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and Qing Yuan a
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Observations, Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China; cResearch 
Centre for Artificial Intelligence in Geomatics, The Hong Kong Polytechnic University, Hong Kong, China

ABSTRACT
Accurately and thoroughly determining the installed capacity of offshore wind turbines (OWTs) 
and offshore wind farms (OWFs) is crucial for evaluating offshore wind energy and guiding future 
development. However, existing statistical data only provide aggregated information on capacity, 
and detailed attribute data are not publicly available for free. Here, we present a novel pure 
remote sensing method to estimate the OWT installed capacity, successfully applied to estimate 
the installed capacity of OWTs in China from 2015 to 2022. This approach first used deep learning 
to identify turbine shadows from Sentinel-2 images, then estimated the hub height correspond
ing to the shadows by combining the solar elevation angle, and finally related the height to the 
capacity through a polynomial model. The results demonstrate that the pure remote sensing 
method exhibits excellent performance in estimating the installed capacity of OWTs. Comparing 
the generated single OWT capacity with the officially published results, the root mean square 
error (RMSE) is 0.27 MW (5.06%). From the end of 2015 to 2022, the total installed capacity of 
OWTs in China’s mainland increased from 1.06 GW to 30.18 GW, with the highest annual growth 
rate reaching 149.92%. These remote sensing-based estimates closely match the data documen
ted in the existing reports (R2 = 0.99, RMSE = 0.62 GW). The average capacity per turbine 
increased from 4 MW to 4.84 MW, and the maximum capacity of OWFs increased from 632.89  
MW in 2015 to 1305.04 MW in 2022 (geographically). By the end of 2022, OWFs with an installed 
capacity exceeding 100 MW accounted for 90.83% of the total number of OWFs in China’s 
mainland, indicating a trend toward larger-scale development of OWFs. This study provides 
a reference for large-scale assessments of OWT installed capacity. Additionally, it can be used 
for the construction of high-capacity OWFs to design future installations.
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1. Introduction

With the intensification of global climate issues over 
the past few decades, offshore wind energy has 
emerged as a popular clean energy source due to its 
high storage capacity, zero pollution, and technical 
maturity (Duan 2017; Feng et al. 2015; Wass 2018). 
In recent years, the construction of offshore wind 
turbines (OWTs) has expanded significantly world
wide, emerging as a major application of wind energy. 
Between 2016 and 2020, global OWTs surged from 
4,642 units to 9,441 units, reflecting a remarkable 
growth rate of 103.38% (Hoeser, Feuerstein, and 
Kuenzer 2022). In 2022, new offshore wind installa
tions globally reached 8.8 GW, bringing the total 
installations to 64.3 GW (Global Wind Energy 
Council 2023). China’s recent and total installations 
were 5 GW and 31.4 GW, respectively, both ranking 
first globally. Moreover, the formulation of the 14th 
Five-Year Plan and the “dual carbon” goals indicate 

that the future development of offshore wind power 
equipment in China will continue to increase. 
Estimating the installation of OWTs is of great signif
icance for national efforts to combat climate change, 
transition to renewable energy, facilitate project finan
cing in the offshore wind power industry, and enhance 
public awareness (Du et al. 2024). Consequently, the 
China Wind Energy Association (CWEA) and the 
Global Wind Energy Council (GWEC) have publicly 
provided annual summary information on the 
national-scale installed capacity of OWTs. The data 
sources are primarily derived from market intelli
gence, project lists, and data submitted by companies. 
These data, therefore, need to be verified through 
multiple channels, making the process time- 
consuming, labor-intensive, and costly.

Remote sensing technology offers significant 
opportunities for monitoring large-scale offshore tar
gets and can serve as an alternative to field surveys 
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(Fan et al. 2024; Gong et al. 2025; Greidanus et al.  
2017; Liang et al. 2025). Several researchers have uti
lized remote sensing imagery to explore the spatial 
distribution of OWTs, providing a basis for inferring 
installed capacity. Xu et al. (2020) employed optical 
satellite images and visual saliency detection algo
rithms to detect the geographical distribution of 
OWTs. Moubayed, Becker, and Blankenbach (2025), 
Wang et al. (2024), Zhang et al. (2021) leveraged the 
strong backscatter characteristics of OWTs in 
Sentinel-1 synthetic aperture radar (SAR) imagery, 
combined with threshold analysis and morphological 
extraction, to determine the spatial locations of 
OWTs. However, determining the spatial location 
and number of OWTs alone is insufficient to estimate 
the installed capacity of an offshore wind farm (OWF). 
Hoeser and Kuenzer (2022) demonstrated 
a monotonic relationship between the installed capa
city of an OWT and the hub height of the turbine, 
which provides an opportunity to estimate the 
installed capacity of an OWF through remote sensing. 
However, as Majidi Nezhad et al. (2022) pointed out, 
the siting of OWTs must consider their environmental 
impact, which is often directly related to their type. 
Despite this, large-scale, high-precision data on OWT 
installed capacity and corresponding hub height 
remain scarce. Additionally, previous research has 
consistently pointed out that obtaining accurate hub 
height measurements for offshore wind turbines 
remains a technical difficulty (Badger et al. 2016; 
Medina-Lopez et al. 2021; Wang, Ullrich, and 
Millstein 2018).

Building on these insights, significant challenges 
remain in deriving the hub height of OWTs from 
remote sensing to estimate installed capacity. The 
first major difficulty is accurately estimating hub 
height from remote sensing data. Currently, several 
methods exist for extracting object height data using 
multi-source remote sensing data. The first method is 
light detection and ranging (LiDAR), which can 
directly obtain high-precision three-dimensional 
point cloud measurements of object heights (Gong 
et al. 2011; Wang et al. 2024). However, collecting 
continuous and large-scale information on the heights 
of OWTs is difficult due to the high cost of acquiring 
point cloud data (Liu et al. 2023). The second method 
involves radar technologies, such as single/stereo SAR, 
interferometric SAR, and spotlight SAR (Magruder, 
Neuenschwander, and Klotz 2021; Sun et al. 2022; 
Zhu and Bamler 2010). However, radar images are 
affected by signals mixed with different microwave 
scattering mechanisms, and the specular reflection 
effect of waterbodies significantly reduces radar back
scatter intensity, resulting in relatively high uncer
tainty in height extraction (Lee and Hong 2024; Sun 
et al. 2019). The third method uses stereo images from 
aerial or drone imagery (Pepe et al. 2021; Wang et al.  

2021). This method requires high-quality image stereo 
matching and faces challenges of feasibility and con
tinuity in areas where drones cannot reach or where 
stereo pairs are lacking (Cao and Huang 2021; Frantz 
et al. 2021).

The abovementioned methodologies employ direct 
measurements to ascertain the heights of wind tur
bines. However, estimating wind turbine heights is 
inherently uncertain and unstable due to the chal
lenges associated with image acquisition and subopti
mal image quality in the sea environment. 
Consequently, these methods do not suit hub height 
estimation in large-scale sea surface environments. 
Indirect estimation of object heights using the sha
dows of objects in sunlight, combined with satellite 
imaging angles, is a commonly used method in remote 
sensing (Huang et al. 2022). However, determining 
shadow thresholds necessitates manual intervention, 
which reduces the accuracy and efficiency of shadow 
extraction in large volumes of remote sensing data 
(Hu and Zhang 2018; Huang and Zhang 2012). In 
addition, OWT hub shadows have fewer effective pix
els and share similar spectral information to water
bodies and dark-colored objects in remote sensing 
images. Therefore, traditional methods that calculate 
hub height using shadow thresholds are challenging to 
implement on a large scale (Sun et al. 2019). 
The second difficulty is effectively modeling the rela
tionship between hub height and installed capacity. 
For this aim, a sufficient number of known OWT 
hub heights and corresponding installed capacity 
data are required. However, collecting these data is 
time-consuming and restricted by policies and regula
tions in some countries.

The Sentinel-2 satellite, developed under the 
European Space Agency (ESA), provides high- 
resolution (10 m) multi-temporal satellite imagery, 
which has been widely used for offshore target recog
nition, including wind turbines, ships, oil and gas 
extraction platforms, and marine pollutants 
(Beaumont et al. 2019; Ciocarlan and Stoian 2021; 
Kikaki et al. 2024; Mandroux et al. 2021). Sentinel-2 
is also frequently used for object shadow identification 
to estimate object height (Frantz et al. 2021; 
Moubayed, Becker, and Blankenbach 2025), making 
it a potential data source for OWT hub shadow recog
nition. Moreover, with the development of deep learn
ing-based image segmentation techniques, 
convolutional neural networks (CNNs) have been 
used to segment typical elements in highly heteroge
neous coastal environments (Bai et al. 2023; Han et al.  
2025; Zhang et al. 2024). For example, Chen et al. 
(2023b) used the U-Net model integrating a dual 
attention mechanism and edge supervision to accu
rately segment tidal flats in highly turbid and tidally 
dynamic offshore environments. Similarly, Aghdami- 
Nia et al. (2022) accurately extracted coastlines from 
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remote sensing images of the Chinese coast and the 
southern Caspian Sea by modifying the standard 
U-Net model and developing an automatic coastline 
extraction framework. Hence, open-source high- 
resolution remote sensing imagery and deep learning 
models present an opportunity for accurately extract
ing OWT hub shadows, facilitating the calculation of 
OWT hub heights and the assessment of installed 
capacity. However, the proportion of wind turbine 
shadow pixels is minimal compared to the vast sea 
surface, and it remains uncertain whether deep learn
ing models can effectively handle feature recognition 
and segmentation in this context.

Given the aforementioned issues, this study devel
oped a Sentinel-2 imagery and deep learning-based 
shadow extraction method for OWTs, aiming to over
come the reliance of traditional methods on manual 
intervention and high-quality imagery. It achieves 
large-scale estimation of installed wind turbine capa
city solely based on Sentinel-2 remote sensing data for 
the first time. This approach provides a new perspec
tive for clean energy monitoring through remote sen
sing technologies. Additionally, it offers scientific 
support for achieving China’s “dual carbon” goals 
and optimizing offshore wind power development 

policies. The specific objectives of this study are as 
follows: (1) To develop a deep learning-based shadow 
extraction method for OWTs to accurately calculate 
wind turbine hub heights; (2) To construct 
a relationship model between turbine hub height and 
installed capacity; (3) To evaluate the change in 
China’s installed offshore wind capacity from 2015 to 
2022 using remote sensing.

2. Study area

The study area encompasses 12 coastal provincial- 
level administrative regions in China’s mainland. 
A single-sided buffer zone extending 150 km from 
the coastline is established, with the boundary of this 
buffer zone defined as the study area (Figure 1(a)). The 
150 km setting considers the current maximum off
shore distance of OWTs in China and the spatial 
locations of OWTs under construction. The offshore 
wind energy potential at depths of 5–50 m and 
a height of 70 m is estimated to be approximately 
500 GW (Yi 2018). Moreover, areas above 70 m in 
height, situated in deeper and more distant seas, hold 
even greater potential for technological development. 
Currently, there are 11 international databases and 24 

Figure 1. (a) The study area and its corresponding sentinel-2 footprints; (b) sentinel-2 image of Jiangsu on 19 December 2022, 
displayed in false color with bands b8, b4, and b3; (c) schematic diagram of an OWT.
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regional/national databases containing statistical data 
on OWTs and OWFs (Pazheri, Othman, and Malik  
2014). While some databases provide detailed infor
mation, they require payment (e.g. 4C Offshore), 
while others lack temporal consistency and global 
coverage (e.g. USWTD, Rand et al. 2020) and 
GBWSFs (Dunnett et al. 2020). According to the 
GOWT dataset (Zhang et al. 2021), as of 
December 2019, there are 1,853 offshore wind units 
in China, primarily located off the coasts of Jiangsu 
and Fujian. In this study, the spatial location data for 
OWTs from 2015 to 2022 are derived from the code 
accompanying the GOWT dataset (Zhang et al. 2021), 
selected for its open accessibility, methodological gen
eralization over time, and accurate geospatial informa
tion, which can be applied on the Google Earth Engine 
(GEE) platform.

3. Data and methods

3.1. Data collection

We downloaded the multispectral Sentinel-2 Level 2A 
atmospheric correction surface reflectance images 
from the GEE platform and utilized the QA60 band 
to mask cloud pixels. The CLOUDY_ 
PIXEL_PERCENTAGE attribute was set to 60% to 
ensure image quality without significantly reducing 
the number of available images (Chen et al. 2023a). 
Given that small OWT shadows at higher solar eleva
tion angle (SEA) can lead to inaccurate and low- 
precision shadow extraction, we limited the image 
date range to within  ±  15 days of December 22 
each year from 2015 to 2022. This 30-day interval 
allows for complete spatial coverage of the study 
areas. Consequently, a total of 5,944 images were 
used: 435 in 2015, 396 in 2016, 805 in 2017, 603 in 
2018, 991 in 2019, 857 in 2020, 892 in 2021, and 965 in 
2022. We defined the geographical boundaries of the 
OWT locations. Then, we examined the cloud cover to 
ascertain whether the turbines were visible in each 
image. Images where the turbines were obscured by 
clouds were omitted from our analysis. Subsequently, 
we selected a single Sentinel-2 image closest to 
December 22 for each year from 2015 to 2022 within 
the study area and downloaded them using strip num
ber. For each downloaded Sentinel-2 image, we 
recorded the satellite overpass date, longitude, lati
tude, and SEA based on the available image attributes.

To validate the accuracy of our findings, we gath
ered information on the models, hub heights, and 
installed capacities of OWTs from 80 OWFs in 
China. Data was sourced from platforms, such as 4C 
Offshore, The Wind Power, and Wind-turbine- 
models. This dataset encompasses many regions 
including Liaoning, Hebei, Tianjin, Shandong, 
Jiangsu, Shanghai, Zhejiang, Fujian, and Guangdong. 

Additionally, it involves multiple OWT manufac
turers, such as Goldwind, Siemens, MingYang, 
Envision Energy, Sinovel, and CSIC Haizhuang 
Windpower Equipment.

3.2. Estimation of OWT installed capacity

The method for estimating installed offshore wind 
capacity using purely remote sensing consists of 
three steps: (1) Deep learning for extracting OWT 
hub shadows; (2) OWT Hub Height Calculation; and 
(3) OWT installed capacity estimation based on OWT 
hub shadows.

3.2.1. Deep learning for extraction of OWT hub 
shadows
3.2.1.1. Training dataset preparation. Deep learning 
requires a large number of representative samples to 
achieve good accuracy and generalization. In this 
study, we selected the Subei Shoal, an area with 
a high density and strong clustering of offshore wind 
turbines (OWTs), as the sample region. Sentinel-2 
imagery of the Subei Shoal, acquired on 
19 December 2023, was used for analysis. To select 
suitable band combinations that make the target 
object attributes more distinct for deep learning train
ing, we calculated the band reflectance characteristics 
and the corresponding absolute differences (ABSD) 
for OWT shadows and background pixels in the 13 
Sentinel-2 bands. Ultimately, we selected the b8, b4, 
and b3 bands at 10 m resolution (Table 1). These 
images used for training contain a total of 9 OWFs 
(where OWTs with the same arrangement interval and 
direction are considered as one OWF) and 352 OWTs. 
They cover various underlying surfaces, including dif
ferent depths of waterbodies and tidal flats. In these 
images, OWT hub shadows appear as distinct black 
features contrasted with the blue water and brown soil. 
We then manually extracted the shadows of the 352 
OWTs from the 9 OWFs through multi-person visual 
interpretation, resulting in segmentation results. The 
training images were further processed in ArcGIS Pro, 
where a sliding window approach was applied with 
a step size of 128 pixels. During window cropping, 
each slice was moved by 128 pixels, resulting in 50% 
overlaps between adjacent slices. This method helps 
the model capture image continuity and contextual 
information more effectively, reducing edge effects 
and preventing semantic information loss at the slice 
boundaries. These training images were cropped into 
a total of 960 (256  ×  256 pixels in size) deep learning 
sample slices (Figure 2). This sample database was 
randomly divided into a training set of 768 samples 
and a validation set of 192 samples in an 8:2 ratio to 
better evaluate the performance and generalization 
ability of the model. To further improve the model’s 
performance and generalization ability, all training 
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samples underwent random rotation (±90°) and were 
processed using the automatic color equalization 
(ACE) algorithm. The ACE algorithm locally and 
nonlinearly adjusts the images’ brightness, color, and 
contrast, correcting the final pixel values by consider
ing the dark relationships between pixels to enhance 
local features.

3.2.1.2. The architecture of deep learning. U-Net is 
a fully convolutional neural network initially proposed 
for image segmentation in 2015 (Ronneberger, 
Fischer, and Brox 2015). It features a U-shaped net
work structure with an encoder-decoder architecture 
(Figure 3(a)). The encoder captures contextual infor
mation by gradually reducing spatial dimensions and 

extracting high-level features. The decoder restores 
resolution through upsampling and incorporates skip 
connections with the encoder’s feature maps to retain 
detail. Its advantages include learning from small sam
ples, utilizing skip connections for feature fusion, and 
performing multi-level feature extraction. The back
bone convolutional network is critical for deep image 
recognition and semantic segmentation (Benali 
Amjoud and Amrouch 2020; He et al. 2019). Classic 
convolutional backbone networks have improved the 
accuracy of image recognition tasks, including VGG 
(Simonyan and Zisserman 2015), ResNet (He et al.  
2016), DarkNet (Redmon and Farhadi 2017), and 
GoogLeNet (Szegedy et al. 2015). To enhance the 
performance of the classic U-Net architecture, we 

Table 1. Comparison of sentinel-2 resolution and reflection characteristics in different 
bands.

Bands Shadow Background ABSD Spatial resolution (m)

B1 0.3003 0.3005 0.0002 60
B2 0.2714 0.2746 0.0032 10
B3 0.2587 0.2644 0.0058 10
B4 0.2697 0.2796 0.0099 10
B5 0.2699 0.2797 0.0098 20
B6 0.2431 0.2517 0.0086 20
B7 0.2420 0.2510 0.0091 20
B8 0.2248 0.2341 0.0093 10
B8A 0.2127 0.2200 0.0074 20
B9 0.1328 0.1327 0.0000 60
B10 0.1013 0.1013 0.0000 60
B11 0.1120 0.1121 0.0001 20
B12 0.1076 0.1077 0.0001 20

Figure 2. Examples of sentinel-2 ACE-enhanced imagery and corresponding labels in Sheyang and Dafeng, Jiangsu, with sample 
slice sizes of 256 × 256 pixels.
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made two modifications in this study: (1) integrating 
the first four convolutional blocks of the deep network 
VGG16 backbone as the encoding components of the 
U-Net architecture, and (2) adding a CBAM attention 
mechanism before each upsampling in the decoding 
phase to accurately segment the wind turbine shadow 
boundaries. The proposed deep learning model is 
referred to as VC-Net. The modified deep learning 
model is called VC-Unet.

The VGG network is one of the classic models in 
deep learning, widely used in computer vision tasks 
for semantic segmentation due to its simple structure 
and ease of implementation. The VGG network con
structs deep neural networks using a series of small 
convolutional kernels (3 × 3) and pooling layers 
(2 × 2), which increase the receptive field without 
adding computational complexity, thereby providing 
stronger non-linear capacity. Additionally, reducing 
the number of parameters lowers the risk of overfitting 
and improves the network’s feature extraction ability. 
The 16-layer network is known as VGG16. VGG16 has 
an architecture, with 13 alternating convolutional and 
pooling layers, followed by 3 fully connected layers for 
classification (Figure 3(b)). In this study, we replaced 
the encoder part of the U-Net network with the net
work structure of VGG16 before the fourth max pool
ing layer. Each block contains 64, 128, 256, and 512 
convolutional layers. Deep learning requires 
a significant amount of training samples to extract 

features effectively. However, due to the limited 
Sentinel-2 imagery training data, we used transfer 
learning techniques to enhance feature extraction 
(Zhuang et al. 2020). We utilized pre-trained weights 
from the VGG16 backbone network, as using the 
initial pre-trained parameters provides more stable 
training results than random initialization.

The convolutional block attention module (CBAM) 
(Woo et al. 2018), improves the performance of CNNs 
by integrating channel attention and spatial attention, 
thereby enhancing perceptual capability without sub
stantially increasing network complexity. By adap
tively learning channel and spatial attention weights, 
the CBAM module captures correlations between fea
tures across different dimensions, thus improving the 
performance of image recognition tasks and addres
sing the limitations of traditional CNNs when hand
ling information of varying scales and directions. 
Initially, the maximum and average feature values are 
calculated for each channel. The feature vectors 
obtained from global max pooling and average pooling 
are then fed into a fully connected layer, where the 
Sigmoid activation function is applied to derive the 
final channel attention weight vector. The max-pooled 
and average-pooled features are concatenated along 
the channel dimension, creating a feature map with 
different scale context information. The resulting fea
ture map is subsequently processed by a convolutional 
layer to generate spatial attention weights. The output 

Figure 3. (a) VC-Unet model structure diagram; (b) VGG16 network architecture; (c) CBAM attention mechanism module.
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features from both the channel and the spatial atten
tion modules are then multiplied element-wise to pro
duce the final attention-enhanced features (Figure 3 
(c)). This enhanced feature set serves as input for the 
subsequent network layers, retaining key information 
while suppressing noise and irrelevant data.

3.2.1.3. Model implementation and training. The 
VC-Unet model is implemented in Python using 
PyTorch. Sentinel-2 images and their corresponding 
labels were randomly divided into training and valida
tion datasets in an 8:2 ratio. The training was con
ducted in two phases: the freezing phase and the 
unfreezing phase. The freezing phase requires less 
memory, reducing the demands on machine perfor
mance. If, after 10 epochs, there was no improvement 
in training accuracy or reduction in validation loss, the 
training process was terminated prematurely. The 
total number of training epochs was set to 200, with 
40 epochs allocated to the freezing phase. The model 
was compiled using the Adam optimizer with an 
initial learning rate of 1e-4, and the optimizer’s inter
nal momentum parameter was set to 0.9. After every 2 
epochs, the training weights were automatically saved, 
and the validation dataset was assessed every 5 epochs. 
To address the imbalance between positive and nega
tive samples in the dataset, we used Dice Loss to 
mitigate the negative impact of foreground- 
background imbalance, allowing the model to focus 
more on the foreground regions during training. 
Additionally, we combined the Focal Loss function 
to further address the sample imbalance issue, ensur
ing that the model’s attention is concentrated on the 
objects of interest.

3.2.1.4. Model evaluation metrics. To comprehen
sively assess the effectiveness of the backbone net
work and decoder for OWT hub shadow 
segmentation, we selected common metrics used in 
semantic segmentation, including accuracy, average 
precision (AP), mean average precision (mAP), 
intersection over union (IoU), and F1-Score. 
Accuracy measures the extent to which repeated 
measurements agree with the true value, evaluating 
the ratio of correctly predicted samples to the total 
number of samples. AP integrates the precision– 
recall curve, representing the combined performance 
of precision and recall. mAP represents the weighted 
average of APs across various categories. IoU, on the 
other hand, assesses the spatial overlap between the 
algorithm’s predictions and the true ground-truth 
labels. As for the F1-Score, it is a weighted harmonic 
mean of precision and recall, offering a holistic 
metric that is less susceptible to the influence of 
imbalanced samples. Let us delve into the specific 
calculation methods: 

F1-Score 

where TP, TN, FP, and FN represent the number of 
pixel-level True Positives (correctly predicted target 
pixels), True Negatives (correctly predicted back
ground pixels), False Positives (background pixels pre
dicted as target pixels), and False Negatives (target 
pixels predicted as background pixels). Additionally, 
higher accuracy, mAP, IoU, and F1-Score values indi
cate greater accuracy in OWT hub shadow 
segmentation.

3.2.2. OWT hub height calculation
Given the relatively large pixel size of remote sen
sing imagery, achieving a balance between model 
accuracy and processing speed is imperative. To 
address this concern, we implemented a series of 
preprocessing steps. First, each downloaded 
Sentinel-2 image from GEE was cropped into 
a sequence of 256  ×  256 pixel tiles. Subsequently, 
these tiles underwent segmentation for waterbodies 
and OWT hub shadows using the trained VC-Unet 
model. Following segmentation, the predicted out
put tiles were amalgamated and transformed into 
polygon vector files representing segmented con
tours. To streamline the contours, we employed 
the Douglas-Peucker algorithm from OpenCV, 
fine-tuning the threshold to uphold contour accu
racy while mitigating computational overhead. In 
practical scenarios, OWT shadows tend to exhibit 
approximately rectangular shapes. However, identi
fication outcomes often manifest as irregular poly
gons due to the inherent characteristics of raster 
data. To address this discrepancy, we employed 
ArcGIS’s Minimum Bounding Geometry tool that 
delineates the smallest enclosing rectangle around 
each shadow (see Figure 4(a)). The length of this 
enclosing rectangle serves as a proxy for the sha
dow length of the OWTs’ hubs.
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Figure 4(b) illustrates the principle of calculating 
OWT hub heights using Sentinel-2 data and SEA. 
We selected Sentinel-2 data from around 
December 22nd of each year from 2015 to 2022, 
coinciding with the time when the sun is approach
ing the Tropic of Capricorn. Leveraging the lati
tude position of the OWT and the specific 
acquisition time of the Sentinel-2 image, we deter
mined the SEA, denoted as α (as defined by 
Equation 7), where φ represents the geographical 
latitude, δ signifies the solar declination, and 
t represents the hour angle. The exact spatial loca
tions of the OWTs were obtained using the openly 
accessible code associated with Zhang et al. (2021). 
Through the application of trigonometry and con
sidering the length of the OWT hub shadows, we 
calculated the hub height of each OWT, thereby 
enabling the determination of the hub height for 
OWF within the study area. To minimize errors 
arising from individual turbine calculations and 
based on the assumption of consistent wind tur
bine models (hub heights) within an OWF, we 
selected the median hub height of all OWTs within 
each OWF to define the hub height for that spe
cific OWF. 

3.2.3. OWT installed capacity estimation
We randomly selected 60 OWFs from publicly avail
able sources and conducted a fitting analysis using the 
hub height and installed capacity for these 60 OWFs. 
In this analysis, the independent variable is the hub 
height of the OWTs, while the dependent variable is 
the installed capacity. We applied polynomial curve 
fitting, linear fitting, exponential fitting, and logarith
mic fitting to the hub heights of OWTs ranging from 
60 m to 120 m and their corresponding installed capa
cities using these fitting methods. The results are illu
strated in Figure 5. Among the fitting methods, 
polynomial curve fitting yielded the highest R2 value 
of 0.75. Therefore, we utilized polynomial curve fitting 
to model the installed capacity of each OWT based on 
the computed hub height in this study.

4. Results

4.1. Accuracy assessment

The accuracy of the VC-Unet model in extracting 
shadows of wind turbines from Sentinel-2 images 

Figure 4. (a) The OWT hub shadows and minimum bounding geometry of jiangjiasha H2 300MW OWF in Rudong, Jiangsu in 2022; 
(b) the calculation method of OWT hub height.
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was quantitatively evaluated using a test dataset com
prising 192 patches. Different random seeds were used 
each time, and multiple values were obtained by test
ing multiple times on the same dataset. The results 
revealed that the model achieved an IoU of 98.96  ±   
0.05, mPA of 99.66  ±  0.03, precision of 99.58  ±  0.01, 
recall of 99.38  ±  0.06, and an F1-score of 99.48  ±   
0.02, respectively. Ablation experiments and data eva
luation of the VC-Unet model are shown in Table S1. 
To assess the accuracy of our calculations, we com
pared the hub height and installed capacity of OWTs 
derived from Sentinel-2 observations with official 
ground-truth data. Specifically, we computed errors 
in OWT hub height and installed capacity using 20 
observed OWT data points and 20 official OWT data 
points for comparison. Figure 6 illustrates that the 
variance of the calculated OWT hub height accounts 
for 83.79% of the variance in the official hub height, 
with a mean absolute error (MAE) of 1.20 m and 
a root mean square error (RMSE) of 1.72 m (1.74%). 
Considering that the spatial resolution of Sentinel-2 
images is 10  ×  10 m, there exists an inherent pixel- 
level theoretical error of  ±  10 m. The MAE of 1.20 m 
effectively demonstrates the accuracy and robustness 
of extracting OWT hub heights using Sentinel-2 ima
gery and deep learning models. In addition, the var
iance of the single-unit installed capacity derived from 
Sentinel-2 data is 101.83% of the official installed 

capacity variance, with a MAE of 0.19 MW and an 
RMSE of 0.27 MW (5.06%). The MAE of 0.19 MW 
indicates the accuracy and reliability of the model, 
while the RMSE of 0.27 MW reflects a high degree of 
consistency between the observed results and the 
actual values. This consistency provides a solid foun
dation for the stable prediction of OWT installed 
capacity and future OWF project planning.

4.2. Installed capacity of OWTs

4.2.1. Installed capacity of OWTs in 2022
Using the VC-Unet model and subsequent processing, 
we computed the hub height distribution for OWTs in 
China’s mainland for the year 2022, as depicted in 
Figure 7. We employed the median hub height of 
OWTs to represent the hub height of each OWF, 
considering OWTs with similar geographical patterns, 
spacings, and orientations as part of the same OWF. 
The results indicate that the average hub height for 
OWTs in China’s mainland is 99.02 m. Zhejiang 
boasts the highest average hub height at 105.42 m, 
while Fujian has the lowest at 93.47 m. For OWTs in 
water depths ≤25 m, the average hub height is 98.79 m, 
while for those in water depths >25 m, the average hub 
height is 102.66 m. Additionally, we computed the 
maximum and minimum hub heights for OWFs in 

Figure 5. Hub height and installed capacity of a single OWT fitted using polynomial curve fitting, linear fitting, exponential fitting, 
and logarithmic fitting.
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various regions. The maximum hub height is in 
Zhejiang at 129.8 m, while the minimum is in Fujian 
at 81.4 m. OWT hub heights ranging from 90 to 110 m 
have become the market mainstream, accounting for 
89.17% of the total number of OWTs in 2022.

Based on the fitting between hub height and installed 
capacity, a polynomial model with a high coefficient of 
determination was selected as the capacity estimation 
model for the study area. Analyzing the relationship 

between the hub height and installed capacity of OWTs, 
along with considering factors such as quantity, solar 
altitude angle, and latitude in 2022, enables a more accu
rate estimation of the installed capacity for each OWF. As 
of December 2022, 6,198 OWTs were distributed across 
109 OWFs geographically, with a cumulative installed 
capacity of 30.18 GW. Regionally, Jiangsu leads in 
OWT development with a total installed capacity of 
13.73 GW, accounting for 45.45% of the national total. 

Figure 7. The hub heights of OWTs in various regions of China’s mainland in 2022.

Figure 6. Error analysis of calculated OWT hub height and installed capacity. The first row presents the error and absolute error 
analysis for the predicted OWT hub height compared with the official data. The second row illustrates the error and absolute error 
analysis for the predicted installed capacity compared with the official OWT installed capacity data.
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Other significant contributors are Guangdong (6.30 
GW), Zhejiang (3.08 GW), Shandong (2.65 GW), 
Fujian (2.36 GW), Liaoning (0.90 GW), Shanghai (0.72 
GW), Hebei (0.38 GW), and Tianjin (0.09 GW). Coastal 
provinces are vigorously advancing wind energy devel
opment, with substantial installed capacities of OWTs 
evident in southern regions, while northern areas remain 
in nascent development stages, offering considerable 
growth opportunities.

Table 2 displays the number of OWTs in each pro
vince, along with the maximum, minimum, and average 
installed capacities for each OWF. The average installed 
capacities of OWTs across different regions range from 
4.27 MW to 6.05 MW, while the national average 
installed capacity of OWTs is 4.84 MW. Figure 8 illus
trates the installed capacities of OWFs in each province 
and the corresponding average hub height. The most 
expansive OWF boasts an installed capacity of 1,305.04  
MW. Among the 109 OWFs, 99 possess installed capa
cities exceeding 100 MW, constituting 90.83% of the 
total, while 41 OWFs exceed 300 MW, representing 
68.33% of the total.

4.2.2. Annual dynamics of installed capacity of 
OWTs
We calculated the distribution of hub heights of OWTs in 
China’s mainland from 2015 to 2022 (Figure 9). The 

results indicate an overall increasing trend in the average 
hub height of OWFs in China’s mainland, from 90.6 m in 
2016 to 99.02 m in 2022, with a growth rate of 9.3%. The 
decrease in the average hub height from 2015 to 2016 was 
primarily due to the establishment of an OWF in the 
northern part of Nanri Island, Fujian Province, in 2016, 
with an OWT hub height of 81.4 m, which was lower 
than the minimum OWT height of 84 m observed in 
Chao Bay, Jiangsu Province, in 2015. We also analyzed 
the variation in the maximum hub height of OWFs from 
2015 to 2022. The maximum hub height exhibited 
a yearly increasing trend, from 96 m in 2015 to 129.8 m 
in 2022, with a growth rate of 35.2%. Additionally, 
detailed information on the maximum, minimum, and 
average hub heights of each province from 2015 to 2022 is 
provided in the supplementary material (Figure S1).

This study further estimated the single-unit 
installed capacity of OWTs and the installed capa
city of OWFs from 2015 to 2022. Table 3 illustrates 
the trends from 2015 to 2022 in the number of 
OWTs and OWFs examined in this study, detailing 
the maximum, minimum, and average installed 
capacity per unit. In addition, it indicates the 
annual cumulative installed capacity. Overall, both 
the number of OWTs and cumulative installed 
capacity in China’s mainland have continued to 
increase, demonstrating significant progress in 

Table 2. Minimum, maximum, average, and total values of OWT count and installed capacity 
by region in 2022.

Region Count Min Max Mean Total (GW)

Liaoning 208 3.32 4.98 4.34 0.90
Hebei 77 4.88 4.88 4.88 0.38
Tianjin 18 5.13 5.13 5.13 0.09
Shandong 443 4.61 7.34 6.05 2.65
Jiangsu 2900 3.24 6.63 4.73 13.70
Shanghai 168 3.53 6.48 4.26 0.91
Zhejiang 536 3.16 8.82 5.74 2.88
Fujian 552 3.00 7.38 4.27 2.36
Guangdong 1296 3.03 5.58 4.72 6.30
China’s mainland 6198 3.77 6.36 4.84 30.18

Figure 8. Distribution of hub heights and corresponding installed capacities of OWFs across various regions of China’s mainland in 
2022.
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development scale. By the end of December from 
2015 to 2022, the number of OWTs in China’s 
mainland increased from 265 to 6,198, and the 
cumulative installed capacity increased from 1.06 
GW to 30.18 GW, showing rapid growth. The 
annual growth rates of cumulative installed capacity 
for OWTs from 2019 to 2021 exceeded 70%. In 
2021, the installed capacity reached 26.29 GW. 
This was four times the capacity in 2019, setting 
a new record for the total installed capacity of 
OWTs in China. However, the annual growth rate 
in 2022 was only 14.8%, closely related to the policy 
of subsidy cancellation for OWTs in China in 2022.

For the sake of the installed capacity per unit of 
OWTs, the maximum installed capacity per turbine 
tripled by twofold from 4.46 MW in 2015 to 8.82 MW 
in 2022, while the average installed capacity per turbine 
decreased slowly from 4 MW in 2015 to 3.89 MW in 
2016, and then increased year by year to 4.84 MW in 
2022. This trend is closely related to the national demand 
for clean energy production, OWT technology maturity, 
and supply chain improvements. The minimum installed 
capacity has remained unchanged since the completion 
of the Nanri Island OWF in Fujian in 2016, further 
indicating the trend of large-scale OWT installation. 
The application prospects of offshore wind power in 
China are promising under the “14th Five-Year Plan” 
and the dual carbon goals of “peak carbon emissions 
and carbon neutrality,” with significant development 
potential in the future.

Regarding OWFs, the number of OWFs increased 
from 5 in 2015 to 109 in 2022, showing a year-on-year 
growth trend. The installed capacity of all OWFs in 
China’s mainland from 2015 to 2022 and their corre
sponding unit heights are shown in Figure 10. The 
maximum installed capacity of OWFs increased from 
632.89 MW in 2015 to 1,305.04 MW in 2022. OWFs 
with a capacity exceeding 100 MW raised from 2 in 
2015 to 99 in 2022, accounting for 90.83% of the total 
number of OWFs in China’s mainland in 2022. The 
hub heights of OWTs in China’s mainland between 
2015 and 2022 were mainly between 80 m and 110 m, 
while the installed capacity of OWFs ranged from 100  
MW to 400 MW. This suggests that most of the OWTs 
currently operational in China’s mainland have med
ium-scale hub heights and installed capacities. Policies 
such as the 14th Five-Year Plan will further promote 
the development of large-scale installed capacity OWT 
projects and the production of clean energy for carbon 
neutrality. Additionally, significant differences in the 
scale of installed capacity of OWTs among Chinese 
provinces from 2015 to 2022 are evident, as detailed in 
the supplementary material (Figure S2 and S3).

5. Discussion

5.1. Comparison with statistical reports

We compared and verified the cumulative-installed 
capacity values with the statistics released by the 

Table 3. Minimum, maximum, average, and total values of OWT and OWF count and installed capacity from 2015 to 2022.
Year OWT Max (MW) Min (MW) Mean (MW) OWF All (GW)

2015 265 4.46 3.24 4 5 1.06
2016 456 4.46 3 3.89 13 1.77
2017 877 5.13 3 3.92 23 3.44
2018 1295 5.91 3 3.93 39 5.1
2019 1830 6.04 3 4.1 45 6.13
2020 3465 6.53 3 4.42 74 15.32
2021 5558 7.55 3 4.73 100 26.29
2022 6198 8.82 3 4.84 109 30.18

Figure 9. The hub height trends of OWTs in China’s mainland from 2015 to 2022. The Y-axis of represents three statistical metrics 
for the hub heights of OWTs from 2015 to 2022: maximum, minimum, and average values for each year.
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GWEC and CWEA for the years 2015–2022 
(Figure 11). We calculated the ratios of our study’s 
results to those of GWEC and CWEA. This study also 
estimated the individual installed capacities of OWTs 
and the installed capacities of OWFs from 2015 to 
2022. These remote sensing-based estimates are highly 
consistent with GWEC and CWEA data for several 
years, particularly in 2015, 2018, 2019, 2021, and 2022. 
The accuracy for these years consistently approaches 
or exceeds 90%, with R2 (R-squared) all at 0.99 and 
RMSE of 0.77 GW and 0.62 GW, respectively. In most 
years, the study results were more aligned with CWEA 
data. For instance, in 2016, the accuracy compared to 
CWEA data was 95.27%, while it was only 77.08% 
compared to GWEC data. Similar patterns were 
observed in 2017 and subsequent years. These official 
reports largely validate the credibility of the estimated 
installed capacity in this study and demonstrate that 
the combination of deep learning models and 
Sentinel-2 data can monitor offshore wind energy 
reserves. We analyzed Sentinel-2 and high-resolution 

imagery data for 2020, identifying over 3,000 OWTs 
with a cumulative installed capacity of approximately 
15 GW. The CWEA reports 787 new OWTs in 2020, 
whereas remote sensing imagery indicates 1635 new 
OWTs, far exceeding CWEA’s statistical results. The 
remote sensing estimate closely matches the 2020 
OWT numbers reported in Hoeser, Feuerstein, and 
Kuenzer (2022). However, statistics from the GWEC 
and the CWEA indicate a lower cumulative installed 
capacity of around 10 GW for the same year. The 
discrepancy primarily stems from differences in sta
tistical methodologies. Remote sensing-based esti
mates are derived directly from imagery data, 
allowing for real-time monitoring of OWTs. In com
parison, the CWEA and GWEC statistics rely on 
reports submitted by local departments, which may 
have been delayed due to exceptional events like the 
COVID-19 pandemic. Furthermore, CWEA and 
GWEC reports offer only large-scale regional or 
national summaries, while this study can promptly 
provide individual OWT and OWF hub height and 

Figure 10. Installed capacity and hub height trends of OWFs in China’s mainland from 2015 to 2022.

Figure 11. Comparison of the total installed capacity of OWTs from 2015 to 2022 between our data and that of GWEC and CWEA.
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installed capacity information, providing flexibility in 
summarizing OWT and OWF attribute information. 
This provides valuable reference data for the sustain
able development of offshore wind energy in China 
and contributes to achieving the “double carbon” 
goals.

5.2. Uncertainty analysis

The uncertainties in this study mainly originate from 
two aspects. First is the uncertainty in calculating the 
hub height of wind turbines in wind farms, primarily 
determined by the accuracy of shadow recognition. In 
this study, the median hub height of all turbines in 
a wind farm was used to represent the turbine height 
within that range. We randomly selected one OWF 
from each coastal province where OWTs were 
installed and conducted statistics on the hub heights 
of all OWTs in each OWF, calculating the mean, 
median, and standard deviation (Figure 12). The 
results show that the variance calculated for each 
OWF is less than 0.15, indicating that the hub heights 
are relatively consistent. Therefore, using the median 
to represent the hub height of a wind farm can effec
tively reduce errors. The second uncertainty arises 
from simulating the relationship between turbine 
hub height and installed capacity. In this study, poly
nomial curves, linear, exponential, and logarithmic 
fittings were conducted on the hub height and 
installed capacity of 60 OWFs, where the polynomial 
curve fitting with the highest R2 was selected. 
However, the highest value was only 0.77, suggesting 
that increasing the number of measured samples in the 
future could make the optimization results more reli
able (Shao and Liu 2024).

5.3. Offshore wind power development potential 
in China

Estimating the potential for large-scale offshore wind 
power development is crucial for achieving China’s 
“double carbon” goals and for future planning of off
shore wind energy projects. This study used the latest 
wind turbine models from Goldwind Science & 
Technology Co., Ltd., a leading company in the domes
tic wind power market, to estimate the potential power 
generation capacity (Liu et al. 2022). Based on regional 
differences in multi-year average wind speeds and the 
average hub height of OWTs in China, three types of 
OWTs with a hub height of 100 m were selected for 
different sea regions. The actual power output is calcu
lated by multiplying the theoretical power output by the 
capacity factor (CF). The actual integrated loss factor 
ranges between 70% and 80%, meaning the CF usually 
varies from 20% to 30% (Liu et al. 2020; Wang et al.  
2022; Zhu 2019), with an average value of 25%. This 
study estimates the annual energy production (AEP) for 

China’s offshore wind power by considering the rated 
capacity of different types of OWTs. Given the actual 
area of OWFs, policy factors, and the potential reduc
tion in power generation due to turbulent wake effects 
caused by overly dense OWT spacing, the horizontal 
spacing between OWTs was set at 10D and the vertical 
spacing at 5D, where D represents the rotor diameter 
(Lundquist et al. 2019).

This study estimates that the technical potential 
for offshore wind energy resources within a 150- 
km range from the coast of China, at a height of 
100 m, is 3,759.51 GW, with an annual energy 
production of approximately 7,952.43 TWh, assum
ing no consideration of development costs, trans
mission losses, or marine protected areas (Table 4). 
At the provincial level, Guangdong has the largest 
potential for offshore wind power development, 
with an estimated capacity of 811.19 GW and 
a projected annual energy production of 1,776.52 
TWh. This is followed by Taiwan, Zhejiang, Fujian, 
Shandong, and Hainan, all with capacities exceed
ing 300 GW. Provinces such as Hebei, Shanghai, 
Tianjin, and Liaoning have less than 100 GW capa
cities. At the national level, China’s offshore wind 
power installed capacity is expected to exceed 88 
GW by 2030, achieving a peak in carbon emissions. 
The potential capacity of OWTs in China far 
exceeds the installed capacity required to meet 
carbon neutrality goals, with the potential to meet 
9.2% of China’s national electricity demand in 2022 
(86,372 TWh). As of the end of 2022, China’s off
shore wind power installed capacity was less than 
1% of its estimated technical potential. The devel
opment of offshore wind energy resources is sig
nificantly influenced by water depth. Based on the 
depth criteria (nearshore: 5–50 m; deep-sea: 
50–100 m), the technical potential for wind energy 
resources at a 100-m height in nearshore China is 
approximately 1,997.79 GW, while the technical 
potential for deep-sea wind energy resources is 
about 1,761.72 GW. Concerning nearshore wind 
power development capacity, Jiangsu has the great
est potential, reaching 274.69 GW, followed by 
Guangdong, Shandong, Fujian, and Zhejiang, each 
with a nearshore wind energy technical potential 
exceeding 100 GW. Guangdong and Taiwan exhibit 
the highest potential for deep-sea wind power 
development, with Zhejiang, Hainan, and Fujian 
following. The development of these resources 
necessitates the use of floating platforms, 
a technology that is still in its nascent stages.

5.4. Limitations and future works

This study introduces a novel approach for estimating 
offshore wind turbine (OWT) installed capacity using 
Sentinel-2 imagery and deep learning techniques. To 
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address the limitations of traditional methods, 
a shadow extraction model was developed to derive 
OWT hub heights and establish a relationship between 
hub height and installed capacity. In the imagery, 
shadows indicate that OWT hubs often exhibit similar 
brightness to clear waterbodies, darker ground objects, 
and OWT blades. This similarity can result in chal
lenges, such as inaccurate edge delineation, 

waterbodies containing shadow information, and sha
dows containing blade artifacts. Further research is 
needed to validate the method and resolve these issues. 
Additionally, the complexity of shadow formation and 
image quality poses further challenges. Addressing 
these interferences is essential for achieving high- 
precision extraction of OWT hub shadows. The future 
development of OWTs will likely focus on large single- 

Figure 12. One OWF randomly selected from Liaoning, Hebei, Tianjin, Shandong, Jiangsu, Shanghai, Zhejiang, Fujian, and 
Guangdong provinces in 2022, where the hub heights of each OWT were recorded and the mean, median, and standard deviation 
were calculated.
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unit capacities, floating OWTs, and combining wind 
energy with wave and tidal energy, which will require 
significant innovation. Other critical considerations 
include the impact of precipitation and extreme 
weather on OWT blade erosion (Mishnaevsky et al.  
2021; Pugh and Stack 2021), the storage and conver
sion of high-power offshore wind energy (Catalán 
et al. 2023; Zeng et al. 2024), and the maintenance 
and management of OWFs (Márquez and Papaelias  
2020; Peinado Gonzalo et al. 2022). To address these 
challenges and seize emerging opportunities, China 
must accelerate research into floating OWTs and 
explore the integration of offshore wind energy with 
wave and tidal energy. This strategy will support the 
sustainable development of offshore wind power and 
enhance ocean energy efficiency.

6. Conclusions

The increasing demand for renewable energy and 
carbon reduction initiatives has heightened the 
importance of calculating attributes like the 
installed capacity of OWTs. This study developed 
a deep learning model called VC-Unet, which com
bines a backbone network and an attention 
mechanism in parallel. The VC-Unet model is 
designed to extract OWT hub shadows from 
Sentinel-2 imagery, enabling the calculation of sha
dow length and subsequently determining OWT 
hub height and installed capacity. The proposed 
model achieves an IoU of 98.96  ±  0.05, a mPA of 
99.66  ±  0.03, a precision of 99.58  ±  0.01, a recall 
of 99.38  ±  0.06, and an F1-score of 99.48  ±  0.02, 
demonstrating excellent performance in distin
guishing between waterbodies and OWT hub 
shadows.

From 2015 to 2022, the cumulative installed 
capacity of offshore wind power in China’s main
land grew from 1.06 GW (265 OWTs, 5 OWFs) to 
30.18 GW (6,198 OWTs, 109 OWFs), marking 
a 28-fold increase in total installed capacity over 
8 years. The growth rate peaked at 149.92% in 2020 
but slightly declined to 14.8% in 2022. During this 

period, the average hub height per turbine rose 
from 91.55 m to 99.02 m, while the average 
installed capacity per turbine increased from 4  
MW to 4.84 MW. The maximum installed capacity 
of OWFs increased from 632.89 MW in 2015 to 
1,305.04 MW in 2022 (geographically), indicating 
a trend toward the large-scale development of 
both OWTs and OWFs. As of the end of 2022, 
the maximum hub height of OWTs reached 129.8  
m, and OWFs with a capacity greater than 100 MW 
accounted for 90.83% of the total OWF capacity in 
China’s mainland.

Additionally, this study demonstrated accuracy 
and robustness through error analysis compared to 
other data sources, validating the model’s applica
tion in China’s mainland. OWTs in China’s main
land are mainly deployed in nearshore areas, 
suggesting significant potential for development in 
deeper offshore areas. In the future, leveraging 
floating wind farm technology and wind power 
integration techniques to move toward high-power, 
deep offshore areas could be considered. Increasing 
hub heights to harness more wind energy could 
contribute to the sustainable development of wind 
energy.
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Table 4. Wind turbine types, parameters, applicable area standards, and annual electricity generation in different regions.

Region
Wind turbine 

type
Rotor diameter 

(m)
Installed capacity 

(MW)
Area  
(km2)

Theoretical number of 
turbines

Installed capacity 
(GW)

Generation 
(TWh)
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Shanghai GW 175–6 175 6 17206.91 8513 51.08 111.86
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