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ABSTRACT

Accurately and thoroughly determining the installed capacity of offshore wind turbines (OWTs)
and offshore wind farms (OWFs) is crucial for evaluating offshore wind energy and guiding future
development. However, existing statistical data only provide aggregated information on capacity,
and detailed attribute data are not publicly available for free. Here, we present a novel pure
remote sensing method to estimate the OWT installed capacity, successfully applied to estimate
the installed capacity of OWTs in China from 2015 to 2022. This approach first used deep learning
to identify turbine shadows from Sentinel-2 images, then estimated the hub height correspond-
ing to the shadows by combining the solar elevation angle, and finally related the height to the
capacity through a polynomial model. The results demonstrate that the pure remote sensing
method exhibits excellent performance in estimating the installed capacity of OWTs. Comparing
the generated single OWT capacity with the officially published results, the root mean square
error (RMSE) is 0.27 MW (5.06%). From the end of 2015 to 2022, the total installed capacity of
OWTs in China’s mainland increased from 1.06 GW to 30.18 GW, with the highest annual growth
rate reaching 149.92%. These remote sensing-based estimates closely match the data documen-
ted in the existing reports (R*=0.99, RMSE = 0.62 GW). The average capacity per turbine
increased from 4 MW to 4.84 MW, and the maximum capacity of OWFs increased from 632.89
MW in 2015 to 1305.04 MW in 2022 (geographically). By the end of 2022, OWFs with an installed
capacity exceeding 100 MW accounted for 90.83% of the total number of OWFs in China’s
mainland, indicating a trend toward larger-scale development of OWFs. This study provides
a reference for large-scale assessments of OWT installed capacity. Additionally, it can be used
for the construction of high-capacity OWFs to design future installations.
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1. Introduction that the future development of offshore wind power

With the intensification of global climate issues over
the past few decades, offshore wind energy has
emerged as a popular clean energy source due to its
high storage capacity, zero pollution, and technical
maturity (Duan 2017; Feng et al. 2015; Wass 2018).
In recent years, the construction of offshore wind
turbines (OWTs) has expanded significantly world-
wide, emerging as a major application of wind energy.
Between 2016 and 2020, global OWTs surged from
4,642 units to 9,441 units, reflecting a remarkable
growth rate of 103.38% (Hoeser, Feuerstein, and
Kuenzer 2022). In 2022, new offshore wind installa-
tions globally reached 8.8 GW, bringing the total
installations to 64.3 GW (Global Wind Energy
Council 2023). China’s recent and total installations
were 5 GW and 31.4 GW, respectively, both ranking
first globally. Moreover, the formulation of the 14th
Five-Year Plan and the “dual carbon” goals indicate

equipment in China will continue to increase.
Estimating the installation of OWTs is of great signif-
icance for national efforts to combat climate change,
transition to renewable energy, facilitate project finan-
cing in the offshore wind power industry, and enhance
public awareness (Du et al. 2024). Consequently, the
China Wind Energy Association (CWEA) and the
Global Wind Energy Council (GWEC) have publicly
provided annual summary information on the
national-scale installed capacity of OWTs. The data
sources are primarily derived from market intelli-
gence, project lists, and data submitted by companies.
These data, therefore, need to be verified through
multiple channels, making the process time-
consuming, labor-intensive, and costly.

Remote sensing technology offers significant
opportunities for monitoring large-scale offshore tar-
gets and can serve as an alternative to field surveys
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(Fan et al. 2024; Gong et al. 2025; Greidanus et al.
2017; Liang et al. 2025). Several researchers have uti-
lized remote sensing imagery to explore the spatial
distribution of OWTs, providing a basis for inferring
installed capacity. Xu et al. (2020) employed optical
satellite images and visual saliency detection algo-
rithms to detect the geographical distribution of
OWTs. Moubayed, Becker, and Blankenbach (2025),
Wang et al. (2024), Zhang et al. (2021) leveraged the
strong backscatter characteristics of OWTs in
Sentinel-1 synthetic aperture radar (SAR) imagery,
combined with threshold analysis and morphological
extraction, to determine the spatial locations of
OWTs. However, determining the spatial location
and number of OWTs alone is insufficient to estimate
the installed capacity of an offshore wind farm (OWF).
Hoeser and Kuenzer (2022) demonstrated
a monotonic relationship between the installed capa-
city of an OWT and the hub height of the turbine,
which provides an opportunity to estimate the
installed capacity of an OWF through remote sensing.
However, as Majidi Nezhad et al. (2022) pointed out,
the siting of OWTs must consider their environmental
impact, which is often directly related to their type.
Despite this, large-scale, high-precision data on OWT
installed capacity and corresponding hub height
remain scarce. Additionally, previous research has
consistently pointed out that obtaining accurate hub
height measurements for offshore wind turbines
remains a technical difficulty (Badger et al. 2016;
Medina-Lopez et al. 2021; Wang, Ullrich, and
Millstein 2018).

Building on these insights, significant challenges
remain in deriving the hub height of OWTs from
remote sensing to estimate installed capacity. The
first major difficulty is accurately estimating hub
height from remote sensing data. Currently, several
methods exist for extracting object height data using
multi-source remote sensing data. The first method is
light detection and ranging (LiDAR), which can
directly obtain high-precision three-dimensional
point cloud measurements of object heights (Gong
et al. 2011; Wang et al. 2024). However, collecting
continuous and large-scale information on the heights
of OWTs is difficult due to the high cost of acquiring
point cloud data (Liu et al. 2023). The second method
involves radar technologies, such as single/stereo SAR,
interferometric SAR, and spotlight SAR (Magruder,
Neuenschwander, and Klotz 2021; Sun et al. 2022;
Zhu and Bamler 2010). However, radar images are
affected by signals mixed with different microwave
scattering mechanisms, and the specular reflection
effect of waterbodies significantly reduces radar back-
scatter intensity, resulting in relatively high uncer-
tainty in height extraction (Lee and Hong 2024; Sun
et al. 2019). The third method uses stereo images from
aerial or drone imagery (Pepe et al. 2021; Wang et al.

2021). This method requires high-quality image stereo
matching and faces challenges of feasibility and con-
tinuity in areas where drones cannot reach or where
stereo pairs are lacking (Cao and Huang 2021; Frantz
et al. 2021).

The abovementioned methodologies employ direct
measurements to ascertain the heights of wind tur-
bines. However, estimating wind turbine heights is
inherently uncertain and unstable due to the chal-
lenges associated with image acquisition and subopti-
mal image quality in the sea environment.
Consequently, these methods do not suit hub height
estimation in large-scale sea surface environments.
Indirect estimation of object heights using the sha-
dows of objects in sunlight, combined with satellite
imaging angles, is a commonly used method in remote
sensing (Huang et al. 2022). However, determining
shadow thresholds necessitates manual intervention,
which reduces the accuracy and efficiency of shadow
extraction in large volumes of remote sensing data
(Hu and Zhang 2018; Huang and Zhang 2012). In
addition, OWT hub shadows have fewer effective pix-
els and share similar spectral information to water-
bodies and dark-colored objects in remote sensing
images. Therefore, traditional methods that calculate
hub height using shadow thresholds are challenging to
implement on a large scale (Sun et al. 2019).
The second difficulty is effectively modeling the rela-
tionship between hub height and installed capacity.
For this aim, a sufficient number of known OWT
hub heights and corresponding installed capacity
data are required. However, collecting these data is
time-consuming and restricted by policies and regula-
tions in some countries.

The Sentinel-2 satellite, developed under the
European Space Agency (ESA), provides high-
resolution (10 m) multi-temporal satellite imagery,
which has been widely used for offshore target recog-
nition, including wind turbines, ships, oil and gas
extraction platforms, and marine pollutants
(Beaumont et al. 2019; Ciocarlan and Stoian 2021;
Kikaki et al. 2024; Mandroux et al. 2021). Sentinel-2
is also frequently used for object shadow identification
to estimate object height (Frantz et al. 2021;
Moubayed, Becker, and Blankenbach 2025), making
it a potential data source for OWT hub shadow recog-
nition. Moreover, with the development of deep learn-
ing-based  image  segmentation  techniques,
convolutional neural networks (CNNs) have been
used to segment typical elements in highly heteroge-
neous coastal environments (Bai et al. 2023; Han et al.
2025; Zhang et al. 2024). For example, Chen et al.
(2023b) used the U-Net model integrating a dual
attention mechanism and edge supervision to accu-
rately segment tidal flats in highly turbid and tidally
dynamic offshore environments. Similarly, Aghdami-
Nia et al. (2022) accurately extracted coastlines from



remote sensing images of the Chinese coast and the
southern Caspian Sea by modifying the standard
U-Net model and developing an automatic coastline
extraction framework. Hence, open-source high-
resolution remote sensing imagery and deep learning
models present an opportunity for accurately extract-
ing OWT hub shadows, facilitating the calculation of
OWT hub heights and the assessment of installed
capacity. However, the proportion of wind turbine
shadow pixels is minimal compared to the vast sea
surface, and it remains uncertain whether deep learn-
ing models can effectively handle feature recognition
and segmentation in this context.

Given the aforementioned issues, this study devel-
oped a Sentinel-2 imagery and deep learning-based
shadow extraction method for OWTs, aiming to over-
come the reliance of traditional methods on manual
intervention and high-quality imagery. It achieves
large-scale estimation of installed wind turbine capa-
city solely based on Sentinel-2 remote sensing data for
the first time. This approach provides a new perspec-
tive for clean energy monitoring through remote sen-
sing technologies. Additionally, it offers scientific
support for achieving China’s “dual carbon” goals
and optimizing offshore wind power development

GEO-SPATIAL INFORMATION SCIENCE . 3

policies. The specific objectives of this study are as
follows: (1) To develop a deep learning-based shadow
extraction method for OWTs to accurately calculate
wind turbine hub heights; (2) To construct
a relationship model between turbine hub height and
installed capacity; (3) To evaluate the change in
China’s installed offshore wind capacity from 2015 to
2022 using remote sensing.

2. Study area

The study area encompasses 12 coastal provincial-
level administrative regions in China’s mainland.
A single-sided buffer zone extending 150 km from
the coastline is established, with the boundary of this
buffer zone defined as the study area (Figure 1(a)). The
150 km setting considers the current maximum off-
shore distance of OWTs in China and the spatial
locations of OWTs under construction. The offshore
wind energy potential at depths of 5-50m and
a height of 70 m is estimated to be approximately
500 GW (Yi 2018). Moreover, areas above 70 m in
height, situated in deeper and more distant seas, hold
even greater potential for technological development.
Currently, there are 11 international databases and 24
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Figure 1. (a) The study area and its corresponding sentinel-2 footprints; (b) sentinel-2 image of Jiangsu on 19 December 2022,
displayed in false color with bands b8, b4, and b3; (c) schematic diagram of an OWT.
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regional/national databases containing statistical data
on OWTs and OWFs (Pazheri, Othman, and Malik
2014). While some databases provide detailed infor-
mation, they require payment (e.g. 4C Offshore),
while others lack temporal consistency and global
coverage (e.g. USWTD, Rand et al. 2020) and
GBWSFs (Dunnett et al. 2020). According to the
GOWT dataset (Zhang et al. 2021), as of
December 2019, there are 1,853 offshore wind units
in China, primarily located off the coasts of Jiangsu
and Fujian. In this study, the spatial location data for
OWTs from 2015 to 2022 are derived from the code
accompanying the GOWT dataset (Zhang et al. 2021),
selected for its open accessibility, methodological gen-
eralization over time, and accurate geospatial informa-
tion, which can be applied on the Google Earth Engine
(GEE) platform.

3. Data and methods
3.1. Data collection

We downloaded the multispectral Sentinel-2 Level 2A
atmospheric correction surface reflectance images
from the GEE platform and utilized the QA60 band
to mask cloud pixels. The CLOUDY_
PIXEL_PERCENTAGE attribute was set to 60% to
ensure image quality without significantly reducing
the number of available images (Chen et al. 2023a).
Given that small OWT shadows at higher solar eleva-
tion angle (SEA) can lead to inaccurate and low-
precision shadow extraction, we limited the image
date range to within + 15days of December 22
each year from 2015 to 2022. This 30-day interval
allows for complete spatial coverage of the study
areas. Consequently, a total of 5,944 images were
used: 435 in 2015, 396 in 2016, 805 in 2017, 603 in
2018, 991 in 2019, 857 in 2020, 892 in 2021, and 965 in
2022. We defined the geographical boundaries of the
OWT locations. Then, we examined the cloud cover to
ascertain whether the turbines were visible in each
image. Images where the turbines were obscured by
clouds were omitted from our analysis. Subsequently,
we selected a single Sentinel-2 image closest to
December 22 for each year from 2015 to 2022 within
the study area and downloaded them using strip num-
ber. For each downloaded Sentinel-2 image, we
recorded the satellite overpass date, longitude, lati-
tude, and SEA based on the available image attributes.

To validate the accuracy of our findings, we gath-
ered information on the models, hub heights, and
installed capacities of OWTs from 80 OWFs in
China. Data was sourced from platforms, such as 4C
Offshore, The Wind Power, and Wind-turbine-
models. This dataset encompasses many regions
including Liaoning, Hebei, Tianjin, Shandong,
Jiangsu, Shanghai, Zhejiang, Fujian, and Guangdong.

Additionally, it involves multiple OWT manufac-
turers, such as Goldwind, Siemens, MingYang,
Envision Energy, Sinovel, and CSIC Haizhuang
Windpower Equipment.

3.2. Estimation of OWT installed capacity

The method for estimating installed offshore wind
capacity using purely remote sensing consists of
three steps: (1) Deep learning for extracting OWT
hub shadows; (2) OWT Hub Height Calculation; and
(3) OWT installed capacity estimation based on OWT
hub shadows.

3.2.1. Deep learning for extraction of OWT hub
shadows

3.2.1.1. Training dataset preparation. Deep learning
requires a large number of representative samples to
achieve good accuracy and generalization. In this
study, we selected the Subei Shoal, an area with
a high density and strong clustering of offshore wind
turbines (OWTs), as the sample region. Sentinel-2
imagery of the Subei Shoal, acquired on
19 December 2023, was used for analysis. To select
suitable band combinations that make the target
object attributes more distinct for deep learning train-
ing, we calculated the band reflectance characteristics
and the corresponding absolute differences (ABSD)
for OWT shadows and background pixels in the 13
Sentinel-2 bands. Ultimately, we selected the b8, b4,
and b3 bands at 10 m resolution (Table 1). These
images used for training contain a total of 9 OWFs
(where OWTs with the same arrangement interval and
direction are considered as one OWF) and 352 OWTs.
They cover various underlying surfaces, including dif-
ferent depths of waterbodies and tidal flats. In these
images, OWT hub shadows appear as distinct black
features contrasted with the blue water and brown soil.
We then manually extracted the shadows of the 352
OWTs from the 9 OWFs through multi-person visual
interpretation, resulting in segmentation results. The
training images were further processed in ArcGIS Pro,
where a sliding window approach was applied with
a step size of 128 pixels. During window cropping,
each slice was moved by 128 pixels, resulting in 50%
overlaps between adjacent slices. This method helps
the model capture image continuity and contextual
information more effectively, reducing edge effects
and preventing semantic information loss at the slice
boundaries. These training images were cropped into
a total of 960 (256 x 256 pixels in size) deep learning
sample slices (Figure 2). This sample database was
randomly divided into a training set of 768 samples
and a validation set of 192 samples in an 8:2 ratio to
better evaluate the performance and generalization
ability of the model. To further improve the model’s
performance and generalization ability, all training
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Table 1. Comparison of sentinel-2 resolution and reflection characteristics in different

bands.
Bands Shadow Background ABSD Spatial resolution (m)
B1 0.3003 0.3005 0.0002 60
B2 0.2714 0.2746 0.0032 10
B3 0.2587 0.2644 0.0058 10
B4 0.2697 0.2796 0.0099 10
B5 0.2699 0.2797 0.0098 20
B6 0.2431 0.2517 0.0086 20
B7 0.2420 0.2510 0.0091 20
B8 0.2248 0.2341 0.0093 10
B8A 0.2127 0.2200 0.0074 20
B9 0.1328 0.1327 0.0000 60
B10 0.1013 0.1013 0.0000 60
B11 0.1120 0.1121 0.0001 20
B12 0.1076 0.1077 0.0001 20
Image \ \ \ ‘f‘ e
\ \ \ \ \
\ \ \ : i)
\ \ \ \ Al \ \ \ \ \
\ \

Figure 2. Examples of sentinel-2 ACE-enhanced imagery and corresponding labels in Sheyang and Dafeng, Jiangsu, with sample

slice sizes of 256 x 256 pixels.

samples underwent random rotation (£90°) and were
processed using the automatic color equalization
(ACE) algorithm. The ACE algorithm locally and
nonlinearly adjusts the images’ brightness, color, and
contrast, correcting the final pixel values by consider-
ing the dark relationships between pixels to enhance
local features.

3.2.1.2. The architecture of deep learning. U-Net is
a fully convolutional neural network initially proposed
for image segmentation in 2015 (Ronneberger,
Fischer, and Brox 2015). It features a U-shaped net-
work structure with an encoder-decoder architecture
(Figure 3(a)). The encoder captures contextual infor-
mation by gradually reducing spatial dimensions and

extracting high-level features. The decoder restores
resolution through upsampling and incorporates skip
connections with the encoder’s feature maps to retain
detail. Its advantages include learning from small sam-
ples, utilizing skip connections for feature fusion, and
performing multi-level feature extraction. The back-
bone convolutional network is critical for deep image
recognition and semantic segmentation (Benali
Amjoud and Amrouch 2020; He et al. 2019). Classic
convolutional backbone networks have improved the
accuracy of image recognition tasks, including VGG
(Simonyan and Zisserman 2015), ResNet (He et al.
2016), DarkNet (Redmon and Farhadi 2017), and
GoogLeNet (Szegedy et al. 2015). To enhance the
performance of the classic U-Net architecture, we
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Figure 3. (a) VC-Unet model structure diagram; (b) VGG16 network architecture; (c) CBAM attention mechanism module.

made two modifications in this study: (1) integrating
the first four convolutional blocks of the deep network
VGG16 backbone as the encoding components of the
U-Net architecture, and (2) adding a CBAM attention
mechanism before each upsampling in the decoding
phase to accurately segment the wind turbine shadow
boundaries. The proposed deep learning model is
referred to as VC-Net. The modified deep learning
model is called VC-Unet.

The VGG network is one of the classic models in
deep learning, widely used in computer vision tasks
for semantic segmentation due to its simple structure
and ease of implementation. The VGG network con-
structs deep neural networks using a series of small
convolutional kernels (3 x 3) and pooling layers
(2 x 2), which increase the receptive field without
adding computational complexity, thereby providing
stronger non-linear capacity. Additionally, reducing
the number of parameters lowers the risk of overfitting
and improves the network’s feature extraction ability.
The 16-layer network is known as VGG16. VGG16 has
an architecture, with 13 alternating convolutional and
pooling layers, followed by 3 fully connected layers for
classification (Figure 3(b)). In this study, we replaced
the encoder part of the U-Net network with the net-
work structure of VGG16 before the fourth max pool-
ing layer. Each block contains 64, 128, 256, and 512
convolutional layers. Deep learning requires
a significant amount of training samples to extract

features effectively. However, due to the limited
Sentinel-2 imagery training data, we used transfer
learning techniques to enhance feature extraction
(Zhuang et al. 2020). We utilized pre-trained weights
from the VGG16 backbone network, as using the
initial pre-trained parameters provides more stable
training results than random initialization.

The convolutional block attention module (CBAM)
(Woo et al. 2018), improves the performance of CNN’s
by integrating channel attention and spatial attention,
thereby enhancing perceptual capability without sub-
stantially increasing network complexity. By adap-
tively learning channel and spatial attention weights,
the CBAM module captures correlations between fea-
tures across different dimensions, thus improving the
performance of image recognition tasks and addres-
sing the limitations of traditional CNNs when hand-
ling information of varying scales and directions.
Initially, the maximum and average feature values are
calculated for each channel. The feature vectors
obtained from global max pooling and average pooling
are then fed into a fully connected layer, where the
Sigmoid activation function is applied to derive the
final channel attention weight vector. The max-pooled
and average-pooled features are concatenated along
the channel dimension, creating a feature map with
different scale context information. The resulting fea-
ture map is subsequently processed by a convolutional
layer to generate spatial attention weights. The output



features from both the channel and the spatial atten-
tion modules are then multiplied element-wise to pro-
duce the final attention-enhanced features (Figure 3
(c)). This enhanced feature set serves as input for the
subsequent network layers, retaining key information
while suppressing noise and irrelevant data.

3.2.1.3. Model implementation and training. The
VC-Unet model is implemented in Python using
PyTorch. Sentinel-2 images and their corresponding
labels were randomly divided into training and valida-
tion datasets in an 8:2 ratio. The training was con-
ducted in two phases: the freezing phase and the
unfreezing phase. The freezing phase requires less
memory, reducing the demands on machine perfor-
mance. If, after 10 epochs, there was no improvement
in training accuracy or reduction in validation loss, the
training process was terminated prematurely. The
total number of training epochs was set to 200, with
40 epochs allocated to the freezing phase. The model
was compiled using the Adam optimizer with an
initial learning rate of le-4, and the optimizer’s inter-
nal momentum parameter was set to 0.9. After every 2
epochs, the training weights were automatically saved,
and the validation dataset was assessed every 5 epochs.
To address the imbalance between positive and nega-
tive samples in the dataset, we used Dice Loss to
mitigate the negative impact of foreground-
background imbalance, allowing the model to focus
more on the foreground regions during training.
Additionally, we combined the Focal Loss function
to further address the sample imbalance issue, ensur-
ing that the model’s attention is concentrated on the
objects of interest.

3.2.1.4. Model evaluation metrics. To comprehen-
sively assess the effectiveness of the backbone net-
work and decoder for OWT hub shadow
segmentation, we selected common metrics used in
semantic segmentation, including accuracy, average
precision (AP), mean average precision (mAP),
intersection over union (IoU), and FI1-Score.
Accuracy measures the extent to which repeated
measurements agree with the true value, evaluating
the ratio of correctly predicted samples to the total
number of samples. AP integrates the precision-
recall curve, representing the combined performance
of precision and recall. mAP represents the weighted
average of APs across various categories. IoU, on the
other hand, assesses the spatial overlap between the
algorithm’s predictions and the true ground-truth
labels. As for the F1-Score, it is a weighted harmonic
mean of precision and recall, offering a holistic
metric that is less susceptible to the influence of
imbalanced samples. Let us delve into the specific
calculation methods:
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where TP, TN, FP, and FN represent the number of
pixel-level True Positives (correctly predicted target
pixels), True Negatives (correctly predicted back-
ground pixels), False Positives (background pixels pre-
dicted as target pixels), and False Negatives (target
pixels predicted as background pixels). Additionally,
higher accuracy, mAP, IoU, and F1-Score values indi-
cate greater accuracy in OWT hub shadow
segmentation.

3.2.2. OWT hub height calculation

Given the relatively large pixel size of remote sen-
sing imagery, achieving a balance between model
accuracy and processing speed is imperative. To
address this concern, we implemented a series of
preprocessing steps. First, each downloaded
Sentinel-2 image from GEE was cropped into
a sequence of 256 x 256 pixel tiles. Subsequently,
these tiles underwent segmentation for waterbodies
and OWT hub shadows using the trained VC-Unet
model. Following segmentation, the predicted out-
put tiles were amalgamated and transformed into
polygon vector files representing segmented con-
tours. To streamline the contours, we employed
the Douglas-Peucker algorithm from OpenCV,
fine-tuning the threshold to uphold contour accu-
racy while mitigating computational overhead. In
practical scenarios, OWT shadows tend to exhibit
approximately rectangular shapes. However, identi-
fication outcomes often manifest as irregular poly-
gons due to the inherent characteristics of raster
data. To address this discrepancy, we employed
ArcGIS’s Minimum Bounding Geometry tool that
delineates the smallest enclosing rectangle around
each shadow (see Figure 4(a)). The length of this
enclosing rectangle serves as a proxy for the sha-
dow length of the OWTs’ hubs.
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Satellite

Shadow

Hub height=Shadow X tan a

Figure 4. (a) The OWT hub shadows and minimum bounding geometry of jiangjiasha H2 300MW OWF in Rudong, Jiangsu in 2022;

(b) the calculation method of OWT hub height.

Figure 4(b) illustrates the principle of calculating
OWT hub heights using Sentinel-2 data and SEA.
We selected Sentinel-2 data from around
December 22nd of each year from 2015 to 2022,
coinciding with the time when the sun is approach-
ing the Tropic of Capricorn. Leveraging the lati-
tude position of the OWT and the specific
acquisition time of the Sentinel-2 image, we deter-
mined the SEA, denoted as a (as defined by
Equation 7), where ¢ represents the geographical
latitude, & signifies the solar declination, and
t represents the hour angle. The exact spatial loca-
tions of the OWTs were obtained using the openly
accessible code associated with Zhang et al. (2021).
Through the application of trigonometry and con-
sidering the length of the OWT hub shadows, we
calculated the hub height of each OWT, thereby
enabling the determination of the hub height for
OWF within the study area. To minimize errors
arising from individual turbine calculations and
based on the assumption of consistent wind tur-
bine models (hub heights) within an OWE, we
selected the median hub height of all OWTs within
each OWF to define the hub height for that spe-
cific OWF.

sina = sing X sind + sing X cosd x cost  (7)

3.2.3. OWT installed capacity estimation

We randomly selected 60 OWFs from publicly avail-
able sources and conducted a fitting analysis using the
hub height and installed capacity for these 60 OWFs.
In this analysis, the independent variable is the hub
height of the OWTSs, while the dependent variable is
the installed capacity. We applied polynomial curve
fitting, linear fitting, exponential fitting, and logarith-
mic fitting to the hub heights of OWTSs ranging from
60 m to 120 m and their corresponding installed capa-
cities using these fitting methods. The results are illu-
strated in Figure 5. Among the fitting methods,
polynomial curve fitting yielded the highest R* value
of 0.75. Therefore, we utilized polynomial curve fitting
to model the installed capacity of each OWT based on
the computed hub height in this study.

4. Results
4.1. Accuracy assessment

The accuracy of the VC-Unet model in extracting
shadows of wind turbines from Sentinel-2 images
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Figure 5. Hub height and installed capacity of a single OWT fitted using polynomial curve fitting, linear fitting, exponential fitting,

and logarithmic fitting.

was quantitatively evaluated using a test dataset com-
prising 192 patches. Different random seeds were used
each time, and multiple values were obtained by test-
ing multiple times on the same dataset. The results
revealed that the model achieved an IoU of 98.96 +

0.05, mPA of 99.66 + 0.03, precision of 99.58 + 0.01,
recall of 99.38 £ 0.06, and an Fl-score of 99.48 +

0.02, respectively. Ablation experiments and data eva-
luation of the VC-Unet model are shown in Table S1.
To assess the accuracy of our calculations, we com-
pared the hub height and installed capacity of OWTs
derived from Sentinel-2 observations with official
ground-truth data. Specifically, we computed errors
in OWT hub height and installed capacity using 20
observed OWT data points and 20 official OWT data
points for comparison. Figure 6 illustrates that the
variance of the calculated OWT hub height accounts
for 83.79% of the variance in the official hub height,
with a mean absolute error (MAE) of 1.20 m and
a root mean square error (RMSE) of 1.72 m (1.74%).
Considering that the spatial resolution of Sentinel-2
images is 10 x 10 m, there exists an inherent pixel-
level theoretical error of + 10 m. The MAE of 1.20 m
effectively demonstrates the accuracy and robustness
of extracting OWT hub heights using Sentinel-2 ima-
gery and deep learning models. In addition, the var-
iance of the single-unit installed capacity derived from
Sentinel-2 data is 101.83% of the official installed

capacity variance, with a MAE of 0.19 MW and an
RMSE of 0.27 MW (5.06%). The MAE of 0.19 MW
indicates the accuracy and reliability of the model,
while the RMSE of 0.27 MW reflects a high degree of
consistency between the observed results and the
actual values. This consistency provides a solid foun-
dation for the stable prediction of OWT installed
capacity and future OWF project planning.

4.2. Installed capacity of OWTs

4.2.1. Installed capacity of OWTs in 2022

Using the VC-Unet model and subsequent processing,
we computed the hub height distribution for OWTs in
China’s mainland for the year 2022, as depicted in
Figure 7. We employed the median hub height of
OWTs to represent the hub height of each OWF,
considering OWTs with similar geographical patterns,
spacings, and orientations as part of the same OWF.
The results indicate that the average hub height for
OWTs in China’s mainland is 99.02m. Zhejiang
boasts the highest average hub height at 105.42 m,
while Fujian has the lowest at 93.47 m. For OWTs in
water depths <25 m, the average hub height is 98.79 m,
while for those in water depths >25 m, the average hub
height is 102.66 m. Additionally, we computed the
maximum and minimum hub heights for OWFs in
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Figure 7. The hub heights of OWTs in various regions of China’s mainland in 2022.

various regions. The maximum hub height is in  between the hub height and installed capacity of OWTs,
Zhejiang at 129.8 m, while the minimum is in Fujian  along with considering factors such as quantity, solar
at 81.4 m. OWT hub heights ranging from 90 to 110 m  altitude angle, and latitude in 2022, enables a more accu-
have become the market mainstream, accounting for ~ rate estimation of the installed capacity for each OWF. As
89.17% of the total number of OWTs in 2022. of December 2022, 6,198 OWTs were distributed across

Based on the fitting between hub height and installed =~ 109 OWFs geographically, with a cumulative installed
capacity, a polynomial model with a high coefficient of ~ capacity of 30.18 GW. Regionally, Jiangsu leads in
determination was selected as the capacity estimation =~ OWT development with a total installed capacity of
model for the study area. Analyzing the relationship ~ 13.73 GW, accounting for 45.45% of the national total.



Other significant contributors are Guangdong (6.30
GW), Zhejiang (3.08 GW), Shandong (2.65 GW),
Fujian (2.36 GW), Liaoning (0.90 GW), Shanghai (0.72
GW), Hebei (0.38 GW), and Tianjin (0.09 GW). Coastal
provinces are vigorously advancing wind energy devel-
opment, with substantial installed capacities of OWTSs
evident in southern regions, while northern areas remain
in nascent development stages, offering considerable
growth opportunities.

Table 2 displays the number of OWTs in each pro-
vince, along with the maximum, minimum, and average
installed capacities for each OWF. The average installed
capacities of OWTs across different regions range from
427MW to 6.05 MW, while the national average
installed capacity of OWTs is 4.84 MW. Figure 8 illus-
trates the installed capacities of OWFs in each province
and the corresponding average hub height. The most
expansive OWF boasts an installed capacity of 1,305.04
MW. Among the 109 OWFs, 99 possess installed capa-
cities exceeding 100 MW, constituting 90.83% of the
total, while 41 OWFs exceed 300 MW, representing
68.33% of the total.

4.2.2. Annual dynamics of installed capacity of
OWTs

We calculated the distribution of hub heights of OWTs in
China’s mainland from 2015 to 2022 (Figure 9). The

GEO-SPATIAL INFORMATION SCIENCE . 1

results indicate an overall increasing trend in the average
hub height of OWFs in China’s mainland, from 90.6 m in
2016 to 99.02 m in 2022, with a growth rate of 9.3%. The
decrease in the average hub height from 2015 to 2016 was
primarily due to the establishment of an OWF in the
northern part of Nanri Island, Fujian Province, in 2016,
with an OWT hub height of 81.4 m, which was lower
than the minimum OWT height of 84 m observed in
Chao Bay, Jiangsu Province, in 2015. We also analyzed
the variation in the maximum hub height of OWFs from
2015 to 2022. The maximum hub height exhibited
a yearly increasing trend, from 96 m in 2015 to 129.8 m
in 2022, with a growth rate of 35.2%. Additionally,
detailed information on the maximum, minimum, and
average hub heights of each province from 2015 to 2022 is
provided in the supplementary material (Figure S1).
This study further estimated the single-unit
installed capacity of OWTs and the installed capa-
city of OWFs from 2015 to 2022. Table 3 illustrates
the trends from 2015 to 2022 in the number of
OWTs and OWFs examined in this study, detailing
the maximum, minimum, and average installed
capacity per unit. In addition, it indicates the
annual cumulative installed capacity. Overall, both
the number of OWTs and cumulative installed
capacity in China’s mainland have continued to
increase, demonstrating significant progress in

Table 2. Minimum, maximum, average, and total values of OWT count and installed capacity

by region in 2022.

Region Count Min Max Mean Total (GW)
Liaoning 208 332 4,98 4.34 0.90
Hebei 77 4.88 4.88 4.88 0.38
Tianjin 18 5.13 5.13 5.13 0.09
Shandong 443 461 7.34 6.05 2.65
Jiangsu 2900 3.24 6.63 4.73 13.70
Shanghai 168 3.53 6.48 4.26 0.91
Zhejiang 536 3.16 8.82 5.74 2.88
Fujian 552 3.00 7.38 427 2.36
Guangdong 1296 3.03 5.58 4.72 6.30
China’s mainland 6198 3.77 6.36 4.84 30.18
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Figure 8. Distribution of hub heights and corresponding installed capacities of OWFs across various regions of China’s mainland in

2022.
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Table 3. Minimum, maximum, average, and total values of OWT and OWF count and installed capacity from 2015 to 2022.

Year OWT Max (MW) Min (MW) Mean (MW) OWF All (GW)
2015 265 446 3.24 4 5 1.06
2016 456 4.46 3 3.89 13 1.77
2017 877 5.13 3 3.92 23 3.44
2018 1295 5.91 3 3.93 39 5.1
2019 1830 6.04 3 4.1 45 6.13
2020 3465 6.53 3 4.42 74 15.32
2021 5558 7.55 3 473 100 26.29
2022 6198 8.82 3 4.84 109 30.18

development scale. By the end of December from
2015 to 2022, the number of OWTs in China’s
mainland increased from 265 to 6,198, and the
cumulative installed capacity increased from 1.06
GW to 30.18 GW, showing rapid growth. The
annual growth rates of cumulative installed capacity
for OWTs from 2019 to 2021 exceeded 70%. In
2021, the installed capacity reached 26.29 GW.
This was four times the capacity in 2019, setting
a new record for the total installed capacity of
OWTs in China. However, the annual growth rate
in 2022 was only 14.8%, closely related to the policy
of subsidy cancellation for OWTs in China in 2022.

For the sake of the installed capacity per unit of
OWTs, the maximum installed capacity per turbine
tripled by twofold from 4.46 MW in 2015 to 8.82 MW
in 2022, while the average installed capacity per turbine
decreased slowly from 4 MW in 2015 to 3.89 MW in
2016, and then increased year by year to 4.84 MW in
2022. This trend is closely related to the national demand
for clean energy production, OWT technology maturity,
and supply chain improvements. The minimum installed
capacity has remained unchanged since the completion
of the Nanri Island OWF in Fujian in 2016, further
indicating the trend of large-scale OWT installation.
The application prospects of offshore wind power in
China are promising under the “14th Five-Year Plan”
and the dual carbon goals of “peak carbon emissions
and carbon neutrality,” with significant development
potential in the future.

Regarding OWFs, the number of OWFs increased
from 5 in 2015 to 109 in 2022, showing a year-on-year
growth trend. The installed capacity of all OWFs in
China’s mainland from 2015 to 2022 and their corre-
sponding unit heights are shown in Figure 10. The
maximum installed capacity of OWFs increased from
632.89 MW in 2015 to 1,305.04 MW in 2022. OWFs
with a capacity exceeding 100 MW raised from 2 in
2015 to 99 in 2022, accounting for 90.83% of the total
number of OWFs in China’s mainland in 2022. The
hub heights of OWTs in China’s mainland between
2015 and 2022 were mainly between 80 m and 110 m,
while the installed capacity of OWFs ranged from 100
MW to 400 MW. This suggests that most of the OWTs
currently operational in China’s mainland have med-
ium-scale hub heights and installed capacities. Policies
such as the 14th Five-Year Plan will further promote
the development of large-scale installed capacity OWT
projects and the production of clean energy for carbon
neutrality. Additionally, significant differences in the
scale of installed capacity of OWTs among Chinese
provinces from 2015 to 2022 are evident, as detailed in
the supplementary material (Figure S2 and S3).

5. Discussion
5.1. Comparison with statistical reports

We compared and verified the cumulative-installed
capacity values with the statistics released by the
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Figure 10. Installed capacity and hub height trends of OWFs in China’s mainland from 2015 to 2022.

GWEC and CWEA for the years 2015-2022
(Figure 11). We calculated the ratios of our study’s
results to those of GWEC and CWEA. This study also
estimated the individual installed capacities of OWTs
and the installed capacities of OWFs from 2015 to
2022. These remote sensing-based estimates are highly
consistent with GWEC and CWEA data for several
years, particularly in 2015, 2018, 2019, 2021, and 2022.
The accuracy for these years consistently approaches
or exceeds 90%, with R? (R-squared) all at 0.99 and
RMSE of 0.77 GW and 0.62 GW, respectively. In most
years, the study results were more aligned with CWEA
data. For instance, in 2016, the accuracy compared to
CWEA data was 95.27%, while it was only 77.08%
compared to GWEC data. Similar patterns were
observed in 2017 and subsequent years. These official
reports largely validate the credibility of the estimated
installed capacity in this study and demonstrate that
the combination of deep learning models and
Sentinel-2 data can monitor offshore wind energy
reserves. We analyzed Sentinel-2 and high-resolution

Our data(GW)
30 GWEC(GW)
= CWEA(GW)
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imagery data for 2020, identifying over 3,000 OWTs
with a cumulative installed capacity of approximately
15 GW. The CWEA reports 787 new OWTs in 2020,
whereas remote sensing imagery indicates 1635 new
OWTs, far exceeding CWEA’s statistical results. The
remote sensing estimate closely matches the 2020
OWT numbers reported in Hoeser, Feuerstein, and
Kuenzer (2022). However, statistics from the GWEC
and the CWEA indicate a lower cumulative installed
capacity of around 10 GW for the same year. The
discrepancy primarily stems from differences in sta-
tistical methodologies. Remote sensing-based esti-
mates are derived directly from imagery data,
allowing for real-time monitoring of OWTs. In com-
parison, the CWEA and GWEC statistics rely on
reports submitted by local departments, which may
have been delayed due to exceptional events like the
COVID-19 pandemic. Furthermore, CWEA and
GWEC reports offer only large-scale regional or
national summaries, while this study can promptly
provide individual OWT and OWF hub height and

2015 2016 2017 2018
Year

2019 2020 2021 2022

Figure 11. Comparison of the total installed capacity of OWTs from 2015 to 2022 between our data and that of GWEC and CWEA.
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installed capacity information, providing flexibility in
summarizing OWT and OWF attribute information.
This provides valuable reference data for the sustain-
able development of offshore wind energy in China
and contributes to achieving the “double carbon”
goals.

5.2. Uncertainty analysis

The uncertainties in this study mainly originate from
two aspects. First is the uncertainty in calculating the
hub height of wind turbines in wind farms, primarily
determined by the accuracy of shadow recognition. In
this study, the median hub height of all turbines in
a wind farm was used to represent the turbine height
within that range. We randomly selected one OWF
from each coastal province where OWTs were
installed and conducted statistics on the hub heights
of all OWTs in each OWF, calculating the mean,
median, and standard deviation (Figure 12). The
results show that the variance calculated for each
OWE is less than 0.15, indicating that the hub heights
are relatively consistent. Therefore, using the median
to represent the hub height of a wind farm can effec-
tively reduce errors. The second uncertainty arises
from simulating the relationship between turbine
hub height and installed capacity. In this study, poly-
nomial curves, linear, exponential, and logarithmic
fittings were conducted on the hub height and
installed capacity of 60 OWFs, where the polynomial
curve fitting with the highest R*> was selected.
However, the highest value was only 0.77, suggesting
that increasing the number of measured samples in the
future could make the optimization results more reli-
able (Shao and Liu 2024).

5.3. Offshore wind power development potential
in China

Estimating the potential for large-scale offshore wind
power development is crucial for achieving China’s
“double carbon” goals and for future planning of off-
shore wind energy projects. This study used the latest
wind turbine models from Goldwind Science &
Technology Co., Ltd., a leading company in the domes-
tic wind power market, to estimate the potential power
generation capacity (Liu et al. 2022). Based on regional
differences in multi-year average wind speeds and the
average hub height of OWTs in China, three types of
OWTs with a hub height of 100 m were selected for
different sea regions. The actual power output is calcu-
lated by multiplying the theoretical power output by the
capacity factor (CF). The actual integrated loss factor
ranges between 70% and 80%, meaning the CF usually
varies from 20% to 30% (Liu et al. 2020; Wang et al.
2022; Zhu 2019), with an average value of 25%. This
study estimates the annual energy production (AEP) for

China’s offshore wind power by considering the rated
capacity of different types of OWTs. Given the actual
area of OWFs, policy factors, and the potential reduc-
tion in power generation due to turbulent wake effects
caused by overly dense OWT spacing, the horizontal
spacing between OWTs was set at 10D and the vertical
spacing at 5D, where D represents the rotor diameter
(Lundquist et al. 2019).

This study estimates that the technical potential
for offshore wind energy resources within a 150-
km range from the coast of China, at a height of
100 m, is 3,759.51 GW, with an annual energy
production of approximately 7,952.43 TWh, assum-
ing no consideration of development costs, trans-
mission losses, or marine protected areas (Table 4).
At the provincial level, Guangdong has the largest
potential for offshore wind power development,
with an estimated capacity of 811.19 GW and
a projected annual energy production of 1,776.52
TWh. This is followed by Taiwan, Zhejiang, Fujian,
Shandong, and Hainan, all with capacities exceed-
ing 300 GW. Provinces such as Hebei, Shanghai,
Tianjin, and Liaoning have less than 100 GW capa-
cities. At the national level, China’s offshore wind
power installed capacity is expected to exceed 88
GW by 2030, achieving a peak in carbon emissions.
The potential capacity of OWTs in China far
exceeds the installed capacity required to meet
carbon neutrality goals, with the potential to meet
9.2% of China’s national electricity demand in 2022
(86,372 TWh). As of the end of 2022, China’s off-
shore wind power installed capacity was less than
1% of its estimated technical potential. The devel-
opment of offshore wind energy resources is sig-
nificantly influenced by water depth. Based on the
depth criteria (nearshore: 5-50m; deep-sea:
50-100 m), the technical potential for wind energy
resources at a 100-m height in nearshore China is
approximately 1,997.79 GW, while the technical
potential for deep-sea wind energy resources is
about 1,761.72 GW. Concerning nearshore wind
power development capacity, Jiangsu has the great-
est potential, reaching 274.69 GW, followed by
Guangdong, Shandong, Fujian, and Zhejiang, each
with a nearshore wind energy technical potential
exceeding 100 GW. Guangdong and Taiwan exhibit
the highest potential for deep-sea wind power
development, with Zhejiang, Hainan, and Fujian
following. The development of these resources
necessitates the use of floating platforms,
a technology that is still in its nascent stages.

5.4. Limitations and future works

This study introduces a novel approach for estimating
offshore wind turbine (OWT) installed capacity using
Sentinel-2 imagery and deep learning techniques. To
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Figure 12. One OWF randomly selected from Liaoning, Hebei, Tianjin, Shandong, Jiangsu, Shanghai, Zhejiang, Fujian, and
Guangdong provinces in 2022, where the hub heights of each OWT were recorded and the mean, median, and standard deviation

were calculated.

address the limitations of traditional methods,
a shadow extraction model was developed to derive
OWT hub heights and establish a relationship between
hub height and installed capacity. In the imagery,
shadows indicate that OWT hubs often exhibit similar
brightness to clear waterbodies, darker ground objects,
and OWT blades. This similarity can result in chal-
lenges, such as inaccurate edge delineation,

waterbodies containing shadow information, and sha-
dows containing blade artifacts. Further research is
needed to validate the method and resolve these issues.
Additionally, the complexity of shadow formation and
image quality poses further challenges. Addressing
these interferences is essential for achieving high-
precision extraction of OWT hub shadows. The future
development of OWTs will likely focus on large single-
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Table 4. Wind turbine types, parameters, applicable area standards, and annual electricity generation in different regions.

Wind turbine  Rotor diameter  Installed capacity Area Theoretical number of Installed capacity Generation

Region type (m) (MW) (km?) turbines (GW) (TWh)

Liaoning GW 175-6 175 6 43208.47 21377 128.26 280.90
Tianjin GW 175-6 175 6 1529.50 757 4.54 9.94
Hebei GW 175-6 175 6 20265.92 10026 60.16 131.75
Shandong GW 175-6 175 6 114712.76 56753 340.52 745.74
Jiangsu GW 175-6 175 6 100947.23 49943 299.66 656.25
Shanghai GW 175-6 175 6 17206.91 8513 51.08 111.86
Zhejiang GW 175-8 175 8 144920.45 71698 573.59 1256.16
Fujian GW 154-6.7 154 7 110506.63 70600 473.02 1035.91
Guangdong GW 175-8 175 8 204953.47 101399 811.19 1776.52
Guangxi GW 175-8 175 8 26383.93 13053 104.43 228.69
Hainan GW 175-8 175 8 76857.55 38025 304.20 666.19
Taiwan GW 154-6.7 154 7 142243.82 90876 608.87 1333.42
All 1003736.65 533021 3759.51 7952.43

unit capacities, floating OWTs, and combining wind
energy with wave and tidal energy, which will require
significant innovation. Other critical considerations
include the impact of precipitation and extreme
weather on OWT blade erosion (Mishnaevsky et al.
2021; Pugh and Stack 2021), the storage and conver-
sion of high-power offshore wind energy (Catalan
et al. 2023; Zeng et al. 2024), and the maintenance
and management of OWFs (Marquez and Papaelias
2020; Peinado Gonzalo et al. 2022). To address these
challenges and seize emerging opportunities, China
must accelerate research into floating OWTs and
explore the integration of offshore wind energy with
wave and tidal energy. This strategy will support the
sustainable development of offshore wind power and
enhance ocean energy efficiency.

6. Conclusions

The increasing demand for renewable energy and
carbon reduction initiatives has heightened the
importance of calculating attributes like the
installed capacity of OWTs. This study developed
a deep learning model called VC-Unet, which com-
bines a backbone network and an attention
mechanism in parallel. The VC-Unet model is
designed to extract OWT hub shadows from
Sentinel-2 imagery, enabling the calculation of sha-
dow length and subsequently determining OWT
hub height and installed capacity. The proposed
model achieves an IoU of 98.96 + 0.05, a mPA of
99.66 + 0.03, a precision of 99.58 + 0.01, a recall
of 99.38 + 0.06, and an Fl-score of 99.48 + 0.02,
demonstrating excellent performance in distin-
guishing between waterbodies and OWT hub
shadows.

From 2015 to 2022, the cumulative installed
capacity of offshore wind power in China’s main-
land grew from 1.06 GW (265 OWTs, 5 OWFs) to
30.18 GW (6,198 OWTs, 109 OWFs), marking
a 28-fold increase in total installed capacity over
8 years. The growth rate peaked at 149.92% in 2020
but slightly declined to 14.8% in 2022. During this

period, the average hub height per turbine rose
from 91.55m to 99.02m, while the average
installed capacity per turbine increased from 4
MW to 4.84 MW. The maximum installed capacity
of OWFs increased from 632.89 MW in 2015 to
1,305.04 MW in 2022 (geographically), indicating
a trend toward the large-scale development of
both OWTs and OWFs. As of the end of 2022,
the maximum hub height of OWTs reached 129.8
m, and OWFs with a capacity greater than 100 MW
accounted for 90.83% of the total OWF capacity in
China’s mainland.

Additionally, this study demonstrated accuracy
and robustness through error analysis compared to
other data sources, validating the model’s applica-
tion in China’s mainland. OWTs in China’s main-
land are mainly deployed in nearshore areas,
suggesting significant potential for development in
deeper offshore areas. In the future, leveraging
floating wind farm technology and wind power
integration techniques to move toward high-power,
deep offshore areas could be considered. Increasing
hub heights to harness more wind energy could
contribute to the sustainable development of wind
energy.
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