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Robust Representation Learning
Based on Deep Mutual Information for Scene
Classification Against Adversarial Perturbations

Linjuan Li"¥, Gang Xie

Abstract—Remote sensing scene classification enables data-
driven decisions for various applications, such as environmental
monitoring, urban planning, and disaster management. However,
deep learning models used for scene classification are highly vul-
nerable to adversarial samples, resulting in incorrect predictions
and posing significant risks. While most current methods focus
on improving adversarial robustness, they face a trade-off that
compromises accuracy on clean, unperturbed images. To address
this challenge, we utilized information theory by incorporating a
mutual information (MI) representation module, which allows the
model to capture high-quality, robust features. Furthermore, a do-
main adversarial training strategy is applied to promote the learn-
ing of domain-invariant features, reducing the effect of distribution
differences between clean images and adversarial samples. We
propose a novel algorithm that accurately differentiates between
clean and adversarial scenes by introducing the MI and domain
adaptation-guided network. Extensive experiments demonstrate
the effectiveness of our approach against adversarial attacks, re-
vealing a positive correlation between adversarial perturbations
and image information entropy, and a negative correlation with
robust accuracy.

Index Terms—Adversarial examples, deep mutual information
(MI), deep neural networks (DNNs), remote sensing (RS) images,
scene classification, unsupervised domain adaptation (UDA).

1. INTRODUCTION

ITH the rapid expansion of remote sensing (RS) data
Wand the advancement of computational capabilities,
RS scene classification has become increasingly important for
various applications, including land and resource surveys [1],
[2], disaster assessment [4], [5], and urban development plan-
ning [3]. Nevertheless, in open environments, the presence of
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Fig. 1. Impact of adversarial samples on DNN classifier performance. The left
shows a pair of clean images alongside their corresponding adversarial example,
while the right depicts the change in Acc of the DNN classifier in response
to perturbations. As the magnitude of adversarial perturbation increases, the
model’s performance significantly degrades.

unseen noise [6], unknown anomalies [7], and imperceptible
perturbations [8] poses significant challenges to the robustness
of scene classification models, which is a primary concern for
both academia and industry.

These issues are further intensified by the limitations inher-
ent in deep neural network (DNN)-based algorithms. Although
DNNs have achieved notable success in scene classification
[9], [10], [11], they remain highly susceptible to adversarial
samples—inputs subtly altered to mislead the model, thus un-
dermining both accuracy (Acc) and robustness [12], [13], [14].
As shown in Fig. 1, despite clean and adversarial samples ap-
pearing nearly identical, increasing the perturbation magnitude e
causes a steep drop in performance on the RSSCN7 dataset. For
€ = 0.03, Acc and F1 scores reach 85% and 86%, respectively,
but with e = 0.06, they decrease sharply to 51% and 49%, indi-
cating a nearly 40% reduction. Higher perturbation magnitudes
render the model ineffective in recognizing common landmarks
and structures.

The potential risks posed by adversarial perturbations are
particularly concerning in critical areas, such as account se-
curity [15], [16], privacy protection [17], [18], and military
operations [19], [20]. For example, adversarial images placed
on building rooftops could obscure crucial infrastructure from
surveillance systems or, in a military setting, mislead drones into
misclassifying civilian structures as military targets, leading to
disastrous consequences. This underscores the urgent need for
robust methods to defend against adversarial threats.

Various strategies have been developed to enhance the
robustness of deep scene classification models. Initially, data
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augmentation techniques introduced diversity to training data,
improving model adaptability to varying inputs [21], [22], [23].
Model architecture enhancements, such as multiscale feature
fusion [24], [25] and attention mechanisms [26], [27], [28], have
further bolstered feature selection robustness. Another crucial
aspect for robust scene representations is the use of multiple
instance learning (MIL), which mitigates the impact of permu-
tation and ensures more stable feature learning. Key works in
this area, such as [29], [30], and [31] have employed MIL in RS,
demonstrating its ability to enhance scene classification robust-
ness by better handling local features and permutation effects.
Moreover, robust loss functions and regularization approaches
help mitigate outliers and reduce overfitting [32]. However,
These methods may fall short against well-crafted adversarial
samples.

In recent years, adversarial defense techniques, including
adversarial training (AdvT), purification, and detection, have
garnered significant attention. Among these, AdvT has emerged
as one of the most widely adopted methods for enhancing model
robustness against adversarial attacks. This approach integrates
adversarial samples, generated during backpropagation using
gradient information, into the training process. Popular methods
for generating adversarial samples include the fast gradient sign
method (FGSM) [33], the basic iterative method [34], projected
gradient descent (PGD) [35], and the DeepFool attack [36].
Despite its popularity, AdvT has notable limitations: it relies
on a fully supervised framework requiring labeled adversarial
samples, which are costly and labor-intensive to obtain, incurs
high computational overhead from iterative sample generation,
and degrades performance on clean samples, particularly with
diverse data distributions.

Adversarial purification encompasses methods aimed at re-
ducing or eliminating perturbations or noises in images before
classification. For instance, Nie et al. [37] employed diffusion
models to achieve this using a reverse diffusion process to restore
clean samples from adversarial perturbated images. Similarly,
Wu et al. [38] utilized diffusion models to incrementally dimin-
ish noise, enabling a return of adversarial samples to a condition
closer to their original state. While these approaches can effec-
tively handle simpler perturbations, their iterative nature results
in substantial computational overhead and diminished effective-
ness when addressing intricate adversarial perturbations.

Adversarial detection [39], [40], [41] focuses on identifying
adversarial samples before their processing by DNNs. This
approach aims to maintain standard model Acc while enhancing
robustness against adversarial attacks. Typically, this involves
the use of specialized detectors, such as auxiliary classifiers [42],
[43] or tailored statistical measures [44], [45]. However, these
detectors often struggle to generalize across various tasks and
scenarios. The solutions above frequently overlook the differ-
ences in data distribution between adversarial and clean images,
particularly in the context of RS. RS images often feature more
complex backgrounds, multiscale land objects, and greater detail
than natural images, which can lead to poor generalization of
models when confronted with unknown perturbations.

Building on this analysis, our study seeks to address the
challenge of adversarial samples that lead to high-confidence
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misclassifications in scene classification models by reevaluating
data distribution, ensuring consistent performance and resilience
even in adversarial contexts.

Unlike the aforementioned methods, which rely on traditional
supervised approaches, we propose an unsupervised domain
adaptation (UDA) framework to enhance model robustness,
particularly for cross-domain tasks without semantic annotation
and unknown adversarial distributions. To this end, we intro-
duce the MI and domain adaptation-guided network (MIDANet)
for RS scene classification, which incorporates the following
key components: 1) mutual information representation (MIR)
module, drawing inspiration from [46], the MIR module learns
robust representations at both local and global scales using
information theory. This dual-scale approach ensures resilience
to adversarial perturbations by capturing discriminative and
domain-invariant features. 2) domain AdvT strategy, to address
significant distribution shifts between clean (source domain)
and adversarial (target domain) samples, we integrate a domain
AdvT strategy, which aligns feature distributions, enabling the
learning of domain-invariant features. Our approach overcomes
the challenges associated with complex iterative processes and
the reliance on additional structures, achieving a balance be-
tween computational efficiency and versatility. This ensures ro-
bust performance across diverse adversarial distributions, mak-
ing it highly suitable for a wide range of RS tasks.

Furthermore, to thoroughly assess robustness, we generated
a diverse array of adversarial samples with varying types and
levels of perturbation using FGSM and PGD techniques. Our
extensive experiments reveal that adversarial perturbations con-
siderably influence uncertainty and complexity. Our findings
indicate a positive correlation between adversarial perturbations
and image information entropy, alongside a negative correlation
with robust Acc. The key contributions of this study include the
following.

1) MIDANet framework: We introduce a robust framework
for RS scene classification, designed to withstand ad-
versarial perturbations by employing MIR and domain
adaptation techniques.

2) MIR module: We have integrated the MIR module to facili-
tate robust representation learning, maximizing both local
and global MI between input images and deep-learned
features.

3) Domain AdvT strategy: We implement a domain AdvT
strategy to address the discrepancies between clean and
adversarial samples, reducing representation gaps and
promoting domain-invariant feature learning to enhance
generalization across various adversarial distributions.

4) Adversarial correlation: A series of experiments confirm
that adversarial perturbations elevate the information en-
tropy of images, resulting in an increase in the model’s
predictions. This finding suggests a positive correlation
between adversarial perturbations and information en-
tropy, as well as a negative correlation with robust Acc.

The rest of this article is organized as follows. Section I intro-
duces the foundational concepts relevant to the description and
generation of adversarial samples. In Section III, the proposed
network architecture and its key components are thoroughly
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explained. Section IV outlines a series of experiments and
provides an in-depth analysis of the results. Finally, Section VI
concludes this article and highlights the key contributions of the
study.

II. PRELIMINARIES

This section outlines the concept of adversarial examples,
followed by a brief overview of the two primary methods used for
generating adversarial examples: the FGSM, and PGD method.
Besides, MIR learning is described in detail, highlighting the
differences between our designed MIR module and previous
works.

A. Adversarial Examples Description

Consider a well-trained DNN model for RS scene classifi-
cation, denoted as f(-) : x — y. Let x represent the original
image, and x*%" represent its corresponding adversarial image.
The true label of x is y, while y* is the prediction generated by
the DNN model. Adversarial samples can be formulated as a
minimum optimization problem, as follows:

adv

min HX — XH
n p
s.t. ||xadV — pr <7
FE) =y f(Y) =y y#y (1)
where | - ||, represents the p-norm, which measures the dis-

tance between the original image x and its adversarial coun-
terpart x*%. In this formulation, x is a high-dimensional ma-
trix, specifically an image with dimensions h X w X ¢, where
h and w are the height and width, and c is the number of
channels (e.g., c = 3 foracolorimage). The p-normis computed
element-wise across the matrix, as follows: [|x%4" — x|, =
(Xije x‘;‘fjjy’c —x;;.[")/P, where i and j are the spatial co-
ordinates and c is the channel index. 77 denotes the adversarial
perturbation. Equation (1) illustrates the existence of a minimum
perturbation, where adding 7 to the RS input x causes the DNN
model to produce an incorrect prediction y*, which differs from
the true label y of x.

B. Adversarial RS Image Generation

In generating adversarial examples for RS images, we employ
two widely-used methods: FGSM and PGD. These methods
generate key adversarial perturbations, x*", that challenge the
robustness of models in the RS domain.

1) FGSM: This technique works by identifying a perturbation
in the direction of the gradient ascend to increase the model’s
loss function. The algorithm calculates the gradient of the loss
function with respect to the input and applies a small /., pertur-
bation to generate adversarial data

Xadv =X + esign (Vx£ (X7 y)) (2)

where £(x,y) is the model’s loss function, V«£L(x,y) repre-
sents the first-order derivative of the loss with respect to input
x, and sign(-) refers to the sign function. The adversarial
perturbation is given by 1 = esign(VxL(x,y)). FGSM aims
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to lead the model to produce incorrect predictions via a one-step
gradient update.

Due to its simplicity and efficiency, FGSM is a fast and
effective method for evaluating the model’s vulnerability under
minimal perturbations. By using FGSM-generated adversarial
samples, we can quickly identify potential weaknesses in the
model and explore strategies for improving its robustness.

2) PGD method: PGD is a more robust adversarial approach,
extending FGSM by performing multiple iterative steps with
smaller perturbations at each step. While FGSM uses a single-
step approach, PGD performs multiple iterative steps, taking
smaller steps at each iteration. In each step, the perturbation is
clipped to stay within a specified range. The process is defined
as

x'T! = Clip, . (x" + asign (V<L (x,7))) 3

where t denotes the iteration number, « is the step size, and
Clipy . ensures that x remains within €. Although PGD is more
time-consuming than FGSM, it is recognized as one of the most
effective gradient-based adversarial attacks.

In our work, PGD is crucial for evaluating the model’s robust-
ness against more complex and iterative adversarial attacks. Its
iterative nature helps uncover deeper vulnerabilities and assess
resilience under progressively stronger perturbations. PGD also
aids in evaluating defense strategies by revealing weaknesses
not exposed by simpler attacks, such as FGSM, making it an
essential tool for enhancing model robustness against advanced
adversarial threats.

In our experiments, n our experiments, we utilized both FGSM
and PGD to generate adversarial examples with varying per-
turbation magnitudes, specifically e = 0.01, 0.03,0.06, 0.1, 0.3.
These perturbation levels were systematically adjusted to eval-
uate the model’s performance under different adversarial condi-
tions. The adversarial samples with varying perturbation mag-
nitudes were then used to assess the robustness of our model in
RS tasks.

C. MIR Learning

Mutual information (MI) is crucial for understanding the
relationship between input data and learned representations, as
it quantifies the shared information between them. Recently,
several methods have been developed to use MI to improve a
model’s ability to capture meaningful features and enhance its
representational power.

One of the foundational works in this area is mutual in-
formation neural estimation (MINE), proposed by Belghazi
et al. [47]. MINE estimates MI using a neural network and the
Donsker—Varadhan (DV) bound to optimize a lower bound on
Kullback-Leibler (KL) divergence. However, MINE relies on
a single discriminator for MI estimation, and the asymmetry
of KL divergence can cause training instability, especially in
high-dimensional or complex data. Advancements in MI-based
representation learning were proposed by Hjelm et al. [46], who
introduced MI maximization and a more stable, symmetric MI
estimation method. While this reduces instability, challenges
remain, including inefficiencies in handling high-dimensional
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D(Z;6), a scene predictor P(Z;6),), and the MIR module.

data, difficulties in domain adaptation, and the need for more
robust MI representations under adversarial perturbations.

Our work builds on these methods but introduces several key
differences. First, we propose a MIR module that uses dual-
scale MI estimation with both local and global discriminators,
allowing us to capture both fine-grained and high-level features.
Second, we replace the KL divergence with Jensen—Shannon di-
vergence (JSD), which is more stable and symmetric, addressing
training instability. Third, we integrate the MIR module within
a generative adversarial framework, enabling domain-invariant
feature learning. In addition, the MIR module is designed to be
robust to adversarial perturbations in RS data.

In summary, our approach improves on existing methods
by combining dual-scale MI estimation, stable divergence, and
adversarial robustness, making it more effective for RS tasks
with domain adaptation and adversarial challenges.

III. METHOD

This section first presents the problem description and the
proposed solution. Subsequently, a detailed overview of the
proposed MIDANet’s architecture is provided. Each network
component is then described with its specific functionality.
Finally, the loss function employed during the network training
process is elaborated.

A. Problem Description

Let X represent a set of clean RS images with corresponding
labels Y, sampled from a distribution S, i.e., S = {(x;,y;)} \le,
where (x;,v;) € (X,)), and k is the number of clean images.
The set of unlabeled adversarial samples, denoted as X’ adv g
from a different distribution 77, such that 7 = {(x*")}|~_,,

where x* € X% It is important to note that S # 7. We treat

D(Z, gd)
Domain discriminator

\ 2 /

=

Overview of the MIDANet structure. The MIDANet framework consists of four primary components: a feature encoder F'(X; 6y ), a domain discriminator

the clean image set as the source domain and the adversarial
samples set as the target domain.

The goal is to learn a mapping function g : X — ) from the
source domain that can be transferred to the target domain, i.e.,
Fg : X2 5 324V This learned mapping should correctly pre-
dict the label 2% for an unknown adversarial sample, effectively
mitigating the adverse impact of adversarial samples on DNN.
To achieve this, we utilize a generative adversarial framework
focused on learning domain-invariant representations.

B. Network Overview

The architecture of the proposed MIDANet, operating as a
generative adversarial network (GAN), is illustrated in Fig. 2.
The architecture consists of four key components: the feature en-
coder F'(X;6y), the domain discriminator D(Z; 6,), the scene
predictor P(Z;6,), and the MIR module, where X denotes the
input sample, Z represents the encoded features, and 0, 64, and
0, are the parameters associated with each respective network
component.

The feature encoder extracts relevant features from the input
data, regardless of whether the data comes from the source
or target domain, mapping the data into a lower dimensional
feature space Z. The domain discriminator determines whether
the encoded features originate from the source or target domain,
helping the encoder learn features transferable across both do-
mains. The discriminator additionally functions as an estimator
of deep MI, proficiently quantifying MI within high-dimensional
spaces. The scene predictor produces classification results based
on the encoded features. The MIR module aims to maximize the
MI between the input data X and its representation Z. This
ensures that the extracted features thoroughly and effectively
capture the key characteristics of the input samples, thereby
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facilitating consistent representations across both the source and
target domains.

C. Feature Mapping

The feature encoder is designed to extract features from all
input samples from the source or target domain, completing the
mapping from input samples, whether sourced from the source
or target domain, thereby mapping the input data to the feature
space as represented by F'(X;67) : X — Z. We implement an
encoder compromising four stacked convolutional layers fol-
lowed by a global pooling layer. The channel configuration
for the convolutional layer is ¢ = [64,126,256,512], with a
convolutional kernel size of k = 3 x 3and astride of s = 2. This
simple architecture effectively captures domain-invariant fea-
tures while minimizing computational complexity and the risk
of overfitting. When a clean image X from the source domain is
processed through the feature encoder, it produces feature maps
at various levels. We select the local features Zy € RE1*m*m
from the first layer and the global features Z, € R**1*! from
the fourth layer as inputs for the MI model. Similarly, when an
adversarial sample X" is processed, it generates local features
Zi € RV and global features Z39¥ € Re* <1,

D. MI Maximization

In information theory, MI quantifies the degree of dependence
between two random variables [49], [50]. For two discrete
random variables X and Y, MI Z(X;Y) is defined as

I(X;Y) =Y pla,y)log (p(xy)) 4)

zeX yey p(x)p<y)

where p(x,y) represents the joint probability distribution of X
and Y, while p(z) and p(y) denote their marginal probability
distributions. A larger MI value indicates a stronger association
between X and Y.

Despite its significance, accurately computing MI has histori-
cally posed a challenge. However, various algorithms have been
developed to provide effective estimations. Notably, Donsker,
and Varadhan [51] established a lower bound for MI based on
the DV representation of the KL divergence

I(X;Y) = D (J||M) > TPV (X;Y) )

where Z(®V) denotes the estimated MI. This insight reformulates
the objective of maximizing MI as the problem of maximizing
this lower bound.

In the context of deep learning, GANs have proven to be
a powerful means for learning and approximating data distri-
butions while effectively capturing dependencies between vari-
ables. By leveraging GANs, MI can be estimated with greater
efficacy, transforming the task of maximizing MI into a genera-
tive AdvT challenge.

Drawing from principles in information theory, we have incor-
porated an MI module into our proposed MIDANet framework.
RS images often exhibit high interclass similarity and significant
intraclass variability, which complicates the extraction of dis-
tinguishable features, particularly in the presence of adversarial
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perturbations. To enhance the model’s feature encoding capabil-
ity, we specifically design the MI representation module. This
module quantifies the amount of information Z(X; F(X;0¢))
obtained about the encoder’s output F'(X; 6 7) through the input
images X. Following the methodology of [52], we employ the
JSD to estimate the lower bound of MI. Consequently, our
objective can be articulated as follows:

(@, ) = argmaxZ,(X; F(X; 6;)) (6)

w, Of
I,(X; F(X; 05)) > IU°/(X; F(X; 65)) ©)
IUSON(X; F(X; 0f)) = Es[— fo(—Du(X; F(X; 65)))]

—Esx7[f(Du(X'; F(X; 65)))]
(8)

where fSSD) denotes the estimated MI based on the JSD. D,,
represents the discriminator with parameters w, while X and
X’ are inputs sampled from the source and target data distri-
butions S and 7, respectively. The function f(.) refers to the
SoftPlus activation function. The primary objective of the MIR
module is to facilitate the network’s learning of a meaningful
and informative representation of the original data.

Fig. 3 illustrates the architecture of the MIR module,
which consists of a pair of discriminators: the local dis-
criminator LD((Z;Zys) ; wy) and the global discriminator
GD((Zy;Zys) ; we). These discriminators are utilized to es-
timate MI between the features and the observed data from
both local and global perspectives. In this context, Z; and
Z ) represent the joint and marginal probability distributions
of the features, respectively, while w; and ws are the param-
eters associated with the local and global discriminators. The
global discriminator comprises two convolutional layers, three
fully connected layers, and an activation layer, whereas the
local discriminator is composed of three convolutional layers
and an activation layer. The activation function used is the
SoftPlus function, which yields a probability distribution. The
MIR module enforces constraints on both local and global MI
on the encoded output, thereby facilitating the generation of
high-quality image representations.

It is well recognized that the information contained in low-
level feature maps is closely related to the input, while global
feature vectors encapsulate the output from the encoder. There-
fore, MI Z(X; F') can be expressed as Z(Zg;; Zs4), which can
be decomposed into local MI and global MI components.

For local MI, the global features Z,, from the source do-
main are initially expanded along the channel dimension to
align with the dimensions of the local features, resulting in
Z, € Retxmxm These expanded global features are then fused
with the local features Zg; to form a joint probability distribu-
tion that is subsequently processed by the local discriminator.
Simultaneously, Z(, is concatenated with local features VA
from the target domain, thereby creating the marginal proba-
bility distribution for the local discriminator. The LD outputs
joint probabilities p;; and marginal probabilities p,,; based on
these inputs, which are then employed to compute the local
MI. The loss function £;p for the local discriminator can be
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formulated as
Lip = _(]ES[_fsp(_Lle(Zsla Z/SQ))]
_ESXT[fsp(Lle(Zsladva Z/sg))])' (9)

For global MI, the local features from the source domain,
denoted as Zg;, undergo convolution and flattening to yield
Z', € R***11 thereby aligning with the global features. These
transformed local features are then combined with Z ,, to create a
joint distribution, which is processed by the global discriminator
to produce the joint probability p,;. Similarly, in the target
domain, the local features Z%g" are transformed into Z' gv and
concatenated with Z,, to form the marginal distribution. The
global discriminator subsequently outputs the marginal proba-
bility pg.,,. The loss function for the GD is formulated as follows:

Lop = —(Es[—fip(—GDu2(Z g1, Zsy))]

~Esur[f(GDua(Z 0", Zsp)))).  (10)
The MIR loss Lyr is defined as follows:
Lyir = aLip + BLcD (11

where the hyperparameters a and 3 correspond to the weights
assigned to the local and global MI losses, respectively. These
weights can be tailored based on the specific task requirements
of the task at hand in practical applications.

E. Representation Discrimination

The scene predictor, P(Z;6),), is tasked with classifying the
feature vectors generated by the encoder, with the objective of
correctly predicting the scene label y. The predictor consists
of three fully connected layers, each followed by an activation
function. The dimensions of the fully connected layers are (512,
256), (256, 128), and (128, n), where n represents the number of
scene categories. During training, the scene predictor minimizes
the classification loss using the cross-entropy loss function. This

Local discriminator
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Global discriminator 7, (Z;Z,,) e

z-loc (Z 5 ng)

s

Structure of the MIR module. The MIR module comprises local and global discriminators that maximize MI between the input image and the encoder

process enhances the model’s classification of Acc within the
source domain

Lp = —Ex.sllog P(Zs,: 0,)]. (12)

The domain discriminator, D(Z; 6), serves as a binary classifier
designed to determine whether the feature vectors produced by
the encoder originate from the source domain or target domain.
It classifies the domain of each feature vector by assigning one of
two labels, d. The discriminator is structured with two fully con-
nected layers and an activation layer. The first fully connected
layer reduces the input feature size from 128 to 64, followed by a
normalization layer and a ReLU activation function. The second
fully connected layer further reduces the feature size from 64 to
2, corresponding to the binary domain labels. The primary goal
of the domain discriminator is to optimize its parameters, 6,4, by
minimizing the domain classification loss, which is defined as

ﬁD = —Exwg[log D(ng; Hd)
— Exuvp[log (1 — D(Z3;

W00). (13)

The domain discriminator maximizes the loss, £ p, to effectively
differentiate between source and target domain features, whereas
the encoder minimizes this loss to generate domain-invariant
features.

F. Overall Loss Function

The overall loss function of the proposed framework incor-
porates three components: MI loss, scene predictor loss, and
domain discriminator loss. The total loss can be formulated as
follows:

ﬁloss - ACMI + EP + 'VACD (14)

where ~y represents the weight coefficient of £p that adjusts the
proportion of the loss in the total loss.
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IV. EXPERIMENTS AND RESULT ANALYSIS

A. Data Description

1) RSSCN7 dataset [53]: The RSSCN7 dataset, created by
Wuhan University, consists of images collected from Google
Earth at four different scales (1:700, 1:1300, 1:2600, 1:5200).
Each scale includes 100 images, resulting in a total of 2800
images covering seven scene categories: grassland, fields, in-
dustrial areas, rivers, forests, residential areas, and parking lots.
Each image has a resolution of 400 x 400 pixels. This dataset
is particularly challenging due to the diverse range of scenarios,
due to the diverse range of scenarios, which includes variations
in weather, seasons, and image scales.

2) SIRI-WHU dataset [54]: This RS scene classification
dataset was developed by Wuhan University, with images pre-
dominantly extracted from urban areas in China using Google
Earth imagery. The dataset contains 2400 images, each with
a resolution of 200 x 200 pixels and a spatial resolution of
2 m. It includes 12 scene categories: agriculture, commercial
areas, harbors, idle land, industrial areas, meadows, overpasses,
parks, ponds, residential areas, rivers, and water bodies, with
200 images per category.

3) UC Merced Land-Use dataset [55]: The UC Merced
Land-Use dataset, published by the University of California, is
designed for urban land-use classification studies. The images
were sourced from the United States Geological Survey National
Map, with a resolution of 1 ft per pixel. This dataset includes
2100 images, divided into 21 categories, such as including agri-
culture, buildings, parking lots, sparse residential areas, storage
tanks, tennis courts, and freeways. Each category consists of 100
images, with each image having a size of 256 x 256 pixels.

B. Experimental Settings

1) Data Augmentation: To enhance the diversity of the training
data, various data augmentation techniques were applied, aimed
at improving the model’s generalization capabilities. The aug-
mentation methods included horizontal flipping (p = 0.5) and
vertical flipping (p = 0.5), where p represents the probability
of flipping. A random rotation within the range of (—30°,30°)
was also implemented. These transformations help reduce the
model’s sensitivity to object positioning. In addition, the bright-
ness and contrast of the image were randomly adjusted between
60% and 140% of their original values, with 7 representing the
adjustment ratio. This augmentation strategy enhances the color
tone and diversity of the RS images.

2) Training and inference: The proposed algorithm was im-
plemented using the PyTorch deep learning framework and
run on an Ubuntu 20.04 operating system. The training was
conducted on a single-card NVIDIA RTX A4000 GPU with
16 GB of memory. The batch size was set to 16, and training
was conducted over 100 epochs. The Adam optimizer was used
with an initial learning rate of 0.001, a first-order decay rate of
(1 setat 0.9, and a second-order decay rate of 35 at 0.999. Model
performance was validated every five epochs. During inference,
amultiscale inference strategy was employed, utilizing scales of
[0.5,0.75, 1, 1.25, 1.5, 1.75], which effectively enhanced scene
classification Acc.
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TABLE I
RESULTS OF ABLATION EXPERIMENT

Dataset Baseline Baseline+MIR SAcc RAcc
v 82.7 80.8
RSSCN7 [53] v 86.2 83.6
v 83.9 82.6
SIRI-WHU [54] v 86.1 85.4
Ve 76.6 75.8
UC Merced Land-Use [55] v 80.9 80.3

TABLE II
SELECTION OF HYPERPARAMETERS @ AND /3

a B SAcc RAcc
0.0 0.0 82.7 80.8
1.0 0.0 85.2 82.4
0.0 1.0 83.1 81.6
0.5 0.5 84.5 82.1
1.0 0.5 86.2 83.6

3) Evaluation metrics. For comprehensive model evaluation,
four key metrics were employed: Acc, precision (P), recall
(R), and F1 score. These metrics are widely used in scene
classification tasks and offer a quantitative measure of model
effectiveness, with higher values indicating better classifica-
tion performance and greater robustness. In particular, Acc is
assessed using two measures: standard accuracy (SAcc) and
robust accuracy (RAcc). SAcc refers to the model’s performance
on clean, unperturbed images, reflecting its ability to correctly
classify data under normal, noise-free conditions.In contrast,
RAcc refers to the model’s performance on adversarial samples,
indicating how well the model can maintain classification Acc
when faced with perturbations designed to deceive it.

C. Ablation Study

1) Impact of the MIR module: To assess the effect of the MIR
module, a critical element of our network, ablation studies were
performed on three datasets. By removing the MIR module, a
baseline for comparison was established. As shown in Table I,
integrating the MIR module resulted in significant performance
improvements, with a 3.5% increase in SAcc and a2.8% increase
in RAcc on the RSSCN7 dataset, along with the largest gains
observed on UC Merced Land-Use dataset for both metrics.
The MIR module consistently enhanced performance across all
datasets, highlighting its positive contribution to both robustness
and Acc in RS scene classification.

2) Impact of global and local MI: In our work, we introduce
the hyperparameters « and /3, which respectively represent the
contributions of local MI and global mutual information within
the overall MIR module. To evaluate their impact on model
performance, we conducted experiments with various values for
these parameters, as detailed in Table II.

When both « and  are set to 0.0, excluding MI, the model
shows the lowest performance (SAcc = 82.7, RAcc = 80.8),
confirming the necessity of incorporating MI. leads to a sig-
nificant performance improvement, with SAcc increasing by
2.5% and RAcc increasing by 1.6%, indicating its critical role
in enhancing feature representation. Similarly, global MI alone
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TABLE III
SELECTION OF HYPERPARAMETER 7y

¥ SAcc RAcc
0.2 85.2 81.3
0.4 85.8 81.7
0.5 85.5 82.5
0.6 84.9 83.2
0.8 83.5 83.7
1.0 82.7 82.8

improves results, with SAcc increasing by 0.4% and RAcc
increasing by 0.8%, but is less effective than local MI. Combin-
ing the two equally yields balanced gains SAcc 84.5%, RAcc
82.1%, showcasing their complementary nature. The best perfor-
mance is observed with « = 1.0 and 5 = 0.5, underscoring the
dominant role of local MI while leveraging global MI to enhance
robustness and domain invariance. These results highlight the
importance of jointly optimizing local and global MI, with a
stronger emphasis on local MI, to achieve optimal performance
on both clean and adversarial samples.

3) Impact of hyperparameter v: We conducted experiments
on the RSSCN7 dataset to evaluate the impact of the hyper-
parameter v on model performance. The results in Table III
show that as + increases, robust Acc improves, while standard
Acc gradually declines. At v = 0.2, SAcc is high (85.2%), but
RAcc is relatively low (81.3%), indicating limited adaptation.
As v increases to 0.5 and 0.6, RAcc improves to 82.5% and
83.2%, respectively, while maintaining stable SAcc. The highest
RAcc (83.7%) occurs at 0.8, but SAcc declines more signif-
icantly, suggesting excessive AdvT negatively impacts source
domain classification. Overall, v = 0.5 strikes a good balance,
effectively improving adversarial robustness while maintaining
competitive classification Acc.

D. Generation of Adversarial Samples

To evaluate the robustness of the RS scene interpretation
model under different adversarial conditions, we generate adver-
sarial samples using the FGSM and PGD algorithms. For FGSM,
the perturbation magnitude e is set at 0.01, 0.03, 0.06, 0.1, and
0.3. For PGD, the iteration step is set to 1, with a perturbation
range of (-0.5, 0.5), and perturbation magnitudes ¢ of 0.03, 0.06,
0.1, and 0.3. Adversarial samples with € = 0.03 are used for
model training, while samples with other perturbation levels are
employed to evaluate the model’s adversarial robustness.

Fig. 4 presents examples of adversarial samples, illustrating
how adversarial perturbations affect clean images. These clean
samples are derived from a RS image scene classification task
based on the UC Merced Land-Use dataset, which consists of
2100 images categorized into 21 land-use classes. Specifically,
the first image in Fig. 4 belongs to the airplane category, while
the second image is from the parking lot category.

As the perturbation magnitude increases, the disruption to
the clean images becomes more pronounced, although the core
semantics of the images remain visually discernible. This is im-
portant because even when adversarial perturbations are visually
subtle, they can still lead to significant classification errors.
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In comparison to FGSM, adversarial samples generated using
PGD appear more deceptive and aggressive. Despite exhibiting
minimal visual differences from the original images, PGD-based
adversarial samples are particularly effective at misleading deep
learning models, which highlights their severity in terms of
model vulnerability.

To further emphasize the robustness of our model, Fig. 4
visualizes different types of adversarial samples, as well as
samples with varying perturbation magnitudes. This illustrates
that we did not rely on a single sample for evaluation, but instead
tested the model’s performance on a wide range of adversarial
examples. By doing so, we demonstrate the model’s ability to
generalize and maintain robustness across diverse adversarial
conditions.

Fig. 5 presents the frequency distributions of grayscale val-
ues across the three image channels (RGB). Although the
samples in the upper and lower rows exhibit minimal visual
differences—both belonging to the building scene category—a
detailed statistical analysis of the grayscale values in the RGB
channels reveals significant variations in data frequency. These
variations indicate that, despite the visual similarity between the
adversarial and clean images, their underlying data distributions
are quite different.

This discrepancy in data distributions plays a crucial role
in how deep learning models perceive and classify these im-
ages. Although the images may look nearly identical to the
human eye, the statistical differences in pixel intensities and
color distributions can cause the model to produce divergent
prediction outputs, potentially leading to misclassifications. This
observation underscores the importance of addressing the dis-
tributional differences between adversarial examples and clean
samples, which is the primary challenge in adversarial example
classification.

This insight provides the foundation for applying domain
adaptation techniques, which are incorporated into our method
to better recognize and classify adversarial samples by adapting
to these subtle distributional shifts.

E. Quantitative Comparison

1) Results on the RSSCN7 dataset: The effectiveness of
the MIDANet framework, which incorporates domain AdvT, is
compared with standard training (StaT) and AdvT approaches.
In the StaT method, 70% of clean images are used for training,
while the remaining 30%, are reserved for validation, with
adversarial samples being used solely for testing. The AdvT
method, by contrast, integrates adversarial samples into the train-
ing process to adjust model parameters. Our approach involves
using clean images as the source domain and adversarial samples
as the target domain for joint training.

Table IV presents the classification results for different scene
categories on the RSSCN7 dataset for these training strate-
gies. Our method achieved average SAcc and RAcc scores
of 86.2% and 83.6%, respectively, reflecting improvements of
6.4% and 8.2% over AdvT. While StaT demonstrates superior
performance on clean samples relative to both adversarial and
domain adaptation training, it exhibits significant weaknesses
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Fig.4. Examples of adversarial samples at various perturbations to the original sample create an adversarial sample. In comparison to FGSM adversarial samples,
PGD adversarial samples exhibit greater deception and intensity. (a) Amplified perturbation (magnification = 20). (b) FGSM adversarial samples. (c) Amplified

perturbation (magnification = 20). (d) PGD adversarial samples.
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Fig.5. Data frequency distributions of grayscale values. (a) Frequency distributions of RGB channels (red—R channel, green—G channel, and blue—B channel)
for clean images. (b) Frequency distributions for adversarial samples. While the visual differences between (a) and (b) are subtle, the frequency distributions of

grayscale values show significant variation.

when applied to adversarial samples, achieving a low RAcc
of 74.3%. Conversely, AdvT provides greater stability on ad-
versarial samples, particularly excelling in the forest and in-
dustrial categories, though it results in a comparatively low
average SAcc of 79.8%. Benefiting from MIR, our method not

only improves the robustness of the model but also improves
strong classification performance on clean samples, successfully
balancing adversarial robustness with SAcc during training. In
particular, for the residential category, both SAcc and RAcc

reach 95%.



11972

TABLE IV
SCENE CLASSIFICATION RESULTS ON THE RSSCN7 DATASET

Scene StaT AdvT MIDANet
SAcc RAcc  SAcc RAcc  SAcc RAcc
Grass 85.0 70.0 74.2 70.0 79.2 78.3
Field 85.8 79.2 83.3 80.0 90.1 83.3
Industry 77.5 62.5 85.0 83.3 79.2 73.3
RiverLake 83.3 38.3 69.2 49.2 83.3 78.3
Forest 96.6 97.5 99.2 99.2 94.1 95.8
Resident 92.5 86.7 91.7 89.2 95.8 95.8
Parking 89.2 85.8 55.8 52.5 80.8 80.0
Mean 87.4 74.3 79.8 74.8 86.2 83.6
TABLE V

COMPARISON OF CLASSIFICATION PERFORMANCE FOR EACH CATEGORY IN THE
RSSCN7 DATASET

Clean image Adversarial sample

Scene P R T P R FI

Grass 89.6 792 84.1 847 783 814
Field 802 908 852 787 833 810
Industry 812 792 802 786 733 759
RiverLake 92.6 833 877 922 783 847
Forest 926 941 934 906 958 93.1
Resident 858 958 90.6 827 958 888
Parking 829 808 819 787 800 793

TABLE VI

SCENE CLASSIFICATION RESULTS ON THE SIRI-WHU DATASET (%)

Scene StaT AdvT MIDANet
SAcc  RAcc  SAcc RAcc SAcc RAcc
Agriculture 88.3 48.3 100.0  100.0  96.7 96.7
Commercial 96.7 80.0 90.0 90.0 90.0 90.0
Harbor 83.3 35.0 71.6 70.0 88.3 88.3
Idle land 86.7 83.3 78.3 78.0 93.3 93.3
Industrial 93.3 85.0 91.7 91.7 93.3 91.7
Meadow 81.7 70.0 40.0 39.3 75.0 73.3
Overpass 85.0 75.0 71.7 71.7 71.7 71.7
Park 78.3 88.3 48.3 50.0 83.3 83.3
Pond 86.7 45.0 88.3 88.0 78.3 76.7
Residential 91.7 86.7 88.3 87.9 90.0 86.7
River 71.7 30.0 65.0 63.3 75.0 75.0
Water 100.0 30.0 100.0  100.0  98.3 98.3
Mean 86.9 63.1 77.8 71.5 86.1 85.4

Table V details the classification performance of the proposed
algorithm on both clean and adversarial samples across various
scene categories within the RSSCN7 dataset. For clean samples,
the P, R, and F1 scores are robust across all categories, with
particularly strong results in the forest category, achieving scores
of 92.6%, 94.1%, and 93.4%, respectively. Although there is
a slight decline in performance on adversarial samples, the
decrease is minimal, with the metrics remaining comparable to
those for clean samples. The elevated scores in both the forest
and residential categories underscore the robustness of the algo-
rithm. Overall, the proposed algorithm demonstrates significant
resilience to adversarial perturbations while maintaining high
classification Acc across both clean and adversarial samples,
particularly in critical categories.

2) Results on the SIRI-WHU dataset: As shown in Table VI,
the StaT method achieved an average SAcc of 86.9%, indicating
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TABLE VII
COMPARISON OF CLASSIFICATION PERFORMANCE FOR EACH CATEGORY IN THE
SIRI-WHU DATASET

Scene Clean image Adversarial sample

P R Fl1 P R Fl1
Agriculture  89.2  96.7 92.8 892 96.7 928
Commercial  90.0 90.0 90.0 885 90.0 893
Harbor 80.3 883 841 803 883 841
Idle land 875 933 903 862 933 89.6
Industrial 875 933 903 873 91.7 894
Meadow 938 750 833 936 733 822
Overpass 741 717 729 729 717 723
Park 893 833 862 862 833 848
Pond 723 783 752 718 767 742
Residential 90.0 900 90.0 89.7 86.7 88.1
River 86.5 750 804 865 750 804
Water 952 983 967 952 983 96.7

strong classification performance; however, the model’s robust-
ness against adversarial samples was notably compromised,
resulting in an average RAcc of only 63.1%. This underscores
the model’s susceptibility to adversarial attacks under StaT
conditions.

By contrast, AdvT significantly enhanced the robustness of
the model, increasing the average RAcc to 77.5%, which repre-
sents a marked improvement over StaT. Particularly, categories,
such as farmland, ponds, and residential areas, exhibited RAcc
values approaching or even reaching 100.0%, demonstrating
the effectiveness of AdvT in bolstering robustness for these
categories. Nevertheless, categories, such as grassland and over-
passes, recorded lower RAcc values of 39.3% and 71.7%, re-
spectively.

Our domain AdvT method performed admirably across all
categories, achieving an average SAcc of 86.1% and RAcc of
85.4%, closely aligning with the SAcc of StaT. This indicates
that our approach not only sustains high classification perfor-
mance on clean samples but also markedly improves robustness
against adversarial samples.

Table VII presents the classification metrics for both clean
and adversarial samples obtained using the proposed method on
the SIRI-WHU dataset. Overall, the classification performance
for clean and adversarial samples is notably similar. Most cate-
gories, such as farmland, commercial areas, ports, open spaces,
industrial areas, and water bodies, demonstrate P, R, and F1
scores for adversarial samples that closely match those for clean
samples, indicating a high degree of robustness. For example,
in the water category, the P, R, and F1 scores for both clean and
adversarial images are 95.2%, 98.3%, and 96.7%, respectively.
The minimal variations in P, R, and F1 scores between clean
and adversarial samples across the majority of scene categories
suggest that our framework effectively preserves model stability
in the presence of adversarial samples.

3) Results on the UC Merced Land-Use dataset: In the com-
plex scene classification task comprising 21 classes, as illus-
trated in Table VIII, our proposed approach achieved average
SAcc and RAcc of 80.9% and 80.3%, respectively, reflecting
improvements of 4.8% and 5.3% over AdvT. In comparison
to StaT, the domain adaptation strategy exhibited a 1.9% re-
duction in SAcc but a notable 7.6% enhancement in RAcc.
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TABLE VIII
SCENE CLASSIFICATION RESULTS ON THE UC MERCED
LAND-USE DATASET (%)
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TABLE IX
PERFORMANCE COMPARISON UNDER VARIOUS PERTURBATIONS ON THE
RSSCN7 DATASET

StaT AdvT MIDANet Sample Perturbation Image entropy  StaT AdvT  MIDANet
Scene SAcc RAcc SAcc RAcc SAcc RAce RAcc RAcc  RAcc
Agriculture 767 767 967 967 833  90.0 e=0.01 6.503 86.6 79.5 85.1
Airplane 833 633 700 667 76.7 70.0 e =0.03 6.572 76.9 74.8 83.6
Baseball diamond 86.7 633 567 567 86.7 80.0 FGSM e = 0.06 6.682 74.2 64.6 76.3
Beach 967 867 1000 967 1000 933 e=10.10 6.815 57.7 49.6 533
Buildings 80.0 633 867 833 767 733 €=0.30 7.237 25.9 21.1 26.7
Chaparral 96.7  96.7 100.0 100.0 100.0 100.0 c—0.03 6.551 85.6 771 842
Dense residential 86.7 66.7 90.0 867 767 733 e =0.06 6.596 84.9 74.2 84.1
Forest 967 967 867 867 100.0 100.0 PGD " _ o 6.661 86 733 825
Freeway 733 667 533 567 7677 80.0 e =0.30 6.994 56.9 53.3 65.0
Golf course 767 467 733 667 933 90.0
Harbor 100.0 967 100.0 967 967 96.7
Intersection 933 60.0 433 433 633 633
Medium residential ~ 60.0  50.0 533 533 733  76.7 s el . .
Home park %67 867 300 8D 733 733 gverlap of fea}ture% distributions between .clean aqd adversa?lal
Overpass 700 633  90.0 900 60.0 667 images, highlighting the strategy’s effectiveness in addressing
Parking lot 933  90.0 100.0 100.0 933 933 Complex scenarios.
River 86.7 66.7 833 867 80.0 76.7 Fie. 7
Runway 967 933 967 967 967  96.7 g ) o o
Sparse residential ~ 70.0  90.0 333 333 600 633 presents a t-SNE visualization that contrasts the original data
Storage tanks 667 333 467 400 700 66.7 distribution with the feature distribution of adversarial samples
Tennis court 62.5 708 583 583 625 625 . .. .
Mean 88 727 761 150 809 803 (e = 0.03). The left column illustrates the feature distribution

While the StaT method demonstrates superior performance
on clean samples, its robustness against adversarial samples
remains comparatively inadequate, yielding an average RAcc
of 72.7%. AdvT does enhance classification performance for
adversarial samples; however, declines in Acc are observed
across some scene categories. The chaparral and forest cate-
gories consistently achieved high performance across all three
training strategies, particularly under the domain AdvT frame-
work, where the RAcc reached 100%. This outcome suggests
that the model employing MI exhibits robust feature extraction
and classification capabilities in these categories, demonstrating
resilience to adversarial perturbations.

F. Qualitative Visualization

To further illustrate the advantages of the proposed algorithm,
we employ t-SNE to visualize the data distribution of clean
images and adversarial samples. Fig. 6 shows the distribution
characteristics across the RSSCN7, SIRI-WHU, and UC Merced
Land-Use datasets. In these visualizations, the source domain
represents the clean samples, while the target domain denotes
the adversarial samples with € = 0.03. The left side of the
figure highlights a significant discrepancy between the clean
images and the adversarial samples, revealing distinct centers
of data distribution for each domain. For example, in Fig. 6(a),
the centers of clean sample data for the RSSCN7 dataset are
positioned higher in the data space and demonstrate a wider
spread, while the centers of the adversarial samples are situated
lower and appear more compact. Conversely, the right side of
the figure illustrates the feature distributions with a relatively
tight alignment between the source and target domains. This
alignment suggests that the domain AdvT strategy effectively
reduces the distribution discrepancy. Importantly, in Fig. 6(c),
the UC Merced Land-Use dataset exhibits a nearly complete

of the original data, while the right column shows the feature
distribution after applying domain adaptation.

The comparison indicates that the original data distribution
exhibits considerable overlap and dispersion among data points
from different classes, especially at the class boundaries. This
overlap poses a risk to the classification model’s Acc. Con-
versely, our method yields a more compact and distinctly sep-
arated feature distribution, characterized by tighter clustering
of intraclass data points. This improvement signifies that our
approach effectively enhances intraclass consistency, leading to
greater robustness and Acc in the classification model.

G. Correlation Analysis

Adversarial perturbations not only impair model performance
but also modify the complexity of the original images, thereby
increasing the uncertainty associated with image information.
To explore the relationship among adversarial perturbations, in-
formation uncertainty, and RAcc, we evaluated the classification
performance of various methods on adversarial samples from the
RSSCNT7 dataset across different perturbation levels.

We employed image information entropy to quantify the un-
certainty or complexity of the information, using the following
formula: H(X) = — Zle p(x;)logop(x;), where H(X) de-
notes the entropy of the image X, L represents the total number
of gray levels, and p(z;) is the probability of pixels exhibiting the
gray level x; in the image.According to Table IX, an increase in
the perturbation magnitude € leads to a decline in classification
Acc across all training methods. At lower perturbation levels
(e = 0.01 or e = 0.03), the models demonstrate relatively stable
performance, experiencing minimal effects from adversarial
perturbations. However, at a higher perturbation magnitude
(e = 0.30), the models exhibit a significant reduction in ro-
bustness. Notably, the method proposed in this study slightly
outperforms both standard and AdvT approaches under these
conditions.
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Fig. 6. t-SNE Visualization of data distribution for clean images and adversarial samples. The left panel illustrates the original data distribution, while the right
panel shows feature alignment. Despite the distribution discrepancy, clean images (source domain) and adversarial samples with e = 0.03 (target domain) are
effectively aligned. (a) RSSCN7 dataset. (b) SIRI-WHU dataset. (c) UC Merced Land-Use dataset.

In addition, image entropy increases progressively with exists a positive correlation between higher image entropy and
rising perturbation magnitudes €. This trend indicates that greater perturbation magnitudes, while a negative correlation is
adversarial perturbations not only reduce classification Acc but observed between higher image entropy and lower classification
also significantly complicate the images, thereby increasing the  Acc. For example, in the case of FGSM adversarial samples, at
uncertainty of the information contained within them. There e = 0.01, the image entropy measures 6.503, and the domain
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Fig. 7. t-SNE visualization of adversarial sample classification. The left panel displays the original data distribution of adversarial samples (¢ = 0.03), while the
right panel shows the feature distribution across scene categories. Our approach improves intra-class compactness and inter-class separability within the feature
space. (a) RSSCN7 dataset. (b) SIRI-WHU dataset. (¢) UC Merced Land-Use dataset.

adaptation RAcc is 85.1%. By contrast, at € = 0.30, the image
entropy rises to 7.237, while RAcc falls to 26.7%.Table X
presents a comprehensive comparison of classification accura-
cies under varying perturbation magnitudes on the SIRI-WHU
dataset. For adversarial samples generated using the FGSM,
a significant decline in classification Acc is observed as the
perturbation magnitude increases, particularly at perturbations
of 0.10 and 0.30. By contrast, PGD adversarial samples exhibit

a more gradual decrease in Acc, with domain adaptation models
demonstrating enhanced robustness. As the perturbation mag-
nitude escalates, image entropy similarly increases, peaking at
e = 0.3. This rise in entropy correlates with the reduction in
classification Acc, indicating that higher image entropy reflects
a greater intensity of adversarial perturbations, which adversely
affects model performance. The data reveal a direct relationship
whereby increased image entropy is associated with diminished
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TABLE X
PERFORMANCE COMPARISON UNDER VARIOUS PERTURBATIONS ON THE
SIRI-WHU DATASET

Sample Perturbation Image entropy  StaT AdvT  MIDANet
RAcc  RAcc  RAcc

e=0.01 6.278 85.8 71.6 86.0
e=0.03 6.280 75.0 717.6 85.4

FGSM €= 0.06 6.552 63.1 60.0 73.5
e=0.10 6.686 47.1 48.3 51.0
e =0.30 7.107 16.2 17.2 18.7
e=0.03 6.387 80.9 74.7 85.0

PGD e=0.06 6.462 78.4 74.4 83.6
e=20.10 6.549 73.7 70.6 80.1
e=0.30 6.927 41.4 48.1 435

TABLE XI

PERFORMANCE COMPARISON UNDER VARIOUS PERTURBATIONS ON THE UC
MERCED LAND-USE DATASET

Sample Perturbation Image entropy  StaT AdvT  MIDANet
RAcc  RAcc  RAcc

e =0.01 6.821 83.2 75.6 80.5
e =0.03 6.889 81.8 75.8 80.2

FGSM €= 0.06 6.986 72.7 69.1 80.1
e=20.10 7.095 55.9 60.8 51.3
e =0.30 7.429 5.87 16.1 21.3
e =0.03 6.870 82.5 75.5 81.0

PGD e =0.06 6.912 80.4 74.8 80.6
e=0.10 6.967 70.2 74.0 77.4
e =0.30 7.240 52.0 61.0 54.3

classification Acc.Table XI presents the outcomes for the UC
Merced land use dataset. Our methodology achieves an RAcc
of approximately 80% for FGSM adversarial samples at lower
perturbation levels € < 0.06, which is about 5% higher than
that obtained through AdvT. In the case of PGD adversarial
samples, AdvT maintains relatively stable performance, indi-
cating effective adaptation to PGD perturbations. Furthermore,
domain adaptation training significantly surpasses both standard
and AdvT at lower perturbation levels. As the magnitude of
perturbations increases, image entropy also rises, likely due to
the introduction of additional uncertainty and noise by these
perturbations. This increase in entropy leads to a more dispersed
pixel distribution, which may contribute to a reduction in clas-
sification Acc.

V. DISCUSSION

This study introduces MIDANet, a framework integrating
MI and UDA to enhance adversarial robustness in RS scene
classification. Experimental results demonstrate its effectiveness
in improving both standard and robust Acc, outperforming con-
ventional AdvT methods.

However, several aspects require further exploration. First,
while MIDANet enhances robustness against FGSM and PGD
adversarial examples, its generalization to more sophisticated
adversarial perturbations remains uncertain. Second, our find-
ings suggest a correlation between adversarial perturbations and
image information entropy, highlighting the need for entropy-
aware defense mechanisms. Third, although designed for scene
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classification, MIDANet’s methodology could be extended to
other RS tasks like object detection and segmentation.

In addition, the evaluation is conducted on relatively small
datasets with limited scene diversity. Future research should val-
idate its scalability on large-scale datasets and refine robustness
metrics for a more comprehensive assessment.

VI. CONCLUSION

We propose MIDANet to improve adversarial robustness in
RS scene classification by leveraging MI and UDA. The MIR
module significantly enhances feature representations, yielding
notable Acc improvements across multiple datasets. In addition,
the domain adaptation mechanism effectively mitigates distri-
butional shifts, improving model resilience against adversarial
perturbations. Comprehensive experiments using FGSM and
PGD method, which generate adversarial samples with varying
characteristics and magnitudes, validate the effectiveness of
MIDANet. Moreover, our findings reveal a correlation between
adversarial perturbations and image information entropy, pro-
viding valuable insights into the impact of adversarial perturba-
tions on RS classification.

Despite promising results, further validation on large-scale
datasets and more refined robustness metrics are needed. our
future work will focus on 1) extending research to large-scale
datasets for a more thorough evaluation of model performance
across diverse scenarios; 2) developing more comprehensive
metrics for robustness assessment; and 3) applying our model to
a wider range of applications, such as object detection, semantic
segmentation, and change detection.
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