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Abstract

Computing with light is widely recognized as a promising paradigm for overcoming the energy and latency limita-
tions of electronic computing. However, the energy consumption and latency in current optical computing hardware
predominantly arise in the electrical domain rather than the optical domain, primarily due to frequent signal conver-
sions between optical (@analog) and electrical (digital) formats. Furthermore, as the operating frequency of optical
computing surpasses the GHz range, the synchronization of parallel electrical signals and the management of opti-
cal delays become increasingly critical. These challenges exacerbate energy consumption and latency, particularly

in recurrent optical operations. To address these limitations, we propose a novel asynchronous computing paradigm
for on-chip optical recurrent accelerators based on wavelength encoding, effectively mitigating synchronization
challenges. By leveraging the intrinsic causality of wavelength relay, our approach eliminates the need for rigor-

ous temporal alignment. To demonstrate the flexibility and efficacy of this asynchronous paradigm, we present two
advanced recurrent models—an optical hidden Markov model and an optical recurrent neural network—monolithi-
cally integrated for the first time. These models incorporate hundreds of linear and nonlinear computing units densely
packed into a compact footprint of just 10 mm?. Experimental evaluations on various benchmark tasks underscore
the superior energy efficiency and low latency of the proposed asynchronous optical accelerators. This innovation
enables the efficient processing of large-scale parallel signals and positions optical processors as a pivotal technology
for applications such as autonomous driving and intelligent robotics.
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loading and retrieval, which dominate the energy con-
sumption in typical optical computing systems [4]. To
address this issue, substantial efforts have been directed
toward designing architectures and applications that
minimize reliance on conversions between analog and
digital domains. One prominent solution is near-sensor
computing, which places optical computing hardware
closer to sensors, thus reducing the energy overhead
associated with digital transitions [4, 5]. Additionally, the
power consumption of DACs and ADCs is directly tied
to their bit precision and working bit rate. For instance,
as demonstrated in blockchain and cryptocurrency appli-
cations, low-precision sampling can reduce ADC power
consumption and enhance robustness to errors [6].
Optical recurrent accelerators, which repeatedly utilize
fixed optical operators, offer higher computing density
compared to multilayer forward optical networks. Exist-
ing optical recurrent accelerators include applications
such as optical reservoir computing [7, 8], Ising machines
[9-11], and matrix inversion solvers [12, 13]. To reduce
energy consumption and latency, it is desirable for opti-
cal recurrent accelerators to operate without intermedi-
ate electrical relays involving ADCs and DACs. However,
many existing approaches, such as the Ising machine,
often rely on electrical feedback to complete large-scale
iterations, while optical reservoir computing is typi-
cally limited to single or cascaded fiber loops, lacking
advanced parallel signal control [14]. The optical comput-
ing generally handles fast-varying input signals alongside
slow-varying system parameters. A critical limitation of
these systems is the synchronization challenge in man-
aging multiple high-speed parallel input optical signals.
While often overlooked during the construction of pho-
tonic computing cores, this issue becomes prominent
as working frequencies exceed tens of gigahertz—nec-
essary to achieve computing power surpassing current
electronic computing cores [15]. Synchronization in this
context encompasses the alignment of parallel input
digital-to-analog (DA) signals, delay management across
multiple optical links, and parallel ADC sampling of
outputs. In electrical systems, synchronization relies on
intricate control mechanisms, which add to energy con-
sumption and latency [16-18]. In optical systems, syn-
chronization requires maintaining identical delays across
multiple optical paths in large-scale networks, greatly
increasing the complexity of the optical network layout.
This issue becomes particularly critical in optical recur-
rent accelerators, where even minor misalignments in
optical signals can accumulate during iterative processes,
potentially resulting in catastrophic disruptions to time-
sequenced outputs (see Supplementary Information S1).
Additionally, DACs must operate at precisely tuned data
frequencies to match optical delays, necessitating higher
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sampling rates and further complicating synchroniza-
tion efforts. The reliance on high-speed transistor-based
circuits (TBCs) such as ADCs, DACs, drivers, and trans-
impedance amplifiers (TIAs) compounds these chal-
lenges because the power consumption of TBCs scales
with their sampling frequency and can increase quad-
ratically in optical transmission links [19-21]. Moreover,
high-speed radio frequency (RF) signals experience sig-
nificant losses in parasitic circuits, while their bit reso-
lution tends to degrade at higher frequencies, adversely
affecting computing accuracy [22]. These limitations
highlight the urgency of developing a synchronization-
free computational paradigm for advanced optical recur-
rent accelerators.

To address this challenge, we propose a unique asyn-
chronous computation paradigm for on-chip optical
recurrent accelerators. By mapping time sequences to
optical wavelength sequences and leveraging an efficient
on-chip wavelength relay, our approach eliminates the
need for synchronization among input signals, optical
paths, and output signals. This paradigm allows high-
speed TBCs to be replaced by low-speed counterparts
without increasing computing latency, thereby reducing
the energy consumption and cost associated with RF sig-
nal generation, transmission, and reception. To demon-
strate the versatility of our approach, we have designed
and fabricated two monolithically integrated optical
recurrent accelerators: an optical hidden Markov model
(HMM) and an optical recurrent neural network (RNN).
These accelerators incorporate hundreds of passive and
active optoelectronic devices within a compact foot-
print of 10 mm?. Performance evaluations on benchmark
tasks highlight the exceptional energy efficiency and low
latency of the asynchronous optical recurrent architec-
ture, making it a promising solution for large-scale paral-
lel signal processing in advanced applications.

2 Results

2.1 Principle of the asynchronous optical recurrent
accelerator

The general representation of a recurrent system can be

written as an iterative equation:

j’n-i-l = F(;Cmycn—l T 79-én7k+1); (1)

where x,, represents the input vector at time 7, ¥, is the
resulting vector at time #, and F denotes a fixed func-
tion. The output at time # is determined by the input vec-
tors over the last k iterations, with the dimensionality of
the vectors indicating the number of parallel channels
involved in the iteration. The function F can either be a
simple linear matrix multiplication or a more complex
nonlinear operator. Traditionally, linear operations, such
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as matrix—vector multiplication, are performed in the
optical domain, while nonlinear operations are completed
electrically [23]. Optical computing cores (OCCs) encom-
pass diverse architectures, including those based on
interference (e.g., Mach—Zehnder interferometer (MZI)
meshes), diffraction (e.g., on-chip diffractive networks),
and nonlinearity [24, 25]. These architectures typically
serve as coprocessors for electronic hardware, where syn-
chronization is managed. However, frequent interactions
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between optical and electronic domains reduce the poten-
tial benefits of optical hardware, such as latency and
energy efficiency. To fully leverage the advantages of opti-
cal computing, all operations in the iterative equation can
be meticulously mapped to photonic hardware. Figure 1a
illustrates a typical high-speed synchronous architecture
where DACs generate input signals that are amplified by
drivers, converted to optical signals via modulators, and
detected as photocurrents and converted to voltages by
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Fig. 1 Principle of the proposed asynchronous optical recurrent accelerator. a System diagrams of the optical synchronous processor. The
computing process is unfolded cycle by cycle in the time domain, with the OCC operating in a time-multiplexed mode. ADCs and DACs operate
at high speed, varying according to the period At. OCC, optical computing core. b System diagrams of the optical asynchronous processor. The
computing process is unfolded cycle by cycle in the wavelength domain, with the OCC operating in a wavelength-multiplexed mode. ADCs

and DACs operate in a quasi-static mode, generating or sampling a single electrical level asynchronously at t;

and 7, . WRU, wavelength

relay unit. ¢ Information relay based on optical-electrical-optical conversion. The asynchronous input wavelength A,_, is differentially detected
by photodetectors, which subsequently drive the MRM with the supply light of A,.. The output signal stabilizes only after all signals from preceding
cycles have arrived. d Electric current flow in the WRU. e Transfer function of the WRU, showing selectable linear and nonlinear working regions

to accommodate specific requirements
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trans-impedance amplifiers (TIAs). These signals are then
sampled by high-speed ADCs. For synchronous opera-
tion, p parallel channels are required to maintain an iden-
tical delay A¢, which matches the data frequency of the
DACs. However, due to the inherent challenges of signal
synchronization, advances in parallel synchronous optical
recurrent accelerators remain limited.

Our proposed asynchronous optical recurrent accel-
erator is illustrated in Fig. 1b. In this architecture, s
cycles are mapped onto s distinct wavelength channels,
and information transferred sequentially across cycles
through a wavelength relay mechanism. To clarify the
differences between synchronous and asynchronous
computing architectures, we analyze the computing
process cycle by cycle—using the time domain for syn-
chronous processors and the wavelength domain for
asynchronous processors. In the synchronous archi-
tecture, time-multiplexed OCCs are used, requiring
high-speed DACs and ADCs that operate synchro-
nously with the data frequency. In contrast, the OCC
in the asynchronous architecture is broadband and
wavelength-multiplexed. Each DAC and ADC operates
in a quasi-static mode, generating or sampling a sin-
gle electrical level rather than continuously handling
high-frequency signals. This asynchronous operation
relies on the inherent information causality within the
wavelength sequence, enabling asynchronous loading
of signals and asynchronous detection of results across
different wavelength channels. Consequently, the strict
temporal alignment required in synchronous systems
is eliminated, allowing each optical path to have a vari-
able length. The detection time only needs to satisfy the
condition:

i
T > qril?.).(.i ty + Zkzq m}ax Aty (2)

where 7; is the detection time for the i-th cycle, ¢, is the
DA signal arrival time for the g-th cycle, and Aty repre-
sents the delay across specific optical paths (see detailed
timing relationship for loose time control in Discussion
part).

Figure 1c illustrates the wavelength relay unit (WRU),
which leverages efficient on-chip optical-electrical-
optical conversion. For broad applicability, we employ
a differentially driven add-drop micro-ring modulator
(MRM) as the core component. The driving mode and
modulator type can be adjusted to suit specific applica-
tions, offering flexibility in design and implementation
[26]. In the WRU, an optical signal at one wavelength is
converted into photocurrent by a photodetector, which
then drives a subsequent MRM using supply light at
a different wavelength. The operation of the WRU is
described by the equation:
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Py =f(Py — P_)Py, (3)

where P, and P_ denote the optical power of the input
light (A,_,) at the positive and negative ports of the differ-
ential photodetectors, respectively, P is the supply light
power (1,), and P, represents the output power of the
MRM. The response function f encapsulates the WRU’s
operational characteristics. The WRU remains in standby
mode until light at A,_, arrives, triggering its operation. It
then stabilizes after completing the current cycle, elimi-
nating strict temporal requirements and thereby ensuring
synchronization-free operation. Fig. 1d depicts the elec-
tric current flow in the WRU. When the injected current
I=I,-1,+1,>0, the MRM operates in a forward-biased
state, resulting in a significant blue shift in its transmis-
sion spectrum as /, increases. Conversely, when 1,<0, the
MRM is reversely biased, causing only a minor red shift
due to the lower carrier-depletion modulation efficiency
[26]. As shown in Fig. le, the output light intensity from
the through-port of the MRM follows a linearized sig-
moid function relative to the driving current. This behav-
ior allows the WRU to perform both linear and nonlinear
operations, depending on the MRM’s working region.
The basic computational tasks, including multiplication,
addition, subtraction, and nonlinear transformations, can
be executed using the WRU. In synchronous processors,
the bandwidth of nonlinear operations must significantly
exceed the frequency of data signals to prevent distortion
(see Supplementary information S1). As a result, latency
in optical links is often redundant under such bandwidth
constraints. In contrast, in the asynchronous processor,
bandwidth influences only the latency without introduc-
ing signal errors, as no serial time signals are processed
by the nonlinear unit; the focus is solely on the final
steady state after all signals from previous cycles have
arrived. To validate the versatility and unique advantages
of this architecture, we present two implementations of
on-chip optical recurrent accelerators, utilizing the lin-
ear and nonlinear regions of the WRU, respectively, as
detailed in the subsequent sections.

2.2 Optical hidden Markov model

HMMs are versatile statistical tools widely utilized
across diverse domains, including speech recognition,
bioinformatics, finance, and natural language process-
ing [27-29]. Figure 2a illustrates the graphical struc-
ture of this model, which is composed of the hidden
state set S={S;, S,, ..., S,,} and the observation state
set 0={0;, O,, ..., O,}, where m and #n represent the
number of possible states. The hidden states follow
a Markov chain, beginning with an initial state s; € S
selected based on a probability vector 7 and transi-
tioning through subsequent states according to a state
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Fig. 2 Principle of the asynchronous OHMM accelerator. a Graph structure of the HMM. The right section depicts the possible set of hidden states
S={5,S, .... S} while the left section represents the known sequence of observed states oy, ..., 07 Matrix A denotes the transition probability
matrix between hidden states, and matrix B corresponds to the observation probability matrix, linking hidden states to observed states. b Basic
computational flowchart of the HMM, highlighting iterative matrix multiplications involving matrices A and B across multiple cycles. ¢ Conceptual
diagram of the monolithically integrated OHMM chip. Different wavelengths are used to represent hidden states and are selected via wavelength
selective switches (WSS) in the decoding problem. The upper section represents the selection area, while the lower section denotes the circulation
area. Probability matrix is realized with the MZI-assisted crossbar array. The processes of multiplication and wavelength relay are implemented
through PD-driven MRMs. CAL marks the port for the calibration of computing accuracy. The output intensity from the last cycle represents

the probability of the observation sequence. d Photograph of the packaged OHMM chip. e Layout of the OHMM chip

¥\

transition matrix A. After ¢ iterations, a sequence s;, sequence 0,0,, ..., 0, at time ¢. Using a,(i), the iterative
Sy ..., S, is formed. While this sequence remains hidden, equation for the forward algorithm (derived in Supple-
an observation state o; € O is emitted at each time step  mentary Information S3) is expressed as:

t based on the observation probability matrix B. This

forms the HMM, formally denoted as (details provided bi(o1)
in Supplementary Information S2): (1) 70O i t=1
by(01)
= [n,AB : = 1 4
A8 @] o1 (1) b1(00)
Given an HMM, two fundamental problems arise: o (m) AT : o : > 1
(1) evaluating the probability of a specific observation @ 1(m) | by(or)

sequence (evaluation problem) and (2) identifying the 5)
most probable hidden state sequence corresponding to a . o )
given HMM and observation sequence (decoding prob- Here, A" is the transpose of the transition matrix A,

lem). The core algorithm addressing these problems, b,(0,) denotes the observation probability for state S, aTnd
© represents the Hadamard product. This computation

involves repeated matrix multiplications, with outputs
determined by the observation sequence.

as illustrated in Fig. 2b, comprises two primary pro-
cesses: selection and circulation. It employs the forward
variable a,(i) =P(0,0,, ..., 0, $,=S;| ), representing the

joint probability of a hidden state S; and an observation Leveraging the asynchronous E ecurrent archltectl.lr i
we present the first implementation of HMM on optical
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hardware (OHMM), as shown in Fig. 2c. Wavelength
selection switches (WSSs) are used to filter wavelengths
corresponding to different hidden states for the decod-
ing problem. In the evaluation problem, all wavelengths
enter the chip. During the first cycle, distinct wavelengths
(A1 Agps - A7) represent different hidden states, with
their intensities indicating the initial probabilities (1) of
the corresponding states. Probability matrices are real-
ized using an MZI-assisted crossbar array. In the selec-
tion area, the wavelength routing capabilities of the
micro-ring resonator (MRR) facilitate the choice of wave-
lengths corresponding to specific observation states. For
example, during ¢=1, the wavelengths 1,;, 151, ..., 4,4
undergo multiplication with the optical matrix B”.
Depending on the observation state (e.g., O;) at that
time, a specific large MRR (outlined with dotted lines in
Fig. 2¢) is tuned to match its resonance peak with these
wavelengths, producing [a;(1), ..., a;(m)] at the drop
port. The large MRRs are characterized by a smaller free
spectral range (FSR) and employed to simultaneously
route wavelengths associated with all hidden states. Sub-
sequently, in the circulation area, these wavelength sig-
nals are dropped by the corresponding small MRRs and
undergo further multiplication with the optical matrix
AT, The small MRRs feature a larger FSR and are utilized
to route wavelengths corresponding to individual hid-
den states. The resulting product, A”[a;(1), ..., a;(m)]%,
is directed to photodetectors (PDs) through the same
large MRRs. The photodetectors convert the optical sig-
nals into electrical currents, which drive the MRMs. In
the second cycle, the MRMs receive input light intensi-
ties represented as [b;(0,), ..., bm(oz)]T where the input
intensities of Ay, Ay, ..., A,,» to matrix BT are the same.
When operating within their linear region, the MRMs
perform the required multiplication operation. This pro-
cess completes one cycle of Eq. (5). Subsequently, dif-
ferent wavelengths (1;;, 4,5, ..., ;7 i=1, ..., m) are used
to represent various cycles. Wavelength relays between
adjacent cycles enable the recurrent operations required
for the algorithm’s progression. The output intensity from
the last cycle represents the probability P(O|u) of a spe-
cific observation sequence O in the evaluation problem.
The decoding problem adopts the same optical hardware
as evaluation problem except for different algorithm (see
Supplementary Information S3).

Figure 2d presents the packaged photograph of the
OHMM chip, fabricated on a standard silicon-on-insu-
lator (SOI) wafer. As a proof of principle, the chip is
designed to perform calculations over four cycles, incor-
porating eight wavelengths in total. A detailed photo-
micrograph of the chip is shown in Fig. 2e, highlighting
its structural components. The chip includes two MZI
arrays, which are configured to implement the matrices
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AT (2x2) and B” (4x 2) respectively (additional details are
provided in Supplementary Information S4). Prior to the
experiments, the MRRs were calibrated (characterization
of MRRs are provided in Supplementary Information S5),
with particular focus on determining the linear operating
range of the MRM:s. Figure 3a illustrates the linear operat-
ing range of the WRU in the chip, showing an extinction
ratio of approximately 9 dB, which satisfies the compu-
tational requirements. Subsequently, the phase shifters
of the MZIs in optical matrices A and B were scanned
and adjusted to match the desired matrices. To evaluate
the computational accuracy, 500 sets of random vector
inputs [a;(1) a;(2)]” were used to compute Y(A7[a,(1)
a1(2)]T)®[b1(02) bz(oz)]T for four different observation
states (0, €{0;, O,, O, O,}). Small MRRs correspond-
ing to =2 were initially adjusted to the "through" state,
allowing the first cycle’s results to be directly output and
summed via the CAL port indicated in Fig. 2¢, excluding
these results from subsequent recursions. By selecting dif-
ferent large MRRs for observation states O,, O,, O3, and
O,, the four elements of the output vector were obtained.
The histogram of the correlation coefficient (defined as
corr(a, B) = ‘g%gl) between the theoretical and the experi-
mental output results is presented in Fig. 3b. It demon-
strates a high average computational accuracy of 0.9993,
with the inset showcasing an example result with a corre-
lation coefficient of 0.9998. Following this, the relay-com-
putation latency of the WRU was measured, as shown in
Fig. 3c. The WRU reveals a pulse broadening to approxi-
mately 1.76 ns compared with the reference pulse, corre-
sponding to a bandwidth of about 90 MHz (test setup is
provided in Supplementary Information S5).

With preparations complete, DNA sequence analysis
experiments were conducted to assess the chip’s process-
ing capability. Since gene maps can be modeled as
HMMs, the two core HMM problems previously
described can be analogized to scoring sequences against
gene maps and determining the optimal sequence-to-
gene map alignment. For this analysis, the yeast mito-
chondrial gene sequences HS416 and HS3324 were
selected [30, 31]. These high-inhibition p-genomes con-
tain a highly similar region, believed to represent the pri-
mary origin of wild-type mitochondrial DNA replication.
Given the lack of coding regions in these sequences, a
two-state binary model was applied to compute smoothed
estimates of AT-rich and GC-rich states. As shown in
Fig. 3d, the parameters used in the OHMM model are
v [0.9] Ao [0.99 0.01} B { 04 04 0101

01} 0.1 09 |’ 0.05 0.05 0.4 0.5
[32, 33]. As the chip was designed to perform four recur-
sions, the fourth output was feedback-modulated into the
input light to facilitate long-sequence processing. The
profile plots of the high-inhibition sequences, shown in
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Fig. 3 Experimental results of OHMM. a The response curve of WRU within the OHMM chip. The orange line highlights the linear region utilized

for recurrent calculations during the experiment. Exp denotes the experimental results. b Histogram of correlation coefficients for 500 computed
results of a single cycle. The inset illustrates a specific instance with a correlation coefficient of 0.9998. Theo represents the theoretical results.

c Evaluation of the relay-computation latency (RC-latency) of the WRU. The output pulse from the WRU is broadened to 1.76 ns compared

to the reference input pulse. Ref indicates the reference input pulse. d A two-state HMM representing DNA sequences with heterogeneous base
compositions. State S; generates an AT-rich sequence, while state S, generates a GC-rich sequence. Arrows indicate state transitions along with their
associated probabilities, and the observation probabilities for A, C, G, and T for each hidden state are shown below the respective states. e, f
Calculated sequences of a,(2) for HS416 and HS3324 using the OHMM chip. g, h Theoretical sequences of a,(2) for HS416 and HS3324. Regions

where a,(2) > 0.5 correspond to GC-rich regions

Fig. 3e, f, highlight the structural similarity across a region
of 600 base pairs (bp). When «,(2) >0.5, it indicates that
the current base pairs are GC-rich; otherwise, they are
AT-rich. The experimental results closely align with theo-
retical outputs (Fig. 3g, h), achieving sequence analysis
accuracies of 99.43% and 98.53%, respectively (represent-
ing the proportion of matching base pairs between exper-
imental and theoretical data). The influence of
nonlinearity on the performance of OHMM is studied in
Supplementary Information S6. Additional experimental
results, including details on the Chinese word segmenta-
tion application, are provided in Supplementary Informa-
tion S7.

2.3 Optical recurrent neural network

RNNs are a class of artificial neural networks designed
to process sequential data. Unlike traditional feedfor-
ward neural networks, RNNs incorporate feedback con-
nections, forming directed cycles that enable dynamic
temporal behavior. RNNs have found applications across
a wide range of domains, including natural language

processing, speech recognition, and time series predic-
tion [34]. Figure 4a illustrates the working flow of a stand-
ard RNN, which comprises an input layer, a hidden layer,
and an output layer. The relationship between the input
and hidden layers is described by the following equation:

(6)

where () represents the time-varying input vector, x()
denotes the time-varying hidden vector, W, is the weight
matrix for the input vector, W is the feedback weight
matrix for the hidden vector, f,, is the nonlinear activa-
tion function, and r is the recurrence period. The rela-
tionship between the hidden and output layers is given
by:

;C(t) :fnl(VVinﬁ(t) + Wﬁ_é(t - f));

¥(t) = Wourk(t), (7)

where J(¢) is the time-varying output vector and W,,,
is the weight matrix for the output. For simplicity, some
less critical components in a standard RNN such as the
bias vector and the nonlinear activation function for
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(a) Input layer Hidden layer Output layer (c)
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Fig. 4 Principle of the asynchronous ORNN accelerator. a The basic working flow diagram of a typical RNN. The network consists of three main
layers: the input layer, the hidden layer, and the output layer. The current state of the hidden layer is computed based on the current input

layer and the previous state of the hidden layer. b The proposed monolithically integrated scheme for the asynchronous ORNN accelerator. The
design leverages MRMs driven by PDs to implement both the nonlinear activation function and wavelength relay. The network processes input
sequences encoded in different wavelengths asynchronously. ¢ The architecture of the optical matrix used in the network. Input signals at different
wavelengths are processed by an on-chip incoherent MZI mesh. Real-valued outputs are obtained through differential optical intensity detection. d
The micrograph of the fabricated ORNN chip

the output layer are omitted. When the dimension of
both the input and output layer are reduced to one, the
RNN architecture simplifies to a form resembling res-
ervoir computing. Optical reservoir computing has
demonstrated significant advancements due to its sim-
plicity, single input/output sequence, and lack of com-
plex synchronization requirements [14, 35]. However,
this approach is limited in its ability to handle high-
dimensional time series, a challenge that optical RNNs
(ORNN ) are better suited to address, making them a
subject of deeper investigation [36].

We propose an asynchronous ORNN accelerator, as
depicted in Fig. 4b. Here, n sets of wavelengths repre-
sent the length of the input time sequences, while the
m parallel series correspond to m different wavelengths
within the same color. Input information is asynchro-
nously loaded using MRRs and injected into the on-
chip incoherent MZI mesh (W,,). Large MRRs drop the

wavelengths corresponding to the current time step and
forward them to photodetectors, which drive the MRM
to implement nonlinear activation. Simultaneously, the
hidden vector x(t) is fed into the on-chip incoherent MZI
mesh (W) in reverse and the wavelengths from the pre-
vious cycle will be dropped to the photodetector repre-
senting the current cycle. For example, during the second
cycle, input signals encoded as green wavelengths are
dropped by the green large MRRs, while the hidden sig-
nals from the first cycle, encoded as orange wavelengths,
are dropped by the orange large MRRs. The drop ports
of the respective MRRs are connected to a photodetec-
tor, which sums the optical signal intensities and drives
the next hidden signal step (green wavelengths). This
process completes the calculation of Eq. (6). At the drop
port of the MRMs, the operation 1-x(¢) is performed
and directed into a third on-chip incoherent MZI mesh
(W,,)- The output results y(t) for different time steps are

ou,
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asynchronously detected after being dropped by corre-
sponding large MRRs. The on-chip incoherent MZI mesh
is designed as a simplified real-valued optical matrix, as
proposed in our previous work [37] (Fig. 4c; details pro-
vided Supplementary Information S8) and the MRMs are
driven by differential photocurrents.

The first monolithically integrated ORNN chip was
fabricated using the same process as the OHMM chip.
As illustrated in Fig. 4d, the dimensions of the input,
hidden, and output layers are all two. The chip supports
a sequence length of four and is multiplexed by feeding
the intermediate results of the fourth cycle back to the
first cycle to handle tasks involving longer sequences.
To evaluate the chip’s performance, a classification task
of Japanese vowels was conducted [38]. The original

(a) 12 LPC cepstrum
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dataset was generated through 12-degree linear predic-
tion analysis, producing a discrete-time series with 12
linear prediction coding (LPC) cepstrum coefficients.
To align the dataset dimensions with the chip architec-
ture and meet the positive input requirement, we applied
a pre-trained linear dimensionality reduction step fol-
lowed by a ReLU function. The resulting two-dimen-
sional sequences were used as input for the chip. The
classification results were derived from the final cycle
of the output sequence (Fig. 5a). The packaged ORNN
chip is shown in Fig. 5b. First, the on-chip nonlinear
activation function was characterized using differential
input optical power, as shown in Fig. 5c, and the results
aligned with our theoretical expectations. Following
the calibration of the MRRs to their respective working
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Fig.5 Experimental demonstration of ORNN. a Workflow of the audio classification task. The 12-dimensional sequential input signals are first
reduced to two dimensions through a linear transformation followed by a ReLU function. These reduced signals are then processed by the ORNN
chip, with the final output signal intensities determining the classification result. b Photograph of the packaged ORNN chip. ¢ Measured nonlinear
activation function of the differential PD-driven MRM. Here, P and P, represent the input differential optical power and the output optical power
after nonlinear activation, respectively. d Confusion matrix for the test dataset in the binary classification task. e lterative curves showing the loss
function and accuracy progression in the binary classification task. f Schematic flow diagram illustrating the one-versus-rest method employed
during the training of the eight-class classification task. g Confusion matrix for the test dataset in the eight-class classification task
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wavelengths, the chip was operational. The softmax func-
tion was applied to calculate the probability distribution
for each class, and entropy loss was selected as the loss
function, which was minimized in-situ using a stochastic
parallel gradient descent algorithm (see “Methods” sec-
tion). The two-classification achieved accuracies of 97%
and 95% for the training and test datasets, respectively,
with the corresponding confusion matrix depicted in
Fig. 5d. The progression of the loss function and accuracy
during training is presented in Fig. 5e. To further dem-
onstrate the processing capability of the ORNN chip, we
extended its application to an eight-class classification
task. Addressing multi-class problems requires an appro-
priate classifier. In this work, the one-versus-rest method
was employed [39]. This approach utilized eight parallel
ORNN:Ss to classify speech sequences into eight catego-
ries, as illustrated in Fig. 5f. During training, each cate-
gory was treated as a separate class, with the remaining
categories grouped as another. When presented with an
unknown speech sequence, the entire architecture out-
puts eight classification probabilities, with the predicted
label corresponding to the class with the highest prob-
ability. After in-situ training, the confusion matrix for the
eight-class classification is shown in Fig. 5g, demonstrat-
ing a test accuracy of 87.7% (details on the training pro-
cess are provided in Supplementary Information S9).

3 Discussion

3.1 Comparison with other asynchronous computing

In this section, we compare our scheme with tra-
ditional asynchronous computing by conducting a
detailed analysis of the timing relationships within
the proposed architecture (Fig. 6). Asynchronous
computing is a widely adopted concept in electronic
circuits and programs, where tasks or operations

Aty4
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@A, : @
At
DAC, AT,
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Outputg
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ADC,

Sampling span
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are executed independently, without requiring the
completion of other tasks before starting [40]. Fig. 6
depicts the input DA signals and corresponding out-
puts from each cycle. For instance, DAC; generates
an input signal, and its output for each cycle is a tem-
porally misaligned superposition of multiple signals
(Output;) due to distinct latency in each computa-
tional link. Consequently, the output of each cycle
encompasses computing results from all possible
links associated with different DACs. In this context,
accurate computation requires signals from all links
to temporally overlap. The margin time for asyn-
chronous computing accounts for the ADC sampling
time, time misalignment among different DA signals,
and latency misalignment across various signal paths.
Among these, the ADC sampling time and time mis-
alignment among DA signals constitute a constant
value, denoted as 7. Consequently, the duration of the
g-th DA signal, A7, can be expressed as:

S S
Aty > 19 + Z m}axAtjk — Z mjinAtjk. (8)
k=q

k=q

This condition ensures that each link, from input to
output, operates as an independent task, necessitating
only loose time control to complete all tasks within the
ADC sampling span. Overall, the core principle of our
proposed scheme shares similarities with traditional
asynchronous computing. However, our asynchronous
approach is relatively constrained, as signals must be
sampled within a specific time span. As we will discuss
in the following analysis, this loose time control mecha-
nism offers a significant enhancement in computational
efficiency compared to completely time-independent

At,,
Aty, occ occ
E @ cee @As
Aty

I

A

Sampling span Ti
ADC, ADC, Ime

Fig. 6 Timing relationships in our proposed optical asynchronous recurrent accelerator
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operations (A7, is equal to or longer than the total
latency, Fig. 1b).

3.2 Management and expansion of wavelength resources
The scalability of our scheme is primarily determined by
the number of available wavelengths. Significant advance-
ments in on-chip multi-wavelength optical sources have
enabled the generation of up to 200 wavelengths in the
telecom band [41]. Another critical component in our
setup is the wavelength demultiplexer. Due to the lim-
ited free spectral range (FSR) of MRRs, they can typically
support a maximum of 30 wavelengths [42]. To address
this limitation, a potential solution involves leveraging
cascaded optical interleavers and MRRs to manage mas-
sive wavelength Kerr combs [43]. Additionally, nano-
beam cavities, which are not constrained by FSR, offer a
promising alternative for demultiplexing large numbers
of wavelengths [44]. Current state-of-the-art wavelength
division multiplexers can accommodate up to 512 wave-
lengths with 10 GHz spacing [45], a capability approach-
ing the upper limit of existing comb sources. While the
proposed asynchronous architecture can manage the
sequence lengths required for most recurrent tasks, it is
also capable of time-multiplexing to accommodate appli-
cations that demand ultra-long sequence processing. This
is achieved by feeding the intermediate results of the
final cycle in the first s sequences back to the initial cycle
of the second s sequences. While this reuse of the chip
introduces additional power consumption and latency in
the electrical domain, the averaged overhead per cycle
becomes negligible when s is sufficiently large.

3.3 Overhead analysis of wavelength-relay unit

In our demonstration, the power-efficient WRU is
employed to achieve wavelength relays. Notably, the
WRU also performs a critical role as a nonlinear function
in many recurrent applications [46], without which syn-
chronous optical processors would be restricted to sim-
ple linear recursion. The power consumption of the WRU
is determined by the signal light power and the electrical
power consumed by the photodetector, as expressed by:

I, driv

: + Viiaslarives (9)

Piotar = Popt + Peject =
npD

where I, is the driving current of the modulator, 7,
is the responsivity of the photodetector, and V,,, is the
bias voltage of the photodetector. In our experiment,
these parameters are 1,,,=0.09 mA, #,,=0.9 A/W, and
Viias=3 V, resulting in a power consumption of 0.37 mW.
These values can be optimized to further reduce power
consumption. For instance, the power consumption of
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the state-of-the-art WRU can be minimized to 0.15 mW
[47]. To further minimize the energy consumption of the
WRU, its operational duration must be carefully opti-
mized. As illustrated in Fig. 6, the WRU’s working dura-
tion closely correlates with the duration of the DA signal.
Consequently, Az, can be selected as the minimum value
that satisfies the condition in Eq. (8). The latency of the
WRU is mainly influenced by the RC response time,
which is relatively large due to the use of standard library
devices without specific design optimizations. Neverthe-
less, with targeted engineering, the WRU’s bandwidth
can exceed 1 GHz, reducing the corresponding latency to
below 100 ps [47].

3.4 Key performance of different optical recurrent
computing architectures
We comprehensively analyze the latency and energy
efficiency of both synchronous and asynchronous
architectures in Supplementary Information S10. Con-
sidering the latencies of the optical link and WRU,
the total latencies for one cycle of the OHMM and
ORNN are 1.83 ns and 1.82 ns, respectively. These
values are six orders of magnitude lower than those of
the previously reported spatial ORNN systems [36].
Using parameters from the literature [20], the energy
efficiency of the ORNN chip is calculated to be 0.48
TOPs/]. This value can be further improved by scaling
up the computational workload. For instance, assum-
ing a computing scale of 64, the estimated energy effi-
ciency increases to 11.62 TOPs/], which is an order of
magnitude higher than that of the spatial ORNN [36].
Table 1 provides a comparison of key features—latency
and energy consumption—among three architectures.
For the electronic feedback scheme, the latency and
energy efficiency are estimated using parameters from a
typical FPGA [48], with a transmission latency of 0.5 s
and an energy efficiency of 28.2 pJ/OP. The asynchronous
architecture achieves nearly four times the energy effi-
ciency of the synchronous architecture. This advantage
arises because the sampling rate (F) of the synchronous
architecture is four times the data rate (B) when operat-
ing with a sequence length of four (see Supplementary
Information S10). It can be further enhanced by involv-
ing more cycles on the same chip. As shown in Fig. 7a,
although the asynchronous architecture demonstrates
superior energy efficiency compared to the synchronous
and electrical feedback architectures, its energy efficiency
decreases with the sequence length due to the quad-
ratic growth in the energy consumption of WRUs. This
drawback can be mitigated by reducing A7, or lowering
the power consumption of individual WRUs. The advan-
tage of the asynchronous architecture over the electrical
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Table 1 Comparison of different optical recurrent architectures on the main performance (s is the number of computing cycles)

Architecture Latency Energy efficiency Delicate delay control Signal
distortion
Synchronous architecture (2X2, s=4) 728ns 0.12TOPs/J (F/B=4) Yes Yes
Synchronous architecture (64 x64, s=12) 21.84ns 0.99TOPs/J (F/B=12) Yes Yes
Electrical feedback [48] (2x 2, s=4) 2 s 0.08 TOPs/J No No
Electrical feedback [48] (64 x 64, s=12) 6 Us 1.96 TOPs/J No No
Spatial ORNN [36] (490,000 x 490,000, s=1) 8ms 1.58 TOPs/J No No
Ourwork (2x2,5s=4) 7.28ns 0.48 TOPs/)J No No
Our work (64x64,s=12) 2184 ns 11.62 TOPs/J No No
(a) (b)
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Fig. 7 a Energy efficiency comparison of various optical recurrent architectures as a function of sequence length for a matrix scale of 64 x 64.
"Asyn”represents the asynchronous architecture, “Syn”refers to the synchronous architecture, “Optim” corresponds to the asynchronous
architecture optimized with a WRU power consumption of 0.15 mW, and “EF" denotes the electrical feedback architecture. b Energy efficiency
of the asynchronous architecture as a function of the number of on-chip cycles in the chip-reuse strategy

feedback scheme can be further amplified by incorporat-
ing more complex recurrent operations, such as increas-
ing the number of recurrent vectors in the RNN model.
To maximize energy efficiency, the optimal number of
on-chip cycles can be determined, and a chip-reuse strat-
egy can be employed to efficiently process long sequence
signals (Fig. 7b). In the future, the scalability of our
method for large-scale optical computing requires fur-
ther advancements in integration density, manufactur-
ing technologies, and the energy efficiency of core optical
components, such as the MZI mesh, wavelength multi-
plexers, and WRUs. Beyond intuitive metrics like latency
and energy consumption, the proposed asynchronous
architecture eliminates the need for delicate delay control
and mitigates signal distortion inherent in synchronous
architectures. These factors, including energy consump-
tion and latency induced by precise delay controls, as
well as signal degradation impairing computing accuracy,
are significant challenges in synchronous designs.

4 Conclusions

In conclusion, we present a novel asynchronous archi-
tecture for an on-chip optical recurrent accelerator, lev-
eraging time-wavelength mapping and wavelength relay.
This architecture effectively overcomes the critical syn-
chronization challenges that hinder the implementation
of parallel synchronous optical recurrent accelerators.
Through detailed analysis, we highlight the proposed
scheme’s advantages in achieving low latency and energy
consumption. Additionally, we demonstrate two mono-
lithically integrated prototypes: the OHMM and ORNN.
Their exceptional performance on various benchmark
tasks underscores the versatility and potential of the
asynchronous recurrent accelerator. This proposed archi-
tecture paves a practical pathway for large-scale parallel
sequential signal processing using photonic hardware,
with promising applications in domains such as autono-
mous driving and intelligent robotics.
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5 Methods

5.1 Stochastic parallel gradient descent algorithm

In the in-situ training of the ORNN, we employ the sto-
chastic parallel gradient descent algorithm to estimate
the gradient of the loss function [49]. In each iteration, a
random perturbation vector § is generated and applied to
the current voltages as U+ 3J and U - §. The correspond-
ing loss function values, L(U+ ) and L(U-6), are then
computed. The estimated gradient of the loss function is
given by:

G = 28[L(U + ) — L(U - §)]. (10)

Subsequently, the voltages are updated using the Adam
algorithm, a fast-converging gradient descent optimiza-
tion method [50]

Uliter + 1) =U (iter) + « (Viter/(l - ﬂ{ter))/\/siter/(l — By + e,

Viter = B1Viter—1 + (1 — B1)G,
Siter = BaSiter—1 + (1 — B2)G?,

(11)
where iter is the current iteration, « is the learning rate
(set to 0.1 during training), and j3}, 3, € are hyperparam-
eters with values 0.9, 0.999, and 1078, respectively. The

initial values of v;,,, and s;,,, are set to zero.

5.2 Experimental methods

The chip was fabricated using a 200 mm CMOS pro-
cess line with a two-layer copper interconnect. The fab-
rication line width was as narrow as 130 nm, achieved
through a deep ultraviolet lithography process. The on-
chip photodetector utilizes a lateral PIN structure with
an epitaxial germanium layer of 260 nm thickness. The
chip’s optical I/O consists of a vertical grating coupler
array packaged with a horizontally coupled fiber array,
while the electrical I/O is connected to the PCB via wire
bonding. Calibration of the MRRs and MRMs on the chip
was performed by sweeping their thermal phase shifters.
For latency measurements, the input laser source was
modulated using a lithium niobate intensity modulator
with a 10 GHz bandwidth. A bit pattern generator pro-
duced the pulse signal, with a pulse width of 100 ps and a
period of 4 ns. The output optical signal was detected by
a photodetector with an 18 GHz bandwidth and captured
by a Tektronix DSA72004B oscilloscope. The thermal
phase shifters and the WRU bias voltage were powered
by a digital-to-analog converter (LTC2688), which was
controlled by a field-programmable gate array (FPGA)
chip (7K325T). A personal computer managed the entire
experimental system via serial ports. To ensure stability
during operation, the entire chip was thermally stabilized
using a thermoelectric cooler (TEC).
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