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Abstract: In this paper, we investigate implicit surface reconstruction methods based
on deep learning, enhanced by multi-sensor data fusion, to improve the accuracy of 3D
reconstruction in complex scenes. Existing single-sensor approaches often struggle with
occlusions and incomplete observations. By fusing complementary information from
multiple sensors (e.g., multiple cameras or a combination of cameras and depth sensors),
our proposed framework alleviates the issue of missing or partial data and further increases
reconstruction fidelity. We introduce a novel deep neural network that learns a continuous
signed distance function (SDF) for scene geometry, conditioned on fused multi-sensor
feature representations. The network seamlessly merges multi-modal data into a unified
implicit representation, enabling precise and watertight surface reconstruction. We conduct
extensive experiments on 3D datasets, demonstrating superior accuracy compared to single-
sensor baselines and classical fusion methods. Quantitative and qualitative results reveal
that multi-sensor fusion significantly improves reconstruction completeness and geometric
detail, while our implicit approach provides smooth, high-resolution surfaces. Additionally,
we analyze the influence of the number and diversity of sensors on reconstruction quality,
the model’s ability to generalize to unseen data, and computational considerations. Our
work highlights the potential of coupling deep implicit representations with multi-sensor
fusion to achieve robust 3D reconstruction in challenging real-world conditions.

Keywords: implicit surface; 3D reconstruction; deep learning; multi-sensor fusion; signed
distance function (SDF)

1. Introduction

Reconstructing accurate 3D models of real-world scenes and objects is a core chal-
lenge in computer vision, robotics, augmented reality, and numerous other domains.
High-fidelity 3D models are essential for applications ranging from autonomous naviga-
tion (where precise knowledge of obstacles can prevent collisions) to immersive virtual
reality (where believable geometry underpins interactive experiences) and cultural her-
itage preservation (where faithful digitization of artifacts aids long-term safeguarding) [1].
In classical methods, the accuracy of 3D reconstruction is improved through image en-
hancement techniques [2]. Despite substantial progress using classical geometry-based
methods such as multi-view stereo or volumetric integration of depth data, achieving com-
plete and robust 3D reconstructions in cluttered, complex, and occlusion-heavy scenarios
remains difficult.
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In recent years, deep learning has revolutionized 3D perception by introducing data-
driven shape priors. Among emerging paradigms, implicit representations have attracted
significant attention: rather than outputting discrete voxel grids or point clouds, they
represent the object surface as the zero-level set of a learned continuous function, often pa-
rameterized via a multi-layer perceptron (MLP). For example, methods such as DeepSDF [3]
and Occupancy Networks [4] show that a neural network can map any 3D coordinate to a
signed distance or occupancy value, enabling high-resolution, memory-efficient reconstruc-
tions compared to older voxel-based approaches. However, these methods typically rely
on inputs from a single sensor modality (e.g., a single depth camera or limited-view RGB
images), leading to incomplete geometry when the sensor cannot observe certain parts of
the scene.

A promising approach to overcome occlusion and coverage gaps is multi-sensor fusion.
By integrating measurements from multiple distinct sensors, such as several cameras
from different viewpoints or a camera plus LiDAR, one can obtain more comprehensive
coverage of the environment. Although classical fusion pipelines (like TSDF integration
from multiple depth frames) can partially address coverage issues, they often do not
incorporate learned shape priors and may fail to produce watertight or high-detail surfaces.
Leveraging deep learning at the feature level, in which each sensor’s signal is encoded
into latent features and then fused, can allow the network to learn how best to combine
complementary information and handle inconsistencies across sensors. Additionally, Ming
et al. [5] introduced a straightforward multi-sensor fusion framework (OccFusion) for
3D occupancy prediction, underscoring the advantages of combining multiple sensor
modalities for robust scene understanding.

In this work, as shown in Figure 1, we propose a multi-sensor implicit surface recon-
struction method based on learning a signed distance function (SDF) conditioned on fused
feature encodings. Our method allows each sensor to contribute specialized features via
a sensor-specific encoder; these features are fused into a single code that conditions an
SDF decoder to produce a continuous geometry representation. By training on a variety of
synthetic or real data with ground-truth geometry, the network learns shape priors that
help fill unobserved regions while maintaining physical plausibility. Through extensive
experiments, we show that multi-sensor fusion significantly reduces occlusion artifacts and
leads to much higher reconstruction fidelity than single-sensor approaches or naive TSDF
fusion methods [6].
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Figure 1. High-level schematic of our proposed system.
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Multiple sensors (cameras, depth scanners, LiDAR, etc.) provide raw data Dy, ..., Dy,.
Each sensor is processed by a sensor-specific encoder Ej, ..., Ey. Their latent features are
fused into a single global code z, used by a neural implicit decoder fy(x; z) to predict the
signed distance function (SDF) values at arbitrary 3D points x. The zero-level set of this
field then forms the reconstructed 3D surface.

e  Unified Multi-Sensor Fusion Framework: We propose a deep implicit reconstruction
framework that explicitly fuses multi-modal sensor features (e.g., from depth images,
RGB images, and point clouds) via sensor-specific encoders and a unified fusion
network. This approach effectively overcomes occlusion and incomplete data issues
common in single-sensor methods.

e Eikonal-Regularized SDF Learning in a Multi-Sensor Context: By incorporating an
Eikonal regularization term, our method not only learns an accurate signed distance
function (SDF) but also enforces the physically meaningful unit gradient constraint,
leading to smooth and watertight surface reconstruction.

e  Comprehensive Experimental Analysis and Ablation Studies: We provide detailed
evaluations, including the impact of sensor number and diversity, demonstrating that
the proposed multi-sensor fusion strategy significantly outperforms both single-sensor
baselines and traditional TSDF fusion methods.

e Flexibility in Feature Fusion: Our framework supports both straightforward MLP-
based fusion and transformer-based methods, making the system adaptable to various
sensor configurations and application requirements.

2. Related Work
2.1. Classical 3D Reconstruction

Traditional pipelines for 3D reconstruction typically use geometry-based or photo-
metric methods. Multi-view stereo (MVS) systems rely on finding dense correspondences
among images of a static scene, then performing 3D triangulation to recover shape. Vol-
umetric approaches, such as TSDF fusion [6] and kinect fusion, fuse range scans into a
global truncated signed distance function (TSDEF), yielding real-time reconstruction. Pois-
son surface reconstruction from oriented point clouds can produce smooth, watertight
surfaces. However, these classical techniques often struggle with incomplete data, strong
occlusions, or sensor noise, leading to partial or hole-ridden reconstructions, as shown
in Figure 2. We also note that established tools such as COLMAP are widely used for
structure-from-motion and multi-view stereo from RGB images, but they do not natively
fuse LiDAR or depth modalities at a learned feature level.

Data Distribution

Dimension 2

Dimension 1

Figure 2. Illustration of multi-view or multi-sensor data distribution.
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In real-world environments with clutter or occlusions, each sensor might capture only
a subset of the scene’s surface. Combining multiple sensors boosts coverage and reduces
blind spots.

2.2. Deep Implicit Representations

In contrast to voxel- or point-based outputs, implicit representations encode geometry
in a continuous function parameterized by a multi-layer perceptron (MLP). DeepSDF [3]
learns a signed distance function that can represent shapes at arbitrary resolution; Occu-
pancy Networks [4] model the occupancy probability of 3D points. Subsequent works
have integrated differentiable rendering, multi-view supervision, and normal constraints
to further improve performance [7-15]. Other advances include the use of local deep
implicit functions [16] and generative modeling techniques such as AtlasNet [17] and
pointset generation networks [18]. Methods like [19-22] have also explored shape priors
and self-supervision for geometry inference.

Meanwhile, the family of Neural Radiance Fields (NeRFs) [9] and its variants are
powerful for view synthesis from multiple RGB images. However, they typically focus on
photo-consistency for rendering, rather than multi-modal sensor fusion or guaranteed wa-
tertight surfaces. In this paper, we emphasize multi-sensor input and SDF-based geometry,
which can handle occlusions more directly, as shown in Figure 3.

2D SDF Visualization
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Figure 3. Two-dimensional slice illustration of a signed distance function (SDF).

Negative values are assigned to interior points (inside the object), positive values to
exterior points, and the zero-level set delineates the boundary.

2.3. Multi-Sensor Fusion

Fusing data from multiple sensors is common in robotics and autonomous driving,
combining LiDAR, radar, and camera inputs for robust 3D understanding, as shown
in Figure 4. Traditional methods often rely on classical geometric alignment or TSDF
merging [6]. However, learned feature fusion for implicit representations remains relatively
underexplored. Recent work [23] demonstrated the benefits of multi-view supervision in
improving single-view reconstruction accuracy. Similarly, [9,11] presented frameworks that
integrate deep learning with multi-view cues or neural radiance fields. Self-supervised
learning techniques [22] and uncertainty-aware approaches have been proposed to address
sensor noise. Enforcing multi-view consistency has also proven crucial [12,24].
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Figure 4. Conceptual depiction of multi-sensor coverage in a scene.

Further explorations involve the fusion of multi-view depth maps using deep learn-
ing [25], differentiable rendering frameworks [26], and geometric alignment methods.
Meanwhile, point-based networks such as PointNet [27], PointNet++ [28], or octree-based
strategies [29] demonstrate diverse approaches to efficient 3D feature extraction. GAN-
based 3D model generation [17,19] and shape parameterization methods [18] complement
these techniques. Additional works [30,31] (PIFu, PIFuHD) highlight pixel-aligned implicit
representations. Integrations of geometry and context in stereo [32] or multi-view depth
inference [33,34] further illustrate the richness of this domain.

Our work sits at the intersection of these threads. We employ a deep implicit represen-
tation (SDF) trained on multi-sensor data, but we fuse the signals in the feature space of
the encoders instead of naive geometric merging. This approach leverages learned feature
extraction and robustly combines signals from different modalities or viewpoints [5] to
yield complete and accurate surface reconstructions.

3. Method

Our goal is to learn a function fy(x; z) that maps any 3D coordinate x € R3 to a real
value approximating the signed distance to the surface. Here, z is a global latent code
encoding multi-sensor information, and 0 represents the parameters of our neural network.
In this section, we describe in detail how we collect and preprocess data from multiple
sensors, design sensor-specific encoders, fuse the latent features, enforce signed distance
function (SDF) regularity through the Eikonal constraint, and finally extract 3D surfaces
from the learned continuous representation. Our design is also inspired by recent advances
in deep implicit function modeling [15,16] and shape completion [21].

3.1. Overview of Pipeline

The overall pipeline of our approach is illustrated in Figure 5. It consists of several
key stages:



Sensors 2025, 25, 2820

6of 21

[ Output ]

Nx (* Implicit Decoder )

Fusion Module

/-( Attentlon Block ]4\
U-Net ] [ PointNet++ ] ( ResNet-34 )

1xN convolutions

DepthMap ) ( LiDAR Image
Data }—/

Figure 5. An example illustration of the proposed reconstruction pipeline, demonstrating sensor

input encoding, feature fusion, attention-based decoding, and output generation.

1. Sensor Inputs. We assume that m distinct sensors provide raw data (D;, ..., Dy).
These sensors can be, for example, multiple depth cameras capturing images from different
viewpoints or a combination of depth images and LiDAR scans. The diversity of sensors
allows for complementary coverage of the scene.

2. Encoders. Each sensor’s raw data Di are processed by an encoder E;, which extracts
a compact latent representation e;. The encoder architecture is adapted to the modality of
the sensor. For example, for depth images, a 2D convolutional neural network (CNN) or a
U-Net variant is employed, while for LIDAR point clouds, a PointNet [27] or a Transformer-
based network might be used. In our implementation, we draw inspiration from [21] for
designing effective sensor-specific encoders and carefully choose “U-Net vs. CNN” or
“PointNet vs. PointNet++" based on the input resolution and complexity, as these design
choices can affect detail capture.

3. Feature Fusion. The latent features (e, ..., em) from all sensors are fused by a
dedicated fusion network F into a single global latent code z € Rz. This fusion step is
critical, as it integrates complementary information from different viewpoints and sensor
modalities into one unified representation. We use a simple MLP to concatenate and map
them to dimension 256, though transformer-based fusion could also be used.

4. Implicit Decoder. The fused latent code z is then used by an implicit decoder f0(x;z),
which is a multi-layer perceptron (MLP). This network predicts the signed distance s(x) at
any given 3D coordinate x. To capture fine details, a positional encoding y(x) may be applied
to the coordinate before inputting it into the MLP. Recent work [26] demonstrates the
effectiveness of implicit functions in single-view image-based 3D reconstruction, inspiring
our decoder design.

5. Surface Extraction. After training, the model can reconstruct new scenes. New
sensor data are processed through the encoders and fusion network to compute z. Then, the
decoder is used to evaluate a(x) = f0(x;z) over a dense 3D grid. The Marching Cubes algo-
rithm is applied to extract the isosurface {x: d(x) = 0}, which produces the final reconstructed
mesh. An illustrative example of our pipeline is shown in Figure 5.
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3.2. Data Preprocessing and Normalization

Before feeding the sensor data into the neural network, proper data preprocessing is
crucial to ensure consistency and high-quality reconstruction. This stage includes calibra-
tion, alignment, and the generation of ground-truth signed distance values.

Calibration and Alignment. We assume that each sensor is calibrated using known
intrinsic parameters (e.g., focal length, principal point) and extrinsic parameters (R;, ¢;) that
map the sensor’s local coordinate system to a shared global coordinate system. For a depth
camera, given a pixel coordinate (u,v) with an observed depth d(u, v), the corresponding
3D point in the camera coordinate frame is computed as:

(ufcg,i) ) d(u,v)

X = (Hy{”x)d(w) (1)
A
d(u,v)

where ( fJEi) , fy(i) ) are the focal lengths and (c§f) , cy) ) are the coordinates of the principal
point for sensor i. The point is then transformed to the world coordinate system as follows:

Xworld = Rixgz)m +t )

This calibration and alignment procedure is applied consistently across all sensors,
ensuring that the data from various modalities are registered within the same coordinate
system. When working with LiDAR or other sensor modalities, similar transformations
are applied. In addition, practical implementations often involve additional preprocessing
steps such as downsampling and outlier filtering to mitigate sensor noise.

SDF Ground Truth Generation and Truncation. For training, ground-truth SDF
values are derived from a reference mesh M. For each sampled point X, the exact signed
distance d(x) is computed by finding the closest point on the mesh and determining
whether x lies inside or outside the object. As storing the continuous SDF for every point is
computationally infeasible, we restrict the samples to a narrow band around the surface.
Distances are truncated to the interval [—d;ax , dimax | (for example, with dy;0c = 0.1 X object
diameter) to focus the learning process on the region where high-detail reconstruction is
most important.

3.3. Signed Distance Function and Eikonal Equation
The signed distance function d(x) is defined such that:

d(x) = +dist(x,0Q)) 3)

where the sign indicates whether x is inside (negative) or outside (positive) the surface 0C).
A crucial property of the true SDF is that its gradient has the following unit norm:

| Vd(x) [[=1 for all x € Qear 4)

This condition, known as the Eikonal equation, ensures that the distance increases at a
constant rate in the direction normal to the surface. Enforcing this property is essential for
achieving stable and accurate surface extraction during inference.

When training the network to approximate the SDF, we incorporate an Eikonal regu-
larization term into the loss function. This term encourages the gradient of the predicted
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function fy to remain close to unity, thereby promoting well-behaved and physically plau-
sible distance fields.

3.4. Network Architecture

Our network architecture is designed to capture the complex relationships between
sensor inputs and the underlying 3D geometry. It is comprised of three main components:
sensor-specific encoders, a feature fusion network, and an implicit decoder. As shown
in Figure 6.

3D SDF Visualization

Figure 6. Visualization of a 3D SDF field for a synthetic object. Marching along zero-crossings of the
field yields the reconstructed surface.

Sensor-Specific Encoders. For each sensor i, we design a dedicated encoder E; to
process the raw data D;. The architecture of E; depends on the modality:

e  Depth images: We use a 2D CNN or a U-Net variant that processes the depth map
and outputs a feature vector ¢;.

e RGB images: A ResNet-based architecture is employed to extract image
feature embeddings.

e Point clouds: Methods such as PointNet [27] or PointNet++ [28] convert raw 3D points
into a global feature vector.

e LiDAR scans: Depending on the format, LiDAR data are processed either as point
clouds or range images by a specialized encoder.

Typically, each encoder outputs a k-dimensional latent vector e; € RF (with k set to
256 in our experiments). This fixed dimension simplifies the subsequent feature fusion
process. Our design follows ideas from [21] to ensure that the encoder efficiently captures
the salient features of each sensor modality.

Feature Fusion. Once the individual features (ej,...,e;) are obtained, they are
fused into a single global latent code z € R* using a fusion network F. A simple
yet effective fusion strategy is to concatenate the features and pass them through a
multi-layer perceptron:

z = F(concat(ey,...,em)) (5)
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This fusion step is critical, as it integrates complementary information from different
viewpoints and sensor modalities into one unified representation. We use a simple MLP to
concatenate and map them to dimension 256, though transformer-based fusion could also
be used.

Alternatively, one may employ transformer-based aggregators to dynamically assign
attention weights to the features, potentially emphasizing the most reliable sensor data.
The choice of the output dimension z is made to balance representational power and
computational cost.

Implicit Decoder. The core of our approach is the implicit decoder fy(x;z), which
predicts the signed distance at any 3D coordinate x. The decoder is implemented as an
MLP that takes as input the coordinate x (optionally transformed by a positional encoding
7(x)) and the fused latent code z:

d(x) = fo(y(x),z) (6)

This MLP consists of several fully connected layers (in our implementation, 8 layers
with 256 units each) and includes non-linear activation functions such as ReLU or softplus.
Skip connections are incorporated to enhance the flow of gradient information and capture
high-frequency details. Recent works [16,26] have shown that such architectures can
effectively capture fine details in reconstructed surfaces.

3.5. Loss Functions

The training objective is designed to ensure that the network’s output matches the
ground-truth SDF while also adhering to the unit gradient property enforced by the Eikonal
equation [15,16,19,21].

SDF Regression Loss. The primary objective is to minimize the absolute error between
the predicted signed distance and the ground truth:

N
Legs = ;nyo(v(xi)rz) —d(x;)| 7)

We opt for an L loss formulation for its robustness to outliers, though alternatives
such as the L, loss have been explored in related work.

Eikonal Regularization. To enforce the property that ||\7f0(x;z)|| is close to 1, we
include an Eikonal regularization term:

1N 5
Leix = NZ(HVXfo(xz'/Z)Hz -1 (8)
i=1

This loss term penalizes deviations from the unit gradient condition and is computed
using back-propagation.

Multi-View Consistency (Optional). In scenarios where multiple sensors have over-
lapping fields of view [11,23,24], additional consistency loss can be imposed to ensure that
the local geometry is predicted similarly by different sensor branches. One such loss is:

Leons = Z Z ||fo0(xrzi) - vxfO(erj)H &)

ij XEO,‘/,’

where O; ; denotes the overlapping regions between sensors i and j. In our experiments,
this term is often set to zero (o = 0).
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Total Loss. The complete training objective combines the SDF regression loss, the
Eikonal regularization, and the optional multi-view consistency term:

Ltotal = Lsdf + )\Leik + &Lcons (10)

where A and « are hyperparameters that control the relative importance of each term. In
our implementation, A is typically chosen in the range [0.1, 0.2] and « is set to zero unless
multi-view consistency is explicitly required.

3.6. Surface Extraction with Marching Cubes

Once training is complete, the model can be deployed to reconstruct novel 3D scenes.
New sensor data are first encoded into the latent code z through the sensor-specific encoders
and fusion network. The decoder fy(x;z) is then evaluated on a dense 3D grid, producing
a field of signed distance values d(x). The Marching Cubes algorithm [6] is applied to
this grid to extract the isosurface defined by d(x) = 0. During this process, the algorithm
identifies grid cells where the sign of d(x) changes between adjacent vertices, interpolates
the zero-crossing, and constructs a triangle mesh representing the reconstructed surface.
Post-processing steps such as mesh smoothing or decimation may be applied to refine the
final output.

In summary, our method leverages sensor-specific encoders to extract rich features,
fuses them into a unified latent representation, and employs an implicit decoder to predict
a continuous signed distance function. The incorporation of Eikonal regularization and,
optionally, multi-view consistency ensures that the learned SDF is both accurate and
physically plausible, ultimately yielding high-quality 3D reconstructions.

4. Experiments

In this section, we present a comprehensive set of experiments designed to evaluate
the performance of our multi-sensor implicit reconstruction framework. Our experimental
study is organized into several subsections, including detailed descriptions of the datasets,
implementation specifics, evaluation metrics, baseline comparisons, ablation studies, and
extensive qualitative and quantitative analyses. In addition, we incorporate experimental
data from recent literature [11,15,16,19,21,22,24-26,32-34] to further validate our method’s
robustness and effectiveness.

4.1. Dataset and Implementation Details

Dataset: ShapeNet. The primary experiments are conducted on the ShapeNet reposi-
tory [35], a large-scale collection of 3D models covering a wide range of object categories
such as chairs, cars, and airplanes. For each 3D object, we simulate multiple sensor inputs
by positioning m sensors (typically 2 to 3) uniformly around the object. The sensor view-
points are sampled on a hemisphere or a circle to ensure comprehensive coverage of the
object’s geometry. Depending on the simulation settings, each sensor may provide either
an RGB image or a depth map. Ground-truth SDF values are computed by sampling points
in a narrow band around the object surface and calculating the exact signed distance from
each point to the reference mesh. In our experiments, we follow the common practice of
truncating the SDF values to a fixed range (e.g., [—dmax, dmax] with dmax = 0.1 x object
diameter) to focus the training on areas near the surface, where reconstruction details are
most critical.

Dataset: ModelNet40. To assess the generalization capability of our model, we further
evaluate it on the ModelNet40 dataset. In this setting, the model is trained exclusively
on ShapeNet and then directly applied to unseen categories from ModelNet40 without
additional fine-tuning. This experiment is designed to test the robustness of the learned
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representations when confronted with objects that exhibit variations in shape, structure,
and noise characteristics that were not present during training.

Network and Training Details. All network components are implemented in PyTorch.
We adopt the Adam optimizer with a fixed learning rate of 1 x 10~* and use a batch size
of 8, where each batch contains multiple shapes along with their corresponding multi-
sensor inputs. Training is conducted for 300 epochs. During training, data augmentation
techniques such as random noise injection, random cropping, and dropout are applied
to both depth maps and partial point clouds to simulate real-world sensor imperfections
and improve the model’s robustness. The sensor-specific encoders vary in architecture
depending on the modality: for depth images, a 2D CNN or U-Net variant is employed;
for RGB images, a ResNet-based model is used; and for point clouds, a PointNet++ style
network is utilized. The fusion network comprises two hidden layers, each with 256 units,
while the SDF decoder f is realized as an 8-layer MLP with 256 units per layer. Skip
connections are incorporated into the decoder to enhance the flow of gradient information
and better capture high-frequency details in the reconstructed surface.

In addition, we implement several optimizations such as gradient clipping and learn-
ing rate scheduling to ensure stable convergence during training. The overall system is
trained on high-end GPUs, and the training time typically ranges from 12 to 24 h, depending
on the dataset size and the number of sensor inputs used.

To evaluate the efficiency of the proposed multi-sensor implicit surface reconstruction
method, we compared its computational complexity with several baseline approaches,
focusing on runtime and memory usage. The analysis was conducted on a subset
of the ShapeNet chairs dataset using an NVIDIA RTX 3090 GPU with 24 GB VRAM,
8+ core CPU, 32 GB+ RAM, 500 GB SSD, and Ubuntu 20.04 or Windows 10/11 with WSL2.
We installed Python 3.8+, PyTorch 1.12.1 (CUDA 11.3), and the following dependencies:
torchvision 0.13.1, numpy 1.22.4, scipy 1.8.1, scikit-learn 1.1.2, trimesh 3.12.6, pytorch3d
0.7.0, matplotlib 3.5.2, and tqdm 4.64.0, ensuring consistent hardware across all methods.
Runtime was measured as the average inference time per object (in seconds), and memory
usage is reported as the peak GPU VRAM consumption (in GB) during inference. The
results are summarized in Table 1.

Table 1. Computational complexity comparison on ShapeNet chairs.

Method Inference Time (s) | GPU Memory (GB) |
Single-sensor implicit 32+03 6.5+02
TSDF fusion 42+04 9.8 £0.3
DeepSDF 38+03 82+02
Occupancy Networks 40+04 85+03
Ours (multi-sensor) 2.5+ 0.2 8.0+ 0.2

The data in Table 1 reveal that the proposed method achieved the lowest inference
time of 2.5 s per object, outperforming single-sensor implicit reconstruction (3.2 s), TSDF
fusion (4.2 s), DeepSDF (3.8 s), and Occupancy Networks (4.0 s). This efficiency stems
from the compact latent representation and feature-level fusion, which reduces compu-
tational overhead compared to volumetric methods like TSDF fusion that require dense
grid processing. The proposed method’s memory usage of 8.0 GB is competitive, slightly
lower than TSDF fusion (9.8 GB) and Occupancy Networks (8.5 GB), despite processing
multiple sensor inputs. The computational complexity scales linearly with the number of
sensors (O(m), where m is the sensor count), as feature fusion involves a fixed-size MLP,
avoiding the quadratic scaling often seen in traditional multi-view methods. These results
demonstrate that the proposed method addresses the challenge of balancing high-fidelity
reconstruction with computational efficiency, making it suitable for practical applications
in real-time 3D reconstruction scenarios.
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4.2. Evaluation Metrics

The performance of our reconstruction method was quantitatively evaluated using
several well-established metrics:

e Intersection-over-Union (IoU): The reconstructed mesh was voxelized and compared
against the voxelized ground-truth mesh. IoU was computed as the ratio of the
volume of the intersection to the volume of the union of these voxel grids. This
metric provides a measure of the overall geometric overlap between the predicted and
ground-truth surfaces.

e  Chamfer Distance (CD): This metric calculates the symmetric distance between the set
of points sampled from the predicted surface and those sampled from the ground-truth
mesh. A lower Chamfer distance indicates a closer match between the surfaces and
reflects better geometric fidelity.

e Normal Consistency (NC): The average cosine similarity between the normals of
the predicted surface and the ground-truth surface were computed to evaluate the
smoothness and local geometric consistency. High normal consistency values indicate
that the predicted surface is locally well aligned with the true surface normals.

e F-score: In some experiments, we also calculated the F-score at various distance
thresholds to capture both precision and recall aspects of the reconstruction quality.
This metric provides a balanced evaluation of the completeness and accuracy of the
reconstructed surfaces.

These metrics were computed on a per-object basis and then averaged over the entire
test set.

In addition, we performed statistical analyses (e.g., standard deviation and confidence
intervals) to assess the reliability of our experimental results.

4.3. Baselines

To validate the effectiveness of our approach, we compared our method against two
primary baselines:

1.  Single-Sensor Implicit Reconstruction: In this baseline, only one sensor’s data were
used for reconstruction. This variant served as a control experiment to demonstrate
the benefits of multi-sensor fusion. The single-sensor model is architecturally similar
to our full model but does not incorporate the feature fusion stage.

2. TSDF Fusion: The classical TSDF (Truncated Signed Distance Function) fusion
method [6] integrates multiple depth maps into a volumetric grid and then extracts the
surface using the Marching Cubes algorithm. TSDF fusion is a widely used baseline
in the field of 3D reconstruction and provides a clear contrast between traditional
geometric fusion techniques and our learned implicit approach.

In addition to these primary baselines, we also compared our method with sev-
eral state-of-the-art neural implicit representations such as DeepSDF [3] and Occupancy
Networks [4] in extended experiments. These additional comparisons are discussed
in Section 4.8.

4.4. Quantitative Results

Table 2 summarizes the quantitative performance of our method on a subset of the
ShapeNet dataset. As can be seen, our multi-sensor implicit reconstruction model signifi-
cantly outperformed both the single-sensor variant and the TSDF fusion baseline in terms
of IoU, Chamfer distance, and normal consistency.
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Table 2. Quantitative results on a subset of ShapeNet. Our multi-sensor implicit model achieves
higher IoU and normal consistency and lower Chamfer distance.

Method IoU 1 Chamfer (10-3) | Normal Consistency 1
Single-sensor 0.780 1.53 0.88
TSDF fusion 0.795 1.35 0.89
Ours (multi-sensor) 0.852 1.11 0.93

In addition, we performed experiments using extended evaluation protocols that
included the F-score at multiple thresholds. For instance, at a threshold of 0.01, the F-score of
our method reached 0.87 compared to 0.81 for the TSDF fusion baseline. These results were
consistent across multiple object categories and further demonstrate the superiority of our
approach in capturing fine geometric details and ensuring smooth surface reconstruction.

4.5. Training Curves and Convergence Analysis

Figure 7 presents the training loss curves obtained from experiments on the ShapeNet
chairs subset. The solid line represents the SDF regression loss Lsdf, while the dashed line
indicates the Eikonal regularization loss Leik. Over the course of training, Lsdf showed a
steady decrease, indicating that the network was learning to accurately approximate the
ground-truth SDF values. Simultaneously, the Eikonal loss gradually diminished, ensuring
that the gradients of the predicted SDF maintained a norm close to one.

Training Loss Curves
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Figure 7. Training loss curves for our method on ShapeNet chairs.

The SDF regression loss (solid line) and Eikonal loss (dashed line) converged steadily
during training.

The convergence behavior observed in our experiments indicates a well-balanced
optimization process. By carefully tuning the hyperparameter A in Equation (9), we ensured
that the network did not overemphasize one component of the loss at the expense of the
other. Additional experiments with varying learning rates and batch sizes confirmed that
our approach is robust to these hyperparameters. Statistical analysis over multiple runs
revealed that the standard deviation of IoU across different training runs was below 0.02,
which further attests to the stability and reproducibility of our method.

4.6. Ablation Studies: Impact of the Number of Sensors

To further validate the advantages of multi-sensor fusion, we conducted ablation
studies by varying the number of sensors m used during reconstruction. In these experi-
ments, we compared models trained with 1, 2, and 3 sensor inputs while keeping all other
settings constant.
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Figure 8 illustrates the relationship between the number of sensors and the IoU
metric. It is evident that the IoU increased significantly when moving from a single sensor
to two sensors, indicating that the additional sensor provided valuable complementary
information. When increasing from two to three sensors, the improvement was more
moderate, which suggests that while additional sensors continued to help, the marginal
benefit decreased.
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Figure 8. IoU improved with the addition of more sensors. The most significant jump occurred when
increasing from one to two sensors.

Similarly, Figure 9 shows the change in Chamfer distance with different sensor counts.
As more sensors were incorporated, the Chamfer distance decreased, signifying enhanced
geometric fidelity. These experiments confirm that multi-sensor fusion effectively reduced
occluded regions and improved the overall reconstruction quality.
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Figure 9. Chamfer distance decreased with increasing numbers of sensors, indicating improved
reconstruction accuracy.

Additional ablation studies included experiments varying the dimensions of the latent
feature vectors and the depth of the decoder network. Our results show that increasing the
latent vector dimension beyond 256 yielded only marginal improvements, while reducing
the network depth significantly harmed reconstruction quality. These findings provide
useful guidelines for selecting model architectures in practice.
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4.7. Qualitative Comparisons

In addition to the quantitative evaluations, qualitative comparisons offer visual
insights into the performance of our multi-sensor implicit reconstruction framework.
Figure 10 displays two examples comparing the ground truth, single-sensor reconstructions,
TSDF fusion results, and the outputs from our proposed method.

|

Figure 10. Qualitative comparison of reconstructed surfaces.

Left: Ground truth (GT); Right: Reconstruction result from our method. Our multi-
sensor approach demonstrated superior coverage and smoother surfaces compared to
the baselines.

In these examples, the single-sensor method often failed to capture occluded or hidden
facets of the object, resulting in incomplete or fragmented surfaces. TSDF fusion improved
coverage but tended to produce noisy or over-smoothed surfaces in regions with sensor
inconsistencies. In contrast, our approach was able to reconstruct detailed and consistent
surfaces even in challenging scenarios, thanks to the effective fusion of complementary
sensor information and the regularization enforced by the Eikonal loss.

Furthermore, we provide additional qualitative results in Section 4.8, including re-
constructions under varying lighting conditions, sensor noise levels, and partial occlu-
sions. These examples further demonstrate the robustness of our method across diverse
real-world scenarios.

4.8. Additional Experimental Insights

Beyond the main experimental evaluations described above, we conducted several
studies in Section 4.8 to further analyze the behavior and performance of our model. In
this section, we summarize some of these additional insights:

Robustness to Sensor Noise: We simulate various levels of noise in the sensor inputs
to evaluate the robustness of the reconstruction. Our experiments show that even when
significant noise is introduced into the depth maps and point clouds, our method maintains
a high IoU (with a drop of less than 5% compared to noise-free conditions) and a moderate
increase in the Chamfer distance. These findings suggest that the feature fusion and
regularization mechanisms in our network effectively mitigate the impact of sensor noise.

Effect of Data Augmentation: Data augmentation plays a crucial role in improving
model robustness. We experimented with different augmentation strategies, including
random rotations, scaling, and dropout of sensor data. The results indicate that appropriate
augmentation not only improves quantitative metrics such as IoU and Chamfer distance
but also enhances the visual quality of the reconstructed surfaces by reducing artifacts in
regions with sparse sensor coverage.

Cross-Dataset Generalization: One of the significant challenges in 3D reconstruction is
ensuring that models trained on synthetic or curated datasets generalize well to real-world
data. Our experiments on ModelNet40, where the model was trained on ShapeNet and then
directly applied to unseen categories, demonstrated promising generalization. Although
the IoU and Chamfer distance values on ModelNet40 were slightly lower than those on
ShapeNet, the overall reconstruction quality remained high, validating the versatility of
our learned implicit representation.

Comparison with Recent Methods: We also compared our method with several recent
state-of-the-art approaches such as DeepSDF [3], Occupancy Networks [4], and NeusS [8].
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Although these methods exhibit competitive performance on certain benchmarks, our
multi-sensor fusion framework consistently achieved higher scores on IoU and normal
consistency, particularly in scenarios where occlusions and sensor noise were prevalent.
For example, in one experiment on ShapeNet chairs, our method achieved an IoU of
0.852 compared to 0.835 for DeepSDF and 0.840 for Occupancy Networks.

Computational Efficiency: Despite the high-dimensional nature of the problem, our
network is designed for efficiency. By leveraging a compact latent space and efficient feature
fusion, the inference time per object was reduced to a few seconds on a modern GPU. We
also analyzed the scalability of our method with respect to the number of sensors and spatial
resolution. Our experiments showed that while the computational cost increased linearly
with the number of sensors, the benefits in reconstruction quality justify the added expense.
Furthermore, advanced techniques such as octree-based sampling can be integrated in
future work to further optimize performance for large-scale scenes.

Ablation on Loss Components: In additional experiments, we varied the weights
of the loss components in Equation (9). When the weight A for the Eikonal loss was set
too high, the network overemphasized the gradient constraint, leading to overly smooth
reconstructions that lacked fine details. Conversely, if A was too low, the SDF predictions
deviated from the ideal unit gradient property, resulting in artifacts. Our experiments
suggest that a balanced setting (with A typically in the range [0.1, 0.2]) yields the best
trade-off between data fidelity and regularization.

4.9. Discussion of Extracted Experimental Data from the Literature

To further contextualize our results, we extracted and compared experimental data
from several recent studies on 3D reconstruction using neural implicit representations.
For example, in the work of Park et al. [3], DeepSDF was reported to achieve an average
Chamfer distance of approximately 1.2 x 1072 on a subset of ShapeNet, while our method
achieved 1.11 x 10~3. Similarly, Occupancy Networks [4] reported IoU values in the range
of 0.83 to 0.84, whereas our multi-sensor method attained an IoU of 0.852. These compar-
isons, extracted from multiple peer-reviewed publications and technical reports, underscore
the competitive performance of our approach in both qualitative and quantitative terms.

Moreover, additional studies on TSDF fusion methods report that traditional volumet-
ric fusion methods are prone to noise and discontinuities when dealing with occlusions.
Our experiments confirm these findings, as the TSDF fusion baseline consistently lagged
behind our method in terms of both IoU and surface smoothness. These insights from
the literature provide a solid benchmark against which our method’s performance can
be measured.

4.10. Summary and Concluding Remarks on Experiments
In summary, our extensive experiments demonstrate that:

e The integration of multiple sensor modalities significantly enhances the completeness
and accuracy of the reconstructed surfaces.

e  Our method consistently outperformed both single-sensor implicit approaches and
classical TSDF fusion techniques across a range of metrics, including IoU, Chamfer
distance, normal consistency, and F-score.

e  The training process converges steadily, with well-balanced loss components ensuring
that the learned SDF maintains both high fidelity to the ground-truth and adherence
to the unit gradient constraint.

e Ablation studies confirm the positive impact of multi-sensor fusion and provide
valuable insights into the optimal settings for latent dimension, network depth, and
loss weighting.
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e Qualitative comparisons further validate the robustness and visual quality of
our reconstructions, particularly in challenging scenarios with occlusions and
Sensor noise.

These experimental findings, corroborated by comparisons with recent literature,
firmly establish the efficacy of our multi-sensor implicit reconstruction framework. Our
results not only demonstrate superior quantitative performance but also highlight the
practical advantages of leveraging learned shape priors and effective feature fusion for
high-quality 3D reconstruction.

5. Discussion

In this section, we analyze the advantages of our multi-sensor implicit reconstruc-
tion method, discuss its limitations, and provide insights into its deeper mathematical
underpinnings. We also propose several directions for future research.

5.1. Advantages and Insights

Our experimental results and theoretical analysis suggest several key advantages of
the proposed method:

Enhanced Occlusion Handling. One of the primary benefits of integrating multiple
sensor modalities is the improved handling of occlusions. When one sensor fails to capture a
particular region due to line-of-sight issues, another sensor, located at a different viewpoint,
can compensate. This results in a more complete latent representation z, which, in turn,
leads to reconstructions with fewer missing parts.

Leveraging Learned Shape Priors. Even in regions where sensor data are sparse
or entirely missing, the network is capable of generating plausible completions. This
is achieved by learning statistical priors over the training data, which encode common
object shapes and symmetries. Consequently, the network is able to infer the geometry
of occluded or unobserved areas, resulting in reconstructions that are both complete and
consistent with typical object structures.

Smooth and Watertight Surfaces. The implicit representation based on SDFs naturally
produces smooth and watertight surfaces. Unlike discrete volumetric methods, which
may result in jagged or fragmented outputs, our approach yields continuous surfaces
with well-behaved topology. The incorporation of the Eikonal regularization further
ensures that the distance field varies smoothly, preventing artifacts such as flattened or
inflated regions.

Robust Feature-Level Fusion. By fusing features at an intermediate level (i.e., after
sensor-specific encoding), our method is more robust to the different noise characteristics
and resolution limitations inherent in each sensor modality. This feature-level fusion
allows the network to weigh the reliability of different sensors dynamically and extract
complementary information effectively.

5.2. Limitations

Despite its strengths, our method does have some limitations that are important to
address in future work:

Dependence on Sensor Calibration. Our approach assumes that all sensors are well-
calibrated with accurate intrinsic and extrinsic parameters. Any errors in calibration can
lead to misalignment in the global coordinate system, which in turn degrades the quality
of the fused representation and the subsequent reconstruction.

Static Scene Assumption. The current implementation is designed for static scenes.
Dynamic objects or deformable surfaces present additional challenges that are not directly
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handled by our method. Future work should consider temporal consistency and motion
modeling to extend the approach to dynamic environments.

Computational Cost. While the implicit decoder is efficient, evaluating the SDF over a
dense 3D grid remains computationally expensive for large-scale scenes. Techniques such
as octree-based sampling or adaptive query strategies could be employed to mitigate this
limitation and enable real-time reconstruction for larger environments.

Reliance on Training Data. The performance of our method is heavily dependent on
the quality and diversity of the training dataset. If the training data do not adequately
capture the variability in object shapes or sensor noise, the model’s generalization to novel
or out-of-distribution objects may be compromised.

5.3. Deeper Mathematical Implications: SDF as a PDE Problem

From a theoretical perspective, learning an SDF with an Eikonal regularizer can be
interpreted as solving a partial differential equation (PDE) of the following form:

VA

=1, d(x)|rean = 0. (11)

This PDE formulation offers valuable insights into the behavior of the SDF. By en-
forcing the unit norm condition on the gradient, the network is encouraged to produce
a distance field that increases linearly in the normal direction away from the surface.
Such a constraint is not only physically meaningful but also instrumental in preventing
pathological solutions in regions with limited data.

A Taylor series expansion of d(x) around a point x0 provides further insight:

d(x) ~ d(x0) + Vd(x0) ... (x— x0) + %(x —xo)THG0) (X = x0) +--0) (12

where H(x0) is the Hessian matrix of second-order partial derivatives. In the vicinity of
the surface, the linear term dominates if the gradient norm is maintained at one. This
analysis explains why enforcing the Eikonal condition is critical for obtaining accurate
surface representations.

5.4. Future Research Directions
Several avenues for future research emerge from our work:

e Robust Calibration and Dynamic Fusion: Investigate methods for online sen-
sor calibration and dynamic fusion that can adapt to changes in sensor pose or
scene dynamics.

o Efficient Sampling Strategies: Develop adaptive grid sampling methods, such
as octree or multi-resolution strategies, to reduce computational overhead during
surface extraction.

e Hybrid Approaches: Explore the integration of classical PDE solvers with neu-
ral implicit representations to enforce global consistency and improve the fidelity
of reconstructions.

e Extended Modalities: Incorporate additional sensor modalities (e.g., thermal imaging
or radar) to enhance the robustness and versatility of the reconstruction framework in
challenging environments.

o  Temporal Consistency for Dynamic Scenes: Extend the framework to handle dynamic
scenes by incorporating temporal coherence and motion estimation techniques.

In summary, while our multi-sensor implicit reconstruction method demonstrates
significant improvements over traditional approaches, addressing the aforementioned
limitations will be key to further advancing the state of the art in 3D reconstruction.
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5.5. Future Work
There are multiple avenues for extension:

e Adaptive/Hierarchical Sampling. Replacing uniform 3D grids with octree or GPU-
based raycasting methods can accelerate surface extraction, especially for large scenes.

e  Dynamic Scenes. Extending the method to handle moving objects or scenes over time
would require both temporal fusion and robust correspondences between frames.

e  Uncertainty Estimation. In real-world scenarios, sensor data often have varying noise
levels. Incorporating uncertainty (e.g., weighting each sensor’s contribution) could
improve reconstruction robustness.

e Incremental Learning. Instead of offline training on synthetic data, an online approach
could continuously refine the SDF as more sensor data stream in, potentially enabling
real-time robotics applications.

e  Combining with Neural Rendering. Bridging implicit geometry with neural radiance
fields or inverse rendering frameworks [8,9] might yield synergy in refining both
geometry and appearance from multi-sensor cues.

6. Conclusions

We presented a deep implicit surface reconstruction system that explicitly fuses multi-
sensor feature embeddings to achieve complete, accurate 3D reconstructions in complex
real-world scenes. By fusing encoders specialized for different sensor modalities, our
method generates a single unified latent representation feeding into a signed distance func-
tion (SDF) decoder. Eikonal regularization ensures consistent gradient norms, improving
the surface geometry.

Extensive experiments on ShapeNet demonstrate that multi-sensor fusion significantly
boosts performance over single-sensor or classical TSDF baselines. Ablations confirm that
adding additional sensors reduces occlusions, leading to better coverage and more faithful
reconstructions. Moreover, normal consistency analyses and visualizations support the
claim that multi-sensor implicit fusion yields smoother, more coherent surfaces.

Notwithstanding its advantages, the method’s reliance on calibration, static scenes,
and offline training highlights areas for improvement. We believe integrating robust sensor
uncertainty modeling, dynamic scene support, and more efficient sampling strategies could
further expand the applicability of deep implicit multi-sensor reconstruction. Overall, our
work underscores the promise of combining multi-view or multi-modal data with learned
implicit surfaces, offering a practical route to robust and high-fidelity 3D models across
diverse real-world scenarios.
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