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Abstract: Fine particulate matter (PMj 5) and Ozone (O3) pollution have emerged as the
primary environmental challenges in China in recent years. Following the implementation
of the Air Pollution Prevention and Control Action Plan, a substantial decline in PM, 5
concentrations was observed, while O3 concentrations exhibited an increasing trend across
the country. Here, we investigated the long-term trend of O3 from 2015 to 2022 in Xinxiang
City, a typical city within the Central Plains urban agglomeration. Our findings indicate
that the hourly average Oj increased by 3.41 ug m 2 yr~!, with the trend characterized by
two distinct phases (Phase I, 2015-2018; Phase II, 2019-2022). Interestingly, the increasing
rate of O3 concentration in Phase I (7.89 ug m~%) was notably higher than that in Phase II
(2.89 nug m~3). The Random Forest (RF) model was employed to identify the key factors
influencing O3 concentrations during the two phases. The significant dropping of PM; 5
in Phase I could be responsible for the O3 increase. In Phase II, the reductions in nitrogen
dioxide (NO;) and unfavorable meteorological conditions were the major drivers of the
continued increase in O3. The Observation-Based Model (OBM) was developed to further
explore the role of PM; 5 in O3 formation. Our results suggest that PM; 5 can influence
O3 concentrations and the chemical sensitivity regime through heterogeneous reactions
and changes in photolysis rates. In addition, the relatively high concentration of PM; 5 in
Xinxiang City in recent years underscores its significant role in O3 formation. Future efforts
should focus on the joint control of PM; 5 and O3 to improve air quality in the Central
Plains urban agglomeration.

Keywords: ozone; PM; 5; long-term trend; random forest; observation-based model

1. Introduction

Tropospheric Ozone (Os) is a typical secondary gaseous pollutant and the third most
significant greenhouse gas (IPCC, 2021). It has a profound impact on human health,
ecosystem stability, and vegetation productivity [1]. In recent years, O3 pollution has
emerged as a major environmental issue in the urban areas of China. Observational data
indicate that ground-level O3 concentrations have been rising nationwide [2]. For instance,
Wang et al. reported that the maximum daily 8 h average (MDAS) O3 level increased by

Toxics 2025, 13, 330

https://doi.org/10.3390/toxics13050330


https://doi.org/10.3390/toxics13050330
https://doi.org/10.3390/toxics13050330
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/toxics
https://www.mdpi.com
https://orcid.org/0009-0000-2721-1690
https://orcid.org/0009-0001-5965-9040
https://doi.org/10.3390/toxics13050330
https://www.mdpi.com/article/10.3390/toxics13050330?type=check_update&version=1

Toxics 2025, 13, 330

2 of 14

2.6 ug m~3 yr~! in the warm season (April-September) from 2013 to 2020 [3]. This upward
trend in O3 concentrations was similarly observed in many megacities in China, such as
Beijing [4], Shanghai [5], Sichuan Basin [6], and other cities [7-9]. However, the long-term
trend of O3 concentrations in the Central Plains urban agglomeration remains relatively
deficient at present.

In the troposphere, O3 is formed through complex radical chain reactions involving
the oxidation of volatile organic compounds (VOCs) in the presence of nitrogen oxides
(NOx = NO; + NO) under sunlight [10]. The rising trend in O3 concentration is influ-
enced by a variety of factors, including increased global O3 background concentrations,
the changes in meteorological conditions, and shifts in chemical regime due to various
regulations affecting NOy and VOCs emissions [11,12]. Although meteorological con-
ditions and emission changes have been dominant drivers in recent O3 increases, their
contributions have varied across different periods. Liu et al. [2] revealed that the impact of
anthropogenic emissions on the O3 rise from 2017 to 2020 (1.2 ug m~3) was much lower
than that during 2013-2017 (5.2 ug m~3) in China. In addition, the O3 concentration can
be highly sensitive to the meteorological conditions in the given phases and periods. For
instance, the meteorological conditions in May 2020 led to a significant increase of O3 by
26.8 ug m~3 compared to May 2019 in the Sichuan Basin [6]. Factors such as temperature,
relative humidity, radiation intensity, wind speed, and wind direction were regarded as
the main factors affecting O3 formation [13-17]. However, the key meteorological factors
vary across different regions. According to Weng et al. [18], surface solar radiation is a
primary determinant of O3 fluctuations in the Yangtze River Delta (YRD) and Sichuan
Basin, while temperature is identified as the most important meteorological variable in the
Beijing-Tianjin—-Hebei (BTH) region.

Aerosols exert a complex influence on the O3 production rate through heterogeneous
reactions, alterations in photolysis rates, and modifications to the boundary layer [19].
The “aerosol inhibited” regime in O3 formation, where heterogeneous reactions on aerosol
particles predominantly lead to HO; loss, has been identified through chemical transport
modeling [20]. The enhancement of HO; due to the dropping of aerosols has been recog-
nized as a key driver for the increasing summertime O3 concentration in the North China
Plain from 2013 to 2017 [21,22]. Furthermore, a study by Shao et al. [23] revealed that O3
formation in Beijing increased by 37% from 2006 to 2016 following a reduction in PM; 5
levels. Consequently, the reduction in PM; 5 concentrations could offset the effectiveness of
traditional O3 precursor (VOC and NOy) control strategies under the “aerosol inhibited”
photochemical O3 regime [3]. Hence, understanding O3 formation mechanisms and identi-
fying the key factors are crucial for accurately managing O3 pollution, not only in China
but also globally.

Machine learning techniques, such as artificial neural networks, random forest
(RF), and the convolutional neural network, have been widely used in atmospheric re-
search [24-28]. Among these methods, RF is employed to account for the nonlinear interac-
tions between different input parameters without assuming any specific relationships [29].
Numerous studies [4,18,27,29,30] have demonstrated the efficacy of the RF model in pre-
dicting O3 levels and identifying primary factors influencing O3 formation. However, the
interpretability of results from the RF model is limited due to its “black box” nature. As
a complementary method, the observation-based model (OBM) coupled with the Master
Chemical Mechanism (MCM) serves as an effective tool for investigating atmospheric
photochemistry mechanisms. The MCM has been widely used to investigate in situ O3
formation processes and the sources of radicals [31-36]. However, OBM-MCM relies heav-
ily on detailed observation data and is limited in its ability to conduct long-term and
large-scale O3 pollution research.
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Xinxiang City, located in the northern region of Henan Province, is a rapidly devel-
oping city within the Central Plains urban agglomeration. As a member of the “2 + 26”
city cluster, which serves as a major air pollution transmission channel in the Beijing—
Tianjin-Hebei region, Xinxiang suffered the severe haze pollution. In recent years, the
exacerbation of O3 pollution has emerged as a critical environmental challenge. However,
the quantitative relationship between reductions in PMj; 5 concentrations and concurrent
increases in O3 remains unclear. To investigate the relationship between PM, 5 and Os, this
study proposes a multi-temporal analytical framework integrating RF and OBM.

By integrating long-term continuous monitoring data (2015-2022) with short-term
intensive high-density observations, this study aims to quantify long-term key drivers
and elucidate the underlying mechanisms in O3 pollution in Xinxiang City. Firstly, the
long-term trend and seasonal variation of O3 during this period were explored by using
hourly observations of O3 collected from the national monitoring network. Subsequently,
the RF model was employed to investigate the factors influencing O3 levels and assign
importance rankings to these factors. Finally, the OBM was utilized for illustrating the
mechanism underlying the identified influencing factors in O3 formation. The results of
this work are expected to provide insights beneficial for controlling O3 pollution in cities
within the Central Plains urban agglomeration.

2. Materials and Methods
2.1. Data Sources

Xinxiang City has been equipped with four state-operated air quality automatic
monitoring stations since 2015, which are strategically positioned primarily within the
urban area (Figure 1). Hourly concentrations of air pollutants (including O3, NO,, CO,
SO,, PM, 5, and PMj() from these four sites were obtained from the China National
Environmental Monitoring Centre (http://www.cnemc.cn/, accessed on 16 May 2024),
covering the period from 1 January 2015 to 31 December 2022. The pollutants data were
normalized based on the change of atmospheric conditions before (273.15 K, 1 atm) and
after (298.15 K, 1 atm) September 2018.

The Central Plains urban agglomeration Xinxiang City

o

Figure 1. Location of the nation-controlled air quality automatic monitoring stations in Xinxiang City.
The red dots represent four state-operated air quality automatic monitoring stations.
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The meteorological data from 1 January 2015 to 31 December 2022 were obtained
from the ERA5 datasets of the European Centre for Medium-Range Weather Forecasts
(ECMWEF) (https:/ /cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-
levels?tab=overview, accessed on 19 May 2024). The research area (34°55'-35°50" E;
113°30'-115°01" N) covered the entire Xinxiang City. The hourly resolution of significant
meteorological variables involving the O3 formation mechanism with a spatial resolution
of 0.25° x 0.25° was utilized in our study, including a 10 m u-component of wind, 10 m
v-component of wind, 2 m dewpoint temperature, 2 m temperature, boundary layer height,
surface net solar radiation, surface pressure, total cloud cover, and total precipitation. The
detailed information of these variables can be found in Table 1.

Table 1. The main information of the nine meteorological variables.

Abbreviations Names of Variable Unit

uU10 10 m u-component of wind m-s~!

V10 10 m v-component of wind m-s~!

D2m 2 m dewpoint temperature K

T2m 2 m temperature K

BLH Boundary layer height m

SSR Surface net solar radiation J-m 2

sP Surface pressure Pa

TCC Total cloud cover Dimensionless
P Total precipitation cm

The field measurement campaign was also conducted from 1 June to 31 June in 2021.
The sampling site was located at the Xinxiang Municipal Party School (35.29° N, 113.93° E),
a typical urban area. The gaseous pollutants, including Oz, NO,, NO, SO;, CO, and
NMVOCs, were measured in our study. The Model 42i, Model 48i, Model 43i, and Model
49i (Thermo Fisher Scientific, Waltham, MA, USA) were used for online measurements of
NOx (NO,, NO), SO,, CO, and Os. The hourly NMVOCs concentrations, including alkanes,
alkenes, alkynes, aromatics, and oxygenated compounds were measured by GC-FID/MS
(TH-300B, Wuhan Tianhong Environmental Protection Industry Co., Ltd., Wuhan, China).

2.2. Random Forest Model

The RF model is an ensemble learning algorithm with high accuracy and a strong
ability to avoid overfitting. Here, the RF model was developed to predict the concentrations
of O3 and identify critical variables in O3 formation. The performance of RF depends
on hyperparameters. Details of all parameters tuned for the RF model are presented in
Table S1. The randomForest package for the R software (version 4.2.3) is used for analyses
and validation processes in our study.

For the RF model, the in situ observation pollutants concentrations and meteorology
factors were selected as input variables. Due to a lack of long-term hourly observation,
VOCs were excluded from the input parameters in this study. According to previous
studies [37-40], the variability of surface O3 was well-explained by the ML algorithm with
meteorological information alone, particularly in the VOC-limited regime. Like many other
urban areas in China, O3 production in Xinxiang City is generally in the VOC-limited
regime. Therefore, it is reasonable to simulate O3 using a supervised RF model without
considering the VOC concentration.

The datasets were randomly divided into training and testing subsets at a ratio of
7:3. The fivefold cross-validation method was used to evaluate the performance of the
RF model [27] (Figure S1). The relative importance of the input variables was ranked by
calculated variable importance scores, represented as the aggregated increase in the mean
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squared errors (%IncMSE). The mean squared errors were calculated by the RF model by
randomly assigning values to each input variable. The variables with a higher importance
score (%IncMSE) had a more significant impact on O3 formation.

2.3. Observation-Based Model

OBM incorporated with MCM v3.3.1 was built to investigate the chemical mechanism
of how PMj; 5 affects the formation of O3. The detailed description of the gas-phase chemical
processes by the MCM displays that it was involved in methane and 142 non-methane
VOCs [41]. To establish a direct relationship between PM, 5 concentrations and O3 forma-
tion, the OBM considered the heterogeneous reactions and variations in photolysis rates.
The aerosol optical depth (AOD) could be calculated by the PM; 5 concentration [23,42]
using Equation (1):

AOD

— = PMas x K f(RH) x 107° (1)

where H represents the atmosphere boundary layer height; f(RH) denotes the hygroscopic
growth factor, which is determined by relative humidity (RH), and K is the given parameter.

The calculated AOD was used to quantify the hourly photolysis rates of NO,
(JNO,) [43,44], thus establishing a direct link between PM; 5 concentration and photolysis
rates (see details in the Supplemental Information). The photolysis rates (J;) of other species
were calculated by the solar zenith angle (SZA) and built-in parameters (L;, M;, and N;) [45];
see Equation (2):

Ji = L x cos(SZA) x M; x exp(-N; x sec(SZA)) )

The photolysis rates would be further scaled according to the calculated photolysis
rates of NO, (JNO,) based on the PM, 5 concentration.

The heterogeneous reaction of HO, was assumed to be the first order reaction [21,46],
and the reaction constant (k) could be calculated by Equation (3):

-1
k=— <Drg + véOz x vHOz) X Saero 3)
where r, Dg, and vHO; were the surface-weighted particle radius, gas phase diffusion
coefficient, and mean molecular speed of HO,, respectively. The relevant values of these
parameters were selected according our previous study [33]. YHO, was the uptake coeffi-
cient of HO; on aerosols, ranging from 0.02 to 0.2. The O3 concentration under different
YHO, was tested by OBM (Figure S1). In our study, the maximum yHO; value of 0.2 was
adopted to magnify the effect by the model according to Shao et al.’s study [23]. Saero Was
the aerosol surface concentration, which is calculated by the PM; 5 concentration (further
details are provided in the Supplemental Information).

The observed and calculated data, including pollutant concentrations (CO, SO, NOy
(NO, NO,), and NMVOCs) and meteorological factors (relative humidity, temperature,
pressure, and the photolysis rates in related species) were subjected to the model constraints.
The time resolution of the input parameters was averaged or interpolated to 1 h.

2.4. Model Evaluation

The mean bias (MB), root mean squared error (RMSE), and index of agreement (IOA)
were used to assess the model (RF and OBM) performance based on the observed (O;) and
simulated (S;) hourly O3 values according to the following equations:

_X(8i-0))

MB
N

(4)
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where O is the mean concentration of the observed Os.

3. Results and Discussion

3.1. O3 Pollution Profiles
3.1.1. Long-Term Trend of O3 and Related Pollutants

The year variations of 1 h O3 concentrations and related pollutants (NO, and PM; 5)
in Xinxiang City are presented in Figure 2. The O3 concentration exhibited an increasing
trend from 2015 to 2022, with an average growth rate of 3.41 ug m 2 yr—!. The similar
upward trends in O3 concentrations over the past 1-2 decades have been observed in other
Chinese urban areas, such as Beijing [47], Shanghai [48], the Sichuan Basin [6], the Pearl
River Delta [49], and various other Chinese urban sites [2,7]. In contrast, the concentra-
tions of PM; 5 and NO, showed significant declines from 2015 to 2022. This reduction is
attributed to the stringent implementation of clean air policies in China, including the Air
Pollution Prevention and Control Action Plan (2013-2017) and the Three-Year Action Plan
for Winning the Blue Sky Defense Battle (2018-2020) [3]. The former plan focused primarily
on reducing particulate matter, while the latter emphasized the coordinated control of NOy
and VOCs, with a targeted 10% reduction in VOC emissions [50].

100

e . No, IO, —ePM,,

80 \

70—- \
60—-
50 1
40

30

Concentration (pg/m°)

20

10

2015 2016 2017 2018 2019 2020 2021 2022

Year

Figure 2. The annual trend of O3, NO2, and PM2.5 during 2015-2022.

The increasing O3 trend could be further separated into two phases (Phase I, 2015-2018;
Phase II, 2019-2022) based on the different increasing rate. During Phase I, the average
1-hourly O3 concentration increased at a rate of 7.89 ug m > yr~!. The average annual
concentration of PM; 5 was at a high level, and had a significant decrease (from 85.54 to
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56.70 ug m~3). However, no significant changes were observed in NO, concentration
during Phase I. In contrast, during Phase II, the increase rate of O3 was 2.76 ug m =3 yr—1,
which was much smaller than that in Phase I. The concentration of PM, 5 was also at the
high level (approximately 50 g m~3), although it experienced a relatively smaller decrease
compared to Phase I. By contrast, the concentration of NO, had an obvious decreasing
tendency in Phase 1L

NO, was the important precursor in O3 formation through the “NOy cycle”, exhibiting
a non-linear relationship with O3 formation. Under the VOC-limited conditions, which
were thought to prevail in urban China, decreasing NOy would increase O3, while under
NOy-limited conditions, reducing NOy could decrease O3 concentrations [22]. The effect
of PM; 5 on O3 formation was mainly by changing photolysis rates and heterogeneous
chemical processes [23], with its influence heavily dependent on the level of the PM; 5
concentration. In Xinxiang City, O3 formation was under VOC-limited regimes alongside
a high PM, 5 concentration. In the condition, reductions in both NOx and PM; 5 can lead
to increased O3 production. Hence, the decline in PM; 5 concentration could be a primary
factor driving the rise in O3 in Phase I. The result was consistent with the results that
a reduction of PM; 5 stimulated O3 production over the 2013-2017 periods in the North
China Plain. The impact of PM; 5 controls on O3 formation likely weakened in Phase II
due to the relatively minor reduction in PM; 5 concentrations. The unbalanced changing of
the precursor concentration (VOC and NO;) might be the main reason for O3 increasing in
Phase II.

3.1.2. Seasonal Variation of O3 Pollution

The seasonal variation of O3 during 2015-2022 is shown in Figure 3. O3 concentrations
exhibit pronounced seasonal patterns, peaking during the summer, and remaining at rela-
tively lower levels in the winter. The rise in temperature and solar radiation intensity plays
a critical role in photochemical formation of O3 in summer [51]. Enhanced photochemi-
cal production and the rapid cycling of ROy radicals (OH + HO, + RO + RO,) typically
overcome the radical and NO titration in summer [52]. Consequently, the potential health
hazards associated with O3 exposure are particularly significant during the warm season.
According to the updated WHO Global Air Quality Guidelines (AQGs) from September
2021, the recommended peak season O3 concentration is lower than 60 ug m—3. However,
the average concentration of O3 in summer and spring exceed the recommended threshold
from 2015 to 2022. In autumn and winter, a steady increase in O3 concentration has been
observed since 2018, with levels exceeding 60 g m~3 in autumn 2022. The extension of the
O3 pollution season from the warm season is a nationwide phenomenon in China [53]. The
rapid rise in O levels outside of the summer season can enhance atmospheric oxidative
capacity, potentially leading to the increased formation of secondary PM, 5, including
nitrate, sulfate, and organic components.

3.2. Identifying Key Factors Using RF Models

The RF model was employed to predict O3 concentrations for both Phase I and Phase
II. As shown in Figure S3, during the training phase, the model explained 83% and 86% of
the measured O; for Phase I and Phase I, respectively. The RMSE was 9.55 and 7.96 pg m 3
for Phase I and Phase II, respectively. The performances of the testing dataset in RF model
for the two phases are shown in Figure 4. For both phases, the values of MB were minor,
and the values of R? and IOA were close to 1. The slope and intercept values were 0.77 and
14.25 for Phase I and 0.79 and 13.49 for Phase II. It is noteworthy that the RF model tended
to underestimate and overestimate O3 concentrations at relatively high and low values,
resulting in relatively higher RMSE for both phases. This discrepancy can be attributed to
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the RF model’s tendency to exhibit larger biases in predicting extreme values due to the
absence of certain O3 precursor data, such as VOC [29,54]. Nevertheless, the RF model
could successful reproduce O3 concentration using the selected factors.
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Figure 3. The seasonal variation of O3 pollution during 2015-2022.

As shown in Figure 4, the top 5 factors for Phase I were NO,, SSR, PM; 5, T2m, and
V10. The photolysis of NO, produced an oxygen atom, and O3 was then produced from
the combination of the oxygen atom and O; [1]. Hence, NO; and SSR were the notably
influential factors in O3 formation. PM,5 was identified as the third most significant
factor contributing to O3 formation in Phase I. The reduction of PM, 5 during this phase
may elevate O3 concentrations through modulations in atmospheric heterogeneous reac-
tion kinetics, solar radiation-driven photolysis efficiencies, and planetary boundary layer
transport dynamics [20,22]. Temperature was also an important factor influencing O3
formation in Phase I. Chemical kinetics rates involved in O3 production increased with the
increase of temperature [55]. Additionally, the VOC emissions, including biogenic emission
rates and anthropogenic emissions (such as solvent evaporation), may be enhanced in hot
weather [56,57].

In Phase II, NO, and SSR remained prominent factors, indicating the local formation
of O3. Other high-ranking variables were predominantly meteorology-related, including
U10, D2m, T2m, and V10. Unlike in Phase I, PM; 5 was less important due to the relatively
smaller change in the concentrations in Phase II. O3 enhancement due to PM,; 5 dropping
significantly depends on the current level of PM; 5 concentration and its decline magni-
tude [22,23]. The decreased amplitude and the level of PM; 5 concentrations were smaller
in Phase II, resulting in less importance of PM, 5 in O3 formation. Although PMj; 5 ranked
seventh in Phase 1, its %IncMSE value was close to the high-ranking meteorology-related
factors—higher than BLH and CO. In addition, the concentration of PM, 5 was at a high
level (about 51 pg m 3 in 2022), exceeding Class I limit values of the National Ambient
Air Quality Standard (NAAQS) (35 ug m~3). Hence, PM; 5 remains a significant factor in
O3 formation in recent years for Xinxiang City and also for the other cities with a high
PM, 5 concentration.
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Figure 4. Model performance and variable importance for two phases: (A) Phase I, (B) Phase II. Cross-
validated models R? and MB, RMSE, and IOA are calculated by using a fivefold cross-validation
modeling performance for 1 h O3 concentration. The orange line and blue dotted line represent
the fitted and 1:1 line. The variables are listed in the order of importance from top to bottom. The
horizontal axis represents the aggregated increase in the mean squared errors (%IncMSE) from the
RF model. A larger value represents higher importance. The correlation relationships (positive and
negative) of O3 with the variables are identified.

3.3. Role of PM; 5 in O3 Formation

From 19 June to 25 June 2021, the average O3 concentration (128.63 ug m~3) was in
excess of the CNAAQS 1 h mass-based standards of 120 j1g m 3. The period was identified
as being traceable to an O3 episode. During the episode, a high level of O3 concentration
(up to 257 ug m~3) was observed. The concentrations of SO,, NO, NO,, and CO were
13.60, 3.64, 32.46 pg m’3, and 0.50 mg m~3 on average. The PM; 5 concentration was at
a relatively low level, with 25.00 pg m ™~ being the average. The average mixing ratios of
35 NMVOCs are summarized in Table S2. The other information about the O3 episode is
also introduced in the Supplementary Materials.

The identified O3 episode (19 June to 25 June 2021) was used by OBM for a simulation
study. The comparison of observed and simulated O3 during the identified O3 episode is
shown in Figure S4. The model accurately captured the diurnal profile of O3, demonstrating
satisfactory performance. The average concentration of observed and simulated O3 during
the episode was 128.09 and 128.63 pg m~3, respectively, with a high R? value of 0.96. In
addition, the MB, RMSE, and IOA were 0.82 pg m 3, 8.08 ug m 3, and 0.97, respectively,
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further validating the model’s capability to reproduce the variations of O3 effectively and
enabling its use for subsequent analysis.

As mentioned in Section 2.3, the heterogeneous reactions and changing of photolysis
rates linked to PM, 5 were incorporated into the model. Hence, we conducted experiments
to assess how variations in PMj 5 concentration affected Oj levels. During the episode,

the concentration of PM; 5 was relatively low, with about 25 pg m3

on average. To
illustrate concrete situations of pollution, O3 concentration was simulated by OBM with
a series of PMj 5 concentrations (0-3 times PM; 5 concentration). The diurnal profile of
O3 concentration under different PM; 5 concentrations is shown in Figure S5. The O3
concentration rose with the dropping of the PM, 5 concentration. The maximum disparity
in O3 concentration under different PM, 5 concentrations reached up to 32.46 ug m3
(Figure S6), indicating the significant impact of PM; 5 on O3 formation. In addition, the
rangeabilities of O3 under difference PM, 5 concentrations was higher in the daytime
and lower at nighttime. The reduction of HO, by heterogeneous loss in PM; 5 was the
major mechanism at nighttime. The decrease in PM; 5 could lead to an increasing HO,
concentration due to less HO, heterogeneous loss on the ambient aerosol [22]. The NO
titration effect on O3 could be offset by an elevated HO, concentration [11]. During the
daytime, enhanced photolysis rates resulting from decreased PM; 5 concentration further
facilitated O3 formation. Both mechanisms played significant roles in O3 formation during
the daytime.

The Empirical Kinetic Modeling Approach (EKMA) diagram can categorize O3 for-
mation into either “NOy limited” or “VOC limited” regime [20], providing a basis for
effective O3 pollution control policies. To investigate the impact of PMj; 5 on O3 pollution
control strategies, EKMA curves were constructed by OBM under both 0.0 x PM; 5 and
3.0 x PMjy 5 scenarios (Figure 5). The EKMA curve was changed under different concen-
trations of PM; 5, with the slope of the ridgeline (VOC/NOy) increasing from 8.36 under
0.0 X PM; 5 scenarios to 11.48 under 3.0 x PM, 5 scenarios. The result meant that the
O3 formation regime tended to “NOy limited” with the dropping of PM, 5 concentration.
PM, 5 has a great impact on the O3 sensitivity regime, thereby affecting the production
rate of surface O3. The aerosol chemistry and photochemistry were the main mechanism
for the shift of O3 chemical regimes under different PM; 5 concentrations [58]. As previ-
ously discussed, the concentration of the HO; concentration increases as the level of PM; 5
declines, accelerating the ROy cycle (OH—RO—RO,—HO,—0OH) with peroxyl-radical
self-reactions predominating under these conditions. Therefore, when formulating policies
for VOC and NOy emission reductions to control O3 pollution, it is crucial to pay more
attention to changes in PM, 5 concentration [44].
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3.4. Limitations

In the present study, a comprehensive dataset from field measurements was employed
as a model constraint. The dataset included key parameters, such as the concentrations of
reactive species, mixing layer height, and photolysis frequencies. Additionally, the state-of-
the-art gas chemistry mechanism (MCM) was used in the OBM. The uncertainties of the
OBM were mainly determined by the complexities of atmospheric “Haze Chemistry” [59].
Multiple heterogeneous reactions coexisted on the aerosol surfaces [60,61]. Therefore, some
heterogeneous reaction might have an impact on O3 production, such as the heterogeneous
formation of HONO and HNOj [62] and heterogeneous loss of O3 [63]. However, the
heterogeneous reactions mechanism was unrevealed, with a big range of heterogeneous
uptake coefficients [11,22]. Hence, only the heterogeneous reaction of HO; on aerosols
surfaces, the paramount heterogeneous reaction impacting O3 formation, was considered
in our study.

4. Conclusions

Clean air actions have been implemented by the Chinese government to improve
the severe air pollution issue since 2013. However, the increasing trend of O3 has been
inconsistent with the decline of PM; 5 in China. In Xinxiang City, the O3 concentration
increased by the rate of 3.41 pg m~3 yr~! from 2015 to 2022. This increase can be divided
into two phases: Phase I (2015-2018) saw a high rate of increase (7.89 nug m~3), while
Phase IT (2019-2022) experienced a lower rate (2.89 ug m~3). The O3 pollution from warm
seasons should be paid more attention, due to the steady increasing O3 concentration
in autumn and winter since 2018. The developed RF model effectively simulated O3
concentrations, identifying NO, and surface net solar radiation as primary factors in O3
formation for both phases. In Phase I, PM; 5 ranked third in O3 formation, while in Phase
II, PM, 5 remained a significant factor due to its persistently high concentration in Xinxiang
City. The OBM incorporated into MCM was used to explore how PMj, 5 influences O3
formation. The O3 concentration was raised with the dropping of PM; 5 by the process of
the heterogeneous reaction and photolysis rates. The O3 formation regime tended to “NOx
limited” with the dropping of the PM, 5 concentration. Neglecting the role of PM; 5 in O3
formation could have adverse effects on O3 pollution control policies. Further research
into heterogeneous uptake coefficients would be beneficial in reducing the uncertainties
associated with heterogeneous reactions in real atmospheric aerosols. Our results provide
powerful evidence for on-going coordinated control of O3 and PM; 5 in a typical city of the
Central Plains urban agglomeration.
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