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ABSTRACT
In human‐centric smart manufacturing (HCSM), the robot's dynamic obstacle avoidance function is crucial to ensuring human
safety. Unlike the static obstacle avoidance of manipulators or mobile robots, the dynamic obstacle avoidance in mobile manip-
ulators presents challenges such as high‐dimensional planning andmotiondeadlock. In this paper, an adaptivewhole‐body control
approach for dynamic obstacle avoidance of the mobile manipulators for HCSM is proposed. Firstly, an adaptive global path
planningmethod is proposed to reduce planning dimension. Secondly, lateral coupling effect term and nonlinear velocity damping
constraints are formulated to alleviate motion deadlock. Then, a whole‐body dynamic obstacle avoidance motion controller is
presented. Through simulations and real‐world experiments, the planning time is reduced by 18.65% on average, and the path
length by 15.94%, compared to the global RRT benchmark algorithm. The dynamic obstacle avoidance experiment simulates the
obstacle combinations such as pedestriansmoving in opposite direction, traversing and forming a circle during the robot operation.
The proposed motion controller can adjust robot movement in real time according to the change of its relative distance from
obstacles, meanwhile maintaining an average safe distance of 0.45 m from dynamic obstacles. It is assumed that the proposed
approach can benefit dynamic human–robot symbiotic manufacturing tasks from more natural and efficient manipulations.

1 | Introduction

In HCSM, robots and new artificial intelligence technologies
are essential for achieving safe and effective industrial human–
robot collaboration. With the expansion of intelligent robot
technology and its applications, the configuration of robots has
undergone significant changes. Different from traditional fixed
robot workstations and logistics mobile robots, composite robot
configurations that combine platforms and manipulators have
attracted increasing researcher's attention [1–4]. Composite‐

configuration robot possess both mobility and manipulability,
offering an infinite flexible workspace and bringing new pos-
sibilities to scenarios such as intelligent manufacturing and
logistics. However, due to the redundancy of freedom in
composite configurations, the difficulty of planning and con-
trol in such configurations has gradually increased. How to
develop a safe and efficient motion planning for mobile ma-
nipulators that supports the full performance of mobile
manipulator equipment has become a concern of researchers
[5, 6].
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In current applications, adoption of a loosely coupled plan-
ning method is a common approach used to address the
aforementioned issues. This method decouples the motion
planning of the robot chassis and manipulators. It then es-
tablishes signal connections at the hardware layer [7–9]. The
key technologies involved mainly include search‐based,
sampling‐based and optimisation‐based techniques for mobile
base planning. Additionally, sampling‐based and optimisation‐
based techniques are used in manipulator motion planning.
The loosely coupled method treats the mobile base and the
manipulator as independent components. The two compo-
nents do not interfere with each other. In the project's
scheme, the mobile base moves into position, followed by the
manipulator's action. This scheme can initially meet current
engineering requirements but does not fully leverage the
flexible advantages of mobile manipulators.

In terms of control algorithms, significant differences exist be-
tween the commonly used algorithms for robot chassis and
manipulators. Search‐based motion planning algorithms that
are commonly used with mobile robots mainly operate in the
task space. The algorithm identifies collision‐free paths that
satisfy constraints on the mobile robot's motion and environ-
mental constraints. In contrast, sampling‐based algorithms are
commonly used for motion planning of manipulators, typically
applied in joint space and task space. For the joint space, the
algorithm samples to determine the state of each joint of the
manipulator, thereby determining the manipulator's pose. For
the task space, the algorithm simplifies the problem to a three‐
dimensional or six‐dimensional planning problem at the end
effector. Firstly, a three‐dimensional path is planned for the
robot's end effector. Then, the state of each joint is obtained
through inverse kinematics computation. This divergence in the
sampling space for planning between robot chassis and
manipulator poses a significant challenge in solving planning
problems for mobile manipulators.

In recent years, with the increasing demands for flexible, effi-
cient and safe robot manipulation, unified modelling and
planning of redundant systems such as mobile manipulators
have become feasible. Researchers have explored the application
of the tightly coupled approach in motion planning to enhance
the motion performance of redundant systems [10–12].

However, the whole‐body path planning or motion planning
problem of mobile manipulators under tightly coupled schemes
is a typical high‐dimensional problem. Drawing from experi-
ences in machine learning, methods such as principal compo-
nent analysis and multidimensional scaling are employed to
address the curse of dimensionality by reducing dimensionality.
In the field of robot motion planning, reducing the dimensions
of the sampling space is essential. Challenges such as acceler-
ating the sampling process, modelling optimisation problems
and expediting optimisation computations are also critical for
the implementation of tightly coupled schemes.

To addresses the challenges of high‐dimensional motion plan-
ning and dynamic obstacle avoidance in HCSM, an adaptive
whole‐body control approach for dynamic obstacle avoidance of
the mobile manipulator is proposed. Firstly, an adaptive global
path planning method is proposed to accelerate collision‐free

path planning of mobile manipulators. Then, a whole‐body
dynamic obstacle avoidance controller is presented by formu-
lating the lateral coupling effect term and nonlinear velocity
constrain. The rest of the article is organised as follows: in
Section 2, typical cases and methods for motion planning of
mobile manipulators in complex environments are reviewed. In
Section 3, an adaptive whole‐body control approach for dynamic
obstacle avoidance is proposed. The formulated lateral coupling
effect term and nonlinear velocity constrain are integrated into
the whole‐body dynamic obstacle avoidance controller. In Sec-
tion 4, experiments on path planning, static obstacle avoidance,
and dynamic obstacle avoidance are conducted and compared
using different algorithms. Finally, the conclusion and future
work are presented in Section 5.

2 | Related Work

Efficient and user‐friendly motion planning is vital for ensuring
the safe and efficient execution of mobile manipulation. The
related key technologies include adaptive global path planning
and whole‐body dynamic obstacle avoidance motion control.

2.1 | Adaptive Global Path Planning

Current path planning mainly use search‐based, sampling‐based
and optimisation‐based approaches. Search‐based path planners
are suitable for low‐degree‐of‐freedom platforms such as mobile
robots [13–15], autonomous vehicles [16], and drones [17]. They
offer the advantages of fast computation and smooth path
generation. However, they suffer from the curse of dimension-
ality when solving high‐dimensional problems. Sampling‐based
planners, which are often used for serial and parallel robotic
arm platforms [18, 19], are efficient but face challenges such as
poor environmental adaptability and lack of path smoothness.
Considering the high degree of freedom of wheeled mobile
manipulators, development of an efficient and high‐quality path
planner is a key concern in this field.

To reduce the dimensionality of the search, Gochev et al. [20]
first proposed the concept of adaptive dimensions as a means of
reducing the search dimensionality. They integrated low‐
dimensional and high‐dimensional search spaces to construct
a hybrid search graph and developed an adaptive graph search
algorithm. This algorithm, which was validated for motion
planning on the PR2 robot, significantly reduced the planning
time compared to the baseline. They further proposed an in-
cremental version of the weighted A* algorithm. Building on
the idea of adaptive dimensions, Pilania and Gupta [21] first
used the PRM algorithm to compute the base roadmap and
performed collision detection along the edges between adjacent
nodes. If a collision occurred, the robot arm posture was
adjusted in a way that was controlled by the HAMP algorithm.
Compared to the full PRM method, use of the HAMP algorithm
yielded improvements in metrics such as planning time, colli-
sion detection count, path length, and planning success rate.
Thakar, Rajendran, Kim et al. [22] focused on a smaller search
range, concentrating on heuristic search spaces for both the
base and the arm. They developed the HS‐BI‐RRT algorithm,
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thereby significantly improving the path planning time and
path length compared to those yielded by algorithms such as
BI‐RRT and WS‐Bi‐RRT. Chen H L et al. [23], following a
partition planning approach, used the A* and FTC algorithms
for base path planning. They identified key areas of doors and
windows based on visual cues and proposed a heuristic posture
adjustment method, that is, the HMP method. Compared to the
HAMP and full PRM algorithms, the HMP method produced
improvements in runtime and planning time. These cases have
established a clear adaptive approach that involves combining
heterogeneous algorithms based on search and sampling. By
partitioning the state or Cartesian space in a high‐dimensional
planning problem, planning dimensions are allocated to het-
erogeneous algorithms, aiming for higher solving efficiency and
path quality.

2.2 | Whole‐Body Dynamic Obstacle Avoidance

Robot dynamic obstacle avoidance methods include model‐
based, reactive and learning‐based methods, among others. Ex-
amples include local planners [24], artificial potential fields [25],
control barrier functions [26] and velocity obstacles [27–29]. In
the method of separation of perception and planning, the
perception system collects environmental information. The
planning system then generates obstacle avoiding paths based on
this information. This method allows flexible adaptation to
different percept and planning needs. Combining local percep-
tion information with global path planning enables obstacle
avoidance in dynamic environments. Local perception, supple-
mented by map updates, allows for timely updating of global
paths to address sudden obstacles. Reactive methods are real‐
time sensor‐based obstacle avoidance strategies. When a robot
detects an obstacle, it reacts immediately to avoid collisions.
Reactive methods often simplify the problem into convex opti-
misation problems [30] that they then solve using intelligent
optimisation algorithms and MPC series methods. W. Li, and
Xiong [31] proposed a nonlinear model predictive control
method for dynamical obstacle avoidance of end‐fixed con-
strained motion planning. Using the optimised result, the ve-
locity control rule can drive the robot to avoid moving people
while maintaining the robot’s end fixed on the working position
at the same time. Learning‐based methods utilise machine
learning, deep learning [32], reinforcement learning [33, 34] and
imitation learning [35] techniques to learn obstacle avoidance
behaviour from large amounts of data, demonstrations or digital
twin‐enabled models. Faverjon and Tournassoud [36] proposed a
local motion planning method for systems with high degrees of
freedom, introducing the concept of a velocity damper to model
the relative distance relationships of moving objects. Haviland
and Corke [37] reformulated the velocity damper into inequality
constraints, integrated it into an optimisation controller, and
achieved dynamic obstacle avoidance for robotic arms with
multiple degrees of freedom. Similarly, Haviland Sünderhauf
et al. [38] proposed a holistic approach to reactive mobile
manipulation. They realised and deployed an optimisation‐based
whole‐body controller for mobile manipulators. The verification
was done in static environments. These cases are highly
instructive for researchers exploring optimisation‐based reactive
dynamic obstacle avoidance methods [39].

For human–robot collaborative tasks [40, 41], collision‐free effi-
cient and flexible motion planning algorithms for wheeled mo-
bile manipulators are essential. However, existing research on
adaptive‐dimensional motion planning typically adjusts the
arm's pose based on a fixed sequence of chassis poses and fails to
leverage the flexibility of whole‐body planning. Most existing
optimisation‐based dynamic obstacle avoidance methods focus
on fixed‐arm applications, with limited extension to mobile
manipulator systems. Therefore, for the future deployment and
application of mobile manipulator in HCSM, an adaptive whole‐
body control approach for dynamic obstacle avoidance of the
mobile manipulator is proposed.

3 | Adaptive Whole‐Body Control Approach for
Dynamic Obstacle Avoidance

3.1 | Overview

Unlike traditional approaches that focus on either the manip-
ulator or the mobile base, the method adopts the idea of adap-
tive path planning and whole‐body optimal control.

The framework includes adaptive global path planning and
whole‐body dynamic obstacle avoidance motion control, as
shown in Figure 1. In tasks such as satellite solar wing robotic
assembly and long pole parts robotic handling, the mobile
manipulator first adaptively plans a collision‐free global path.
The motion control problem is reformulated as a quadratic
programming (QP) problem. The goal is to determine the
optimal whole‐body trajectory of the mobile manipulator,
satisfying multiple constraints.

The result of the global path planning is a collision‐free path P
in the robot's workspace from the initial pose to the terminal
pose, represented as discrete spatial trajectory points. P can
serve as target guidance for the whole‐body dynamic obstacle
avoidance controller. The whole‐body controller formulates a
multi‐objective optimisation function. It aims to minimise joint
rotations and maximise process manipulability while avoiding
obstacles. The controller addresses obstacle avoidance, kine-
matics, joints limit and other constraints. Driven by the opti-
misation function, the controller continuously solves quadratic
programming problems based on the robot's goal pose and
current pose. This process obtains continuous control quantities
for each joint of the mobile manipulators.

FIGURE 1 | Diagram of the adaptive whole‐body dynamic obstacle
avoidance.
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3.2 | Adaptive Global Path Planning Method

In the operating environments of mobile manipulators, most
idle areas pose low collision threats, while part of narrow spaces
present high collision threats. Therefore, this method adopts an
adaptive approach, planning the base in idle spaces and the
whole body in narrow spaces, as illustrated in Figure 2.

The expected workspace is divided into low‐dimensional and
high‐dimensional sampling spaces, corresponding to the base
path planning and whole‐body path planning tasks, respectively.

Based on defining the poses at the start and end points, this
method first conducts global path planning for the chassis.
Global path planners such as A*, rapidly‐exploring random tree
(RRT) and dijkstra can be employed. Planners generate
collision‐free paths B relative to the static obstacles for the
chassis on a global scale.

Path augmentation is then performed by setting the initial pose
of the arm joints, thereby obtaining the augmented robot global
collision‐free path D. When the mobile manipulators perform
long pole parts handling, the material often exceeds the enve-
lope size of the mobile manipulator itself, rendering parts of
path D invalid. In the simulation environment, by presetting the
robot pose, the validity evaluation list VC corresponding to path
D can be easily obtained. The simulation environment is the
same as the real environment.

With the help of the collision detection algorithm, the collision
relationship between the robot and environmental obstacles in
any posture can be realised. The collision detection in the
simulation environment is implemented based on the bullet
physics engine. Specifically, it employs both discrete collision
detection and continuous collision detection functionalities,
along with the axis‐aligned bounding box (AABB) and oriented
bounding box (OBB) algorithms. If there is no collision, the
event is recorded as one in the VC list, that is, the path point is
valid. Otherwise, it is recorded as 0, indicating that the path
point is invalid. By analysing VC, the effective and ineffective
segments of path D can be decoupled. Then the free area and
narrow area of the environment relative to the mobile manip-
ulator system can be analysed. The flowchart is illustrated in
Figure 3.

P = {Di ∪ Mj ∪ Dk ∣ VCi,j,k > 0} (1)

In Equation (1), P is the list of globally valid path points. Di
represents the list of valid path points in free areas. Mj repre-
sents the list of valid path points in narrow areas.

D = conc(B,ArmPose) and denotes the matrix augmentation
operation. ArmPose is the initial pose of each joint of the
manipulator. The i, j, k represents the index values of the node
lists adjacent to free and narrow areas. VC is the path point
validity check list.

In the free area, where the space is relatively wide, chassis
global path planning is sufficient to meet the goal of avoiding
static obstacles in the environment. Narrow areas and their
corresponding Di can meet the obstacle avoidance needs of the
chassis but not those of the manipulator and the end effectors.
Thus, local–regional whole‐body motion planning is required.
Local area path planning uses the nodes of adjacent free areas as
start and end poses, defining the narrow Cartesian space rep-
resentation. Subsequently, whole‐body sampling planning of the
mobile manipulator is conducted to obtain a collision‐free path
segment Mj in the narrow area. The path segment Mj ensures
whole‐body avoidance for the environment's static obstacles to
the mobile manipulator in the local narrow area. Finally, ac-
cording to the sequence index of the narrow areas in path D, the
path node list of the path segments is dynamically integrated to
obtain the global collision‐free motion path P for the mobile
manipulator.

3.3 | Whole‐Body Dynamic Obstacle Avoidance
Control Approach

The adaptive global path planning method for mobile manipu-
lators sufficiently meets the requirements for static obstacles
avoidance in the environment. However, in collaborative sce-
narios, there are often dynamic obstacles such as pedestrians
and other robots. In order to optimise the dynamic obstacle
avoidance performance, a whole‐body dynamic obstacle avoid-
ance motion controller is proposed. The task of the whole‐body
dynamic obstacle avoidance controller is carried out in two
main steps.

1. the control quantities of each joint need to be determined
under the guidance of global path points and motion
constraints.

FIGURE 2 | Diagram of the adaptive global path planning method. FIGURE 3 | Adaptive planning flowchart.
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2. the relevant dynamic obstacle motion constraints need to
be modelled to address obstacle avoidance problems in
dynamic environments.

Dynamic obstacle avoidance for mobile manipulators is chal-
lenging, requiring real‐time adaptation to moving obstacles
while maintaining whole‐body motion stability and safety. The
controller must ensure collision‐free trajectories while satisfying
motion constraints, such as joint velocity limits and maintaining
the manipulator's manipulability. To address these challenges,
we formulate the dynamic obstacle avoidance control problem
as a quadratic programming (QP) optimisation problem. The
goal is to compute joint velocities q̇(t) that ensure collision
avoidance while maintaining the desired end‐effector velocity
while also accounting for motion constraints and adapting to
real‐time changes in the relative distance between the robot and
obstacles.

As illustrated in Figure 4, QP takes the desired end‐effector
velocity ν(t) and real‐time changes in the relative distance be-
tween the robot and obstacles ṗo(t) as inputs and outputs the
optimal joint velocities q̇(t) that satisfy both obstacle avoidance
and whole‐body motion requirements.

To enhance the controller's performance, we incorporate two
key terms inspired by human behaviour: a lateral coupling effect
term and a nonlinear velocity damping term. The lateral
coupling effect term introduces randomised lateral movements
during head‐on encounters to mitigate deadlock issues, whereas
the nonlinear velocity damping term modulates the robot's
speed based on changes in relative distance, improving inter-
action safety. Both terms are incorporated as inequality con-
straints in the quadratic optimisation framework of the
controller.

The standard form of the QP controller is as Equation (2):

min
x

fo(x) =
1
2
x⊤Qx +C ⊤x,

subject to A1x = B1,

A2x ≤ B2.

(2)

The quadratic programming (QP) problem typically includes the
objective function, constraints and the solver. The optimisation
outcome, in addition to the objective function, depends heavily
on the constraints, which can be classified into equality con-
straints and inequality constraints. Equality constraints

A1x = B1 define a solution space that satisfies linear equality
conditions and directly affect the optimal solution. Inequality
constraints A2x ≤ B2 define a solution space that satisfies several
inequality conditions and restrict the range of optimal solutions.

The dynamic bbstacle modelling in Figure 1 involves 3D
obstacle modelling and relative velocity calculation. This is
implemented using the Pybullet simulation environment. In
real‐world scenarios, a motion capture system calculates relative
velocities for human–robot and multi‐robot cases. The obtained
real‐time relative velocities from dynamic obstacle modelling
are used to construct the subsequent QP controller.

3.3.1 | Lateral Coupling Effect Term

The equality constraint A1x = B1 is often addressed using the
differential kinematics of the manipulator. This connects the
robot joint velocities q̇(t) with the end‐effector motion velocities
ν(t) through the velocity Jacobian matrix. ν(t) is calculated us-
ing a pose servo algorithm and typically correlates positively
with the error in the task‐space pose, as shown in Equation (3):

J(q)q̇(t) = ν(t) = βψ(( bTe)
−1∗bTe∗) (3)

where J(q) is the robot velocity Jacobian matrix. q̇(t) is the
speed of each joint of the robot. ν(t) is the spatial velocity of the
end effector. ν(t) denotes the weight for each dimension. ψ is a
function that converts the homogeneous error into a six‐
dimensional spatial error. bTe∗ represents the homogeneous
matrix form of the robot's end‐effector pose at the current time.
bTe∗ represents the homogeneous matrix of the robot's end‐
effector target pose. (( bTe)

− 1*bTe∗ ) represents the trans-
formation matrix from the current pose to the target pose, that
is, the pose error.

The above formulas implement a straight‐line path from the end
effector's current pose to the target pose. However, if the robot,
obstacles, and target point all lie in a straight line, the spatial
error will only be in the relative direction. The desired velocity
output will “pull” the robot towards the obstacle, and this can
easily lead to conflicts with dynamic avoidance constraints,
resulting in the solver's inability to find a solution and motion
deadlock, as shown in Figure 5a.

To address this, a velocity control lateral coupling effect term is
introduced as Equation (4). vLongV and vLatV represent the lon-
gitudinal velocity and the lateral velocity, respectively.
(sin(λ) + ω) is a trigonometric periodic factor. The term will

FIGURE 4 | Flowchart of the whole body control for dynamic
obstacle avoidance.

FIGURE 5 | Lateral effect terms increase turning randomness in
(b) compared to the deadlock issue in (a).
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cause the robot to actively attempt left and right turns while
moving towards the target pose, as shown in Figure 5b.

vLatV = ((sin(λ) + ω)) · argmax( vLongV , vLatV ) (4)

The max function selects the greater value between the longi-
tudinal velocity and lateral velocity. Setting the periodic factor
expands the optional range of robot end effector velocities,
enhancing flexibility. The max function ensures that when the
longitudinal error is large, the lateral velocity is influenced
primarily by the longitudinal velocity. Similarly, when the
lateral error is large, the controller primarily responds to the
lateral error, ensuring that the robot can accurately reach the
target pose.

3.3.2 | Nonlinear Velocity Damping Constraint

The optional range of the optimised controller solution is limited
by the inequality constraints A2x ≤ B2. d is the distance between
the robot and the obstacle, v is the rate of change of d. di is the
effective distance of the damper, and ds is the stopping distance.

ṗr(t) = Jd(q)q̇(t) = v − n⊤
orṗo(t) (5)

In Equation (5), ṗr(t) represents the velocity of a point on the
robot. Jd(q) represents the velocity Jacobian matrix. q̇(t) rep-
resents the joint velocities of the robot. n⊤

or represents the unit
vector originating from the point on the obstacle that is closest
to the robot. ṗo(t) represents the velocity of a point on the
obstacle.

Three stages can be distinguished as the robot approaches dy-
namic obstacles, illustrated in Figure 6. In the first stage, when
di ≤ d, the available area for v is large, and it shrinks with
decreasing distance d, with minimal impact on the robot's mo-
tion. In the second stage, as ds ≤ d ≤ di, the damper begins to
act, further reducing the available range of speed v. In the third
stage, when d ≤ ds, the speed v can be negative, and the robot
may either stop or retreat. In the first stage, the goal is for the
robot's motion to be minimally affected. In the second stage, the
goal is for the robot's motion to adjust rapidly as the distance
decreases. In the third stage, when ds is surpassed or
approached, the goal is for the robot to clearly avoid or retreat.

A nonlinear velocity constraint rule is formulated to update the
inequality constraints of quadratic programming as Equa-
tion (6):

v ≤ di tan−1(ξ(d − ds)) (6)

Integrating the formula,

Jd(q)q̇(t) ≤ di tan−1(ξ(d − ds)) − n̂⊤
orṗo(t) (7)

In Equation (7), ξ is the state adjustment factor. Jd(q)q̇(t) rep-
resents the velocity of a point on the robot. di tan− 1(ξ(d − ds))
denotes the rate of change in the relative distance between the
robot and obstacle. n̂⊤

orṗo(t) is the velocity of dynamic obstacles
towards the corresponding point on the robot.

Robot joint motion affects the velocity of each point on the
robot. The motion velocity of each point on the robot is always
less than the constant difference between the approach velocity
and the obstacle motion velocity. This conclusion defines the
motion planning requirements for robot obstacle avoidance with
dynamic obstacles. The state adjustment factor adjusts the
damper state. Larger values mean stricter velocity restrictions in
the second and third stages, and vice versa. Equation (8) rep-
resents the correspondence between single‐point pairs. How-
ever, in actual scenarios, there are multiple point pairs and
multiple obstacle collision avoidance requirements; these are
updated and organised as follows:

a2 =

⎛

⎜
⎜
⎝

Jd0(q0) 0
... ...

Jdl(ql) 0

⎞

⎟
⎟
⎠q̇(t)

≤

⎛

⎜
⎜
⎜
⎜
⎝

di tan−1( ξ0(d − ds)) − n̂⊤
or0 ṗo0(t)

...

di tan−1( ξl(d − ds)) − n̂⊤
orl ṗol(t)

⎞

⎟
⎟
⎟
⎟
⎠
= b2 (8)

3.3.3 | Whole‐Body Dynamic Obstacle Avoidance
Controller

In the objective function, x⊤Qx is a term that minimises the
norm of the joint velocities. c⊤x is a term that maximises the
manipulability of the arm during motion and keeps the orien-
tation of the base consistent with that of the end effector. The
improved quadratic programming objective function, equality
constraints and inequality constraints are as follows:

min
x

fo(x) =
1
2
x⊤Qx +C ⊤x,

subject to A1x = B1,

A2x ≤ B2.

(9)

where

xT = ( q̇ δ ) (10)

Q = (
diag(λq) 0

0 diag(λδ)
) (11)

C
T = ( Jm + e 0 ) (12)FIGURE 6 | Damper influence area.
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A1 = (J(q)I)
B1 = {βψ(( bTe)

−1∗bTe∗)

⃒
⃒
⃒vLatV }

(13)

A2 = (
1n∗n+6
a2

);B2
T = ( 0b η

ρ0 − ρs
ρi − ρs

... η
ρn − ρs
ρi − ρs

b2 ) (14)

In Equations (9) through (14), x represents the control variables.
q̇ denotes the robot joint velocities. δ is the slack factor. λq and
λδ are the weights for minimising the velocity norm and the
slack term, respectively. Jm is the manipulability Jacobian ma-
trix. J is the Jacobian matrix. e is the angle between the orien-
tation of the mobile base and the robot arm. In addition, 0 is the
zero matrix filled with matrix. J(q) is the robot velocity Jacobian
matrix. q̇(t) is the speed of each joint of the robot. ν(t) is the
spatial velocity of the end‐effector. β denotes the weight for each
dimension. ψ is a function that converts the homogeneous error
into a six‐dimensional spatial error. bTe represents the homo-
geneous matrix form of the robot's end‐effector pose at the
current time. bTe∗ represents the homogeneous matrix of the
robot's end‐effector target pose. ( bTe)

− 1
)bTe∗ represents the

transformation matrix from the current pose to the target pose.
η is the state factor. n is the number of degrees of freedom of the
robot. ρ is the distance from the robot's joint to the limit. ρi is the
influence distance of the limit damper. ρs is the stopping dis-
tance of the limit. A1 and B1 are inequality constraint terms that
formulate lateral coupling effect; A2 and B2 are inequality
constraint terms that integrate joint velocity limit damping with
the nonlinear collision damping terms.

The robot system modelling and QP problem formulation
describe the internal robot kinematic and the external relative
distance relationships between the robot and the environment.
With support from the global measurement system, the algo-
rithm can obtain the robot's motion velocity and the relative
velocity with dynamic obstacles in real time. Upon determining
the current and target poses, the QP controller employs
quadratic programming solvers to resolve the optimisation
problem. Subject to boundary constraints, differential kine-
matics equality constraints, and dynamic obstacle avoidance
inequality constraints, the controller conducts optimisation
analysis to ascertain the optimal joint velocities that maximise
the objective function's efficacy.

4 | Experiments

This section first introduces the experimental setup, the simu-
lation environment and the robot platform. Global adaptive path
planning and dynamic obstacle avoidance experiments are then
conducted in simulated and real transportation scenarios.
Through experiments and analysis, the hypothesis that the
method helps improve the efficiency of motion planning and the
safety of obstacle avoidance is verified.

4.1 | Experimental Setup

The experimental setup is shown in Figure 7. It includes an
adaptive path planning experiment and a dynamic obstacle

avoidance experiment. These correspond to (1) the static
obstacle avoidance planning test area and (2) the dynamic
obstacle avoidance planning test area in the simulation scenario,
respectively.

START and END represent the starting pose and the end pose of
the robot. The static obstacle avoidance planning test area
consists of an L‐shaped simulation environment that includes
typical obstacles such as long corridors, gateposts and cross-
beams. The dynamic obstacle avoidance planning test area in-
cludes multiple uniform dynamic obstacles (red cubes) to
simulate pedestrians or other robots that may be encountered
during the deployment of mobile manipulators.

The mobile manipulator used in the experiment is a self‐
developed experimental platform that is mainly used to
perform material handling and human–robot collaborative
tasks, as shown in Figure 8. The robot consists of an MR2000
four‐wheel differential chassis, a Franka FR3 seven‐degrees‐of‐
freedom manipulator, a sensor system and a long pole cargo
to be transferred. The sensor system is composed of an indus-
trial computer, a RoboSense lidar, an Intel D435 camera, inertial
measurement unit, power supply and other components. The

FIGURE 7 | Setup of the simulation experiment.

FIGURE 8 | Robot platform.
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communication architecture uses the ROS‐Melodic version and
is deployed on the Ubuntu 18.04 system.

The PC main controller, functioning as the application layer,
receives sensor data from the motion capture system (Mocap),
LiDAR, and robot‐onboard state sensor. It runs applications
such as SLAM, navigation, recognition, grasping and motion
generation. The proposed DOA controller uses external sensor
measurements and robot state data to calculate and generate
joint motion commands for obstacle avoidance, which are then
sent to the chassis and arm controllers.

4.2 | Adaptive Global Path Planning

The hypothesis is that the idea of adaptive planning can help
improve planning efficiency. The experiment was conducted in
the static obstacle avoidance planning test area in a simulated
environment to verify the hypothesis.

The visualisation results are shown in Figure 9a. Chassis‐
dominated path planning is carried out. First, the obstacle
avoidance requirements of the chassis are considered, and the
global collision‐free base waypoint list of the chassis is obtained.
The first step does not consider the manipulator's obstacle
avoidance. The configuration of the manipulator in the path is
fixed. There are invalid waypoints that easily cause collisions in
narrow areas, as shown in subgraphs a‐3 and a‐4.

According to the assumption, the distribution of invalid path
points determines the range of the front and rear transition
areas. The transition starting point is then set to form a local
whole‐body planning area as shown in subgraph a‐2. Full‐body
collision‐free path planning is performed in several layout areas.
The front and rear chassis collision‐free path fragments are
connected to obtain a global collision‐free motion path, as
shown in subgraphs a‐5 and a‐6. The global path planning re-
sults are shown in subgraph 9(b). The robot's motion follows
global path points, which are sparse in idle areas and dense in
narrow areas.

To further quantify the effectiveness of the proposed method, a
comparative experiment was performed with several sampling‐
based baseline methods. This experiment included test area 01
and test area 02. The experiment unified the starting point and
conducted 90 sets of sampling‐based global whole‐body path
planning. RRTConnect, BFMT, BiEST and KPIECE1 were used.
The time and path length obtained using each method were
recorded and counted. Using the adaptive strategies corre-
sponding to the four methods, the adaptive path planning of 90
component areas was performed, and the above indicators were
recorded and counted. The comparisons are shown in Table 1.

Data displays the mean and standard deviation (s.d.) of the
planning time and path length for each strategy. These values
are used to calculate the percentage of improvement (Imp_PCT)
indicator. This indicator measures the improvement obtained
when the adaptive strategy is used. When the adaptive strategy
is used, the planning process time decreases by up to 28.26%,
and the path length decreases by up to 28%.

As shown in the Figure 10, the actual experiment recorded the
end‐effector movement distance in global chassis‐dominated
path planning, adaptive path planning and global whole‐body
path planning cases. Result shows that in the global whole‐
body planning process, the end of the manipulator makes
more random movements to achieve the obstacle avoidance
goal. The adaptive planning strategy limits the avoidance action
of the end of the manipulator to a narrow space area, which is
helpful for reducing the energy consumption and ensuring its
safety.

Benefiting from the work and ideas of previous researchers, a
partition adaptive path planning method for wheeled mobile
manipulators is proposed and verified. This method decouples
the planning dimensions, proposing that whole‐body high‐
dimensional motion planning be performed only in the required
area. Such an approach is useful for achieving efficient motion
planning for mobile manipulators.

4.3 | Whole‐Body Dynamic Obstacle Avoidance
Control

This experiment focuses on verifying the hypothesis that the
improved controller can safely control the robot's dynamic
obstacle avoidance and achieve the established optimisation
goals.

To evaluate the performance of the dynamic obstacle avoidance
method, four test scenarios are considered in both the simula-
tion environment and the real environment, as shown in
Figure 11. The test scene includes constant‐speed dynamic ob-
stacles that traverse, approach, and surround the robot's route.
The starting point and the end point of the robot's motion have
only longitudinal errors in the initial state. The environments
provides information on the relative distance, nearest neighbour
pairs and the manipulability during operation.

A screenshot of the experimental process is shown below. At the
beginning of the movement, the longitudinal position error term
is large. This affects the lateral coupling effect term of the speed

FIGURE 9 | Adaptive path planning results. (a) Comparison of
chassis‐dominated and adaptive path planning methods. (b) Overall
robot motion demonstration.
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control. It is mainly influenced by the longitudinal position
error, which changes according to the trend of the trigonometric
function. This results in a swing action where the robot first
moves to the right, then to the left, as it approaches the target
point. As shown in Figure 12a–c, the introduction of swing
motion increases the randomness of the orientation of the mo-
bile manipulator and effectively avoids the phenomenon of
deadlock with the opposite obstacle. In the process of move-
ment, the robot first ensures that it maintains a warning dis-
tance from each dynamic obstacle.

In special cases, it sacrifices some flexibility to seek avoidance.
The motion patterns caused by the controller to ensure that the
constraints are met during the process of obstacle avoidance
include parking, retreating, detouring, acceleration and decel-
eration. The motion data generated in the simulation environ-
ment are deployed in the real robot. The whole‐body control
and dynamic obstacle avoidance functions during the move-
ment are realised, as shown in Figure 12d.

The obstacle avoidance process focuses primarily on the mini-
mum relative distance between the robot and the dynamic
obstacle. The relative distance monitoring point is set on the
whole body of the entity rather than on the centroid of the parts.
In Figure 13, S19, S10, S11 and B‐G represent dynamic obstacle
labels, and Manip1, Manip2 and Manip3 represent the manip-
ulator manipulability monitoring values in the three scenarios.

In test scenario (a), after starting to move, the robot first attempts
to move to the right front, and the relative distance to the obstacle
decreases. The robot is first close to the left obstacle and reaches
thewarning distance, and theminimum relative distance is 0.3m.
As the left obstacle approaches, the robot retreats and rotates the
end joint, seeking avoidance, and retries the right‐front motion.

TABLE 1 | Static obstacle area path planning verification.

Planner
Time (s)

Imp_PCT
Base path length (m)

Imp_PCTMean s. d. Mean s. d.
1 RRTConnect 0.1375 0.3959 14.47% 35.9411 17.5103 19.64%

RRTC_HAPP 0.1176 0.1475 28.8834 6.9278

BFMT 0.3057 1.5666 14.98% 9.6318 1.8067e‐15 4.22%

BFMT_HAPP 0.2599 0.2303 9.2255 1.8067e‐15

BiEST 0.5789 0.5210 38.26% 17.3642 3.8182 13.76%

BiEST_HAPP 0.3574 0.2039 14.9752 4.9317

KPIECE1 0.0488 0.0618 13.32% 34.3151 8.8431 7.88%

KPIECE1_HAPP 0.0453 0.039 31.6123 6.2836

2 RRTConnect 0.0499 0.0379 31.46% 25.2944 4.5178 18.43%

RRTC_HAPP 0.0342 0.0243 20.6331 5.8282

BFMT 0.0231 0.0727 16.02% 28.3209 2.2853e‐14 13.66%

BFMT_HAPP 0.0194 0.0238 24.4514 1.1930e‐14

BiEST 0.0899 0.1896 5.12% 45.4177 12.7426 28.00%

BiEST_HAPP 0.0853 0.1875 32.7017 8.0989

KPIECE1 0.0650 0.0569 15.54% 96.3592 25.2615 21.95%

KPIECE1_HAPP 0.0549 0.0306 75.2115 16.7091

FIGURE 10 | Moving screenshot and comparison of the end effector
movement. (a) Robot movement screenshot. (b) Comparison of end‐
effector motion lengths for chassis‐dominated, adaptive, and whole‐
body planning methods.

FIGURE 11 | Dynamic obstacle avoidance experimental setup. Three
dynamic obstacle scenarios (traverse, approach, and surround) are set
along the robot's path.
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Then, under the control of lateral effect, the robot moves to the
left front and passes through and detours between the remaining
obstacles. Finally, the process accelerates to the end.

In test scenario (b), all the obstacles move towards the robot.
After trying to move to the right front, the robot turns to the left
front and encounters the left obstacle. The robot then stops to
dodge obstacles. After pulling away to the appropriate distance
while approaching the middle obstacle, it accelerates to the left
and runs to the end point. In test scenario (c), six obstacles on
the forward path of the robot are identified as moving around
the circular path. In this scenario, there are no obstacles
approaching in the middle direction. The robot does not retreat
after attempting to move to the right. It is directly affected by the
trigonometric function effect term and turns to the left‐front
direction. Subsequently, the robot stops and waits for the
crossing time. After recognising the turning gap of the obstacle,
the robot accelerates and enters the interior of the annular
obstacle. The minimum relative distance in this process is
0.04 m. The robot stops when encountering obstacles to avoid
them while passing through. During the avoidance process, the
robot moves back slightly due to the approaching obstacles and
then accelerates to reach the target position.

As shown in Table 2, the controller aims to satisfy obstacle
avoidance and kinematic constraints during robot movement. It
also seeks to maximise manipulator manipulability and opti-
mise operating flexibility. Safe Dist represents the desired dis-
tance between the robot and dynamic obstacles. Min Dist
indicates the actual minimum distance between the robot and
dynamic obstacles during the experimental obstacle avoidance
process. MDmean represents the average distance between the
robot and dynamic obstacles during above process. Min Manip
indicates the minimum manipulability of the robot. MMmean
indicates the average manipulability of the robot during the
experimental obstacle avoidance process. In test scenario (01),
the robot maintains high flexibility but does sacrifice some
flexibility when avoiding obstacles on the left in the early stage.
The average manipulability is approximately 0.12, and the
minimum value is 0.06. In scenario (02), the robot encounters
an obstacle in the middle of its movement. Because mainte-
nance of relative distance is primarily achieved through the
movement of the manipulator, the flexibility is maintained at a
low value for a short time. The average manipulability is 0.1,
and the minimum manipulability is 0.08. In scenario (c), they
are 0.008 and 0.05, respectively.

In the dynamic obstacle avoidance scheme described in this
article, real‐time position monitoring and feedback obtained in
the scene are crucial to the proper function of the obstacle
avoidance controller. This information is used as a known input
of the scene and external sensors. During the real deployment,
the robot's recognition and prediction functions of dynamic
obstacle movements require additional consideration. This can
be achieved through global measurement, real‐time perception,
and other methods.

FIGURE 12 | Screenshot of the dynamic obstacle avoidance
experiment. (a–c) are simulation environment screenshots. (d) are
screenshots from the real‐world experimental video.

FIGURE 13 | Relative distance and manipulability during obstacle
avoidance. S19, S10, S11 and B‐G represent dynamic obstacle labels.
Manip1, Manip2 and Manip3 represent the manipulators manipulability.

TABLE 2 | Relative distance and manoeuvrability statistics.

Safe dist Min dist MD mean Min manip MM mean
Scenario 01 0.3 0.3099 1.0039 0.05634 0.1152

Scenario 02 0.8623 1.2786 0.07826 0.1005

Scenario 03 0.0352 1.1711 0.05408 0.0836
Abbreviations: MD, Min Dist; MM, Min Manip.
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5 | Conclusion

An adaptive whole‐body control approach was proposed for
dynamic obstacle avoidance of mobile manipulators for HCSM.
Firstly, an adaptive global path planning method for mobile
manipulators was proposed to reduce the planning dimension
and accelerate motion planning. Compared with the RRT
benchmark algorithm, the planning time and path length are
shortened by 18.65% and 15.94%. Then a whole‐body dynamic
obstacle avoidance controller was presented by formulating
lateral coupling effect term and nonlinear velocity constrain.
The motion deadlock in dynamic obstacle avoidance of mobile
manipulator was alleviated. In whole‐body dynamic obstacle
avoidance control experiments, the controller could optimise
the manipulator's flexibility while ensuring that the robot is
collision‐free globally. The average relative distance between the
robot and the obstacle was 0.45 m. The average manipulability
of the arm was 0.1. It is hoped that the proposed approach can
benefit dynamic human–robot symbiotic manufacturing tasks
from more natural and efficient manipulations. The future
works can be investigated on the multi‐sensor fusion perception
and embodied intelligence algorithm deployment, to enhance
the mobile robot's capabilities.
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