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Abstract 

Computing with light is widely recognized as a promising paradigm for overcoming the energy and latency limita-
tions of electronic computing. However, the energy consumption and latency in current optical computing hardware 
predominantly arise in the electrical domain rather than the optical domain, primarily due to frequent signal conver-
sions between optical (analog) and electrical (digital) formats. Furthermore, as the operating frequency of optical 
computing surpasses the GHz range, the synchronization of parallel electrical signals and the management of opti-
cal delays become increasingly critical. These challenges exacerbate energy consumption and latency, particularly 
in recurrent optical operations. To address these limitations, we propose a novel asynchronous computing paradigm 
for on-chip optical recurrent accelerators based on wavelength encoding, effectively mitigating synchronization 
challenges. By leveraging the intrinsic causality of wavelength relay, our approach eliminates the need for rigor-
ous temporal alignment. To demonstrate the flexibility and efficacy of this asynchronous paradigm, we present two 
advanced recurrent models—an optical hidden Markov model and an optical recurrent neural network—monolithi-
cally integrated for the first time. These models incorporate hundreds of linear and nonlinear computing units densely 
packed into a compact footprint of just 10 mm2. Experimental evaluations on various benchmark tasks underscore 
the superior energy efficiency and low latency of the proposed asynchronous optical accelerators. This innovation 
enables the efficient processing of large-scale parallel signals and positions optical processors as a pivotal technology 
for applications such as autonomous driving and intelligent robotics.

Keywords  Asynchronous operation, Optical recurrent accelerator, Optical hidden Markov model, Optical recurrent 
neural network

1  Introduction
The rapid advancements in large language models and 
artificial intelligence present significant challenges to 
current electronic computing architectures, particu-
larly in terms of energy consumption and latency. Due 
to the low propagation loss of photons in optical wave-
guides and the broad bandwidth of optical devices, opti-
cal computing has emerged as a promising alternative 
to alleviate these bottlenecks in electronic computing 
[1, 2]. However, it is widely acknowledged that optical 
computing also faces its own energy consumption chal-
lenges [3]. Specifically, the analog nature of optical com-
puting necessitates the use of electrical digital-to-analog 
(DAC) and analog-to-digital (ADC) converters for data 
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loading and retrieval, which dominate the energy con-
sumption in typical optical computing systems [4]. To 
address this issue, substantial efforts have been directed 
toward designing architectures and applications that 
minimize reliance on conversions between analog and 
digital domains. One prominent solution is near-sensor 
computing, which places optical computing hardware 
closer to sensors, thus reducing the energy overhead 
associated with digital transitions [4, 5]. Additionally, the 
power consumption of DACs and ADCs is directly tied 
to their bit precision and working bit rate. For instance, 
as demonstrated in blockchain and cryptocurrency appli-
cations, low-precision sampling can reduce ADC power 
consumption and enhance robustness to errors [6].

Optical recurrent accelerators, which repeatedly utilize 
fixed optical operators, offer higher computing density 
compared to multilayer forward optical networks. Exist-
ing optical recurrent accelerators include applications 
such as optical reservoir computing [7, 8], Ising machines 
[9–11], and matrix inversion solvers [12, 13]. To reduce 
energy consumption and latency, it is desirable for opti-
cal recurrent accelerators to operate without intermedi-
ate electrical relays involving ADCs and DACs. However, 
many existing approaches, such as the Ising machine, 
often rely on electrical feedback to complete large-scale 
iterations, while optical reservoir computing is typi-
cally limited to single or cascaded fiber loops, lacking 
advanced parallel signal control [14]. The optical comput-
ing generally handles fast-varying input signals alongside 
slow-varying system parameters. A critical limitation of 
these systems is the synchronization challenge in man-
aging multiple high-speed parallel input optical signals. 
While often overlooked during the construction of pho-
tonic computing cores, this issue becomes prominent 
as working frequencies exceed tens of gigahertz—nec-
essary to achieve computing power surpassing current 
electronic computing cores [15]. Synchronization in this 
context encompasses the alignment of parallel input 
digital-to-analog (DA) signals, delay management across 
multiple optical links, and parallel ADC sampling of 
outputs. In electrical systems, synchronization relies on 
intricate control mechanisms, which add to energy con-
sumption and latency [16–18]. In optical systems, syn-
chronization requires maintaining identical delays across 
multiple optical paths in large-scale networks, greatly 
increasing the complexity of the optical network layout. 
This issue becomes particularly critical in optical recur-
rent accelerators, where even minor misalignments in 
optical signals can accumulate during iterative processes, 
potentially resulting in catastrophic disruptions to time-
sequenced outputs (see Supplementary Information S1). 
Additionally, DACs must operate at precisely tuned data 
frequencies to match optical delays, necessitating higher 

sampling rates and further complicating synchroniza-
tion efforts. The reliance on high-speed transistor-based 
circuits (TBCs) such as ADCs, DACs, drivers, and trans-
impedance amplifiers (TIAs) compounds these chal-
lenges because the power consumption of TBCs scales 
with their sampling frequency and can increase quad-
ratically in optical transmission links [19–21]. Moreover, 
high-speed radio frequency (RF) signals experience sig-
nificant losses in parasitic circuits, while their bit reso-
lution tends to degrade at higher frequencies, adversely 
affecting computing accuracy [22]. These limitations 
highlight the urgency of developing a synchronization-
free computational paradigm for advanced optical recur-
rent accelerators.

To address this challenge, we propose a unique asyn-
chronous computation paradigm for on-chip optical 
recurrent accelerators. By mapping time sequences to 
optical wavelength sequences and leveraging an efficient 
on-chip wavelength relay, our approach eliminates the 
need for synchronization among input signals, optical 
paths, and output signals. This paradigm allows high-
speed TBCs to be replaced by low-speed counterparts 
without increasing computing latency, thereby reducing 
the energy consumption and cost associated with RF sig-
nal generation, transmission, and reception. To demon-
strate the versatility of our approach, we have designed 
and fabricated two monolithically integrated optical 
recurrent accelerators: an optical hidden Markov model 
(HMM) and an optical recurrent neural network (RNN). 
These accelerators incorporate hundreds of passive and 
active optoelectronic devices within a compact foot-
print of 10 mm2. Performance evaluations on benchmark 
tasks highlight the exceptional energy efficiency and low 
latency of the asynchronous optical recurrent architec-
ture, making it a promising solution for large-scale paral-
lel signal processing in advanced applications.

2 � Results
2.1 � Principle of the asynchronous optical recurrent 

accelerator
The general representation of a recurrent system can be 
written as an iterative equation:

where �xn represents the input vector at time n, �yn is the 
resulting vector at time n, and F denotes a fixed func-
tion. The output at time n is determined by the input vec-
tors over the last k iterations, with the dimensionality of 
the vectors indicating the number of parallel channels 
involved in the iteration. The function F can either be a 
simple linear matrix multiplication or a more complex 
nonlinear operator. Traditionally, linear operations, such 

(1)�yn+1 = F
(

�xn, �xn−1 · · · , �xn−k+1

)

,
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as matrix–vector multiplication, are performed in the 
optical domain, while nonlinear operations are completed 
electrically [23]. Optical computing cores (OCCs) encom-
pass diverse architectures, including those based on 
interference (e.g., Mach–Zehnder interferometer (MZI) 
meshes), diffraction (e.g., on-chip diffractive networks), 
and nonlinearity [24, 25]. These architectures typically 
serve as coprocessors for electronic hardware, where syn-
chronization is managed. However, frequent interactions 

between optical and electronic domains reduce the poten-
tial benefits of optical hardware, such as latency and 
energy efficiency. To fully leverage the advantages of opti-
cal computing, all operations in the iterative equation can 
be meticulously mapped to photonic hardware. Figure 1a 
illustrates a typical high-speed synchronous architecture 
where DACs generate input signals that are amplified by 
drivers, converted to optical signals via modulators, and 
detected as photocurrents and converted to voltages by 

Fig. 1  Principle of the proposed asynchronous optical recurrent accelerator. a System diagrams of the optical synchronous processor. The 
computing process is unfolded cycle by cycle in the time domain, with the OCC operating in a time-multiplexed mode. ADCs and DACs operate 
at high speed, varying according to the period Δt. OCC, optical computing core. b System diagrams of the optical asynchronous processor. The 
computing process is unfolded cycle by cycle in the wavelength domain, with the OCC operating in a wavelength-multiplexed mode. ADCs 
and DACs operate in a quasi-static mode, generating or sampling a single electrical level asynchronously at t1…s and τ1…s. WRU, wavelength 
relay unit. c Information relay based on optical-electrical-optical conversion. The asynchronous input wavelength λn−1 is differentially detected 
by photodetectors, which subsequently drive the MRM with the supply light of λn. The output signal stabilizes only after all signals from preceding 
cycles have arrived. d Electric current flow in the WRU. e Transfer function of the WRU, showing selectable linear and nonlinear working regions 
to accommodate specific requirements
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trans-impedance amplifiers (TIAs). These signals are then 
sampled by high-speed ADCs. For synchronous opera-
tion, p parallel channels are required to maintain an iden-
tical delay Δt, which matches the data frequency of the 
DACs. However, due to the inherent challenges of signal 
synchronization, advances in parallel synchronous optical 
recurrent accelerators remain limited.

Our proposed asynchronous optical recurrent accel-
erator is illustrated in Fig.  1b. In this architecture, s 
cycles are mapped onto s distinct wavelength channels, 
and information transferred sequentially across cycles 
through a wavelength relay mechanism. To clarify the 
differences between synchronous and asynchronous 
computing architectures, we analyze the computing 
process cycle by cycle—using the time domain for syn-
chronous processors and the wavelength domain for 
asynchronous processors. In the synchronous archi-
tecture, time-multiplexed OCCs are used, requiring 
high-speed DACs and ADCs that operate synchro-
nously with the data frequency. In contrast, the OCC 
in the asynchronous architecture is broadband and 
wavelength-multiplexed. Each DAC and ADC operates 
in a quasi-static mode, generating or sampling a sin-
gle electrical level rather than continuously handling 
high-frequency signals. This asynchronous operation 
relies on the inherent information causality within the 
wavelength sequence, enabling asynchronous loading 
of signals and asynchronous detection of results across 
different wavelength channels. Consequently, the strict 
temporal alignment required in synchronous systems 
is eliminated, allowing each optical path to have a vari-
able length. The detection time only needs to satisfy the 
condition:

where τi is the detection time for the i-th cycle, tq is the 
DA signal arrival time for the q-th cycle, and �tjk repre-
sents the delay across specific optical paths (see detailed 
timing relationship for loose time control in Discussion 
part).

Figure 1c illustrates the wavelength relay unit (WRU), 
which leverages efficient on-chip optical-electrical-
optical conversion. For broad applicability, we employ 
a differentially driven add-drop micro-ring modulator 
(MRM) as the core component. The driving mode and 
modulator type can be adjusted to suit specific applica-
tions, offering flexibility in design and implementation 
[26]. In the WRU, an optical signal at one wavelength is 
converted into photocurrent by a photodetector, which 
then drives a subsequent MRM using supply light at 
a different wavelength. The operation of the WRU is 
described by the equation:

(2)τi ≥ max
q=1...i

(

tq +
∑i

k=q
max

j
�tjk

)

where P+ and P− denote the optical power of the input 
light (λn−1) at the positive and negative ports of the differ-
ential photodetectors, respectively, Ps is the supply light 
power (λn), and Po represents the output power of the 
MRM. The response function f encapsulates the WRU’s 
operational characteristics. The WRU remains in standby 
mode until light at λn−1 arrives, triggering its operation. It 
then stabilizes after completing the current cycle, elimi-
nating strict temporal requirements and thereby ensuring 
synchronization-free operation. Fig. 1d depicts the elec-
tric current flow in the WRU. When the injected current 
In=I1 − I2 + Ib> 0, the MRM operates in a forward-biased 
state, resulting in a significant blue shift in its transmis-
sion spectrum as In increases. Conversely, when In< 0, the 
MRM is reversely biased, causing only a minor red shift 
due to the lower carrier-depletion modulation efficiency 
[26]. As shown in Fig. 1e, the output light intensity from 
the through-port of the MRM follows a linearized sig-
moid function relative to the driving current. This behav-
ior allows the WRU to perform both linear and nonlinear 
operations, depending on the MRM’s working region. 
The basic computational tasks, including multiplication, 
addition, subtraction, and nonlinear transformations, can 
be executed using the WRU. In synchronous processors, 
the bandwidth of nonlinear operations must significantly 
exceed the frequency of data signals to prevent distortion 
(see Supplementary information S1). As a result, latency 
in optical links is often redundant under such bandwidth 
constraints. In contrast, in the asynchronous processor, 
bandwidth influences only the latency without introduc-
ing signal errors, as no serial time signals are processed 
by the nonlinear unit; the focus is solely on the final 
steady state after all signals from previous cycles have 
arrived. To validate the versatility and unique advantages 
of this architecture, we present two implementations of 
on-chip optical recurrent accelerators, utilizing the lin-
ear and nonlinear regions of the WRU, respectively, as 
detailed in the subsequent sections.

2.2 � Optical hidden Markov model
HMMs are versatile statistical tools widely utilized 
across diverse domains, including speech recognition, 
bioinformatics, finance, and natural language process-
ing [27–29]. Figure  2a illustrates the graphical struc-
ture of this model, which is composed of the hidden 
state set S = {S1, S2,  …,  Sm} and the observation state 
set O = {O1, O2,  …,  On}, where m and n represent the 
number of possible states. The hidden states follow 
a Markov chain, beginning with an initial state s1 ∈ S 
selected based on a probability vector π and transi-
tioning through subsequent states according to a state 

(3)Po = f (P+ − P−)Ps,
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transition matrix A. After t iterations, a sequence s1, 
s2, …, st is formed. While this sequence remains hidden, 
an observation state ot ∈ O is emitted at each time step 
t based on the observation probability matrix B. This 
forms the HMM, formally denoted as (details provided 
in Supplementary Information S2):

Given an HMM, two fundamental problems arise: 
(1) evaluating the probability of a specific observation 
sequence (evaluation problem) and (2) identifying the 
most probable hidden state sequence corresponding to a 
given HMM and observation sequence (decoding prob-
lem). The core algorithm addressing these problems, 
as illustrated in Fig.  2b, comprises two primary pro-
cesses: selection and circulation. It employs the forward 
variable αt(i) = P(o1o2, …, ot, st = Si| μ), representing the 
joint probability of a hidden state Si and an observation 

(4)µ = [π ,A,B]

sequence o1o2,  …,  ot at time t. Using αt(i), the iterative 
equation for the forward algorithm (derived in Supple-
mentary Information S3) is expressed as:

Here, AT is the transpose of the transition matrix A, 
bi(ot) denotes the observation probability for state Si, and 
⊙ represents the Hadamard product. This computation 
involves repeated matrix multiplications, with outputs 
determined by the observation sequence.

Leveraging the asynchronous recurrent architecture, 
we present the first implementation of HMM on optical 
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Fig. 2  Principle of the asynchronous OHMM accelerator. a Graph structure of the HMM. The right section depicts the possible set of hidden states 
S = {S1, S2, …, Sm}, while the left section represents the known sequence of observed states o1, …, oT. Matrix A denotes the transition probability 
matrix between hidden states, and matrix B corresponds to the observation probability matrix, linking hidden states to observed states. b Basic 
computational flowchart of the HMM, highlighting iterative matrix multiplications involving matrices A and B across multiple cycles. c Conceptual 
diagram of the monolithically integrated OHMM chip. Different wavelengths are used to represent hidden states and are selected via wavelength 
selective switches (WSS) in the decoding problem. The upper section represents the selection area, while the lower section denotes the circulation 
area. Probability matrix is realized with the MZI-assisted crossbar array. The processes of multiplication and wavelength relay are implemented 
through PD-driven MRMs. CAL marks the port for the calibration of computing accuracy. The output intensity from the last cycle represents 
the probability of the observation sequence. d Photograph of the packaged OHMM chip. e Layout of the OHMM chip
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hardware (OHMM), as shown in Fig.  2c. Wavelength 
selection switches (WSSs) are used to filter wavelengths 
corresponding to different hidden states for the decod-
ing problem. In the evaluation problem, all wavelengths 
enter the chip. During the first cycle, distinct wavelengths 
(λ11, λ21,  …,  λm1) represent different hidden states, with 
their intensities indicating the initial probabilities (π) of 
the corresponding states. Probability matrices are real-
ized using an MZI-assisted crossbar array. In the selec-
tion area, the wavelength routing capabilities of the 
micro-ring resonator (MRR) facilitate the choice of wave-
lengths corresponding to specific observation states. For 
example, during t = 1, the wavelengths λ11, λ21,  …,  λm1 
undergo multiplication with the optical matrix BT. 
Depending on the observation state (e.g., O1) at that 
time, a specific large MRR (outlined with dotted lines in 
Fig. 2c) is tuned to match its resonance peak with these 
wavelengths, producing [α1(1),  …,  α1(m)] at the drop 
port. The large MRRs are characterized by a smaller free 
spectral range (FSR) and employed to simultaneously 
route wavelengths associated with all hidden states. Sub-
sequently, in the circulation area, these wavelength sig-
nals are dropped by the corresponding small MRRs and 
undergo further multiplication with the optical matrix 
AT. The small MRRs feature a larger FSR and are utilized 
to route wavelengths corresponding to individual hid-
den states. The resulting product, AT[α1(1),  …,  α1(m)]T, 
is directed to photodetectors (PDs) through the same 
large MRRs. The photodetectors convert the optical sig-
nals into electrical currents, which drive the MRMs. In 
the second cycle, the MRMs receive input light intensi-
ties represented as [b1(o2),  …,  bm(o2)]T where the input 
intensities of λ12, λ22, …, λm2 to matrix BT are the same. 
When operating within their linear region, the MRMs 
perform the required multiplication operation. This pro-
cess completes one cycle of Eq.  (5). Subsequently, dif-
ferent wavelengths (λi1, λi2,  …,  λiT i = 1,  …,  m) are used 
to represent various cycles. Wavelength relays between 
adjacent cycles enable the recurrent operations required 
for the algorithm’s progression. The output intensity from 
the last cycle represents the probability P(O|µ) of a spe-
cific observation sequence O in the evaluation problem. 
The decoding problem adopts the same optical hardware 
as evaluation problem except for different algorithm (see 
Supplementary Information S3).

Figure  2d presents the packaged photograph of the 
OHMM chip, fabricated on a standard silicon-on-insu-
lator (SOI) wafer. As a proof of principle, the chip is 
designed to perform calculations over four cycles, incor-
porating eight wavelengths in total. A detailed photo-
micrograph of the chip is shown in Fig.  2e, highlighting 
its structural components. The chip includes two MZI 
arrays, which are configured to implement the matrices 

AT (2 × 2) and BT (4 × 2) respectively (additional details are 
provided in Supplementary Information S4). Prior to the 
experiments, the MRRs were calibrated (characterization 
of MRRs are provided in Supplementary Information S5), 
with particular focus on determining the linear operating 
range of the MRMs. Figure 3a illustrates the linear operat-
ing range of the WRU in the chip, showing an extinction 
ratio of approximately 9 dB, which satisfies the compu-
tational requirements. Subsequently, the phase shifters 
of the MZIs in optical matrices A and B were scanned 
and adjusted to match the desired matrices. To evaluate 
the computational accuracy, 500 sets of random vector 
inputs [α1(1) α1(2)]T were used to compute ∑(AT[α1(1) 
α1(2)]T)⊙[b1(o2) b2(o2)]T for four different observation 
states (o2 ∈{O1, O2, O3, O4}). Small MRRs correspond-
ing to t = 2 were initially adjusted to the "through" state, 
allowing the first cycle’s results to be directly output and 
summed via the CAL port indicated in Fig. 2c, excluding 
these results from subsequent recursions. By selecting dif-
ferent large MRRs for observation states O1, O2, O3, and 
O4, the four elements of the output vector were obtained. 
The histogram of the correlation coefficient (defined as 
corr(α,β) = α·β

|α·β| ) between the theoretical and the experi-
mental output results is presented in Fig.  3b. It demon-
strates a high average computational accuracy of 0.9993, 
with the inset showcasing an example result with a corre-
lation coefficient of 0.9998. Following this, the relay-com-
putation latency of the WRU was measured, as shown in 
Fig. 3c. The WRU reveals a pulse broadening to approxi-
mately 1.76 ns compared with the reference pulse, corre-
sponding to a bandwidth of about 90 MHz (test setup is 
provided in Supplementary Information S5).

With preparations complete, DNA sequence analysis 
experiments were conducted to assess the chip’s process-
ing capability. Since gene maps can be modeled as 
HMMs, the two core HMM problems previously 
described can be analogized to scoring sequences against 
gene maps and determining the optimal sequence-to-
gene map alignment. For this analysis, the yeast mito-
chondrial gene sequences HS416 and HS3324 were 
selected [30, 31]. These high-inhibition p-genomes con-
tain a highly similar region, believed to represent the pri-
mary origin of wild-type mitochondrial DNA replication. 
Given the lack of coding regions in these sequences, a 
two-state binary model was applied to compute smoothed 
estimates of AT-rich and GC-rich states. As shown in 
Fig.  3d, the parameters used in the OHMM model are 

π =

[

0.9

0.1

]

,A =

[

0.99 0.01

0.1 0.9

]

,B =

[

0.4 0.4 0.1 0.1

0.05 0.05 0.4 0.5

]

[32 , 33]. As the chip was designed to perform four recur-
sions, the fourth output was feedback-modulated into the 
input light to facilitate long-sequence processing. The 
profile plots of the high-inhibition sequences, shown in 
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Fig. 3e, f, highlight the structural similarity across a region 
of 600 base pairs (bp). When αt(2) > 0.5, it indicates that 
the current base pairs are GC-rich; otherwise, they are 
AT-rich. The experimental results closely align with theo-
retical outputs (Fig.  3g, h), achieving sequence analysis 
accuracies of 99.43% and 98.53%, respectively (represent-
ing the proportion of matching base pairs between exper-
imental and theoretical data). The influence of 
nonlinearity on the performance of OHMM is studied in 
Supplementary Information S6. Additional experimental 
results, including details on the Chinese word segmenta-
tion application, are provided in Supplementary Informa-
tion S7.

2.3 � Optical recurrent neural network
RNNs are a class of artificial neural networks designed 
to process sequential data. Unlike traditional feedfor-
ward neural networks, RNNs incorporate feedback con-
nections, forming directed cycles that enable dynamic 
temporal behavior. RNNs have found applications across 
a wide range of domains, including natural language 

processing, speech recognition, and time series predic-
tion [34]. Figure 4a illustrates the working flow of a stand-
ard RNN, which comprises an input layer, a hidden layer, 
and an output layer. The relationship between the input 
and hidden layers is described by the following equation:

where �u(t) represents the time-varying input vector, �x(t) 
denotes the time-varying hidden vector, Win is the weight 
matrix for the input vector, W is the feedback weight 
matrix for the hidden vector, fnl is the nonlinear activa-
tion function, and τ is the recurrence period. The rela-
tionship between the hidden and output layers is given 
by:

where �y(t) is the time-varying output vector and Wout 
is the weight matrix for the output. For simplicity, some 
less critical components in a standard RNN such as the 
bias vector and the nonlinear activation function for 

(6)�x(t) = fnl
(

Win�u(t)+W �x(t − τ )
)

,

(7)�y(t) = Wout�x(t),
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the output layer are omitted. When the dimension of 
both the input and output layer are reduced to one, the 
RNN architecture simplifies to a form resembling res-
ervoir computing. Optical reservoir computing has 
demonstrated significant advancements due to its sim-
plicity, single input/output sequence, and lack of com-
plex synchronization requirements [14, 35]. However, 
this approach is limited in its ability to handle high-
dimensional time series, a challenge that optical RNNs 
(ORNNs) are better suited to address, making them a 
subject of deeper investigation [36].

We propose an asynchronous ORNN accelerator, as 
depicted in Fig.  4b. Here, n sets of wavelengths repre-
sent the length of the input time sequences, while the 
m parallel series correspond to m different wavelengths 
within the same color. Input information is asynchro-
nously loaded using MRRs and injected into the on-
chip incoherent MZI mesh (Win). Large MRRs drop the 

wavelengths corresponding to the current time step and 
forward them to photodetectors, which drive the MRM 
to implement nonlinear activation. Simultaneously, the 
hidden vector x(t) is fed into the on-chip incoherent MZI 
mesh (W) in reverse and the wavelengths from the pre-
vious cycle will be dropped to the photodetector repre-
senting the current cycle. For example, during the second 
cycle, input signals encoded as green wavelengths are 
dropped by the green large MRRs, while the hidden sig-
nals from the first cycle, encoded as orange wavelengths, 
are dropped by the orange large MRRs. The drop ports 
of the respective MRRs are connected to a photodetec-
tor, which sums the optical signal intensities and drives 
the next hidden signal step (green wavelengths). This 
process completes the calculation of Eq. (6). At the drop 
port of the MRMs, the operation 1-x(t) is performed 
and directed into a third on-chip incoherent MZI mesh 
(Wout). The output results y(t) for different time steps are 
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asynchronously detected after being dropped by corre-
sponding large MRRs. The on-chip incoherent MZI mesh 
is designed as a simplified real-valued optical matrix, as 
proposed in our previous work [37] (Fig. 4c; details pro-
vided Supplementary Information S8) and the MRMs are 
driven by differential photocurrents.

The first monolithically integrated ORNN chip was 
fabricated using the same process as the OHMM chip. 
As illustrated in Fig.  4d, the dimensions of the input, 
hidden, and output layers are all two. The chip supports 
a sequence length of four and is multiplexed by feeding 
the intermediate results of the fourth cycle back to the 
first cycle to handle tasks involving longer sequences. 
To evaluate the chip’s performance, a classification task 
of Japanese vowels was conducted [38]. The original 

dataset was generated through 12-degree linear predic-
tion analysis, producing a discrete-time series with 12 
linear prediction coding (LPC) cepstrum coefficients. 
To align the dataset dimensions with the chip architec-
ture and meet the positive input requirement, we applied 
a pre-trained linear dimensionality reduction step fol-
lowed by a ReLU function. The resulting two-dimen-
sional sequences were used as input for the chip. The 
classification results were derived from the final cycle 
of the output sequence (Fig.  5a). The packaged ORNN 
chip is shown in Fig.  5b. First, the on-chip nonlinear 
activation function was characterized using differential 
input optical power, as shown in Fig. 5c, and the results 
aligned with our theoretical expectations. Following 
the calibration of the MRRs to their respective working 
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wavelengths, the chip was operational. The softmax func-
tion was applied to calculate the probability distribution 
for each class, and entropy loss was selected as the loss 
function, which was minimized in-situ using a stochastic 
parallel gradient descent algorithm (see “Methods” sec-
tion). The two-classification achieved accuracies of 97% 
and 95% for the training and test datasets, respectively, 
with the corresponding confusion matrix depicted in 
Fig. 5d. The progression of the loss function and accuracy 
during training is presented in Fig.  5e. To further dem-
onstrate the processing capability of the ORNN chip, we 
extended its application to an eight-class classification 
task. Addressing multi-class problems requires an appro-
priate classifier. In this work, the one-versus-rest method 
was employed [39]. This approach utilized eight parallel 
ORNNs to classify speech sequences into eight catego-
ries, as illustrated in Fig. 5f. During training, each cate-
gory was treated as a separate class, with the remaining 
categories grouped as another. When presented with an 
unknown speech sequence, the entire architecture out-
puts eight classification probabilities, with the predicted 
label corresponding to the class with the highest prob-
ability. After in-situ training, the confusion matrix for the 
eight-class classification is shown in Fig. 5g, demonstrat-
ing a test accuracy of 87.7% (details on the training pro-
cess are provided in Supplementary Information S9).

3 � Discussion
3.1 � Comparison with other asynchronous computing
In this section, we compare our scheme with tra-
ditional asynchronous computing by conducting a 
detailed analysis of the timing relationships within 
the proposed architecture (Fig.  6). Asynchronous 
computing is a widely adopted concept in electronic 
circuits and programs, where tasks or operations 

are executed independently, without requiring the 
completion of other tasks before starting [40]. Fig.  6 
depicts the input DA signals and corresponding out-
puts from each cycle. For instance, DAC1 generates 
an input signal, and its output for each cycle is a tem-
porally misaligned superposition of multiple signals 
(Output1) due to distinct latency in each computa-
tional link. Consequently, the output of each cycle 
encompasses computing results from all possible 
links associated with different DACs. In this context, 
accurate computation requires signals from all links 
to temporally overlap. The margin time for asyn-
chronous computing accounts for the ADC sampling 
time, time misalignment among different DA signals, 
and latency misalignment across various signal paths. 
Among these, the ADC sampling time and time mis-
alignment among DA signals constitute a constant 
value, denoted as τ0. Consequently, the duration of the 
q-th DA signal, Δτq, can be expressed as:

This condition ensures that each link, from input to 
output, operates as an independent task, necessitating 
only loose time control to complete all tasks within the 
ADC sampling span. Overall, the core principle of our 
proposed scheme shares similarities with traditional 
asynchronous computing. However, our asynchronous 
approach is relatively constrained, as signals must be 
sampled within a specific time span. As we will discuss 
in the following analysis, this loose time control mecha-
nism offers a significant enhancement in computational 
efficiency compared to completely time-independent 
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operations (Δτq is equal to or longer than the total 
latency, Fig. 1b).

3.2 � Management and expansion of wavelength resources
The scalability of our scheme is primarily determined by 
the number of available wavelengths. Significant advance-
ments in on-chip multi-wavelength optical sources have 
enabled the generation of up to 200 wavelengths in the 
telecom band [41]. Another critical component in our 
setup is the wavelength demultiplexer. Due to the lim-
ited free spectral range (FSR) of MRRs, they can typically 
support a maximum of 30 wavelengths [42]. To address 
this limitation, a potential solution involves leveraging 
cascaded optical interleavers and MRRs to manage mas-
sive wavelength Kerr combs [43]. Additionally, nano-
beam cavities, which are not constrained by FSR, offer a 
promising alternative for demultiplexing large numbers 
of wavelengths [44]. Current state-of-the-art wavelength 
division multiplexers can accommodate up to 512 wave-
lengths with 10 GHz spacing [45], a capability approach-
ing the upper limit of existing comb sources. While the 
proposed asynchronous architecture can manage the 
sequence lengths required for most recurrent tasks, it is 
also capable of time-multiplexing to accommodate appli-
cations that demand ultra-long sequence processing. This 
is achieved by feeding the intermediate results of the 
final cycle in the first s sequences back to the initial cycle 
of the second s sequences. While this reuse of the chip 
introduces additional power consumption and latency in 
the electrical domain, the averaged overhead per cycle 
becomes negligible when s is sufficiently large.

3.3 � Overhead analysis of wavelength‑relay unit
In our demonstration, the power-efficient WRU is 
employed to achieve wavelength relays. Notably, the 
WRU also performs a critical role as a nonlinear function 
in many recurrent applications [46], without which syn-
chronous optical processors would be restricted to sim-
ple linear recursion. The power consumption of the WRU 
is determined by the signal light power and the electrical 
power consumed by the photodetector, as expressed by:

where Idrive is the driving current of the modulator, ηPD 
is the responsivity of the photodetector, and Vbias is the 
bias voltage of the photodetector. In our experiment, 
these parameters are Idrive=0.09 mA, ηPD=0.9 A/W, and 
Vbias=3 V, resulting in a power consumption of 0.37 mW. 
These values can be optimized to further reduce power 
consumption. For instance, the power consumption of 

(9)Ptotal = Popt + Pelect =
Idrive

ηPD
+ VbiasIdrive,

the state-of-the-art WRU can be minimized to 0.15 mW 
[47]. To further minimize the energy consumption of the 
WRU, its operational duration must be carefully opti-
mized. As illustrated in Fig. 6, the WRU’s working dura-
tion closely correlates with the duration of the DA signal. 
Consequently, Δτq can be selected as the minimum value 
that satisfies the condition in Eq. (8). The latency of the 
WRU is mainly influenced by the RC response time, 
which is relatively large due to the use of standard library 
devices without specific design optimizations. Neverthe-
less, with targeted engineering, the WRU’s bandwidth 
can exceed 1 GHz, reducing the corresponding latency to 
below 100 ps [47].

3.4 � Key performance of different optical recurrent 
computing architectures

We comprehensively analyze the latency and energy 
efficiency of both synchronous and asynchronous 
architectures in Supplementary Information S10. Con-
sidering the latencies of the optical link and WRU, 
the total latencies for one cycle of the OHMM and 
ORNN are 1.83 ns and 1.82 ns, respectively. These 
values are six orders of magnitude lower than those of 
the previously reported spatial ORNN systems [36]. 
Using parameters from the literature [20], the energy 
efficiency of the ORNN chip is calculated to be 0.48 
TOPs/J. This value can be further improved by scaling 
up the computational workload. For instance, assum-
ing a computing scale of 64, the estimated energy effi-
ciency increases to 11.62 TOPs/J, which is an order of 
magnitude higher than that of the spatial ORNN [36].

Table 1 provides a comparison of key features—latency 
and energy consumption—among three architectures. 
For the electronic feedback scheme, the latency and 
energy efficiency are estimated using parameters from a 
typical FPGA [48], with a transmission latency of 0.5 μs 
and an energy efficiency of 28.2 pJ/OP. The asynchronous 
architecture achieves nearly four times the energy effi-
ciency of the synchronous architecture. This advantage 
arises because the sampling rate (F) of the synchronous 
architecture is four times the data rate (B) when operat-
ing with a sequence length of four (see Supplementary 
Information S10). It can be further enhanced by involv-
ing more cycles on the same chip. As shown in Fig.  7a, 
although the asynchronous architecture demonstrates 
superior energy efficiency compared to the synchronous 
and electrical feedback architectures, its energy efficiency 
decreases with the sequence length due to the quad-
ratic growth in the energy consumption of WRUs. This 
drawback can be mitigated by reducing Δτq or lowering 
the power consumption of individual WRUs. The advan-
tage of the asynchronous architecture over the electrical 
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feedback scheme can be further amplified by incorporat-
ing more complex recurrent operations, such as increas-
ing the number of recurrent vectors in the RNN model. 
To maximize energy efficiency, the optimal number of 
on-chip cycles can be determined, and a chip-reuse strat-
egy can be employed to efficiently process long sequence 
signals (Fig.  7b). In the future, the scalability of our 
method for large-scale optical computing requires fur-
ther advancements in integration density, manufactur-
ing technologies, and the energy efficiency of core optical 
components, such as the MZI mesh, wavelength multi-
plexers, and WRUs. Beyond intuitive metrics like latency 
and energy consumption, the proposed asynchronous 
architecture eliminates the need for delicate delay control 
and mitigates signal distortion inherent in synchronous 
architectures. These factors, including energy consump-
tion and latency induced by precise delay controls, as 
well as signal degradation impairing computing accuracy, 
are significant challenges in synchronous designs.

4 � Conclusions
In conclusion, we present a novel asynchronous archi-
tecture for an on-chip optical recurrent accelerator, lev-
eraging time-wavelength mapping and wavelength relay. 
This architecture effectively overcomes the critical syn-
chronization challenges that hinder the implementation 
of parallel synchronous optical recurrent accelerators. 
Through detailed analysis, we highlight the proposed 
scheme’s advantages in achieving low latency and energy 
consumption. Additionally, we demonstrate two mono-
lithically integrated prototypes: the OHMM and ORNN. 
Their exceptional performance on various benchmark 
tasks underscores the versatility and potential of the 
asynchronous recurrent accelerator. This proposed archi-
tecture paves a practical pathway for large-scale parallel 
sequential signal processing using photonic hardware, 
with promising applications in domains such as autono-
mous driving and intelligent robotics.

Table 1  Comparison of different optical recurrent architectures on the main performance (s is the number of computing cycles)

Architecture Latency Energy efficiency Delicate delay control Signal 
distortion

Synchronous architecture (2 × 2, s = 4) 7.28 ns 0.12 TOPs/J (F/B = 4) Yes Yes

Synchronous architecture (64 × 64, s = 12) 21.84 ns 0.99 TOPs/J (F/B = 12) Yes Yes

Electrical feedback [48] (2 × 2, s = 4) 2 μs 0.08 TOPs/J No No

Electrical feedback [48] (64 × 64, s = 12) 6 μs 1.96 TOPs/J No No

Spatial ORNN [36] (490,000 × 490,000, s = 1) 8 ms 1.58 TOPs/J No No

Our work (2 × 2, s = 4) 7.28 ns 0.48 TOPs/J No No

Our work (64 × 64, s = 12) 21.84 ns 11.62 TOPs/J No No
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5 � Methods
5.1 � Stochastic parallel gradient descent algorithm
In the in-situ training of the ORNN, we employ the sto-
chastic parallel gradient descent algorithm to estimate 
the gradient of the loss function [49]. In each iteration, a 
random perturbation vector δ is generated and applied to 
the current voltages as U + δ and U − δ. The correspond-
ing loss function values, L(U + δ) and L(U − δ), are then 
computed. The estimated gradient of the loss function is 
given by:

Subsequently, the voltages are updated using the Adam 
algorithm, a fast-converging gradient descent optimiza-
tion method [50]

where iter is the current iteration, α is the learning rate 
(set to 0.1 during training), and β1, β2, ε are hyperparam-
eters with values 0.9, 0.999, and 10–8, respectively. The 
initial values of viter and siter are set to zero.

5.2 � Experimental methods
The chip was fabricated using a 200 mm CMOS pro-
cess line with a two-layer copper interconnect. The fab-
rication line width was as narrow as 130 nm, achieved 
through a deep ultraviolet lithography process. The on-
chip photodetector utilizes a lateral PIN structure with 
an epitaxial germanium layer of 260 nm thickness. The 
chip’s optical I/O consists of a vertical grating coupler 
array packaged with a horizontally coupled fiber array, 
while the electrical I/O is connected to the PCB via wire 
bonding. Calibration of the MRRs and MRMs on the chip 
was performed by sweeping their thermal phase shifters. 
For latency measurements, the input laser source was 
modulated using a lithium niobate intensity modulator 
with a 10 GHz bandwidth. A bit pattern generator pro-
duced the pulse signal, with a pulse width of 100 ps and a 
period of 4 ns. The output optical signal was detected by 
a photodetector with an 18 GHz bandwidth and captured 
by a Tektronix DSA72004B oscilloscope. The thermal 
phase shifters and the WRU bias voltage were powered 
by a digital-to-analog converter (LTC2688), which was 
controlled by a field-programmable gate array (FPGA) 
chip (7K325T). A personal computer managed the entire 
experimental system via serial ports. To ensure stability 
during operation, the entire chip was thermally stabilized 
using a thermoelectric cooler (TEC).

(10)G = 2δ[L(U + δ)− L(U − δ)].

(11)

U(iter + 1) =U(iter)+ α

(

viter/(1− β iter

1 )

)

/

√

siter/(1− β iter

2
)+ ε,

viter = β1viter−1 + (1− β1)G,

siter = β2siter−1 + (1− β2)G
2
,
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