type during standard speed operation.

Table 8. Fuel consumption of different ship classes.

Ship Class C0
s C1

s ns
Standard Speed

(km/h)
Standard Fuel

Consumption (kg/h)

Small 598.65 0.0198 3.5 16 923.1
Medium 649.65 0.0040 4.0 16 911.8

Large 600.45 0.0009 4.5 16 836.4

In the planning horizon, for all transportation tasks of all ships, the sailing speed
required for a ship to complete a task on time without taking a detour is set as the
standard speed ustan. However, if the ship takes a detour to the cleaning station at
location v, it must increase its speed to uD

stmv to maintain the schedule. The relation-
ship between the standard speed ustan and the detour speed uD

stmv is constrained by the
time invariance condition, where the sailing time τstmv remains unchanged. This condi-
tion is expressed as τstmv = d

vdest
stm vorig

st(m+1)
/ustan = (dvdest

stm v + d
vvorig

st(m+1)
)/uD

stmv, which yields

uD
stmv = ustan·(dvdest

stm v + d
vvorig

st(m+1)
)/d

vdest
stm vorig

st(m+1)
. Thus, the additional fuel consumption Fstmv

accounts for the detour taken by ship s when it visits the tank cleaning station at loca-
tion v after the m-th transportation task in the t-th year. This additional fuel consump-
tion can be expressed as Fstmv =

(
fs
(
uD

stmv
)
− fs(ustan)

)
·τstmv. The detour cost CD

stmv can
then be calculated as the product of the fuel price and the additional fuel consumption,
i.e., CD

stmv = γst·FD
stmv. Under the net-zero emissions scenario, crude oil demand is projected

to decline between 2025 and 2030, with an average annual price decrease of 2.5% [49].
Therefore, we assume that fuel price, with a 2025 base price of CNY 8.0/kg, decreases by
2.5% annually.

After establishing the parameter settings, we used these values to derive the ba-
sic results, and then we conducted a sensitivity analysis to examine the impacts of
these parameters.

4.2. Basic Results

This section gives a detailed analysis of the basic results derived from the MIP model.
The analysis focuses on evaluating the construction strategy of new tank cleaning stations,



Mathematics 2025, 13, 1598 20 of 34

assessing the utilization rate of tank cleaning stations at each port, and examining the
rationality of detour distances and detour speeds under the optimal layout of tank cleaning
stations. The analysis is essential for evaluating the model’s performance.

4.2.1. Tank Cleaning Station Construction Strategy

In this section, we present the results of the MIP model solved by Gurobi. The results
related to the construction strategy are presented in Table 9.

Table 9. Results related to the construction strategy.

Year Port Location of New Tank
Cleaning Station

Number of Stations
Constructed

Construction Cost
(CNY Million)

Remaining Budget
(CNY Million)

2025 Wuhu 1 250.0 0
2026 Tongling 1 244.2 5.8
2027 NA 0 0 255.8
2028 Wanxian 1 270.1 235.7
2029 NA 0 0 485.7
2030 NA 0 0 735.7

The results indicate a phased construction approach in the planning horizon, with a
focus on the initial years. Specifically, the model recommends constructing a single station
at Wuhu in 2025, incurring a cost of 250 million CNY and fully utilizing the allocated
budget for that year. In 2026, a station is constructed at Tongling, costing CNY 244.2 million,
leaving a small remaining budget of CNY 5.8 million. No construction is scheduled for
2027, during which the remaining budget accumulates. In 2028, a station is constructed
at Wanxian, costing CNY 270.1 million. No additional tank cleaning stations are planned
for 2029 and 2030, as the increased costs of constructing new stations would exceed the
benefits from reduced detour costs, thereby increasing the objective function value.

4.2.2. Utilization Rate of Tank Cleaning Stations at Each Port

To evaluate the efficiency of the tank cleaning station construction strategy and prevent
either under-utilization or over-utilization scenarios, we conduct an analysis of the annual
average utilization rate of tank cleaning stations at each port. The actual number of cleaning
services provided by all tank cleaning stations at port v in the t-th year is denoted as Qtotal

tv ,
while the total annual cleaning capacity of all stations at the same port v in a year is
represented by btotal

v . The utilization rate of tank cleaning stations at port v in the t-th
year Utv is calculated as Utv = Qtotal

tv /btotal
v . The average annual utilization rate Uv in

the planning horizon is computed as the arithmetic mean of the annual utilization rates,
i.e., Uv = 1

T ∑T
t=1 Utv.

A high utilization rate, especially when approaching 100%, can result in multiple
issues. These include longer waiting times for ships, inefficiencies in the cleaning process,
and increased wear and tear on equipment. By analyzing the annual average utilization
rate of tank cleaning stations at each port, we can assess the balance of the current tank
cleaning station construction plan in terms of resource allocation across different ports.
Table 10 presents the annual average utilization rate of tank cleaning stations at each port.
The third column of the table indicates the construction year of the tank cleaning stations at
each port. For ports where this column is marked as “Existing”, the tank cleaning stations
were already in operation before the planning period began.

The results indicate that the annual average utilization rates of tank cleaning stations
vary among different ports. For ports with high utilization rates, such as Yichang (94.5%),
Chenglingji (95.6%), and Anqing (96.1%), although the utilization rates are relatively high,
they do not approach 100% closely. In contrast, ports with relatively lower utilization rates,
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such as Nantong (77.5%), still maintain utilization rates above 75%, which indicates the
resources in these ports are not being wasted excessively. The relatively lower utilization
rate in Nantong can be attributed to the fact that two tank cleaning stations were already
in operation before the planning period began in 2025. As a result, during the initial
years of the planning horizon, the number of cleaning services provided by these stations
was relatively low compared to their total cleaning capacity. This led to a lower overall
utilization rate for the port in the planning period.

Table 10. Annual average utilization rate of tank cleaning stations at each port.

Port Location Uv Construction Year

Chongqing 88.7% Existing
Wanxian 92.7% 2028
Yichang 94.5% Existing

Chenglingji 95.6% Existing
Yangluo 92.5% Existing
Jiujiang 91.3% Existing
Anqing 96.1% Existing

Tongling 93.8% 2025
Wuhu 80.3% 2026

Nanjing 89.4% Existing
Zhenjiang 84.5% Existing
Gaogang 83.6% Existing
Jiangyin 86.5% Existing
Nantong 77.5% Existing

Avg 89.1%

With an average annual utilization rate of 89.1% across all ports, the tank cleaning
stations are generally operating efficiently.

4.2.3. Ship Detour Analysis

Based on the optimal layout of tank cleaning stations derived from the MIP model,
an analysis is conducted on the detour distances, differences between detour speeds and
standard speeds, the detour costs, and the ratios of these detour costs to the total system
costs for all transportation tasks of each ship in the planning horizon. The detour speed
is crucial as it reflects the actual sailing speed of the ship when it has to deviate from its
normal route. Additionally, the detour costs and their proportion relative to the total costs
provide insights into the economic impact of these detours.

Table 11 presents the details of the top five transportation tasks with the longest detours
among all tasks performed by all ships in the planning horizon. For each of these tasks, the
table shows the detour distance, the detour speed, the percentage difference between the
detour speed and the standard speed, and the detour cost. This helps in analyzing whether
the detour distances and detour speeds of ships are within reasonable limits under the
optimal solution of the MIP model, preventing excessively long detours and unreasonably
high actual sailing speeds that deviate from realistic conditions. Additionally, examining
the ratios of detour costs to the total costs allows us to assess the financial impact of detours.

The results indicate that there is a wide spectrum of detour distances, with Task 1
having the maximum detour at 240 km and Task 5 at 64 km. This variation in detour
distances directly influences other aspects, such as detour speed and cost. The detour
speeds range from 21.7 km/h (Task 5) to 37.0 km/h (Task 4), and the percentage differences
between detour speeds and standard speeds also differ notably. For instance, Task 4 has a
131.3% difference, suggesting that in certain tasks, the detour speed is much higher than the
standard speed. However, all detour speeds in the table, including that of Task 4, remain
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within a reasonable range, validating the reliability of the model’s results. The detour
costs, measured in CNY 10,000, vary from 5.6 (Task 5) to 46.3 (Task 1), clearly showing the
financial implications of these detours. Additionally, the overall proportion of detour trips
is only 1.01% of all trips in the planning period, demonstrating that the vast majority of
trips do not require a detour. Furthermore, the average detour distance across all trips is
just 1.42 km, further reinforcing the effectiveness of the model in minimizing unnecessary
detours. These results highlight the model’s success in optimizing routing decisions and
reducing the overall detour burden while maintaining reasonable operational efficiency.

Table 11. Details of the top 5 transportation tasks with the longest detours.

Transportation
Task ID

Detour
Distance (km)

Detour Speed
(km/h)

Percentage Difference Between
Detour Speed and Standard Speed

Detour Cost
(CNY 10,000)

1 240 34.6 116.3% 46.3
2 220 32.7 104.4% 23.0
3 112 35.5 121.9% 22.7
4 100 37.0 131.3% 22.1
5 64 21.7 35.6% 5.6

Based on the MIP model’s calculations, the total construction cost is CNY 0.77 billion,
the total operation cost is CNY 3.24 billion, and the total detour cost is CNY 0.22 billion.
These values sum up to a total cost of CNY 4.23 billion. Notably, the detour cost accounts
for only 5.2% of the total cost, which indicates that the proportion of detour cost is relatively
small and implies that the new construction of tank cleaning stations can ensure that ships
have relatively short detour distances in the planning horizon.

4.2.4. Key Insights and Model Effectiveness

Based on the above analysis of the main results, the key insights are summarized
as follows:

1. The model recommends a phased construction strategy, concentrating new station
construction in the early years of the planning horizon to effectively utilize the annual
budget. It also defers additional construction when marginal returns diminish. The
phased investment approach and optimized routing under the model achieve both
high operational efficiency and cost-effectiveness across the network.

2. Average annual utilization rates of tank cleaning stations are high (averaging 89.1%),
with utilization consistently above 75% even at lower-demand ports, indicating effi-
cient resource allocation and minimal capacity waste.

3. Variation in detour distances, speeds, and costs among different tasks is observed;
however, all detour speeds remain reasonable, and detour trips constitute only 1.01%
of total trips, with an average detour distance of just 1.42 km, validating the model’s
effectiveness in minimizing unnecessary detours.

4. The majority of overall cost is attributed to operation and construction, with detour
costs accounting for only 5.2%, demonstrating that optimized station deployment
successfully limits the economic impact of detours.

4.3. Sensitivity Analysis

By conducting sensitivity analysis experiments, we further analyze the sensitivity
of the methods to the changes in input parameters, including the annual budget, the
capacity of each candidate tank cleaning station, and the actual sailing time of each
transportation task.

The parameters of the experiments are set as shown in Table 12. Generally, we conduct
44 experiments with experiment ID (EID) indexed from 0 to 43. Each of the experiments is
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included in the corresponding group with a group ID (GID). G0, G1, and G2 are the groups
of experiments that aim to illustrate the performance of the MIP model in solving instances
with different annual budget (Bt), the capacity of each candidate tank cleaning station (bv),
and the ratio of the actual sailing time of each task to its original sailing time, respectively.
The ratio is denoted as r, where the original sailing time is τstmv, the actual sailing time
is τactu

stmv, and r = τactu
stmv/τstmv. Accordingly, the results of G3, G4, and G5 are generated

by a PRMIP model. “MT” represents the model type, including the MIP model and the
PRMIP model. In the “Bt (CNY million)”, “bv”, and “r” columns, [a, b, c] represents a list
of numbers generated from a to b with a step size of c.

Table 12. Experiment parameter settings.

GID EID Bt (CNY Million) bv r MT

G0 0–7 [150, 500, 50] 600 1 MIP
G1 8–14 250 [300, 900, 100] 1 MIP
G2 15–21 250 600 [0.7, 1.3, 0.1] MIP
G3 22–29 [150, 500, 50] 600 1 PRMIP
G4 30–36 250 [300, 900, 100] 1 PRMIP
G5 37–43 250 600 [0.7, 1.3, 0.1] PRMIP

4.3.1. Different Annual Budget

To investigate the impact of varying the annual budget on the model’s effectiveness,
we design instances by altering the annual budget from 150 million to 500 million while
keeping the capacity of each candidate tank cleaning station (bv = 600) and the sailing time
ratio (r = 1) unchanged.

Figures 3 and 4 show the optimal results of the MIP model and the PRMIP model,
respectively. The x-axis represents the EID, where instances are arranged in increasing
order of the annual budget. The y-axis corresponds to the values of indicators, including
the objective of an optimal solution (Obj), the total number of tank cleaning stations
constructed (TCSN) and the total construction cost (TCSC) in the planning horizon, the
average utilization rate (AUR) of all tank cleaning stations in the planning horizon, and the
average detour distance (ADD) of all ships along with the average percentage difference
between detour speeds and standard speeds (PDS) in the planning period.

As shown in Figures 3 and 4, increasing the annual budget from CNY 150 to 300 million
leads to a significant decline in total cost before plateauing. This reduction is primarily
driven by a noticeable decrease in detour costs, which result from reductions in ADD and
PDS. Both the MIP and PRMIP models show similar trends across all key metrics, indicating
that relaxing ship assignment variables does not significantly affect the overall results.

A higher annual budget relaxes budget constraints, allowing for more flexibility in
construction planning. This enables the earlier construction of tank cleaning stations or
the establishment of multiple stations, which increases the total available cleaning capacity
over the planning period. As a result, the AUR decreases, as the stations provide cleaning
services for a longer duration. Additionally, TCSC rises slightly due to earlier construction
in higher-budget scenarios, which is attributed to the cost parameter settings in Equation
(10), where the construction cost of tank cleaning stations at a port decreases over the
planning period. Optimizing the construction timing and location of new tank cleaning
stations allows ships to access cleaning stations with shorter detours, further reducing
ADD and PDS and improving overall operational efficiency.
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Figure 3. Optimal results of the MIP model with different annual budgets (EID: 0–7). (a) Obj of
instances. (b) TCSN and TCSC of instances. (c) AUR of instances. (d) ADD and PDS of instances.
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Figure 4. Optimal results of the PRMIP model with different annual budgets (EID: 22–29). (a) Obj of
instances. (b) TCSN and TCSC of instances. (c) AUR of instances. (d) ADD and PDS of instances.
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Notably, TCSN remains constant at three across all budget levels. This suggests
that constructing the first three stations yields a significant reduction in detour costs,
outweighing the additional construction and operational costs. However, attempting to
build a fourth station would lead to diminishing returns, where the reduction in detour costs
would no longer offset the additional construction and operational costs. This phenomenon
aligns with Theorem 3, which states that the objective function is submodular concerning
the constructed station number. The submodular property implies that the marginal
benefit of adding a station decreases as more stations are introduced. In this case, the first
few stations contribute significantly to reducing detour costs, but beyond a certain point,
additional stations would not provide more benefits.

Overall, increasing the annual budget enhances operational efficiency and reduces
detour costs. However, the choice between MIP and PRMIP does not substantially impact
the key performance indicators. Tables 13 and 14 display the outcomes of these analyses.

Table 13. Optimal results of the MIP model with different annual budgets (EID: 0–7).

EID Bt (CNY
Million)

Obj (CNY
Million) TCSN TCSC (CNY

Million)
AUR
(%)

ADD
(km)

PDS
(%)

CPU Time
(s)

0–7

150 4320.7 3 741.7 90.6 2.29 2.0 262.8
200 4304.0 3 753.6 89.6 1.80 1.6 173.7
250 4237.7 3 759.4 89.1 1.42 1.2 312.4
300 4229.5 3 771.7 87.5 0.92 0.9 212.2
350 4229.5 3 771.7 87.5 0.92 0.9 266.2
400 4229.5 3 771.7 87.4 0.92 0.9 269.0
450 4229.5 3 771.7 87.6 0.92 0.9 243.7
500 4229.5 3 771.7 87.6 0.92 0.9 233.9

Avg 325 4251.2 3 764.2 88.4 1.26 1.2 246.7

Table 14. Optimal results of the PRMIP model with different annual budgets (EID: 22–29).

EID Bt (CNY
Million)

Obj (CNY
Million) TCSN TCSC (CNY

Million)
AUR
(%)

ADD
(km)

PDS
(%)

CPU Time
(s)

22–29

150 4320.7 3 741.7 90.7 2.34 2.0 127.8
200 4304.0 3 753.6 89.5 1.82 1.7 123.3
250 4237.7 3 759.4 89.1 1.43 1.3 59.5
300 4229.5 3 771.7 87.4 0.92 0.9 112.5
350 4229.5 3 771.7 87.3 0.92 0.9 82.6
400 4229.5 3 771.7 87.4 0.92 0.9 58.9
450 4229.5 3 771.7 87.5 0.92 0.9 59.0
500 4229.5 3 771.7 87.5 0.92 0.9 61.3

Avg 325 4251.2 3 764.2 88.3 1.27 1.2 85.6

The MIP and PRMIP models produce the same optimized station layout, as Obj,
TCSN, and TCSC are identical across all budget levels. While AUR, ADD, and PDS are not
entirely the same, their average values are highly similar. This slight variation results from
minor differences in ship routing. A notable difference between the two models is their
computational efficiency. These findings suggest that while both MIP and PRMIP produce
optimal solutions to the original problem, they may lead to different outcomes on some
indicators due to the existence of multiple optimal solutions. The average CPU Time for the
MIP model is 246.7 s, whereas the PRMIP model, with relaxed binary variables, significantly
reduces computation time to an average of 85.6 s. In summary, the PRMIP model is
significantly more computationally efficient than the MIP model without surrendering the
solution quality, which aligns with Theorem 2.
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Based on the above analysis of how the annual budget affects model outcomes, we
summarize some key insights as follows:

1. Increasing the annual budget substantially reduces total cost up to a threshold, after
which cost savings plateau. This reduction is primarily due to decreased detour costs,
enabled by more timely and flexible construction of cleaning stations, which improves
overall system efficiency (as indicated by lower ADD and PDS).

2. The number of constructed stations (TCSN) stabilizes at three, confirming that ad-
ditional stations beyond this number provide diminishing returns, in line with the
submodular nature of the objective function.

3. Earlier and more frequent construction marginally increases total construction cost
(TCSC), as station costs decline over the planning horizon.

4. The choice between MIP and PRMIP models does not noticeably affect key perfor-
mance metrics.

5. Decision-makers can improve system efficiency by increasing the budget up to an
optimal point, but excessive budget increases may not yield further benefits.

4.3.2. Different Station Capacity

To investigate the impact of varying the capacity of each candidate tank cleaning
station on the model’s effectiveness, we design instances by altering the station capacity
from 300 ship-times to 900 ship-times while keeping the annual budget (Bt = 250) and the
sailing time ratio (r = 1) unchanged.

Figures 5 and 6 show the optimal results of the MIP model and the PRMIP
model, respectively.
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Figure 5. Optimal results of the MIP model with different station capacity (EID: 8–14). (a) Obj of
instances. (b) TCSN and TCSC of instances. (c) AUR of instances. (d) ADD and PDS of instances.
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Figure 6. Optimal results of the PRMIP model with different station capacity (EID: 30–36). (a) Obj of
instances. (b) TCSN and TCSC of instances. (c) AUR of instances. (d) ADD and PDS of instances.

As shown in Figures 5 and 6, increasing station capacity leads to a decline in Obj,
primarily due to reduced detour costs. This section examines the impact of capacity on key
performance metrics.

Capacity significantly influences TCSN and TCSC. When capacity is low, more stations
are required to meet demand, whereas higher capacities reduce TCSN. Initially, adding
stations substantially reduces detour costs, but beyond a certain capacity, additional stations
provide limited benefit.

AUR fluctuates due to two opposing effects. On the one hand, increasing capacity
allows each station to serve more ships, reducing AUR. On the other hand, the concurrent
decline in TCSN leads to higher utilization at the remaining stations, increasing AUR. As a
result, AUR exhibits relatively large fluctuations across different capacity levels.

Trends in ADD and PDS show that when capacity is low, higher TCSN helps reduce
detour costs, but limited station capacity can still force longer detours. As capacity increases,
ADD and PDS initially decline due to better station accessibility. However, as TCSN declines
significantly, fewer available stations force some ships to travel longer distances, leading to
an increase in ADD and PDS. As a result, ADD and PDS exhibit relatively large fluctuations.

Overall, the model optimally balances the number and location of stations to minimize
total costs, including construction, operation, and detour-related expenses. The fluctuations
in AUR, ADD, and PDS highlight these complex trade-offs. Notably, MIP and PRMIP yield
nearly identical results across key metrics, with PRMIP offering superior computational
efficiency, as previously discussed. Tables 15 and 16 display the outcomes of these analyses.
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Table 15. Optimal results of the MIP model with different station capacities (EID: 8–14).

EID bv
Obj (CNY
Million) TCSN TCSC (CNY

Million)
AUR
(%)

ADD
(km)

PDS
(%)

CPU Time
(s)

8–14

300 4748.5 5 1203.6 91.0 2.24 2.0 206.3
400 4493.1 4 981.5 88.6 1.42 1.2 181.4
500 4244.8 3 758.6 89.8 1.78 1.6 196.7
600 4237.7 3 759.4 89.1 1.42 1.2 218.7
700 4107.5 2 526.6 90.1 3.32 3.5 313.7
800 4042.6 2 494.2 88.4 3.16 3.3 234.8
900 4032.5 2 482.9 87.1 3.01 3.2 183.4

Avg 600 4272.4 3 743.8 89.2 2.34 2.3 219.3

Table 16. Optimal results of the PRMIP model with different station capacities (EID: 30–36).

EID bv
Obj (CNY
Million) TCSN TCSC (CNY

Million)
AUR
(%)

ADD
(km)

PDS
(%)

CPU Time
(s)

30–36

300 4748.5 5 1203.6 91.2 2.26 2.0 71.6
400 4493.1 4 981.5 89.0 1.42 1.2 81.6
500 4244.8 3 758.6 89.6 1.77 1.5 78.3
600 4237.7 3 759.4 89.2 1.44 1.2 81.3
700 4107.5 2 526.6 89.9 3.35 3.5 81.7
800 4042.6 2 494.2 88.2 3.12 3.3 81.9
900 4032.5 2 482.9 87.3 2.98 3.1 78.9

Avg 600 4272.4 3 743.8 89.2 2.33 2.3 79.3

Tables 15 and 16 present the numerical results for the MIP and PRMIP models under
varying station capacities, revealing identical trends in Obj, TCSN, and TCSC. Minor
differences in AUR, ADD, and PDS stem from variations in ship routing within multiple
optimal solutions, consistent with previous findings. Notably, PRMIP maintains solution
quality while achieving significantly higher computational efficiency than MIP.

Based on the above analysis of how station capacity affects model outcomes, we
summarize some key insights as follows:

1. Increasing station capacity generally reduces the objective value by lowering detour
costs and requiring fewer total stations.

2. When capacity is low, more stations are needed; as capacity increases, the optimal
number of stations (TCSN) decreases, highlighting economies of scale.

3. Average utilization ratio (AUR) and detour metrics (ADD, PDS) show noticeable
fluctuations across different capacity levels, due to the interplay between station
coverage and accessibility.

4. The model effectively balances between station number, location, and capacity to
minimize total system cost, capturing the trade-offs among construction, operation,
and detour expenses.

5. MIP and PRMIP models again yield essentially the same operational outcomes, but
PRMIP demonstrates higher computational efficiency.

4.3.3. Different Sailing Time Ratio

To investigate the impact of varying the sailing time of each task on the model’s effective-
ness, we design instances by altering sailing time ratio from 0.7 to 1.3 with a step size of 0.1,
while keeping the annual budget (Bt = 250) and the station capacity (bv = 600) unchanged.

Figures 7 and 8 show the optimal results of the MIP model and the PRMIP
model, respectively.
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Figure 7. Optimal results of the MIP model with different sailing time ratio (EID: 15–21). (a) Obj of
instances. (b) TCSN and TCSC of instances. (c) AUR of instances. (d) ADD and PDS of instances.
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Figure 8. Optimal results of the PRMIP model with different sailing time ratio (EID: 37–43). (a) Obj of
instances. (b) TCSN and TCSC of instances. (c) AUR of instances. (d) ADD and PDS of instances.
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As shown in Figures 7 and 8, which present the MIP and PRMIP model results under
varying sailing time ratios, several key trends emerge. An increase in the sailing time
ratio consistently leads to a decline in Obj, primarily due to reduced detour costs. Since
sailing time is inversely related to speed, a longer sailing time corresponds to a lower travel
speed, reducing the required speed adjustments for detours. This mitigates the exponential
increase in fuel consumption associated with higher speeds, leading to lower detour costs
and, consequently, a reduction in Obj.

TCSN and TCSC remain relatively stable across different sailing time ratios. TCSN
is consistently three across all tested cases, indicating that the optimal number of stations
is determined by cleaning demand and station capacity rather than sailing time. Minor
fluctuations in TCSC arise due to construction timing decisions influenced by the cost
parameters in Equation (10), rather than any direct dependence on the sailing time ratio.
Similarly, AUR remains relatively stable, fluctuating around a central value, indicating that
station utilization is not significantly affected by changes in sailing time.

ADD generally increases as the sailing time ratio increases, though with some fluctua-
tions. This pattern is attributed to the exponential relationship between fuel consumption
and speed, as defined in Equation (12). With high exponents (3.5, 4.0, and 4.5 for the different
ship classes in this study), even small increases in speed lead to disproportionately large
increases in fuel consumption and detour costs. At lower sailing time ratios (i.e., higher
speeds), the model prioritizes shorter detours to limit excessive fuel consumption caused by
speed adjustments. However, as the sailing time ratio increases, the cost of additional detours
diminishes as lower speeds result in a smaller increase in fuel consumption. Consequently,
the model allows for longer detours when they help offset construction and operational
expenses. As a result, ADD exhibits an overall increasing trend with local fluctuations,
reflecting the trade-off between construction costs, operational costs, and detour costs.

Tables 17 and 18 show results for MIP and PRMIP under varying sailing time ratios.
Both models have identical trends in Obj, TCSN, and TCSC, confirming consistent station
layouts. Minor variations in AUR, ADD, and PDS reflect differences in ship routing
across optimal solutions. PRMIP achieves the same optimal solutions as MIP with better
computational efficiency, evidenced by lower CPU time.

Based on the above analysis of how station capacity affects model outcomes, we
summarize some key insights as follows:

1. A higher sailing time ratio (lower speeds) leads to reduced total cost by mitigating the
exponential effect of speed on fuel consumption, thereby lowering detour costs.

2. The number of stations (TCSN) and total construction cost (TCSC) remain largely sta-
ble, indicating these are governed more by demand and capacity than by sailing time.

3. Station utilization (AUR) is relatively insensitive to changes in the sailing time ratio.
4. Average detour distance (ADD) tends to increase with the sailing time ratio due to

relaxed constraints on speed-driven detour cost, but with local fluctuations reflecting
the model’s trade-off decisions.

5. Results suggest that adjusting sailing speed can be a useful lever to manage system costs,
mainly through its impact on detour-related expenses rather than infrastructure needs.

To sum up, the numerical experiments, encompassing variations in annual budget,
station capacity, and sailing time ratio (as detailed in Tables 13–18), demonstrate that
the MIP and PRMIP models consistently produce equivalent optimal solutions for tank
cleaning station placement, validating Theorem 2. However, the PRMIP model achieves
this with significantly greater computational efficiency. The sensitivity analyses reveal
how changes in key input parameters, namely annual budget, station capacity, and sailing
time ratio, influence the optimal solutions and key performance indicators, such as total
cost, the number and location of stations, average utilization rates, and detour distances.
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Furthermore, the analysis highlights the importance of considering the submodular nature
of the problem (Theorem 3) and the exponential relationship between fuel consumption
and speed when making strategic decisions about tank cleaning station construction.

Table 17. Optimal results of the MIP model with different sailing time ratios (EID: 15–21).

EID r Obj (CNY
Million) TCSN TCSC (CNY

Million)
AUR
(%)

ADD
(km)

PDS
(%)

CPU Time
(s)

15–21

0.7 4659.4 3 759.4 89.6 1.44 43.1 218.2
0.8 4466.0 3 764.3 88.3 1.74 25.2 295.2
0.9 4338.3 3 759.4 89.2 1.42 11.3 215.7
1.0 4237.7 3 759.4 89.1 1.42 1.2 303.5
1.1 4163.8 3 747.5 89.9 1.91 8.9 244.5
1.2 4086.4 3 699.5 92.0 3.30 16.4 198.1
1.3 4025.0 3 699.5 92.2 3.30 22.8 161.8

Avg 1.0 4282.4 3 741.3 90.0 2.08 18.3 233.9

Table 18. Optimal results of the PRMIP model with different sailing time ratios (EID: 37–43).

EID r Obj (CNY
Million) TCSN TCSC (CNY

Million)
AUR
(%)

ADD
(km)

PDS
(%)

CPU Time
(s)

37–43

0.7 4659.4 3 759.4 89.3 1.44 43.1 78.2
0.8 4466.0 3 764.3 88.2 1.74 25.2 70.5
0.9 4338.3 3 759.4 88.7 1.46 11.4 73.7
1.0 4237.7 3 759.4 88.9 1.42 1.2 86.2
1.1 4163.8 3 747.5 90.1 1.91 8.9 70.3
1.2 4086.4 3 699.5 92.7 3.30 16.4 77.7
1.3 4025.0 3 699.5 92.2 3.30 22.8 58.5

Avg 1.0 4282.4 3 741.3 90.0 2.08 18.3 73.6

5. Conclusions
Inland waterway transportation is vital for the movement of hazardous liquid cargoes,

but it faces significant operational challenges, particularly when tank cleaning is required
between shipments to prevent contamination. This necessitates detours, which increase fuel
consumption and operational costs, ultimately reducing system efficiency. Optimizing the
placement of tank cleaning stations and assigning cleaning tasks are essential to minimize
these costs.

To address this challenge, we propose an MIP model for the TCSL-CTA problem. The
key findings and contributions of this study are summarized as follows:

1. We develop a PRMIP model for the TCSL-CTA problem, supported by a series of
theoretical results. In particular, we identify critical properties, such as the total
unimodularity of the assignment constraint matrix and the submodularity of the
objective function, which enable both stronger computational efficiency and practical
insights for flexible and incremental facility planning.

2. Through comprehensive case studies on the Yangtze River (2025–2030), we demon-
strate that our approach efficiently produces feasible construction plans, with total
costs, station utilization rates, and detour costs all quantitatively evaluated. Sensitivity
analyses further illustrate how key parameters (e.g., budget, station capacity, sailing
time ratios) influence plan effectiveness and resource allocation, delivering valuable
managerial guidance for balancing construction station, construction timing, and
detour cost.



Mathematics 2025, 13, 1598 32 of 34

Drawing from the limitations of the current study, two promising directions are
identified for future work:

(1) Developing robust optimization frameworks. Future research could develop robust
optimization models to explicitly account for real-world uncertainties such as tem-
porary port closures, equipment failures, or facility inaccessibility in tank cleaning
station location and task allocation. These disruptions may render certain planned
facilities unusable, resulting in costly recourse actions. Incorporating such risks is
therefore essential for enhancing the practical resilience of the planning model. Prior
studies have applied robust optimization techniques to similar facility location prob-
lems under disruption risk [50], which can serve as a methodological foundation for
this extension.

(2) Extending the model with real-time and adaptive decision-making. The current model
can be enhanced by incorporating real-time decision-making capabilities through
frameworks such as dynamic programming or reinforcement learning. These meth-
ods are well-suited for handling uncertainties in task arrivals, demand fluctuations,
and facility availability. In particular, promising directions include multi-agent re-
inforcement learning for dynamic scheduling [51], condition-based risk manage-
ment [52], AI-based autonomous task planning [53], and improved actor–critic algo-
rithms [54]. These methodologies offer valuable insights for extending the current
model to support dynamic programming-based solutions and online decision-making,
particularly in scenarios characterized by randomly arriving tasks and frequent
operational changes.
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