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Abstract: The ship fleet deployment problem plays a critical role in maritime logistics
management, requiring shipping companies to determine optimal vessel configurations
for cargo transportation. This problem inherently contains stochastic elements due to the
random nature of cargo demand fluctuations. While the Sample Average Approximation
(SAA) method has been widely adopted to address this uncertainty through empirical
distributions derived from historical observations, its effectiveness is constrained by data
scarcity in practical scenarios. To overcome this limitation, we propose a novel Sample
Distribution Approximation (SDA) framework that employs estimated probability dis-
tributions, rather than relying solely on empirical data. We implement a leave-one-out
cross-validation mechanism to optimize distribution estimation accuracy. Through compre-
hensive computational experiments, using decision cost as the primary evaluation metric,
our results demonstrate that SDA achieves superior performance compared to the con-
ventional SAA method. This advantage is particularly pronounced in realistic operational
conditions, where historical demand observations range from 15 to 25 data points, or
fleet configurations involve two to six candidate vessel types. The proposed methodology
provides shipping operators with enhanced decision-making capabilities under uncertainty,
especially valuable in data-constrained environments.

Keywords: ship fleet deployment problem; stochastic optimization; sample distribution
approximation; data-driven modeling

MSC: 90-10

1. Introduction

Uncertainty is prevalent in decision-making processes across various domains, such
as maritime logistics. When confronted with uncertain parameters in objective functions, a
conventional approach involves transforming stochastic problems into deterministic formu-
lations. A prominent methodology in this context is the Sample Average Approximation
(SAA) method, which substitutes the true distributions of random variables with their
empirical distributions, derived from observed samples [1]. However, practical imple-
mentations reveal that SAA cannot obtain the optimal decisions in some cases [2]. This
limitation stems from SAA’s reliance on empirical distributions that inadequately capture
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the underlying stochastic characteristics of the true distributions. In contrast, distribution
estimation techniques offer enhanced capabilities for data characterization, thereby provid-
ing more informative insights for decision making, especially for few-shot scenarios, as
only a limited number of samples are available for decisions, hindering the model’s ability
to effectively learn their characteristics.

The ship fleet deployment problem (SFDP), as a classical challenge in maritime logis-
tics, focuses on optimizing ship allocation strategies to satisfy transport demand. The SFDP
has been used for reducing carbon emissions [3,4], reducing delivery costs [5], and enhanc-
ing market efficiency [6]. Under the uncertainty of demand, this stochastic programming
problem becomes particularly complex when determining fleet sizes, given the inherent
randomness of cargo demand between port pairs [7]. Developing reliable solutions for
the SFDP under uncertain demand holds significant potential for enhancing operational
efficiency and management quality for shipping companies.

To solve the SFDP under uncertain demand, we adopt the Sample Distribution Approx-
imation (SDA) method. This method leverages historical data to estimate a probabilistic
distribution that characterizes the random variables in the objective function—specifically,
the stochastic demand in the SFDP. While numerous techniques exist for demand distribu-
tion estimation, the challenge lies in selecting an optimal estimation method. Inspired by
the leave-one-out cross-validation (LOOCYV) framework from machine learning [8,9], we
iteratively exclude a single data point to train the distribution estimator, then evaluate its
performance based on the decision cost metrics, rather than using the traditional predictive
accuracy measures. This approach explicitly integrates distribution estimation with down-
stream decision optimization. Finally, the selected estimator leverages the complete dataset
to generate the final distribution and make decisions based on it.

The overall workflow of our method is illustrated in Figure 1. Specifically, Figure 1A
depicts the decision-making process used to select suitable ships based on estimated de-
mand distributions, while Figure 1B shows the procedure for choosing the best-fitting
estimation method using LOOCYV, with decision cost as the evaluation criterion. Together,
these components highlight how our framework combines data-driven estimation with ro-
bust operational decision-making. The core contributions of this paper lie in the following:

e  SDA for stochastic demand modeling: This method leverages historical data to con-
struct an empirical probability distribution, explicitly modeling demand uncertainty
in the SFDP through data-driven distribution estimation.

e Integration of LOOCV with decision-based evaluation: Unlike traditional ap-
proaches that focus on predictive accuracy, this framework validates distribution
estimators based on their impacts on downstream decision costs.

e Demonstrated superiority under realistic operational settings: Extensive computa-
tional experiments show that SDA outperforms SAA, particularly in practical fleet
deployment scenarios involving two to six candidate vessel types, offering shipping
operators more reliable decisions under uncertainty.

The remainder of this paper is organized as follows. Section 2 reviews existing studies
relevant to this work. Section 3 introduces the SFDP and its SAA model. Section 4 intro-
duces the SDA method. Section 5 presents the results of numerical experiments. Section 6
concludes this paper.
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Figure 1. Overall workflow of our methods. (A) The decision process to choose a suitable ship.
(B) The method to select the best estimation distribution.

2. Literature Review

The SFDP, as a pivotal operational challenge in maritime transportation, focuses
on optimizing vessel allocation to meet shipping demands efficiently. Perakis and
Jaramillo [10,11] pioneered a linear programming model to minimize fleet operational
costs, establishing a theoretical foundation for subsequent research. Subsequent studies
further explored deterministic model formulations and solution methodologies, develop-
ing approaches such as mixed-integer programming [12,13]. However, most studies on
the SFDP are concerned with models and solution methods under deterministic contexts,
where all the parameters, especially shipment demand, are given before making fleet de-
ployment decisions [12-17]. Optimization problems with stochastic parameters also have
wide applications in fields like transportation and logistics. For example, our approach can
be used in ship berthing management [18], service network design [19], and hub-and-spoke
network design [20], all of which require managing uncertainty in demand.

To address real-world stochasticity, recent research has shifted toward demand uncer-
tainty modeling [21,22]. Table 1 outlines four general methods for the SFDP and highlights
their respective limitations. In addition to the deterministic optimization mentioned before,
Meng et al. [23] proposed a two-stage stochastic programming framework, incorporat-
ing container transshipment mechanisms, employing SAA combined with Lagrangian
relaxation to maximize expected profits. Wang et al. [24] proposed an FDP model with a
joint-chance constraint, used to guarantee the probability of demand satisfied by all of the
service routes, also utilizing SAA for obtaining approximate solutions. Some works [25]
introduced distribution-free models that eliminated traditional probabilistic assumptions,
requiring only demand parameters (mean, standard deviation, and upper bounds) for
optimization. Stochastic programming has also been adopted in the SFDP, which often
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involves multi-stage planning issues [26-28]. Initial deployment decisions should be made
at the outset, with subsequent adjustments based on actual requirements [29]. At the same
time, some robust optimization frameworks are used for fleet deployment problems [30-32].
Furthermore, Zhang et al. [33] employed a distributionally robust optimization framework
to address a fleet deployment problem with stochastic route-based shipment demands,
incorporating distributional robust chance constraints to manage the risk of unmet demand.
With the development of artificial intelligence technologies, machine learning models are
used to predict demand distribution or construct approximate models, which are inte-
grated with optimization models to form end-to-end learning, and this approach has been
applied to maritime transportation problems [8,18]. Among these methods, SAA is simple
to implement, scalable to large instances, and works well with real-world data. It does
not require exact knowledge of the underlying distribution, relying on empirical data for
approximation. Summarizing the above methods, by bringing in the empirical distribution
of observations, SAA has become a typical approach to addressing the SFDP.

Table 1. SFDP literature under different modeling methods.

Method Related Works Limitation
Perakis and Jaramillo [10]; Jaramillo and

Perakis [11]; Wang and Meng [12];

Deterministic optimization Gelareh and Meng [13]; Xia et al. [14]; Ignoring demand uncertainty
Wang et al. [15]; Dulebenets [16];

Song and Dong [17]
Meng et al. [23]; Meng et al. [24];
Stochastic programming Ng [25,34]; Santos et al. [26]; High computational cost
Gao et al. [27]; Wang et al. [28]
T Alvarez et al. [30]; Lai et al. [31]; Yielding overly conservative
Robust optimization Wang et al. [32] solutions

Distributionally robust optimization Zhang et al. [33]; Bukljas et al. [35]

Difficulty in selecting the
ambiguity set

SAA is a numerical method widely applied to stochastic optimization problems. Its
core idea is to approximate the intractable expected objective function through the empirical
distribution of random variables. Since the 1990s, SAA has gradually become an effective
tool for solving high-dimensional stochastic programming and risk optimization problems.
The theoretical foundation of SAA stems from the law of large numbers and asymptotic
analysis in stochastic programming [36]. Shapiro et al. [37] systematically proved that,
as the sample size approaches infinity, the optimal solutions and values of SAA almost
surely converge to those of the true problem, with a convergence rate independent of the
problem’s dimensionality. Kleywegt et al. [1] further explored its performance under finite
samples, proposing sample size selection strategies to balance computational costs with
solution reliability. However, current challenges reveal that large-scale problems require
massive samples, leading to a significant increase in computational time. Meanwhile,
practical implementations reveal that SAA cannot obtain the optimal decisions in some
cases [1]. Furthermore, SAA uses all historical data for training, but lacks a systematic
understanding of the underlying patterns within the data. When the sample size is small,
this may lead to decision errors due to insufficient information. On the other hand, with
large sample sizes, SAA may overfit to redundant or noisy data, which can also negatively
affect decision quality [38—41]. Considering the limited demand data in the SFDP, the
SAA method may be restricted by the lack of effective information, leading to solutions
with poor robustness. Therefore, we introduce the SDA method, replacing the empirical
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distribution with an estimated distribution, where the same approach has been adopted
in relevant studies [1,23,24,37], to account for more complex distribution forms, thereby
enhancing the robustness of the solution in addressing future demand.

3. Problem Statement

This section provides a general overview of the SFDP. The problem is visualized in
Figure 1A. Consider a ship fleet deployment problem on a route connecting two ports
with random demand, denoted by D. Consider that there are V candidate ships. One,
and only one, ship will be deployed. Suppose ship v has a known cost ¢, and capacity
wy (v € {1,...,V}). Without loss of generality, we assume 0 < w; < wp < ... < wy and
0 <1 <cp <...<cy.Based on the economies of scale, these parameters should satisfy
the following requirement:

C1 C2—C 3 —C2 Cy —Cy—1
— > > >0 > —. (1)
wq wy — Wy w3 — Wy wy —wy—1

The known revenue from shipping one container is denoted by r. We further assume
that rw; > ¢;,i € {1,..., N}, which means that the ship must generate a profit when fully
loaded. The distribution of the demand is denoted by F. We let z, be a binary decision
variable that equals 1 if ship v is deployed (v =1, ..., V) and equals 0 otherwise. The SFDP
under the uncertain demand is formulated as follows:

14 v
max{rEDNp min (D, Z wvzv>] — Z cvzv} 2)
v=1 v=1
subject to the following:
v
Z zp =1 3)
v=1
zp €{0,1}, v=1,..., V. (4)

Objective function (2) aims to maximize the expected profit from shipping containers.
Constraint (3) requires that only one ship can and must be used. Constraints (4) define the
binary variables.

Nevertheless, we do not know the distribution F, but only have a sample {Dj,...,D;}
of independent and identically distributed (iid) observations. One typical method is to
use the empirical distribution to approximate the distribution F. Thus, we can transform
the stochastic program into a deterministic program, following the SAA method, shown
as follows:

r& \% \%
max EZ min| D;, 2 WyZy | — E CoZop (5)
i=1 v=1 v=1

subject to Constraints (3) and (4). Objective function (5) uses the empirical distribution to
approximate F and maximizes the average profit from transporting containers, given the
empirical distribution.

4. Methodology
4.1. The Optimal Solution Under an Estimated Distribution

In this paper, we propose a method to solve the stochastic program by using the
estimated distribution. Figure 1 presents the overall algorithm design of SDA, including
the selection of the optimal demand distribution and the most suitable estimation method.
For each deterministic problem corresponding to a given dataset, its optimal solution is
uniquely determined when the distribution of D is estimated. Assuming that we have
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obtained the parameterized demand probability density function (PDF) f(x) through the
data samples {Dj, ..., D, }, where x is the demand quantity, under Constraints (3) and (4),
we obtain V feasible solutions by enumeration. Let Z(?) € RV denote the solution vector,
where the p-th entry is set to 1 (i.e., Z;(f ) = 1) and, in all other entries, ZZ(,p) =0forv#p

(v e{l,...,V}). Here, p € {1,2,...,V}, meaning there are V feasible solution vectors
{z<l>,z<2>,. : .,Z(V>} :

By systematically evaluating each candidate solution Z(") (p € {1,...,V}) and
computing their corresponding objective function values, we identify the optimal solution
by comparing these values. This reduces the problem to calculating the objective function
values under all possible feasible solutions. Under the solution vector Z (p) (pell,...,V},
the value of Objective function (2) is computed as follows:

E[min (D, wp) ] — c,. (6)

The central task now focuses on rigorously characterizing the distribution of
min(D, w,) and calculating its expectation E[min(D,w; )] under the true distribution F. To
formalize this, note that the random variable min(D, w)) exhibits a mixed distribution com-
prising both continuous and discrete components. For the continuous region 0 < D < w),
min(D, wy) = D, inheriting the original distribution of D truncated at w. The PDF remains
f(x) for x € [0,wy), scaled by the cumulative probability P(D < wy) = fow” f(x)dx. For
the discrete part, when D > wy,, the minimum value collapses to w), creating the following
discrete probability mass:

P(min(D,wp) = wy) =1 — /(;wp f(x)dx. (7)

The expectation E[min(D, wy)] is therefore decomposed into the following two com-

ponents:
‘ZUp 'LUP
E[min(D, w,)] = / xf(x)dx  +w, (1 - / f(x)dx>. 8)
JO 0
————
Continuous contribution Discrete contribution

Thus, the optimal solution Z°P! can be mathematically expressed as the solution vector that
maximizes the objective function value obj,, shown as follows:

7oPt — 7(P") \where p* = argmax (Objp)’ ®
1<p<v

where obj, is as follows:

obj, = [/pr xf(x)dx 4+ wp (1 - pr f(x)dx)} —Cp. (10)

4.2. Methodology for Determining the Estimation Method

The key challenge lies in determining the optimal estimation methodology. Specifically,
we can employ common parametric distributions like normal, uniform, lognormal, and
Poisson for our analysis, estimating their parameters through two distinct approaches:
maximum likelihood estimation (MLE) and method of moments (MM). Therefore, suppose
we have n historical data, and assume that we calibrate a total of U distributions. We will
have 2U methods (each distribution is estimated using two methods, MLE and MM).

MLE identifies parameter values that maximize the likelihood function, which mea-
sures the probability of observing the given data under a specific distribution. For a
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parametric distribution with parameter set § and independent observations of demand
{D1, Dy, ..., Dy}, the likelihood function is defined as follows:

L(6;{Dy,Dy,...,Dn}) :ﬁf(Di;G), (11)
i=1

where f(D;;0) is the probability density/mass function. To simplify computations, we
often maximize the following log-likelihood function:

0(6) = InL(6) = ilnf(Di;G). (12)
i=1

The MLE estimate Oy g is obtained by solving the following:
Onie = argmaxgl(6). (13)

MM estimates parameters 01, 0,, .. .,8; by equating sample moments to theoretical
moments. k is the number of parameters to be estimated. The basic idea of MM is to
calculate the moments of population and sample. The moments of the same order are then
made equal in one-to-one correspondence. Assume the PDF has k unknown parameters
601,02, ...,0;. The population moments and sample moments are defined as follows.

For population moments, after ensuring the PDF, we can calculate the function of the
j-th moment about parameters @1, 0,..., ék.

pj=ED)), j=12,..k (14)

where pjisa function of the parameters 61,0, ..., 0.
For sample moments, the j-th sample moment calculated from the observed sample
D1,D,..., D, is as follows:

18 o,
mj:;;D{, i=12,...k (15)
1=

The core idea of the MM is to equate the population moments to the sample moments
This forms the following system of equations:

11(01,62,...,6;) = m

,:”2(91/92/-~-/9k) =my . )

yk(91,92,. . ~/9k) = my

By solving the system of equations, we obtain the estimated parameters 0y, 6,, .. .,8. Then,
we can obtain the PDF of distribution with estimated 8y, 0,, . . ., ék.

In method selection and parameter estimation, different combinations of distributional
assumptions and estimation methods often exhibit significant performance differences.
For instance, MLE provides asymptotically efficient and unbiased estimates when the
distribution is correctly specified, but it is sensitive to model misspecification. In contrast,
MM, while computationally simpler and more robust than distributional assumptions,
may yield estimators with larger variances. Furthermore, the characteristics of different
distributions—such as the symmetry of the normal distribution or the discreteness of the
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Poisson distribution—can lead to divergent performances of the same estimation method
across scenarios. To identify the optimal estimation strategy, it is essential to systematically
evaluate all 2U possible combinations.

In order to evaluate these methods, we train each method 7 times, using n — 1 training
examples, and evaluate the method over only one validation example. That is, for each
method, we use LOOCYV to assess the performance (here, performance means decision cost).
After selecting the optimal estimation method, we can utilize all available examples to
estimate the distribution. The estimated distribution can then be used for decision making.

The pseudo-code of the SDA method is shown in Algorithm 1.

Algorithm 1. The pseudo-code of the SDA method.

Input: Ship cost {cy, ..., cy}, ship capacity {w, ..., wy}, the revenue from shipping
one container , candidate parameter estimation method {1, ..., uy } and some
demand sample {D;, ..., D, } of iid observations.

Output: The optimal solution Z°

For each method u in candidate 2U methods:
Set TotalScore,, = 0 to initialize evaluation metric
Forje {1,2,...,n}:
Remove the j-th sample to form the training set: Dt(gm = D\{D;}
(/) (7)

Use method u to estimate parameters 0,;” from D . ,
distribution fb(,] ) (x) = fu (x|9,(] )) .
Determine the optimal solution ZS}Pt based on (9).

obtaining the

Calculate the value of profit Score,, j under the D,;; demand and Zg?t solution.
Update TotalScore, = TotalScore, + Scoreuj.

Select optimal method uopt = argmax, ,; TotalScore,,.

Use method uopt and recompute 6opt on the full dataset D.

Based on the estimated 6opt, determine the optimal solution Z°Pt based on (9).

Output: The optimal solution Z°]

5. Case Study
5.1. Parameter Settings

To demonstrate the universality of the SDA method, we developed a systematic pa-
rameter generation approach with the following implementation steps. We firstly discussed
the attribute parameters of the fleet, including the number of ships, their capacities, and
their costs. The primary parameter configuration began with determining the number
of ship types (V), which required satisfying the fundamental condition specified in Con-
straint (1). Accordingly, we established the critical relationship between ship capacities and
costs through the following derivation. The progressive ratio between adjacent ship types
(v, v+ 1) follows a linearly decreasing pattern, as follows:

Co+1 — Co
— =V -9, Yoe{l,...,V—-1L 18
Wy41 — Wy { } (18)

Specifically, we set ;}—11 = V. This ensured the cost increment decreased proportionally with
ship type indexation.
We defined ship capacities using an arithmetic progression scheme, as follows:

wy, =100, Yo e {l,...,V}. (19)
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This linear scaling provided consistent capacity increments across ship types. The number
of ship types (i.e., the number of ships) ranges from 2 to 10.

Through simultaneous application of these equations, we could systematically gener-
ate a complete parameter set for any specified V value. To further clarify the parameter
settings, Table 2 presents a concrete implementation when V' = 4, showing the derived
parameters for four distinct ship types. The results validate the parameter generation
methodology, while maintaining compliance with the fundamental Constraint (1).

Table 2. Parameter settings when V = 4.

v 1 2 3 4
Wy 10 20 30 40
Co 50 90 120 140

Next, we set the profit of each container r = V 4 1, according to the assumption
that rw, > cy,v € {1,...,V}. The candidate fitting distributions included the normal
distribution, uniform distribution, log-normal distribution, and Poisson distribution.

To verify the effectiveness of our method, we set the demand range from 5 (minimal
demand) to 10 x V + 5 (maximal demand) and generated specific demand values using
random numbers. Finally, we described how the experimental richness was expanded by
varying the parameters. The number of total samples N generated ranges from 5 to 50,
which means we conducted 45 experiments for each V. Thereafter, 80% of the total samples
were randomly selected as the training set, while the remaining 20% were used as the
test set. Thus, n = [N x 0.8]. The LOOCV mentioned before was used for validation
using the training set. The cumulative profit was calculated by applying the decisions
obtained from the training set to the test set, and the results were compared with the
benchmark SAA method using the same decision approach as introduced above, which
involved exhaustively evaluating all feasible decisions in the objective function to identify
the optimal one.

5.2. Experimental Results

Figure 2 presents a comparative analysis of the SDA and SAA methods across varying
candidate fleet sizes V (2-10 ships), offering a visual comparison of their average profits
in the test set. While both methods demonstrate consistent results in most operational
scenarios, notable divergences emerged under specific conditions. Figure 3 computes the
profit difference (profit of SDA minus profit SAA), presented as a heatmap. We found that
our method outperformed when 15 to 25 samples were observed.

This comparative study is further extended through numerical evaluations in Figure 4.
Figure 4a quantifies the absolute performance difference by calculating the total profit
margin (SDA minus SAA) across the entire test dataset. Figure 4b provides a more intuitive
illustration on the superiority of each method, highlighting cases (i.e., the number of
experiments) where SDA outperformed SAA and vice versa in terms of profit. In some
cases, the decisions of SDA and SAA were same, which is not presented in this figure. We
compared the number of experiments in which the SDA method outperformed the SAA
method under different numbers of observed samples. Similarly, we also calculated the
number of experiments in which the SAA method outperformed the SDA method. “Count”
represents the number of such experiments.

When the number of ships is small, the SDA method demonstrates superior perfor-
mance compared to the SAA method, particularly when the number of ships is five or six.
Specifically, when there are five ships, the average profit difference between SDA and SDD
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is 190.3, while, for six ships, it is 146.8. Furthermore, as the number of ships increases, the
disparity in decisions between the SDA and SAA methods becomes more pronounced.

V=4
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Figure 2. Comparison of SAA and SDA for different numbers of candidate ships, ranging from 2 to 10.
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Figure 3. Profit difference (SDA profit minus SAA profit).

Figure 5 presents the decision analysis for ship selection under the SAA and SDA
methods. “Count” represents the number of times different ships are selected under
different V values in 45 experiments for SAA and SDA. From these results, we observe
that both methods tend to favor high-capacity ships, reflecting the impact of economies
of scale. Additionally, the decisions made using SDA are more concentrated on several
specific choices compared to those of SAA.
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Figure 4. Statistical analysis for comparison of SDA and SAA; (a) profit difference between SDA and
SAA; (b) numbers of experiments when SDA > SAA or SAA > SDA.
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Figure 5. Ship selection for different numbers of candidate ships.

Figure 6 illustrates the variation in the chosen estimation methods for different num-
bers of candidate ships under SDA. “Count” represents the number of times different
estimation methods were selected under different V values in 45 experiments for SDA.
Although there were eight available estimation methods, only six were chosen and utilized,
with the MM method based on Poisson and log-normal distributions not being selected. For
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the Poisson distribution, the estimation outcomes for MLE and MM are identical because
the first-order moment serves as a sufficiently complete statistic. Thus, we can analyze
Poisson-MM and Poisson-MLE together. Regarding log-normal-MM, although MLE is
used for estimation in the log-normal distribution, the selection frequency is quite low. This

suggests that the log-normal distribution may not be well-suited for this problem, leading
to the exclusion of log-normal-MLE.

Stacked Bar Chart of Ship Experiment Methods

Method Types
[ Log-normal-MLE
=3 Normal-MLE

40 1 [ Normal-MM
[ Poisson-MLE
S Uniform-MLE
3 Uniform-MM
30 4

Count

20 1

2 3 4 5 6 7 8 9 10
\%

Figure 6. Estimation methods chosen in 45 experiments for different V values under the SDA method.

Furthermore, a noticeable trend is that the percentage of normal-MLE selections
decreases as the number of ships increases, while the use of the uniform distribution for

estimation becomes more frequent. The other four methods are also applied, though not to
significant extents.

5.3. Computational Time Analysis of SDA

As shown in Figure 7, we summarized the computation time across all experiments.
Theoretically, LOOCYV involves N iterations, and in each iteration, the algorithm evaluates
V candidate solutions. Assuming that each candidate solution evaluated using 2U fitting
methods has a time complexity of O(T), the overall computational complexity is approxi-
mately O(VN - T). This analysis reveals that the computational cost increases linearly with
the candidate solutions V and validation rounds N, implying that the complexity remains
tractable and does not grow excessively with problem size. The results in Figure 7 also
support our analysis.

— 2ships
— 3ships
—— 4ships
—— 5ships
—— 6ships
—— 7ships

o Sunndwod vas
o m o N B B & I
2 w o »w 35 w o

Figure 7. Computational time analysis of SDA.
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5.4. Comparison of Well-Specified and Mis-Specified Distribution Sets

To comprehensively evaluate the impacts of candidate distribution sets on model per-
formance, we conducted controlled experiments comparing well-specified and mis-specified
conditions. In the well-specified case, the candidate set includes the true data-generating
distribution, while the mis-specified case deliberately excludes this distribution to simu-
late model mismatch. The data generation process follows four distinct parametric dis-
tributions: for normal distributions, we set 4 = (minimal demand + maximal demand) /2
and ¢ = (minimal demand — maximal demand)/6 to ensure that approximately 95%
of samples fall within the specified range; uniform distributions are sampled directly
between the minimum and maximum demand values; log-normal distributions use
# == In[(minimal demand + maximal demand)/2] with ¢ = 0.4 as a tunable parame-
ter; and Poisson distributions employ A = (minimal demand + maximal demand) /2. This
systematic approach enables rigorous assessment of distribution selection robustness under
well-specified and mis-specified conditions.

Figure 8 demonstrates the differences in estimated distribution selection. The results
reveal that, despite variations in data generation methods, the normal distribution exhibits
strong robustness, consistently maintaining a high selection proportion across all four ex-
perimental groups. Following closely is the uniform distribution, while the log-normal and
Poisson distributions perform less satisfactorily, even when the data generation processes
follow these distributions. Due to the relatively low selection rates of log-normal and
Poisson distributions, the difference between well-specified and mis-specified scenarios is
not pronounced.

Data Generating Method: Log-normal Data Generating Method: Poisson Data Generating Method: Uniform Data Generating Method: Normal
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Figure 8. Optimal distribution selection from well-specified and mis-specified alternative distribution
sets. (a) Well-specified results. (b) Mis-specified results.

Focusing on the normal distribution generation method, the proportion of uniform
distribution increases in the mis-specified experiments, further highlighting its good adapt-
ability. Notably, the selection rate of the Poisson distribution also rises significantly. Further
observation shows that, as the value of V increases, the selection proportion of the Poisson
distribution exhibits an upward trend across all experiments, suggesting its favorable
adaptability in scenarios with larger candidate solution sets.

In the case of uniform-distribution-generated data, the proportion of log-normal
distribution increases markedly. This phenomenon may be attributed to the fact that the log-
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normal distribution, with its right-skewed characteristics, can approximate certain uniform
distribution patterns when the variance is large, thereby improving its fitting performance.

Additionally, in the experiments with uniform distribution, the proportion of log-
normal models selected increases significantly in the mis-specified setting compared to
the well-specified case. This may be because, as the sample size grows, the log-normal
distribution can better approximate uniform distribution.

Figure 9 illustrates the profit differences, defined as the profit achieved under the
mis-specified model minus that achieved under the well-specified model. The results
indicate a general decline in performance when the model is mis-specified, as evidenced
by the predominance of blue-shaded cells in the figure, which correspond to negative
profit differences across most scenarios, with this effect being particularly pronounced for
uniformly distributed data. This phenomenon may stem from the fundamental divergence
between uniform distributions and other distribution types. Notably, as the sample size N
increases, the profit difference diminishes. This trend likely occurs because larger historical
datasets better represent the underlying population distribution, thereby decreasing the
model’s sensitivity to distributional assumptions.
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Figure 9. Profit difference (mis-specified minus well-specified) under different distributions.

5.5. Discussion

Overall, the SDA method outperforms the traditional SAA method in managing
demand uncertainty. By leveraging historical data to construct a PDF, SDA explicitly models
demand uncertainty through data-driven estimation, improving resilience against random
demand fluctuations. Furthermore, SDA integrates LOOCV with decision-cost evaluation,
shifting focus from mere predictive accuracy to optimization-aligned distribution validation.
This approach proves especially effective in fleet deployment, delivering superior decision-
making reliability when candidate vessel types range from two to six.

While promising, SDA’s performance hinges on distribution estimation accuracy, which
may degrade with sparse or noisy data. Although LOOCYV enhances robustness, it incurs
higher computational costs—albeit with linear scalability. Additionally, the framework as-
sumes historical demand patterns persist, which may not hold under structural market shifts.
Further validation is needed across diverse operational scales and constraint complexities.

6. Conclusions

This study addresses the stochastic SFDP by proposing a novel SDA framework
through which to overcome the limitations of the conventional SAA method in data-
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scarce scenarios. The SDA framework replaces empirical distributions derived solely
from historical data with estimated probability distributions, optimized via leave-one-out
cross-validation. This approach significantly enhances decision robustness in small-sample
scenarios (15-25 historical demand data points) and limited ship types (two to six candidate
ship types). Experimental results demonstrate SDA’s superiority over SAA in minimizing
the decision cost, offering maritime operators an improved uncertainty-aware decision-
making tool.

For maritime operators, the proposed methodology offers a paradigm shift in stochas-
tic fleet deployment decision making, particularly in data-constrained environments where
traditional methods falter. Future research could extend this framework to incorporate
multi-dimensional uncertainties (e.g., fuel price volatility or port congestion) and explore
hybrid approaches combining SDA with reinforcement learning for adaptive decision
policies. Furthermore, future studies could investigate the psychological dimensions of
maritime decision-making, particularly how cognitive biases like the sunk cost fallacy in-
fluence operational choices under uncertainty. The SDA framework not only advances the
theoretical foundations of stochastic maritime optimization, but also provides actionable
insights for enhancing operational resilience in dynamic shipping networks.
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