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Abstract: Background: The open-stance forehand is a fundamental technique in tennis,
playing a crucial role in competitive performance. Its execution depends heavily on
lower limb coordination and neuromuscular control. Athletes of different skill levels
often display distinct muscle activation strategies. This study employs non-negative
matrix factorization (NMF) to analyze lower limb muscle synergy patterns during the
forehand open stance across skill levels and explores their potential influence on stroke
performance. Methods: A total of 30 tennis players, including 15 elite and 15 amateur
athletes, participated in this study. Surface electromyography (sEMG) was used to record
the activity of major lower limb muscles during the forehand open stance. Muscle synergy
patterns were extracted using NMF, and K-means clustering was applied to classify synergy
patterns. Independent sample t-tests were conducted to examine differences between
muscle synergies. Results: Significant differences (p < 0.05) were observed in the spatial
characteristics of each synergy component across different movement phases. However,
temporal characteristics showed a significant difference only in Syn2 during the mid-phase
of the backswing (BS) (56.2–60.4%) (p = 0.033). Conclusions: Elite athletes exhibited more
optimized and stable muscle activation patterns, enabling more efficient coordination of
major muscle groups. Based on sEMG decomposition and muscle synergy analysis, these
activation patterns may contribute to improved stroke efficiency and energy transfer and
potentially reduce the risk of sports-related injuries.

Keywords: tennis; forehand open stance; lower limb; muscle synergy; non-negative matrix
factorization; neuromuscular control

1. Introduction
Tennis, a sport that combines speed, strength, agility, and strategic intelligence, is a

key discipline within sports science [1]. It is also a primary focus of research on movement
mechanics, training methodologies, and physical conditioning [2]. As sports science ad-
vances [3], biomechanics research in tennis has attracted increasing interest [4], particularly
in relation to lower limb strength, footwork mechanics, and muscle coordination during
stroke execution [5].
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In competitive tennis, a player can execute over 1100 strokes in a single match [6].
Among these, the forehand open-stance stroke is widely utilized for its strategic advantage
in facilitating swift transitions between offensive and defensive play [7]. Effective execution
of this movement relies heavily on lower limb musculature [8]. The performance of a
forehand open-stance stroke is primarily influenced by lower limb stability, explosive
strength, and coordinated muscle activation [9–11]. These elements impose substantial
demands on neuromuscular control strategies and energy transfer efficiency [12], both of
which are crucial in determining shot precision and effectiveness [13]. Studies indicate
that 70–75% of stroke energy originates from the coordinated motion of the lower limbs,
primarily involving the ankle–knee–hip joints of the supporting leg to ensure efficient
kinetic chain transmission [14]. If the activation timing of lower limb muscles during a
forehand open-stance stroke is delayed by more than 60 ms, the peak ground reaction force
decreases by 18–22%, directly impairing kinetic energy transfer efficiency [15]. Furthermore,
electromyographic (EMG) analysis of professional tennis players reveals that a 50 ms delay
in lower limb muscle activation results in a 15% reduction in hip joint angular velocity,
significantly lowering stroke speed [16].

One of the key challenges in motor control research is deciphering how the central
nervous system (CNS) regulates multi-muscle coordination and adapts neuromuscular
strategies accordingly [17,18]. Differences in neuromuscular control strategies reflect the
biological foundation of athletic performance [19]. Studies show that elite athletes ex-
hibit a more refined pre-activation mechanism during stroke preparation, establishing a
coordinated contraction pattern between the lower limb and core muscles. Notably, the
co-activation index (CIC) between the vastus medialis and transversus abdominis in elite
players can reach 0.82, whereas it is only 0.51 in amateur players [20]. This timing advantage
not only improves energy transmission efficiency (by 23%) but also reduces joint oscillation
(by 37%), preserving the integrity of the kinetic chain [15]. However, most existing studies
focus either on muscle activation levels or timing patterns individually [21,22], failing to
examine their synergistic interactions, which limits a comprehensive understanding of
motor skill control mechanisms.

In recent years, non-negative matrix factorization (NMF) has gained significant atten-
tion in sports science due to its strong physiological interpretability and stability [21,23].
It is particularly effective in analyzing multi-muscle coordination during complex move-
ment tasks by extracting a limited number of muscle synergy modules and reducing
high-dimensional EMG data into a few representative muscle coordination patterns. The
non-negativity constraint ensures that extracted synergy patterns align with muscle physi-
ology, where muscle excitations remain non-negative, reflecting realistic activation mech-
anisms [24]. Moreover, NMF simultaneously quantifies both spatial structures (muscle
weight vectors) and temporal activation coefficients of muscle synergies [25–27], provid-
ing insights into muscle group contributions and their dynamic adaptations over time,
overcoming limitations of traditional analytical methods.

Despite increasing interest in tennis biomechanics, most existing studies have primar-
ily focused on single-muscle activation or joint kinematics, overlooking the integrated,
time-dependent coordination among multiple muscle groups. Moreover, few studies
have explored how muscle synergy structures adapt across different skill levels using
physiologically interpretable methods such as NMF. This study addresses this gap by ap-
plying synergy-based analysis to reveal neuromuscular control differences that underline
skill-dependent variations in stroke execution.

Therefore, this study employs the NMF algorithm to systematically analyze the neuro-
muscular control strategy variations in lower limb muscle synergy structures between elite
and amateur tennis players while executing the forehand open stance stroke. By quantifying
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the number of synergy modules, activation timing synchronization, and spatial distribution
of muscle weights [28], this study seeks to examine variations in muscle coordination and
activation characteristics among players of varying skill levels. Focusing on the intrinsic
mechanisms of motor skill control, this study further elucidates the role of muscle synergy
patterns in movement control and energy transfer. By comparing and analyzing the muscle
synergies of players at different skill levels, the findings will not only optimize existing
motor skill control theories but also serve as a valuable reference for coaches and sports
scientists, promoting neuromuscular-based training approaches to enhance overall athletic
performance. Although skill level in tennis lies on a continuum, this study employed a
binary classification (elite vs. amateur) to emphasize distinct contrasts in neuromuscular
control. This simplification is acknowledged as a methodological limitation, and future
studies may consider more nuanced stratification to reflect the spectrum of player abilities.

2. Methods
2.1. Subjects

This was a cross-sectional comparative study conducted under controlled laboratory
conditions. The participants were recruited through university tennis programs, local
clubs, and professional training centers in Ningbo, China. In this study, a total of 30 male
tennis players participated, consisting of 15 elite and 15 amateur players, all of whom
were right-handed. The elite group (age: 20 ± 1.05 years; height: 177 ± 2.69 cm; weight:
71 ± 4.15 kg; tennis experience: 11.73 ± 0.96 years; weekly training: 16 ± 3 h) and the
amateur group (age: 21 ± 1.94 years; height: 176 ± 2.67 cm; weight: 70 ± 3.65 kg; tennis
experience: 6.67 ± 1.29 years; weekly training: 10 ± 2 h) had undergone structured tennis
training. However, the elite players received more professional training, achieved rankings
in official tournaments, and held sports certifications issued by recognized institutions.
They met the Technical Classification Standards for Tennis Players issued by the General
Administration of Sport of China in 2021 (www.sport.gov.cn).

All participants had been free of musculoskeletal injuries for at least a year and had
no history of neurological disorders [29]. To prevent fatigue from affecting kinematic
performance and muscle activity, the participants were required to rest adequately before
testing [30]. They were instructed to sleep for at least 8 h and avoid high-intensity training
or competition the day before testing. This study received ethical approval from the Ethics
Committee of Ningbo University (Approval No. TY2024044), and all participants signed
written informed consent forms prior to data collection.

2.2. Experimental Procedures

A 10-camera Vicon motion capture system (Vicon Motion Systems, Oxford, UK)
and Kistler force plates (Kistler Instruments, Winterthur, Switzerland) were used to syn-
chronously collect kinematic and kinetic data during the forehand open-stance stroke. The
Vicon system recorded lower-limb kinematics at 250 Hz, while the Kistler force plates
captured ground reaction forces at 1000 Hz [31,32]. A 49-marker model was used, cover-
ing the following anatomical landmarks: thoracic vertebrae 10, scapular-inferior angles,
scapula-acromial edge, deltoid tuberosity, humerus-lateral epicondyle, radius–styloid pro-
cess, ulna–styloid process, the basis of the forefinger, anterior superior iliac spine, iliac
crest, posterior superior iliac spine, thigh triad 1–3, lateral epicondyle, medial epicondyle,
fibular head, tibial tuberosity, calf triad, lateral prominence of the lateral malleolus, medial
prominence of the medial malleolus, root bone, dorsal margin of the first metatarsal head,
dorsal aspect of the second metatarsal head, and dorsal margin of the fifth metatarsal
head [33,34].

www.sport.gov.cn
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A twelve-channel Delsys surface electromyography (sEMG) system (Delsys Inc., Nat-
ick, MA, USA) recorded muscle activity at 1000 Hz. The sEMG signals were synchronized
with kinematic data via an A/D converter (Vicon Motion Systems, Oxford, UK) for subse-
quent analysis. Muscle activity was recorded from 12 muscles, including Rectus femoris
(left LRF, right RRF), Biceps femoris (long head) (left LBF, right RBF), Medial gastrocnemius
(left LMG, right RMG), Tibialis anterior (left LTA, right RTA), Erector spinae (left LES, right
RES), and Gluteus maximus (left LGMAX, right RGMAX). Electrode placement followed
the SENIAM (Surface Electromyography for the Non-Invasive Assessment of Muscles)
guidelines [35], ensuring proper alignment with the long axis of the muscle fiber [36].
Prior to electrode placement, the skin was prepared by cleansing with alcohol wipes and
removing hair to reduce impedance and optimize signal quality [37]. To minimize motion
artifacts and enhance data reliability, electrodes were affixed using medical-grade adhesive
and secured with elastic bands.

Prior to testing, participants engaged in a 15 min warm-up routine comprising foot-
work exercises and practice swings to activate key muscle groups. Following this, they
executed five high-intensity open-stance forehand strokes, focusing on striking the ball
with the racket’s sweet spot to refine force application and movement coordination.

During formal testing, a professional coach tossed balls 1.5 m in front of the par-
ticipants. The participants were required to hit the ball into a designated target area, a
3 × 3 m2, located 1 m from both the baseline and the singles sideline. A trial was consid-
ered successful if the shot landed within the designated area, with participants needing to
complete 10 such successful attempts. A 15 s rest was maintained between trials to prevent
fatigue-related muscle activity interference [38]. The testing process was supervised by a
professional coach to ensure consistency and proper execution. Similar protocols involving
coach-supervised skill execution have been used in tennis biomechanics research to ensure
the ecological validity and technical accuracy of stroke performance [30]. None of the
equipment used in the study interfered with or restricted the participants’ movements
(Figure 1a).
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Figure 1. Overview of the experimental framework. (a) Layout of the experimental setup. (b) Kine-
matic data processing and analysis using Visual 3D (C-Motion Inc., Germantown, MD, USA). (c) De-
fined phases of the forehand open-stance stroke. (d) Electromyographic (EMG) data were recorded
from 12 muscles throughout the experiment.
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2.3. Data Analysis
2.3.1. Kinematic Data Extraction and Phase Segmentation

The kinematic data in this study were processed using Vicon Nexus (v2.6.1, Vicon
Motion Systems, Oxford, UK) for standardized analysis. This included marker identi-
fication and annotation, interpolation of missing motion trajectories, and data labeling.
The complete dataset was then exported in a “*c3d” format to Visual 3D (C-Motion Inc.,
Germantown, MD, USA) for further computation and analysis (Figure 1b). Based on the
extracted kinematic data, the forehand open-stance stroke was divided into three phases
and four key time points (Figure 1c). Phase 1: Backward Swing (BS)—From the moment
the right foot contacts the ground to the point of maximum knee flexion. Phase 2: For-
ward Swing (FS)—From the point of maximum knee flexion to the moment of ball impact.
Phase 3: Follow-through (FT)—From ball impact to the completion of the follow-through.

2.3.2. Muscle Synergy Extraction

Before extracting muscle synergies, the acquired sEMG data were preprocessed using
MATLAB (R2024a) (MathWorks, Natick, MA, USA) (Figure 1d) [39]. First, the baseline
of the raw EMG data was adjusted to zero. A fourth-order Butterworth bandpass filter
was applied to the raw sEMG signal to remove noise, with a cutoff frequency set at
60 Hz, followed by full-wave rectification [40]. Subsequently, a fourth-order Butterworth
low-pass filter was applied to the rectified signal, with a cutoff frequency of 50 Hz, to
extract the linear envelope [41]. To eliminate variations in intrinsic muscle activation
characteristics, the EMG signal of each muscle was then normalized [42]. NMF was
employed to decompose the sEMG signals and extract muscle synergy modules [43], this
algorithm was implemented in R (v4.3.2, R Foundation for Statistical Computing, Vienna,
Austria). The algorithm decomposes muscle activity (A(t)) into a linear combination of time-
invariant synergy vectors (Wi) and time-varying activation coefficients (Bi(t)), computed
through an iterative multiplicative update rule. Thus, the sEMG signal can be reconstructed
using the following equation:

A(t) ≈ ∑Nsyn
k=1 Bk(t)Wk. (1)

To determine the number of muscle synergies (Nsyn), we applied the NMF algorithm
to each experimental dataset, sequentially extracting between 1 and 12 synergy modules.
Since the data were collected from 12 muscles, the maximum number of synergies was set
to 12. The optimal number of synergies was defined as the minimum number of synergy
modules required to achieve approximately 90% of EMG reconstruction R2 [44]. Based on
the standard definition of R2 in NMF [45], the calculation formula is as follows:

R2 = 1 − SSE
SST

(2)

SST = ∑
i,j

(
Dij − µDi

)2 (3)

SSE = ∑ i,j
(

Dij −
[
WC]ij

)2. (4)

The total sum of squares (SST) represents the variance within the dataset, where
Dij denotes the sEMG data of the ith muscle at the j-th time point, and µDi represents
the average sEMG value of the ith muscle. The sum of squared errors (SSE) quantifies
the reconstruction error. To prevent the extracted synergy vectors from converging to
suboptimal local minima in an incorrect solution space, each synergy extraction was
performed 20 times. The synergy vectors (Wi) and activation coefficients (Bi(t)) were
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initialized with random values uniformly distributed between zero and the maximum
sEMG value. The extraction result with the highest R2 value was selected for further
analysis. During each execution of NMF, the iterative update process was terminated when
the change in EMG reconstruction R2 was less than 0.001% for 20 consecutive iterations [21].
The K-Means algorithm was then applied to cluster the muscle synergies of the elite and
amateur groups, identifying synergy characteristics associated with different skill levels.

2.3.3. Statistical Analysis

All statistical analyses were performed with IBM SPSS Statistics (v27.0, IBM Corp.,
Armonk, NY, USA) and a custom MATLAB script implementing one-dimensional statis-
tical parametric mapping (spm1d). The Shapiro–Wilk test was applied to verify that the
data adhered to a normal distribution. Between-group differences in the muscle synergy
matrix (A) were assessed using an independent sample t-test. Additionally, to comprehen-
sively analyze temporal variations in the activation coefficient matrix (B), spm1d approach
was employed to assess variations in activation coefficients over distinct time intervals.
Statistical significance was determined at p < 0.05.

3. Results
3.1. Muscle Synergy Extraction Using NMF

Figure 2 illustrates the R2 values corresponding to each muscle synergy in both
elite and amateur tennis players. The statistical evaluation indicated that the number of
synergies did not significantly differ between the two groups, with both groups exhibiting
four synergy modules. The R2 values for the elite and amateur groups were 0.96 ± 0.04
and 0.95 ± 0.06, respectively, with no significant difference (p = 0.682).
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extracted muscle synergies.

3.2. Muscle Synergy Characteristics

Notable variations in muscle synergy were identified between the elite and amateur
groups across different stages of the open-stance forehand stroke. The muscle activation
patterns exhibited distinct characteristics across these phases. Figure 3 illustrates the
spatiotemporal structure of muscle synergy in the elite Figure 3a and amateur Figure 3b
groups across the three movement phases. The forehand strokes in both groups can be
characterized by four muscle synergies. The first (Syn1) and second (Syn2) synergies are
primarily activated during the BS phase, the third synergy (Syn3) is dominant in the FS
phase, and the fourth synergy (Syn4) is mainly engaged during the FT phase.
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Figure 3. Illustrations of the muscle synergy patterns observed in the forehand open-stance stroke
for both elite and amateur players. The left side of each chart presents bar graphs representing
the activation contributions of the four synergy modules (Synergy 1–4). Black dots overlaid on the
bars represent individual data points from each participant, indicating inter-subject variability. The
right side displays temporal variation curves (Movement Phase 1–4), depicting muscle activation
intensity across different time points. The pink dashed box and corresponding symbol in Movement
Phase 2 of the elite group indicate a time interval where a statistically significant difference (p < 0.05)
was observed.

Figure 3. Illustrations of the muscle synergy patterns observed in the forehand open-stance stroke
for both elite and amateur players. The left side of each chart presents bar graphs representing
the activation contributions of the four synergy modules (Synergy 1–4). Black dots overlaid on the
bars represent individual data points from each participant, indicating inter-subject variability. The
right side displays temporal variation curves (Movement Phase 1–4), depicting muscle activation
intensity across different time points. The pink dashed box and corresponding symbol in Movement
Phase 2 of the elite group indicate a time interval where a statistically significant difference (p < 0.05)
was observed.
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The muscle synergy activation patterns varied significantly across different phases,
with distinct activation differences observed between the elite and amateur groups. Specifi-
cally, the activation level of Syn2 in the mid-BS phase (56.2–60.4%) was markedly elevated
in the elite group relative to the amateur group (p = 0.033).

In Syn1, the elite group exhibited higher activation levels in LTA (p = 0.019) and RBF
(p = 0.001), while RRF (p = 0.002), LES (p = 0.001), RES (p = 0.001), LGMAX (p = 0.033), and
RMG (p = 0.003) showed lower activation levels.

In Syn2, the elite group demonstrated increased activation in RRF (p = 0.018), RGMAX
(p = 0.001), and RBF (p = 0.001), whereas LTA (p = 0.004) and LES (p = 0.008) exhibited lower
activation levels.

In Syn3, the elite group showed significantly higher activation levels in RRF (p = 0.001),
RTA (p = 0.022), and RGMAX (p = 0.001), while LES (p = 0.001) and RES (p = 0.005) had
lower activation levels.

In Syn4, the elite group displayed increased activation in LBF (p = 0.044) but reduced
activation in RTA (p = 0.001) and RES (p = 0.026).

4. Discussion
This study examines the characteristics of lower-limb muscle synergies during the

open-stance forehand stroke in tennis players of different skill levels. It also compares the
muscle activation patterns of elite and amateur players at various movement phases. The
results indicate significant differences in muscle synergy between the two groups. Elite
players demonstrate a more stable and optimized activation pattern, whereas amateurs
exhibit greater variability in activation timing, intensity, and muscle group distribution.

During the BS phase, the activation patterns of Syn1 and Syn2 in elite players are
superior to those of amateurs. Notably, Syn2 activation is significantly higher in the mid-BS
phase (56.2–60.4%) (p < 0.05). This suggests that elite players utilize their lower limb muscles
more effectively for stable support and power preparation, enhancing stroke efficiency. In
Syn1, elite players primarily rely on small distal muscles (LTA) for stability control while
adjusting lower-limb posture through RBF. In contrast, amateurs exhibit a more dispersed
activation pattern, relying more on core muscles (LES, RES) and larger muscle groups
(LGMAX). This indicates that amateur players may require additional muscle adjustments
to maintain movement continuity. In Syn2, elite players exhibit stronger quadriceps and
gluteus maximus synergy (higher RRF, RGMAX, and RBF activation with lower LTA and
LES activation, p < 0.05), whereas amateurs rely more on the lower-leg muscles (LTA) for
compensation. This optimized synergy in elite players may reflect precise neuromuscular
control of pre-activation within the kinetic chain. According to the “muscle synergy
hierarchical control theory” [19], elite players enhance the coupling between the gluteus
maximus and quadriceps (RGMAX/RRF contribution ∆ = +34%), pre-establishing hip-knee
stiffness matching and reducing energy loss during subsequent push-off phases [15]. In
contrast, amateurs excessively rely on core muscles in Syn1 (LES/RES activation intensity
∆ = +22%) and lower-leg compensation (LTA activation ∆ = +18%), aligning with the
“compensatory synergy hypothesis” [20], which describes excessive activation of non-
dominant muscle groups. While this strategy helps maintain movement continuity to some
extent, it reduces overall energy transfer efficiency, compromising stroke explosiveness
and stability.

During the FS phase, the activation pattern of Syn3 differs significantly between
elite and amateur players. The elite group exhibits higher activation levels of the rectus
femoris (RRF), tibialis anterior (RTA), and gluteus maximus (RGMAX), while activation
of the lumbar erector spinae (LES) and rectus abdominis (RES) is lower (p < 0.05). This
suggests that elite players primarily rely on coordinated activation of the rectus femoris
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and gluteus maximus to generate stroke power while minimizing excessive core muscle
engagement, thereby improving energy transfer efficiency. This pattern aligns with the
“proximal-to-distal sequencing” principle, where hip-driven momentum transfer optimizes
kinetic energy conversion in the stroke [16]. The elite group’s selective activation of
RGMAX/RRF (∆ = +41%, p < 0.01) facilitates smoother energy transfer between the hip
and knee joints, while significantly reducing core muscle activation (LES/RES activation
∆ = −37%). This neuromuscular strategy likely enhances intersegmental force transmission
along the kinetic chain, as suggested in previous studies on multi-joint coordination during
tennis strokes [12,13,46]. Moreover, such a proximal-driven activation pattern has been
shown to reduce upper-limb loading and improve stroke repeatability [5,16], which may
explain the more stable and efficient stroke mechanics observed in elite players. In contrast,
the amateur group exhibits a distinct activation pattern, characterized by greater LES
and RES activation but lower RRF and RGMAX contributions. This suggests a reliance
on core stability to compensate for lower limb force production deficiencies, leading to
reduced power output, which affects stroke speed and accuracy. This pattern indicates
a potential risk of kinetic chain breakdown and may be biomechanically linked to tennis
elbow injuries [47].

During the FT phase, the elite group exhibited higher activation of the LBF and
lower activation of the RTA and RES (p < 0.05). This suggests that they predominantly
depend on the biceps femoris for stability, promoting post-stroke balance and seamless
movement transitions. This activation pattern aligns with the “eccentric-priority strategy”,
in which eccentric hamstring control mitigates peak joint reaction forces by 19%, improving
movement recovery efficiency by reducing reset time by 230 ms. Conversely, the amateur
group displayed greater activation of the RTA and RES alongside lower LBF engagement,
indicating a stronger reliance on lower leg muscles for compensation and insufficient biceps
femoris control over the lower limb. This lower-leg-dominant pattern corresponds with the
“distal compensation hypothesis”, characterized by an ankle-focused stabilization strategy.
These findings imply that elite players refine eccentric control of the biceps femoris during
the FT phase, enabling more efficient post-stroke body adjustments. In contrast, excessive
lower-leg reliance in amateurs may compromise post-stroke stability and delay movement
recovery, potentially affecting preparation for the next shot.

The elite group exhibited a more refined muscle synergy pattern throughout all phases
of the open-stance forehand stroke. They efficiently engaged larger muscle groups (rectus
femoris, biceps femoris, gluteus maximus) to generate power while reducing dependence
on smaller muscles (tibialis anterior, plantar flexors). This approach improved movement
stability and may help enhance kinetic chain coordination during stroke execution. In
contrast, the amateur group displayed a more dispersed muscle activation pattern, lacking
clear phase-specific characteristics. Their core stability and lower-limb coordination were
comparatively weaker, particularly during the BS and FT phases. These limitations could
hinder force generation efficiency and disrupt overall movement stability. Although this
study did not directly measure movement stability or force output, previous research
has indicated that refined muscle synergy patterns contribute to improved athletic perfor-
mance [24,28,48]. Therefore, the elite group’s more synchronized muscle activation pattern
may reflect a neuromuscular control strategy that facilitates improved stroke coordination
and movement efficiency.

Furthermore, the elite group exhibited more refined neuromuscular control through-
out the FS and FT phases, which may contribute to more coordinated and technically
consistent stroke execution. Conversely, the amateur group displayed inconsistent muscle
activation patterns and higher variability in movement adjustments, potentially affecting
coordination and energy transfer efficiency. To enhance performance in amateur athletes,
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targeted training of the gluteus maximus and quadriceps can increase lower limb power
contribution during strokes while reducing over-reliance on smaller muscle groups. To
address deficiencies in FT control, strengthening the biceps femoris can improve post-stroke
balance and center-of-mass adjustments, thereby enhancing stroke fluidity and stability.

This study analyzed muscle synergy patterns in athletes of different skill levels using
EMG data, revealing the role of muscle activation patterns in stroke execution. Several
limitations related to the study population and design should be acknowledged. The sample
size was relatively small and included only male players. Differences in participants’ age,
playing experience, body composition, and BMI were not explicitly controlled, which may
have introduced variability and limited the statistical power. These factors should be
addressed in future studies with larger, more diverse, and stratified samples to improve
the precision and generalizability of the findings.

In addition, the testing procedures were conducted in a controlled laboratory environ-
ment using a fixed ball toss and stationary stance. This experimental setup does not fully
reflect the demands of actual match play, where stroke execution is affected by continuous
movement, dynamic ball trajectories, court surface variations, and tactical or psychological
stressors. The absence of these variables may constrain the ecological validity of the current
results. Furthermore, the binary “in-or-out” classification used to evaluate target accuracy
may not adequately capture the technical quality of stroke execution, such as ball speed,
power, or racket velocity. This limitation weakens the ability to directly link muscle synergy
patterns to stroke performance outcomes. Future research should aim to integrate more
realistic testing conditions and include upper body and trunk muscle assessments to better
represent the neuromuscular demands of real-world performance.

5. Conclusions
Tennis players at different skill levels exhibit distinct muscle activation patterns. Elite

players demonstrate more efficient and stable muscle activation, effectively coordinating
major muscle groups such as the quadriceps, gluteus maximus, and gastrocnemius. These
activation patterns may help improve stroke coordination and movement stability. In
contrast, amateur players show greater variability in muscle activation and lower energy
transfer efficiency, particularly during the BS and FT phases. Their reliance on smaller
muscle groups for compensation leads to reduced movement stability and coordination.
Analyzing these muscle activation patterns can help players optimize their forehand stroke
performance. For amateur players, targeted training to strengthen the gluteus maximus
and quadriceps can enhance lower-limb contribution during strokes, ultimately improving
overall performance.
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