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Abstract: CO,, an abundant and renewable C1 source, presents significant potential for ap-
plications in organic synthesis. Hydrazones, recognized for their distinctive properties, ex-
hibit high versatility in synthetic chemistry, facilitating numerous chemical transformations.
Given their crucial roles in organic synthesis, the combination of CO, with hydrazones has
garnered increasing research interest. This review provides a comprehensive summary
of recent progress in reactions involving CO, and hydrazones or their derivatives. These
include the coupling of amines and N-tosylhydrazones with CO,, the umpolung-mediated
carboxylation of hydrazones/N-tosylhydrazones with CO,, the cyclization of hydrazones
with CO;, and lactamization reactions incorporating N-tosylhydrazones and CO,. These
transformations utilize the diverse reactivity of hydrazones and their derivatives to cap-
ture and convert CO;, generating valuable organic compounds with both academic and
practical relevance. Additionally, the review examines the mechanisms underlying these
reactions, offering critical insights for advancing research in this area.

Keywords: carbon dioxide (CO,); hydrazones; carbamates; umpolung strategy; cyclization;
lactamization

1. Introduction

Carbon dioxide (CO;), a major greenhouse gas associated with global warming, has at-
tracted widespread attention for its capture and utilization. As an abundant and renewable
C1 feedstock, CO; offers significant potential for applications in organic synthesis [1-5]. Its
low cost, wide availability, and environmentally sustainable nature make it an appealing
option for green chemistry. However, the activation and efficient utilization of CO, in
organic reactions present substantial challenges due to its intrinsic thermodynamic stability
and kinetic inertness, which impede its involvement in conventional chemical processes.
Despite these obstacles, significant advancements have been made in developing strategies
for CO; activation and conversion [6-26].
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Hydrazones are formed through the condensation of aldehydes or ketones with
hydrazine or its derivatives, possessing the general structure RR'C=N-NHR". Their distinc-
tive properties are highly useful in synthetic chemistry, facilitating participation in diverse
chemical transformations. For example, they act as intermediates in the Wolff-Kishner
reduction and play a crucial role in the synthesis of Barton vinyl iodides, among other
synthetically valuable reactions [27]. Recent studies by Li and other researchers have led
to significant progress, highlighting the importance of hydrazone-based compounds in
organic synthesis [28-31]. Among various hydrazone derivatives, N-tosylhydrazones have
gained prominence due to their role as operationally safe carbene precursors. Consider-
able advancements have been reported in transition metal-catalyzed reactions, metal-free
conditions, and photocatalytic processes under light irradiation [32-35]. Furthermore, hy-
drazones have been extensively utilized in cyclization reactions, facilitating the synthesis of
heterocyclic compounds containing N-N moieties, which hold significant value in organic
chemistry [36].

Given the essential roles of hydrazones (1) in coupling, cyclization, and polarity-
reversal reactions, along with the significance and challenges associated with CO, con-
version, research efforts have increasingly focused on integrating hydrazone chemistry
with CO, utilization and fixation. By exploiting the distinctive reactivity of hydrazones, a
variety of COp-involved transformations have been developed, facilitating the synthesis of
valuable compounds such as carbamates (2), carbonyl compounds (3-1, 3-2), and organic
carboxylic acids (4) (Figure 1).
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Figure 1. Overview of CO,-involved transformations of hydrazones and their derivatives.

This review highlights recent progress in reactions involving CO; and hydrazones or
their derivatives, with an emphasis on how the diverse chemical properties of hydrazones
contribute to different modes of CO, fixation. Additionally, the scope and mechanisms
of these reactions are analyzed to provide a deeper understanding of their underlying
principles. Through this comprehensive examination, valuable perspectives and potential
directions for the future advancement of CO, utilization are proposed.

2. Reaction of Carbon Dioxide with Hydrazones and Their Derivatives
2.1. Coupling of Amines and N-tosylhydrazones with CO; to Generate Carbamates

Organic carbamates are an important class of compounds with significant biological
and pharmaceutical properties, frequently found in natural products [37-47] (Figure 2).
Their synthesis has been extensively investigated. Conventionally, carbon monoxide
(CO), phosgene, triphosgene, and isocyanates have been commonly utilized as carbonyl
sources for their construction [40-44]. Additionally, CO; has been explored as a starting
material for carbamate synthesis [45-53]. This approach primarily involves the nucleophilic
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attack of amines on CO,, leading to the formation of carbamic acids (or their salts), which
subsequently undergo coupling to afford the target products.
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Figure 2. Representative pharmaceuticals containing the carbamate motif.

N-tosylhydrazones are widely recognized as synthetic intermediates in the formation
of carbon—carbon or carbon-heteroatom bonds through both transition metal-catalyzed and
metal-free cross-coupling reactions [37,54,55]. Under protonic conditions, diazo compounds
generated in situ from N-tosylhydrazones undergo decomposition, yielding carbocation
intermediates [56].

In 2015, JIANG and co-workers reported a base-promoted coupling reaction involving
CO,, amines (6), and N-tosylhydrazones (5) [57]. Under basic conditions, amines—particularly
secondary amines with strong nucleophilicity—interact with CO, to generate carbamate
salts. These salts are then captured by carbocation intermediates generated in situ from
N-tosylhydrazones, enabling an efficient synthesis of diverse carbamate esters (7). This
reaction system also accommodates primary amines, although the yields are comparatively
lower (Figure 3). However, N-tosylhydrazones derived from aliphatic ketones or aldehydes
and aromatic amines did not yield the desired products. Mechanistic investigations and
control experiments confirmed the presence of a carbocation intermediate (5D) and demon-
strated that both H,O and CO; facilitate the protonation process through forming carbonic
acid, promoting carbocation intermediate formation from the diazo compound (Figure 4).
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Figure 3. Base-promoted coupling of CO,, amines, and N-tosylhydrazones for carbamate synthesis.



Molecules 2025, 30, 1987 40f 18

COZ+H20
+
NNHTs
KoCO4 |
©/\) 2 ©/\) HZCO3 ©/\)
+ ot

5D

6A 6B

- +
CO,+2Et,NH ==Et,NCOO H,NEt, \
I jl

07 SN

Figure 4. Mechanism of carbamate formation through a carbocation intermediate.

Owing to the intrinsic basicity of amine compounds, they can function as bases,
enabling the formation of carbamate salts without requiring additional bases. In 2016,
Chung et al. successfully carried out this reaction under 1 atm of CO, without an external
base, employing nitromethane as the solvent [58]. Notably, the reaction conditions allowed
for scalability, enabling synthesis on a gram scale. This study also included several examples
of reactions involving primary amines, with most yields observed within the moderate

range (Figure 5).
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Figure 5. Synthesis of carbamates under 1 atm CO, without an external base.
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The authors propose that the reaction proceeds via a mechanism in which the amine
(11) reacts with COy in situ to generate a carbamate species (12), which acts as a nucleophile
to couple with the N-tosylhydrazone (10), ultimately yielding the carbamate product. This
mechanistic pathway eliminates the need for high-pressure conditions and external bases,
offering a milder and more efficient synthetic approach compared to conventional methods
(Figure 5).

Here, it is worth noting that diazo compounds are recognized as pivotal interme-
diates in the aforementioned reaction and have attracted considerable attention due to
their versatile reactivity in diverse chemical transformations. The Jiang and Qi success-
fully developed a silver-catalyzed or photocatalytic three-component coupling reaction
involving a-diazoesters (13), CO,, and amines (14), which enabled the efficient synthesis
of a-carbamoyloxy esters (15, 16) [59,60]. Notably, under photocatalytic conditions using
tetrahydrofuran (THF) as the reaction medium, an exclusive four-component coupling reac-
tion was observed between «-aryldiazoesters, amines, CO,, and THF. This process resulted
in the formation of a wide range of structurally diverse carbamate products (Figure 6).
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Figure 6. The reaction of diazonium and CO, under different conditions.

The above reactions, due to the use of different catalytic systems, exhibit slightly
different reaction path. Under AgOAc catalysis, a-diazo esters decompose to generate
silver carbene intermediates, which then undergo multi-step coupling with CO, and amines
to form «-carbamates. The mechanism involves carbene insertion into CO, and nucleophilic
attack by amines, followed by protonation to afford the product [59]. In contrast to the silver-
catalyzed system, blue light excitation of x-diazo esters generates carbene intermediates,
with the solvent (THF or 1,4-dioxane/MeCN) dictating the reaction pathway: in THE the
carbene forms an oxonium ylide with the solvent, which then combines with the carbamate
anion generated from amines and CO,; in the mixed solvent, the carbene directly couples
with the carbamate anion without metalcatalysis [60].

The previous discussion primarily addressed intermolecular reactions; however, in-
tramolecular processes had not been reported until 2019, when Cheng et al. introduced a
novel strategy for incorporating CO, into 0-aminoacetophenone N-tosylhydrazone deriva-
tives (17). This approach enabled the synthesis of a series of 1,4-dihydro-2H-3,1-benzoxazin-
2-one compounds (18) using Cs,COs3 [61] (Figure 7). The proposed reaction mechanism is
illustrated in Figure 8. Initially, CspCOj interacts with aniline, promoting proton abstraction
and generating intermediate 17C. This is followed by the carboxylation of the amine with
COy, leading to the formation of intermediate 17D. Subsequently, intermediate 17D under-
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goes a stepwise elimination of Ts and Nj, facilitated by the base, resulting in the formation
of a carbene intermediate (17E). Finally, the carboxyl group undergoes an intramolecular
insertion into the carbene intermediate, yielding the 1,4-dihydro-2H-3,1-benzoxazin-2-one

products (Figure 8).
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RZ + > (@]
1 CcO 1
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17 18
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Figure 7. Intramolecular cyclization of o-aminoacetophenone N-tosylhydrazone with CO;.
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Figure 8. Mechanism of intramolecular cyclization with CO,.

In summary, this method presents several advantages, including the use of readily
available starting materials, broad substrate scope, mild reaction conditions, and opera-
tional simplicity. It offers an efficient and practical approach for synthesizing a diverse
range of organic alkyl carbamate esters.

2.2. Carboxylation of Hydrazones/N-Tosylhydrazones with CO, Through Umpolung

The Umpolung strategy modifies the inherent electronic characteristics of functional
groups, effectively reversing their typical polarity. This polarity shift enables the emergence
of novel reactivity patterns, allowing the formation of new chemical bonds [62-65]. A well-
known example is the Shapiro reaction, in which an N-tosylhydrazone (19) undergoes
deprotonation by a base, generating a vinyllithium intermediate. This intermediate subse-
quently reacts with electrophiles, leading to the formation of alkene-based products (20).
When CO; is employed as the electrophile, x-arylacrylic acids can be synthesized [66-73].
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Conventionally, these reactions require the use of a strong base (e.g., 7n-BuLi) and extremely
low temperatures, which has restricted their practical applicability (Figure 9).

NNHTs n-BuLi W _R2 1)CO HO©
2 -bull 2
R1&R - s R1/\r - _R?
JH TMEDA R3 2) H30 R!
R 3
R
19 19A 20

Figure 9. Traditional Shapiro reaction for x-arylacrylic acid synthesis.

In 2015, Cheng and colleagues developed a Cs;CO3-mediated carboxylation reaction
between N-tosylhydrazones (21) and CO;,, providing an efficient approach for synthesizing
a-arylacrylic acids (22) [74]. This method serves as a practical and elegant alternative to the
conventional Shapiro reaction. Through systematic optimization and control experiments,
it was demonstrated that CO, functions as the carbonyl source in this transformation. The
reaction exhibits compatibility with a range of aromatic ring substitution patterns; however,
substrates bearing strong electron-withdrawing groups did not afford the desired products,
indicating possible interference with the reaction mechanism (Figure 10).

NNHTs 1) Cs2CO0;3 ( 3 equiv.) COOH
DMSO, 80 °C, 12 h 2
RZ ) ’ _ X R
R1 + C02 . - R1
(1atm)  2)HO
21 22
COOH o COOH
COOH COOH ¢
MeO 0
22a, 68% 22b, 63% 22c, 76% 22d, 71%
COOH COOH COOH COOH
o)
22e, 62% 22f 67% 229, 75% 22h, 48%

Figure 10. Cs,COs-promoted carboxylation of N-tosylhydrazones using CO,.

The reaction mechanism involves the in situ formation of a diazo intermediate from N-
tosylhydrazones, catalyzed by Cs,CO3; under mild conditions. Initially, Cs,CO3; promotes
deprotonation of the hydrazone substrate, generating a nitrogen-centered anion, which
subsequently undergoes isomerization to form a carbanion. This carbanion then captures
COy,, forming an intermediate that undergoes desulfonylation, leading to the generation
of a diazo intermediate. Under basic conditions, the diazo species undergoes nitrogen
extrusion, followed by protonation, ultimately yielding the o-arylacrylic acid product
(Figure 11).

The key parts of the mechanism of this reaction are as follows: (i) deprotonation by
Cs,COj3 generating a nitrogen-centered anion; (ii) isomerization to carbanion enabling CO,
capture; and (iii) desulfonylation and N, extrusion yielding x-arylacrylic acids.
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Figure 11. Mechanism of CspCO3-promoted carboxylation of N-tosylhydrazones.

The described process operates as a base-promoted reaction. Expanding upon Li’s
work on Ru-catalyzed umpolung reactions that utilize carbonyls as carbanion equiva-
lents [28], Yu, Lan, and Li introduced a novel strategy in 2018 for synthesizing aryl acetic
acids (24). This approach involves the cleavage of C=N double bonds in hydrazones
through Ru-catalyzed umpolung reactions [75] (Figure 12). In these transformations, the
air-stable ligand dppf (1,1’-Bis(diphenylphosphino)ferrocene) was identified as optimal
for efficient aryl acetic acid synthesis. Furthermore, reaction conditions were refined to
accommodate less reactive hydrazones derived from ketones. A proposed mechanism,
supported by experimental findings and Density Functional Theory (DFT) calculations,
suggests that the reaction initiates with ligand exchange between the ruthenium cata-
lyst and phenylhydrazone in the presence of Cs,CO3, forming a ruthenium-hydrazone
complex(23B). This complex subsequently undergoes a sequence of protonation steps, gen-
erating a Ru-nitrenoid intermediate(23D). A [4 + 2] cycloaddition between this intermediate
and CO; then forms a six-membered Ru complex(23E), which, upon nitrogen extrusion and
protonation, regenerates the catalyst and releases the target aryl acetic acid. Additionally,
an alternative mechanistic pathway has been proposed, wherein isomerization, carbene
formation, and CO; insertion result in the formation of an alternative intermediate complex
(Figure 13).

NNH, [Ru(p-cymene)Cl,], (2 mol%), dppf (4 mol%) COOH
] RZ *+ CO, 1 R?
R (1 atm closed) 1) Cs,CO; ( 1.3 equiv.), CsF (0.4 equiv.) R
DMF, 80 °C, 24 h
23 2) HCl (aq.) 24
O COOH
MeO
©/\COOH \©/\COOH O COOH N\
S
24a, 83% 24b, 93% 24c, 81% 24d, 81%
COOH COOH COOH COOH
‘)\”O MeO I I M eO E
24e, 72% 241, 71% 249, 60% 24h, 81%

Figure 12. Ru-catalyzed umpolung carboxylation of hydrazones involving CO5.



Molecules 2025, 30, 1987

90f18

dppf L P
1/2 [Ru(p-cymene)Cl,], C|>R'u/P ) ): dppf, L=p-cymene
Cl ~p P
.NH
NI 2
+Cs,CO
Ph/J Zs
23A
2CsCl+L
o Ph—
H N-NH,
Ph A OH<— pn I _cs ,p_ J
Ru—
24a 231 R o Ph
_NH, 0, N7
| 23B \
NH
Phasa /o on " (P\RL o
. —
o) P L
Ph 0 \ O 2 0
H ', OH
P— P~Ru 23C
/RUT,/O P/ \
O -
P g Ph OH | Cs,C0;
ZH y on 236 9 )
Pj;Ru NN CsHCOs
N; AN
23F h
Ph I°
Path 2
mh W
NN~ P N
. u—o
710" "0 (
P oco,H P \bfk

v
Path 1
a OH
23E 23D

co,

Figure 13. Mechanism of Ru-catalyzed umpolung carboxylation reaction.

In 2020, Konig and colleagues introduced a significant advancement by integrating
photoredox catalysis with the Wolff-Kishner reaction to achieve the difunctionalization of
N-tosylhydrazones (27) using CO; [76] (Figure 14). This reaction follows a three-component
mechanism involving preformed N-tosylhydrazones, thiols, and CO,.

NNHT: [Ir(dFCF 3ppy),dtbbpy]PFg (1 mol%) COOH
S Cs,COj3 (3 equiv.)
* RSH *+ CO, SR
DMSO, 25 °C, 24 h, bule LED
(3 atm) then 2N HCI Me
Me
25 26 27
COOH COCH COOH COOCH
S S S S
Me Me Me Me
Me OMe NHAc Br
27a, 75% 27b, 55% 27c, 50% 27d, 62%
COOH COOH COOH COOCH
iadeibade WL adh N ade
OMe Ph
27e, 85% 27F, 77% 279, 40% 27h, 43%

Figure 14. Photoredox-catalyzed difunctionalization of tosylhydrazones with CO,.
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The proposed mechanism involves: (i) Photoredox-generated thiyl-radical addition
to N-tosylhydrazone; (ii) Base-assisted formation of diazene intermediate; (iii) Carbanion
trapping by CO, to afford o-thioether carboxylic acids. A key aspect of the mechanism is
the photoredox-mediated generation of a thiyl radical (26B), which subsequently adds to
the N-tosylhydrazone substrate (25). This step is followed by the formation of a diazene
intermediate (27A), which undergoes base-promoted nitrogen extrusion to generate a
carbanion (27B). CO, then functions as the electrophile, capturing the carbanion and
completing the difunctionalization process (Figure 15). Through this method, a variety
of o-thioether-functionalized carboxylic acids were synthesized under relatively mild
conditions, highlighting the potential for practical applications.

H —
“Ts

P,
. -NH
/©) -Ts N -N2 -
—_— —_—
Me 25 /©)\ SR g SR
Me
Me 27B

RS—RP >4, -sr
26A 26B
R-X R co,
Ir'
Ts
*lrlll
COOH
tf;‘ _ SR
blue{éD I Me 27

Figure 15. Mechanism of photoredox-catalyzed difunctionalization reaction.

2.3. Cyclization of Hydrazones with CO,

The significance of nitrogen-containing heterocyclic compounds is well recognized.
Carbonylation reactions utilizing carbon dioxide offer a greener and safer alternative to
highly toxic reagents such as carbon monoxide and phosgene, contributing to the synthesis
of carbonyl-containing heterocyclic compounds [11]. The nucleophilic nitrogen atom in
hydrazones and their derivatives enables reactions with carbon dioxide, facilitating the
formation of carbonyl-containing azole compounds (Figure 16).

N Cl
Pro Q
O
N- i Cl N 0
l O>:O N’ N O NI N 0 —_N71/ N(\
Ny AT
BnO By
MAO B inhibitor Oxadiazon Edaravone Morazone
Figure 16. Representative structures containing the carbonyl-containing azole motif.
In 2017, Lv and colleagues developed an efficient methodology for synthesizing 1,3,4-
oxadiazol-2(3H)-ones (29) through the 1,3-dipolar cycloaddition of nitrilimines (28) with

carbon dioxide, catalyzed by CsF/18-crown-6 [77] (Figure 17). This strategy demonstrates
broad substrate compatibility, enabling hydrazinyl chlorides with various substituents
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to participate in the reaction. The successful synthesis of a reversible MAO-B inhibitor
and the commercial herbicide Oxadiazon further underscores the practical applicability of

this approach.
R2
TI\NHRZ CsF/18-crown-6 N
+ cO : N~
R Cl ’ toluene, t, 12 h 1L >=o
(2.0 MPa) RO
28 29

Ph N'Ph Nph Ph

- N~ N- |

N-N | )= -N

0 | 1) N
' o>: © 0 ~ o>: P
o
\ s Me
F

29a, 84% 29b, 82% 29c, 89% 29d, 71%
NPh NPh Ou o Bn

N N” N. 2—Ph -N

L/=° Ao N =0
o tBy” © Ph/LO
Me

29e, 74% 29f, 86% 29g, 95% 29h, 86%

Figure 17. 1,3-Dipolar cycloaddition of nitrilimines with CO,.

Control experiments and NMR analysis revealed that 18-crown-6 plays a critical role in
facilitating the formation of the nitrilimine intermediate, while the CsF/18-crown-6 system
significantly enhances the reactivity of CO,.

Interestingly, these structures can also be synthesized via the carbonylation of hy-
drazides using CO; as a reactant. A notable example is the work by Suen and colleagues
in 2015, who demonstrated a KOH-mediated carbonylation reaction of hydrazides (30A)
with CO; [78]. The hydrazide precursors were readily obtained through the reaction of
acid chlorides (30) with hydrazine monohydrate, offering a highly efficient synthetic route
(Figure 18).

CO, (bubble) O
_ KOH o)

NH
R™ "Cl EtOH, -10 to 0 °C, 5-10 min R)J\NNHZ-HZO EtOH, 50 °C R)QN'

) N,H4*H,0 0

30 30A 31

Figure 18. CO;-involved transformations involving diazo compounds.

The carbonylation of C(sp®)-H bonds using carbon dioxide has attracted considerable
interest; however, due to its inherent challenges, only a limited number of studies have
been reported in this area [11]. Recently, Hu's team successfully developed a method
for the cyclization of hydrazones with CO;, enabling the synthesis of various pyrazolone
derivatives via 1°, 2°, or 3° C(sp3 )-H carbonylative cyclization reactions [79] (Figure 19).
To evaluate the practical applicability of this reaction, synthesis was achieved on a gram
scale, and several functional transformations were performed on the resulting pyrazolone
derivatives (33). Notably, the successful synthesis of a PKC inhibitor with anti-cancer
activity demonstrated the potential biomedical relevance of this approach. Experimental
findings and previous literature suggested that mixed acid anhydride compounds 32C
serve as crucial intermediates. Under basic conditions, these intermediates can undergo
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transformations leading to the formation of either 32D or 32E, ultimately yielding the target
cyclic products (Figure 20).
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Figure 19. C(sp®)-H carbonylative cyclization reaction of hydrazones using CO,.
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Figure 20. Mechanism of C(sp®)-H carbonylative cyclization reaction.

Overall, carbonylation reactions utilizing carbon dioxide have become a crucial ap-
proach for synthesizing carbonyl-containing heterocyclic compounds. The interaction of
carbon dioxide with hydrazones and their derivatives frequently results in the formation of
valuable carbonyl-containing azole compounds, which hold significant promise for broad
applications in pharmaceuticals and materials science.

2.4. Lactamization Reaction of N-Tosylhydrazones, 2-lodoanilines, and CO,

Quinolinones are an important class of organic compounds with broad applications in
pharmaceuticals and materials science (Figure 21).
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Figure 21. Representative structures containing the quinolinone motif.

In 2016, Yu's group developed a method for synthesizing quinolinone derivatives
via the lactamization of C(sp?)-H bonds with CO, [80]. However, this approach requires
the use of pre-synthesized o-alkenyl- or o-(hetero)arylanilines as substrates. Later that
year, Cheng’s group introduced a palladium-catalyzed three-component reaction involving
N-tosylhydrazones (34), 2-iodoanilines (35), and atmospheric CO,, enabling the efficient
synthesis of a variety of 4-aryl-2-quinolinones (36) (Figure 22) [81]. This methodology
allows the formation of two C-C bonds, one C=C bond, and one C-N bond within a single
reaction vessel, providing a highly effective strategy for incorporating CO, into heterocyclic
frameworks.

Pd(PPhs),Cl, (10 mol%) o)
NNH; ' NaO'Bu (6 equiv.) N R?
R + NH, > |
R! R €0 diglyme, 140 °C, 24 h
34 35 36
o) o) o) o)
36a, 75% 36b, 58% 36c, 65% 36d, 71%
o) o) o) o)
HN HNY HN HNY
' SHRCACENGACENOAS
Cl CN NO,
36e, 65% 36f, 56% 369, 57% 36h, 45%

Figure 22. Pd-catalyzed synthesis route for 4-aryl-2-quinolinones.

The proposed reaction mechanism begins with the palladium-catalyzed coupling of
aryl halides and N-tosylhydrazones, leading to the formation of an 0-vinyl aniline interme-
diate(36E). This intermediate subsequently undergoes C(sp?)-H lactamization with CO,,
yielding the target quinolinone. Additionally, an alternative reaction pathway involving
the formation of o-iodoisocyanatobenzene before the generation of o-vinyl aniline remains
a possibility (Figure 23).
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Figure 23. Mechanism of palladium-catalyzed three-component coupling reaction.

3. Conclusions

As research on carbon dioxide fixation and utilization continues to gain attention, the
conversion of CO; into high-value-added chemicals has emerged as a key focus. Hydrazone
compounds and their derivatives, which serve as essential raw materials or intermediates
in organic synthesis, represent a promising avenue for CO, utilization when integrated
with CO; conversion strategies. Based on the reactions discussed in this paper, the primary
products currently obtained include carbamates, organic carboxylic acid derivatives, and
certain nitrogen-containing heterocycles. These compounds are widely utilized in phar-
maceuticals, materials science, and as intermediates in organic synthesis, underscoring
the relevance of combining CO, utilization with hydrazone chemistry. The major reaction
types involved include coupling, polarity inversion, and cyclization.

However, the development of this integration has not yet matched the progress in
CO; chemistry or hydrazone chemistry, and the range of reactions and products remains
relatively limited. For instance, in Section 2.1, the predominant reaction described involves
the coupling of nitrogen as a nucleophile with CO, and phenylhydrazine to form carba-
mate compounds. Reactions involving other nucleophiles such as oxygen, sulfur, and
carbon, which could potentially yield asymmetric carbonates or carboxylates, have not
been explored, despite their significance in related fields. In Section 2.2, among the reaction
types discussed, only ruthenium-catalyzed polarity inversion has been reported for the
synthesis of organic carboxylic acids. The use of alternative metal catalysts, such as nickel
and palladium, remains unexplored, with the primary products being aryl acetic acids and
acrylic acids. Expanding the use of more cost-effective metals in this field could signifi-
cantly enhance the applicability of these reactions. Furthermore, this section highlights
photocatalytic transformations that successfully facilitate the formation of thioacids. The
application of rational design strategies to achieve carboxylation reactions involving other
heteroatoms, such as nitrogen, could further expand potential applications. Based on the
current state of development, there remains substantial room for growth in the integration
of CO; chemistry with hydrazone chemistry.
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Additionally, with the rapid advancements in photocatalysis and electrocatalysis as
sustainable chemical methods, numerous transformations previously unattainable through
traditional organic or transition metal catalysis have been realized, significantly advancing
organic chemistry. The feasibility of applying photocatalysis and electrocatalysis to the
CO2-involved conversion of hydrazone compounds presents an important avenue for
further investigation.
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