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Abstract: Zeroing neural networks (ZNN), as a specialized class of bio-Iinspired neural
networks, emulate the adaptive mechanisms of biological systems, allowing for continuous
adjustments in response to external variations. Compared to traditional numerical methods
and common neural networks (such as gradient-based and recurrent neural networks), this
adaptive capability enables the ZNN to rapidly and accurately solve time-varying problems.
By leveraging dynamic zeroing error functions, the ZNN exhibits distinct advantages
in addressing complex time-varying challenges, including matrix inversion, nonlinear
equation solving, and quadratic optimization. This paper provides a comprehensive review
of the evolution of ZNN model formulations, with a particular focus on single-integral
and double-integral structures. Additionally, we systematically examine existing nonlinear
activation functions, which play a crucial role in determining the convergence speed and
noise robustness of ZNN models. Finally, we explore the diverse applications of ZNN
models across various domains, including robot path planning, motion control, multi-agent
coordination, and chaotic system regulation.

Keywords: zeroing neural network (ZNN); noise-tolerant; time-varying problems; convergence;
applications

1. Introduction
Neural networks, recognized as versatile and highly efficient computational models,

have found extensive applications across diverse fields [1–7], especially in the modeling,
prediction, and optimization of complex problems [4,8–13]. By mimicking the architec-
ture and operational principles of biological neural systems, these networks are adept
at uncovering hidden patterns within large datasets. Consequently, they have become
indispensable tools in tasks such as decision support, pattern recognition, and numerous
other data-driven applications [14–18].

The development of biomimetic neural networks has been profoundly influenced by
the recurrent neural network (RNN) model proposed by Hopfield [19], a distinguished
member of the U.S. National Academy of Sciences. His model represents neural networks
as graph structures composed of nodes (neurons) and connections (weights), exerting a
significant impact on the field of computational neuroscience. Each node corresponds to
a neuron, while the connections encode interactions between neurons. Despite its rela-
tively simple architecture, the Hopfield network exhibits remarkable dynamical properties,
earning its recognition as one of the foundational models in neural network research.
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Unlike traditional optimization algorithms that rely on gradient information for problem-
solving, some biomimetic algorithms have been proposed to address non-convex optimiza-
tion problems [20–27]. These include the Egret Swarm Optimization Algorithm [28–30],
the Cuckoo Search Algorithm [31], the Harmony Search Algorithm [32], the Grey Wolf
Optimizer and Multi-Strategy Optimization Methods [33], the Whale Optimization Algo-
rithm [34], the Harris Hawks Algorithm (VEH) [35,36], and Ant Colony Optimization [37].
Based on the theoretical framework of the RNN, the zeroing neural network (ZNN) is a
biologically inspired subclass of RNN systematically proposed by Zhang et al. in 2002 [38].
It aims to emulate the adaptive behavior of biological systems in response to external
changes and is specifically designed for high-precision and robust solutions to optimization
and time-varying problems. Unlike traditional RNNs that rely on energy function-based
update mechanisms, the ZNN adopts a neurodynamic approach by constructing an error-
monitoring function, enabling the system states to dynamically converge toward a zero-
error trajectory. This mechanism, known as the “error-zeroing mechanism”, essentially
mimics the homeostatic regulation process in biological neurons, where negative feedback
continuously corrects deviations from the target, ensuring that the system state approaches
a predefined zero-error point.

Compared with conventional methods for solving time-varying problems, such as
sliding mode control, adaptive control, or numerical integrators, the ZNN demonstrates
superior computational efficiency, while maintaining high precision and strong robustness.
It organically integrates the adaptive nature of neural networks with the dynamic regula-
tion strengths of control theory, exhibiting unique advantages in handling time-varying
problems. As such, the ZNN occupies an irreplaceable and significant position within the
neural network paradigm.

Initially, researchers applied the ZNN in the real-number domain to address the time-
varying matrix inversion (TVMI) problem [39–42]. Unlike traditional neural networks (for
example, gradient-based optimization techniques in neural networks, including gradient
neural networks (GNN) and RNN ). The ZNN has also been applied to complex matrix
inversion tasks, including time-varying complex matrix inversion (TVCMI) [43–46] and
time-varying complex matrix pseudoinversion (TVCMP) [47,48]. In addition, the ZNN
has also been cited for solving time-varying equations, such as time-varying overdeter-
mined linear systems (TVOLS) [49], time-varying nonlinear equations (TVNE) [50,51],
time-varying Stein matrix equations (TVSME), and the time-varying Sylvester matrix equa-
tion (TVSME2) [52,53]. In the field of optimization, the ZNN can also be applied to handle
such problems, including time-varying nonlinear minimization (TVNM) [54], nonconvex
nonlinear programming (NNP) [55–58], multi-objective optimization (MOO) [59], time-
varying quadratic optimization (TVQO) [60–64], and time-varying nonlinear optimization
(TVNO) [65,66].

The ZNN enhances its capacity to address time-varying problems primarily by
modifying activation functions and integration methods [67]. Notable examples in-
clude the Li activation function [68], the FAESAF and FASSAF activation functions [69],
the multiplication-based sigmoid activation function [70], the NF1 and NF2 activation
functions [71], the symbolic quadratic activation function [72], as well as the hyperbolic
sine activation function [73], and the multiply-accumulate activation function [74]. These
functions significantly impact the network’s nonlinear characteristics and convergence rate.
The ZNN can also be classified into single-integration and double-integration types based
on the integration method. The single-integral ZNN [75] corrects errors by incorporating
time derivatives, thereby enabling it to tackle relatively simple time-varying problems,
such as motion planning and path tracking. In contrast, the double-integration ZNN incor-
porates the second-order derivative of the error [76], improving the system’s adaptability
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to highly dynamic and nonlinear problems. It is particularly effective for more complex
time-varying control tasks, such as multi-agent systems and chaotic control [77]. By com-
bining these activation functions and integration methods, the ZNN can also efficiently
address dynamic time-varying problems through the flexible setting of both variable and
fixed parameters [78]. In many practical applications, variable parameters empower the
ZNN to adjust its output in real time, enabling it to adapt to dynamic system changes,
while fixed parameters establish a stable framework for addressing static or nearly static
problems. By carefully designing these parameters, the ZNN can effectively manage more
complex and multidimensional time-varying systems [79].

Researchers have extended the application of the ZNN to several practical fields [80].
In robotics, the ZNN has been employed for robotic arm path tracking [81,82] and motion
planning [83–85], enabling high-precision movements in complex environments through
the real-time dynamic adjustment of control strategies [86,87]. Additionally, it has been
utilized to optimize robotic paths for improved efficiency. In multi-agent systems, the
ZNN facilitates the coordination of multiple agents [88,89], achieving group collaboration
and synchronization, particularly in addressing global optimization challenges in complex
tasks. In the field of chaotic control, the ZNN dynamically adjusts system parameters in
real time to mitigate chaotic phenomena and ensure system stability. For signal processing,
the ZNN has demonstrated effectiveness in noise suppression and signal recovery, particu-
larly in image and speech processing, where it efficiently removes noise and restores the
quality of original signals. Furthermore, the ZNN finds extensive applications in engineer-
ing optimization problems, such as in automatic control systems, where it supports the
real-time adjustment and optimization of control strategies, ensuring stable and efficient
system operation.

Therefore, this paper presents a comprehensive review of the development of ZNN
models and their diverse applications. The paper’s framework is illustrated in Figure 1,
and the remaining sections are organized as follows:

Section 2 offers a detailed review of the structural development of the ZNN model.
Section 3 examines nonlinear activation functions and time-varying parameters, with a fo-
cus on their roles in enhancing convergence and improving noise tolerance. Section 4
presents a summary of the practical applications of the ZNN in real-world domains.
Section 5 concludes the paper, summarizing key findings and suggesting potential di-
rections for future research.
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Figure 1. Block diagram of the structure in this paper.

2. Improvement of Zeroing Neural Network Model Structures
This section offers a comprehensive review of the advancements in ZNN models over

the past decade, with a primary focus on the design of model structures. It highlights
significant research achievements across diverse problem domains and establishes a robust
theoretical and practical framework for further analysis.

2.1. Original Zeroing Neural Network Model

The gradient neural network (GNN) method was initially introduced by researchers to
solve optimization problems [90]. The GNN is a type of neural network based on gradient
optimization principles, specifically designed to address a wide range of optimization
challenges and the resolution of dynamic system problems. The central concept behind
the GNN involves constructing a performance index and optimizing it through gradient
descent, thereby providing a solution to the problem at hand. A key feature of the GNN [91]
is the definition of a scalar performance index J(x), which quantifies the deviation of the
system state x from the desired target state. A common expression for the performance
index is

J(x) =
1
2
∥ f (x)∥2.

Here, f (x) denotes the nonlinear function or constraint equation to be solved, typically
framed as a root-finding problem where f (x) = 0. The fundamental design equation of the
GNN is expressed as

v̇(t) = −∇ J(x).
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The GNN can be expressed as

v̇(t) = − f (x)T∇ f (x).

As the scale of the problems increased, researchers observed that applying the GNN
often resulted in significant residual errors. To address this limitation, Zhang et al. pro-
posed the ZNN, specifically designed to accurately solve time-varying scientific computing
problems. Since its introduction, the ZNN has been widely applied across various do-
mains [92]. In contrast to the GNN, which relies on optimizing a performance index, the
ZNN directly constructs an error function E(t), such as

E(t) = B(t)Y(t)− I. (1)

The primary objective of the ZNN is to regulate the network dynamics such that the
E(t) asymptotically approaches zero over time.

The design equation of the ZNN is given by

Ė(t) = −γE(t), (2)

where the parameter γ governs the decay rate of the error function. A larger value can
accelerate convergence but may increase sensitivity to noise and system stiffness, whereas
a smaller value results in slower but smoother convergence. Moderately increasing γ can
improve accuracy; however, it often requires a smaller step size, leading to increased com-
putational cost. Therefore, γ should be carefully selected based on simulation requirements
and available hardware resources.

In contrast to the traditional GNN, the ZNN offers significant advantages in addressing
time-varying parameter problems. The ZNN tracks the solution trajectory of time-varying
systems in real time by incorporating the time derivative of residual errors, leading to
faster convergence and improved stability. It demonstrates strong robustness against noise
and disturbances and eliminates the need for iterative weight updates, thereby reducing
computational complexity and enhancing real-time adaptability. Unlike the objective
function optimization approach employed by the GNN, the ZNN controls the system
by minimizing errors and dynamically adjusting them to accommodate system changes.
This enables the ZNN to excel in managing time-varying problems, precisely controlling
errors, and effectively mitigating the vanishing or exploding gradient issues commonly
encountered in the GNN. As a result, the ZNN is better suited for handling long-term
dependencies and dynamic variations.

2.2. Integration-Enhanced Zeroing Neural Network

To enhance the model’s noise robustness, Jin et al. (2015) first proposed the integration
enhanced zeroing neural network (IEZNN) [93], building upon the original ZNN. By incor-
porating a single integral term, the IEZNN improves the network’s stability, convergence,
and ability to suppress noise while effectively handling time-varying systems. In the
original ZNN, the error function is typically used to measure the deviation between the
system’s output and the desired result. In contrast, the error function in the IEZNN not only
depends on the current error but also integrates past errors, enabling smoother dynamic
transitions. This approach mitigates the instability caused by instantaneous error fluctu-
ations, particularly when addressing time-varying and uncertain problems. The IEZNN
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model controls the evolution of the error by incorporating the single integral term. The
design equation can be expressed as

Ė(t) = −γE(t)− λ1

∫ t

0
E(τ)dτ, (3)

where γ > 0 and λ1 > 0 are convergence parameters. This equation ensures that the error
decreases progressively over time, eventually converging to zero. The IEZNN is an implicit
dynamic system that considers not only the current state error but also integrates past error
information. This approach enhances the system’s stability, especially when operating in
time-varying environments. The inclusion of the single-integral term enhances the robust-
ness of the IEZNN, particularly in the presence of noise and disturbances. By mitigating
instantaneous error fluctuations, the IEZNN improves its ability to handle uncertainty and
external disturbances, making it well-suited for real-time computation in dynamic environ-
ments. The network effectively tracks time-varying matrices and computes their values,
ensuring smooth convergence based on matrix value errors. This capability is especially
critical when noise interference is significant, as the IEZNN maintains high computational
accuracy, particularly when solving noisy time-varying Lyapunov equations (TVLE) [94],
Liao et al. combined nonlinear activation functions with integral terms to propose a unified
design formula for the zeroing neural dynamics (ZND). Building on this formula, they
introduced the bounded zeroing neural dynamics (BZND) model. First, the error function
is defined as

E(t) = A(t)TZ(t) + Z(t)A(t) + B(t).

The design formula for ZND is

Ė(t) = −λ1F1(E(t))− γF2(E(t)− λ1

∫ t

0
F1(E(ι))dι). (4)

Here, γ ∈ (0,+∞) and λ1 ∈ (0,+∞) are scaling factors that adjust the convergence
rate. The nonlinear activation function arrays F1(·) and F1(·) play a pivotal role in the
dynamic process of the model. Under noisy conditions, the BZND model, represented by
Equations (2) and (4), can be reformulated as

A(t)T Ż(t) + Ż(t)A(t) = −Ȧ(t)TZ(t)− Z(t)Ȧ(t)− Ḃ(t)

− γF1(A(t)TZ(t) + Z(t)A(t) + B(t))

− λ1F2(A(t)TZ(t) + Z(t)A(t) + B(t))

− γ
∫ t

0
F1(A(ι)TZ(ι) + Z(ι)A(ι) + B(ι))dι) + v(t).

Lei constructed a model based on the IEZNN design formula to address the TVSE
problem [95], and the error monitoring function is

E(t) = L(t)Z(t)− Z(t)F(t) + G(t).

Here, L(t), F(t), and G(t) are given matrices, while Z(t) is the unknown time-varying
matrix to be determined. The design process for the noise-resistant integrated enhanced
zeroing neural network (NIEZNN) model is outlined below.

The design formula, as presented in Equation (4), is employed to solve the TVSE.
To further enhance the model’s anti-interference capability, the NIEZNN model is extended
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to incorporate additional random noise, resulting in the noise-augmented NIEZNN model.
The extended model is expressed as follows:

L(t)Ż(t)− Ż(t)F(t) = Z(t)Ḟ(t)− L̇(t)Z(t)− Ġ(t)

− γF1(L(t)Z(t)− Z(t)F(t) + G(t))

− λ1F2(L(t)Z(t)− Z(t)F(t) + G(t)) (5)

− γ
∫ t

0
F1(L(ι)Z(ι)− Z(ι)F(ι) + G(ι))dι) + v(t).

This model exhibits exceptional performance in solving TVSE, particularly demonstrat-
ing significant robustness and noise resilience across a range of noisy environments. Fur-
thermore, when applied to time-varying problems, especially in TVQO [96,97], and other
time-varying issues under noisy conditions [93], the IEZNN outperforms the traditional
ZNN model, offering superior robustness, noise resistance, and computational accuracy.

2.3. Design of the Double Integral-Enhanced Zeroing Neural Network Model

In scientific computing, tasks such as TVMI, solving linear equations, and other similar
problems frequently encounter noise interference, including constant noise, linear noise,
and random noise. While traditional ZNN models and the IEZNN can suppress certain
types of noise, they remain susceptible to computational inaccuracies when faced with
linear or more complex noise forms. To address this limitation, it is essential to incorporate a
double integral feedback mechanism, which further mitigates long-term bias and enhances
the performance of the model.

The double integral term improves the system’s ability to detect and address error
accumulation. This feedback mechanism accelerates error correction, thereby enhancing
the network’s convergence rate. Through double integral control, the system’s error
function becomes sensitive not only to the current error (instantaneous feedback) and
accumulated historical errors (single integral feedback), but also adjusts for more complex
error accumulation patterns (double integral feedback). This structure is further elaborated
in the article [98]. The multi-level feedback mechanism strengthens the network’s dynamic
stability, enhancing its robustness in complex environments.

The design formula for the double integral enhanced zeroing neural network
(DIEZNN) is given as follows:

Ė(t) = −γE(t)− λ1

∫ t

0
E(ι)dι−

λ2

∫ t

0

∫ ι

0
E(η)dηdι, (6)

where γ > 0 and λ1 > 0, λ2 > 0 are design parameters. The first integral term
∫ t

0 E(ι) dι

compensates for global error accumulation. The second integral term
∫ t

0

∫ ι
0 E(η) dη dι

addresses the deeper correction of the error’s changing trend.
The introduction of double integrals effectively addresses such problems. Liao con-

structed a DIEZNN model based on a novel integral design formula, which inherently
possesses linear noise tolerance [99]. To monitor the TVMI problem, the error function is
designed in the same manner as in Equation (1), In this context, x(t) represents the system
state that needs to be solved. Although the IIEZNN model can suppress noise to some
extent, it still exhibits limitations when handling linear noise. Therefore, a new model is
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required to address the presence of linear noise. Liao et al. derived the design formula for
the DIEZNN model as follows:

Ė(t) = −γE(t)− λ1

∫ t

0
E(ι)dι−

λ2

∫ t

0

∫ ι

0
E(η)dηdι + v(t). (7)

Further, the DIEZNN model is as follows:

B(t)Ẏ(t) = −Ḃ(t)Y(t)− γ(B(t)Y(t)− I)

− λ1

∫ t

0
(B(t)Y(t)− I)dι

− λ2

∫ t

0

∫ ι

0
(B(η)Y(η)− I)dηdι + v(t).

The article conducted two simulation case studies with varying matrix dimensions
and linear noise. Both the theoretical proof and the simulation examples thoroughly
demonstrate the inherent linear noise suppression capability of the DIEZNN model.

The double-integral structure possesses a stronger cumulative filtering capability,
effectively attenuating both high- and low-frequency noise compared to the single-integral
model. In control theory, the integration operation inherently exhibits low-pass filtering
characteristics. First-order integration can suppress high-frequency disturbances but is
limited in mitigating slowly varying noise. By introducing second-order integration,
the system gains enhanced temporal smoothing ability, enabling more accurate extraction
of the true error.

This structure delays the impact of instantaneous noise, suppresses error propagation,
and significantly enhances the robustness and stability of the system. To validate the design
motivation, this paper includes a comparative example of the IEZNN and DIEZNN under
linear noise conditions. Figure 2 clearly demonstrates the superiority of the DIEZNN in
terms of error convergence and noise resistance.

0 0.5 1 1.5 2 2.5 3

0

50

100

150

200

250

300

350

IEZNN

DIEZNN

0 1 2 3
10

-5

10
0

IEZNN

DIEZNN

Figure 2. Real-time error plots of IEZNN and DIEZNN under linear noise conditions.
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The DIEZNN model, by introducing a proportional-integral-double integral control
mechanism, demonstrates significant advantages in solving dynamic computational prob-
lems such as TVMI [100], time-varying linear equations, MOO, embedded real-time com-
putation, and control. With its exceptional noise resistance, rapid convergence, and adapt-
ability to various environments, the DIEZNN offers an efficient and reliable solution for
dynamic system modeling, control, and optimization. It has contributed to technological
advancements and broadened the scope of applications in the field of dynamic computation.

Therefore, the improvements in the ZNN model structure can be summarized as
follows: Through the iterative evolution from the traditional ZNN to the enhanced IEZNN,
and then to the DIEZNN, these advancements have significantly improved the model’s
robustness to noise and its interference resistance. This progression has enabled the model
to be effectively applied in complex multi-noise scenarios and laid the foundation for the
further development of subsequent models.

This paper discusses the single-integral and double-integral ZNN models. The single-
integral model improves both stability and convergence. The double-integral model,
by incorporating a dual-feedback mechanism, enhances noise resistance and accelerates
convergence. Although the t-fold integral model could potentially further improve robust-
ness or trajectory smoothness, its increased complexity introduces a higher computational
burden, which may lead to response delays and numerical stability issues in real-time
systems. Consequently, this model is not considered in this paper.

3. Activation Functions of Zeroing Neural Network Model and
Other Enhancements

Although optimizations based on model architectures have significantly enhanced
the robustness of neural networks in noisy environments, the improvement in model
convergence speed still faces certain limitations. Consequently, researchers have shifted
their focus to optimizing activation functions, with the goal of further enhancing the
model’s convergence performance and computational efficiency through the design and
introduction of more effective activation functions.

3.1. Nonlinear Activation Functions with Enhanced Convergence Properties

From the perspective of convergence speed, three common types of convergence
can be distinguished: finite-time convergence, fixed-time convergence, and predefined-
time convergence. These types all involve the rate at which system errors converge,
but they differ in their specific characteristics. Finite-time convergence refers to a dynamic
system’s ability to reach its target state or ideal solution within a finite time, typically
with the target solution being zero or sufficiently close to zero. Fixed-time convergence
refers to a system behavior that ensures the system state converges to the equilibrium
point within a finite time, with the convergence time being independent of the initial
conditions. However, the actual convergence time is only guaranteed to have an upper
bound, and it cannot be explicitly predetermined. In contrast, preset-time convergence
describes a framework in which the convergence time is determined during the design
phase. Unlike fixed-time convergence, preset-time convergence ensures that the system
converges within a user-specified time frame, with the convergence time being adjustable
to meet design requirements, thus offering stronger guarantees in time control than fixed-
time convergence.

A large number of activation functions have been proposed to accelerate convergence.
Finite-time convergence is primarily grounded in Lyapunov stability theory. By construct-
ing an appropriate Lyapunov function, it has been demonstrated that the error or objective
function can converge to zero within a finite time. Nonlinear activation functions play
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a pivotal role in the design of neural networks that achieve finite-time convergence and
are extensively utilized in numerous neural network models endowed with finite-time
convergence properties [51]. These activation functions significantly improve convergence
by altering both the rate and direction of error reduction.

In the literature [101], Xiao constructed a finite-time convergence model, with the error
function defined as

E(t) = Y(t)N(t)− I. (8)

The expression of the model is as follows:

Ė(t) = −γF (E(t)). (9)

Considering Equations (8) and (9), the ZNN-A model is as follows:

Ẏ(t)N(t) = −Y(t)Ṅ(t)− γF (Y(t)N(t)− I).

The sign-bi-power (SBP) activation function is defined as follows:

F (yij) =
1
2

(
Lipa(yij) + Lip1/a(yij)

)
,

Lipa(yij) =


|yij|a, if yij > 0,

0, if yij = 0,

−|yij|a, if yij < 0.

The upper bound of the convergence time for this model is

max
{

2|e−(0)|1−a

ϱ(1 − a)
,

2|e+(0)|1−a

ϱ(1 − a)

}
.

In the formula, e(0) denotes the initial error.
Liao proposed a novel complex-valued zeroing neural network (NCZNN) [53,102],

which achieves finite-time convergence in the complex domain through two distinct ap-
proaches. The error function is

E(t) = B(t)Y(t)− k(t). (10)

Considering Equation (9), the NCZNN model is given by

B(t)Ẏ(t) = −B(t)Ẏ(t)− γF (B(t)Y(t)− k(t)) + k̇(t).

In general, there are two approaches for handling complex-valued activation functions,
as follows:

F1(C + iH) = Λ(C) + iΛ(H).

F2(C + iH) = Λ(τ) ◦ exp(i∆).

The upper bound of the NCZNN model is given as follows:

tC ≤ |a(0)|1−m

γ(1 − m)
,
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where, a(0) = maxk{|ek(0)|}. In comparative experiments, the NCZNN model consistently
outperforms the CZNN model [102].

In reference [95], Lei et al. introduced a nonlinear activation integral-enhanced zeroing
neural network (NIEZNN) model based on the coalescent activation function (C-AF)
activation function, comparing it with existing ZNN models. The experimental results
highlighted its superiority.

In reference [103], Xiao et al. investigated the time-varying inequality constrained
quaternion matrix least squares (TVIQLS) problem and proposed a fixed-time noise-tolerant
zeroing neural network (FTNTZNN) model to solve it in complex environments. The
TVIQLS problem is reformulated into matrix form, that is, the error function is analogous to
Equation (10). By combining the error equation and the design Equation (4), the FTNTZNN
model is formulated as follows:

Ė(t) = −γF (E(t))− λ1

(
γ
∫ t

0
F (E(ι))dι +F (E(t))

)
.

When solving the TVIQLS problem, only finite-time convergence can be achieved,
and not fixed-time convergence. To address both challenges simultaneously, an improved
activation function F (·) is integrated into the ZNN model, defined as follows:

Fl(z) =

ξ1|z|µsign(zl) + ξ2zl , if |zl | ≤ 1

ξ2|z|µsign(zl) + ξ3zl . if |zl | > 1

Here, 0 < µ1 < 1 and µ2 > 1, ξ1, ξ2, ξ3 are positive parameters, and the upper bound
of the model’s convergence is given by

T = T1 + T2 ≤ ρ + λ

ρλξ1(1 − µ1)
+

ρ + λ

ρλξ2(µ2 − 1)
.

The FTNTZNN model is robust to initial values and external noise, offering a signifi-
cant advantage over traditional zeroing neural network (CZNN) models. When compared
to other ZNN models employing conventional activation functions, the FTNTZNN model
exhibits faster convergence and enhanced robustness.

Xia et al. incorporated the activation function [36] into the ZNN model, achieving
fixed-time convergence. Its form is as follows:

F (x) =
1
2

h1wsbpb(x) +
1
2

h2wsbp1/b(x) +
1
2

h3x.

where h1, h2, h3 > 0, b ∈ (0, 1), and the function wsbp(·) is defined as

wsbpb(y) =


|y|b, if y > 0

0, if y = 0

−|y|b. if y < 0

Define the error function as

E(t) = A(t)A(t)Z(t)− L(t)Y(t).
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The design formula is identical to that in Equation (9), i.e., the corresponding first-order
fixed-time ZNN model (FOZNN-1) is

A(t)A(t)Ż(t) = Ȧ(t)Y(t) + A(t)Ẏ(t)

−Ȧ(t)A(t)Z(t)− A(t)Ȧ(t)Z(t)

−γF (A(t)A(t)Z(t)− A(t)Y(t)).

It can be concluded that the upper bound of its convergence time is

T1 ≤



µ
na(b−g) log

(
|b|
|g|

)
, nc > 2

√
nanb

µ√
nanb

k
1−k , nc = 2

√
nanb

µ
nak1

(
π
2 − tan−1 k2

)
, 0 < nc < 2

√
nanb

µπ
2
√

nanb
, nc ≤ 0

where na, nb, nc, b, and g are parameters, and 0 < k < 1. The values −b and −g are the
solutions of

r(s) = nas2 − ncs + nb,

with

k1 =

√
4nanb − n2

c
4n2

a
, k2 =

nc√
4nanb − n2

c
.

The experiment shows that, compared to other models, this model achieves stronger
convergence performance and realizes fixed-time convergence.

In the literature [86], Xiao introduced a versatile activation function (VAF) to ad-
dress the TVMI problem. Considering Equations (1) and (9), the model can be expressed
as follows:

B(t)Ẏ(t) = −B(t)Ẏ(t)− γF (B(t)Y(t)− I) + S(t), (11)

where S(t) represents general noise, and the design formula for the activation function is
as follows:

F (x) = (r1|x|ϵ + r2|x|ζ)sgn(x) + r3x + r4sgn(x).

The upper bound is given by

tr =
1

ς(1 − ϵ)
+

1
υ(ζ − 1)

,

where ς > 0 and υ > 0.
In the literature [104], Li et al. were the first to achieve predefined-time convergence

for the ZNN model by introducing two novel activation functions. The error function is
defined as follows:

E(t) := Y2(t)− N(t).

Given the dynamic matrix N(t) and the system dynamics Y(t) to be solved, the per-
turbation time-varying ZNN (PTZNN) model is expressed as follows:

Y(t)Ẏ(t) + Ẏ(t)Y(t) = −λF (Y2(t)

−N(t))− Ṅ(t) + G(t).
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To achieve predefined-time convergence, two activation functions are proposed, which
are defined as follows:

F1(x) = (κ1|x|p + κ2|x|q)sign(x) + κ3x + κ4sign(x).

The design formula for the second activation function is as follows:

F2(x) = γ1 exp(|x|p)|x|1−psign(x)/p + γ2x + γ3sign(x).

The upper bound of the convergence time derived from the first activation function is
as follows:

tr ≤
1

λκ1(1 − p)
+

1
λκ2(q − 1)

.

When utilizing the second activation function, the upper bound of the convergence
time is

tc ≤
1

λγ1
.

In addressing the dynamic matrix square root (DMSR) problem, the PTZNN model
outperforms existing models in both convergence and robustness.

In reference [105], Li et al. proposed a strict predefined-time convergence and noise-
tolerant ZNN (SPTC-NT-ZNN) for solving time-varying linear systems. The model is
consistent with Equation (11), where the activation function is defined as

h(δ) :=

δ/(tc − t), t ∈ [0, tc)

δ + |δ|psign(δ) + ξsign(δ), t ∈ [tc,+∞)

where the parameters 0 < p < 1 and ξ ≥ 0 are given, and the parameter tc is related to the
convergence time. Additionally, the function sign(δ) = δ

|δ| is defined for δ ̸= 0.
This ensures the required timely convergence and robustness for time-critical applica-

tions. The strict predefined-time convergence and noise tolerance of the SPTC-NT-ZNN
have been theoretically proven and further validated through comparative experiments to
demonstrate its superiority. The comparison focused on two illustrative problems: TVOLE
and TVULE. The numerical results demonstrate that, in both convergence and robustness,
the SPTC-NT-ZNN outperforms other existing ZNN models in solving these problems.

Remark 1. In ZNN, nonlinear activation functions play a crucial role in shaping the neural
dynamics, facilitating the achievement of the desired convergence behavior. These functions typically
operate on error terms and, through careful design, can guide the system to systematically reduce the
error to zero. The convergence behaviors influenced by well-designed nonlinear activation functions
include finite-time convergence, fixed-time convergence, and preset-time convergence.

Remark 2. This section presents the mathematical definitions and fundamental properties of three
distinct types of convergence: finite-time convergence, fixed-time convergence, and predefined-
time convergence.

Finite-time convergence refers to the system’s convergence to the equilibrium point
x = 0 from an initial state x0 within a finite time. If the system is Lyapunov stable, and there
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exists a finite convergence time function T(x0) depending on the initial state x0, then the
system will converge within that time. Specifically, given the system’s dynamics,

ẋ(t) = f (x(t), t), x(0) = x0,

the finite-time stability satisfies the following condition:

V̇(x) ≤ −kV(x)q, 0 < q < 1

where V(x) is a positive definite Lyapunov function, and k is a constant. The convergence
time is

T(x0) =
1

k(1 − q)
V(x0)

1−q

This time explicitly depends on the initial condition x0 and indicates that the system
will converge to the equilibrium point within a finite time.

Fixed-time convergence refers to the system’s convergence to the equilibrium point in
a fixed, initial-condition-independent time. For all initial conditions x0, there exists a fixed
maximum convergence time Tmax such that

x(t) = 0, ∀t ≥ Tmax

A typical Lyapunov condition is

V̇(x) ≤ −(αV(x)p + βV(x)q)k

where p, q are constants satisfying pk < 1 and qk > 1, and constants α, β > 0. The upper
bound for the fixed-time convergence is

Tmax =
1

αk(1 − pk)
+

1
βk(qk − 1)

This upper bound is independent of the initial condition x0 and ensures that the
system converges in fixed time.

Predefined-time convergence requires that the system fully converges to the equi-
librium point within a user-specified fixed time Tp, regardless of the initial condition.
The system’s Lyapunov condition is

V̇(x) ≤ − 1
pTp

eV(x)p
V(x)1−p

where p is a constant, satisfying 0 < p ≤ 1. If this condition holds, the system exhibits
strong predefined-time stability, and the convergence time is strictly Tp.

The Figure 3 illustrates the convergence behavior of the ZNN error ∥E(t)∥F over time
under various activation functions. Among them, the orange curve—corresponding to the
predefined-time activation function—achieves the fastest convergence, followed by the
yellow curve representing the fixed-time activation function. In contrast, the purple curve,
associated with the finite-time activation function, exhibits the slowest convergence. These
results clearly indicate that the predefined-time activation function facilitates the most rapid
error reduction in the ZNN, outperforming the fixed-time and finite-time counterparts.
This observation underscores the significant influence of activation function design on the
convergence performance of the ZNN.
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Figure 3. Real-time errors of the three different models.

3.2. Nonlinear Activation Functions with Noise-Tolerant Capabilities

With ongoing advancements in neural network models, nonlinear activation functions
have become crucial not only for accelerating convergence but also for significantly enhanc-
ing noise robustness. Specifically, noise robustness refers to the model’s ability to maintain
stability and perform inference and prediction effectively in the presence of input noise or
system disturbances.

In summary, nonlinear activation functions enhance the model’s noise robustness,
enabling the network to effectively handle complex and uncertain environments in real-
world applications. Simultaneously, they accelerate convergence while preserving the
model’s efficiency and robustness. This combination lays a strong foundation for the
widespread adoption of neural networks in fields such as real-time control, intelligent
decision making, and dynamic optimization.

In reference [106], Xiao et al. constructed and analyzed a novel recursive neural net-
work (NRNN) that exhibits finite-time convergence and exceptional robustness, specifically
for solving the TVSE with additive noise. In contrast to the design methodology of the ZNN,
the proposed NRNN utilizes a sophisticated integral design formula in conjunction with a
nonlinear activation function. This integration not only accelerates the convergence rate but
also effectively mitigates the impact of unknown additive noise in the process of solving
dynamic Sylvester equations. The integral design formula is analogous to Equation (4).
The design of the activation function is as follows:

F1(eij) = F2(eij) = φu(eij) + φ1/v(eij),

where the design parameters 0 < v < 1, The definition of φv(·) is given by

φv(eij) =


|eij|v, if eij > 0

0, if eij = 0

−|eij|v, if eij < 0

The ij-th subsystem of the integral design formula can be expressed as follows:

ėi(t) = −γ f1(eij(t))− λ f2((eij(t)) + γ
∫ t

0
f1(eij(ι)) dι).
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By combining the error function with the design formula, the NRNN model can
be constructed to solve the dynamic Sylvester equation, which has a similar form to
Equation (5).

In [81], Xiao et al. applied the ZNN model to solve TVSME. The use of a noise-
resistant activation function allows the ZNN model to effectively solve the Stein equation
in noisy environments. Therefore, the ZNN model not only exhibits enhanced convergence
performance but also improves noise immunity. To address this issue, a complex-valued
error function is defined:

E(t) = D(t)Y(t)Z(t) + Y(t)− F(t),

By utilizing the Kronecker product, the error function E(t) can be reformulated as

E⃗(t) = V(t)Y⃗(t)− F⃗(t).

Since a complex number can be expressed as the sum of its real and imaginary parts,
E⃗(t) is represented as E⃗r(t) + iE⃗i(t), where i is the imaginary unit. Furthermore, we have

E⃗(t) = −ϱ(t)(F (E⃗r(t)) + iF (E⃗i(t))).

To ensure noise robustness, the following activation function is adopted:

F (x) =
r1

d
exp(|x|d)|x|1−dsign(x).

The PTAN-VP ZNN model presented below can be derived using the design formula
outlined above, as detailed in [107].

V(t) ˙⃗Y(t) = −V̇(t)Y⃗(t) + ˙⃗F(t)

−ϱ(t)(F (E⃗r(t)) + iF (E⃗i(t))),

γ̇(t) = exp(αsign(|E⃗(t)|))− 1.

Compared to other ZNN models, such as the LZNN [108], NLZNN [109], FTCZNN [72]
and PTCZNN [104], the PTAN-VP ZNN exhibits superior interference rejection perfor-
mance. This paper presents a theoretical analysis of the stability and robustness of the
PTAN-VP ZNN. The validity of the theoretical results has been confirmed through numer-
ical simulations, which also highlight the advantages of the PTAN-VP ZNN. Moreover,
the PTAN-VP ZNN has been successfully applied to mobile robotic arms, demonstrating
its potential for use in robotic control.

In [97], a nonlinear activation-based integral design formula was proposed to address
the effects of additive noise. Building upon this design formula, a NRNN was developed
to solve dynamic quadratic optimization problems. Compared to the ZNN applied to this
problem, the proposed RNN model demonstrates significant finite-time convergence and
inherent noise-resistance capabilities.

The activation functions and their convergence types are shown in Table 1. In addition
to using activation functions to improve the robustness of the model, adaptive compensa-
tion terms can be introduced to mitigate the impact of noise. For example, Liao et al. [47]
proposed a harmonic noise-tolerant zeroing neural network (HNTZNN) model to efficiently
solve matrix pseudoinversion problems.
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Table 1. Activation functions and their convergence.

Activation Function Parameter Convergence

1
2

(
|e|κ + |e| 1

κ

)
sgn(e) κ > 0 Finite-time [109]{

b
a

√
2a |eij| − |eij|2, |eij| < a

b, |eij| ≥ a
a, b > 0 Finite-time [110]{

1−exp(−εx)
1+exp(−εx) ·

1+exp(−ε)
1−exp(−ε)

ε > 0 Finite-time [111]

(ρ1|x|a + ρ2|x|1/a + ρ3|x|) sign(x) ρ1, ρ2, ρ3, ρ4, a > 0 Finite-time [75]
(b1|e|κ + b2|e|η) sgn(e) + b3e b1, b2, b3, κ, η > 0 Fixed-time [112,113](

a1|x|ν + a2|x|ν+1 + a3|x| − a4
)

sgn(x) a1, a2, a3, a4, ν > 0 Fixed-time [80]
1
p
(
κ1|x|1−p + κ2|x|q

)
sign(x) + κ3 sign(x) q, κ1, κ2, κ3 > 0, p ∈ (0, 1) Fixed-time [114]

h sin(|x|n) sign(x) h, n > 0 Fixed-time [115]{
e

tm−t , t ∈ [0, tm)

e + |e|q sgn(e) + p sgn(e), t ∈ [tm,+∞)
tm, q, p > 0 Predefined-time [105]{

exp(e)−1
exp(e)(tm−t) , t ∈ [0, tm)

e, t ∈ [tm,+∞)
tm > 0 Predefined-time [116]

(d1|e|ν + d2|e|ϵ) sgn(e) + d3 sgn(e) + d4e d1, d2, d3, d4, ν, ϵ > 0 Predefined-time [86,117]
(c1 ∑m

i=1 |e|νi + c2 ∑m
i=1 |e|κi ) sgn(e)+ c3e+ c4 sinh(e) c1, c2, c3, c4, νi, κi > 0 Predefined-time [118]

η
c exp(|x|c)|x|1−c sign(x) + ν sign(x) η, ν > 0, c ∈ (0, 1) Predefined-time [119]

Algorithm 1 presents the pseudocode in a unified format, illustrating the discrete-
time implementation process of four ZNN models: the original ZNN model, the ZNN
model enhanced with nonlinear activation functions, the IEZNN model, and the DIEZNN
model. This algorithmic framework is suitable for typical application scenarios such as
real-time control systems, trajectory tracking, robotic control, and the solution of dynamic
matrix equations.

The pseudocode mainly consists of the following components:

• Parameter initialization: including the initial state Y(0);
• Time-step iteration: iterating from n = 0 to tmax/τ with a fixed step size τ;
• Model-specific control law and state update: updating the state variable Y(tn) based

on the corresponding control law of each ZNN model;
• Introduction and update of auxiliary variables: where Z(tn) denotes the single-

integral term and N(tn) denotes the double-integral term.

3.3. The Variable Parameter Improves the Convergence Performance of Zeroing Neural
Network Models

To enhance the convergence rate, the use of variable parameters (VPs) presents another
effective strategy. These parameters are dynamically adjusted over time, typically follow-
ing a time-dependent function (e.g., exponential or power functions) that governs their
evolution. The dynamic adjustment capability of VPs offers significant benefits, including
improved system convergence, enhanced robustness, and better alignment with practical
hardware constraints. Although the design and implementation may be more complex,
these advantages make variable parameters the preferred approach for addressing complex
dynamic problems, particularly in scenarios characterized by time-varying properties or
external disturbances.

In the literature [52], a variable-parameter recurrent neural network (VP-CDNN) is
proposed, and Equation (9) is reformulated as follows:

Ė(t) = −χ(t)F (E(t)) = −(tκ + κ)F (E(t)).
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Algorithm 1 Pseudocode of Discrete Controllers Based on Different ZNN Models
Parameters initialization: e.g., Y(0)

for n = 0 to tmax/τ do
Compute relevant coefficients with tn = nτ, e.g., Q(tn), γ, λ1, λ2.
if (ZNN controller I) then

Update Y(tn+1) by following the control law:

Ẏ(tn) = B†(−γ(BY(tn)− K(tn)) + K̇(tn)
)

Y(tn+1) = Y(tn) + τY(tn)

else if (ZNN controller II) then
Update Y(tn+1) by following the control law:

Ẏ(tn) = B†(−γF (BY(tn)− K(tn)) + K̇(tn)
)

Y(tn+1) = Y(tn) + τY(tn)

else if (IEZNN controller under noise-free conditions) then
Update Y(tn+1) by following the control law:

Ẏ(tn) = B†(−γF (BY(tn)− K(tn)) + Z(tn)) + K̇(tn)

Ż(tn) = −λ1F (BY(tn)− K(tn))

Z(tn+1) = Z(tn) + τŻ(tn)

Y(tn+1) = Y(tn) + τẎ(tn)

else if (DIEZNN controller under noisy conditions) then
Update Y(tn+1) by following the control law:

Ẏ(tn) = B†(−γF (BY(tn)− K(tn)) + Z(tn) + N(tn)) + K̇(tn)

Ṅ(tn) = λ2/λ1 ∗ Z(tn)

Ż(tn) = −λ1F (BY(tn)− K(tn))

N(tn+1) = N(tn) + τṄ(tn)

Z(tn+1) = Z(tn) + τŻ(tn)

Y(tn+1) = Y(tn) + τẎ(tn)

end if
end for

Further, the CDNN model is obtained as follows:

L(t)Ż(t)− Ż(t)F(t) = Z(t)Ḟ(t)− L̇(t)Z(t)− Ġ(t)

− (tκ + κ)F (L(t)Z(t)− Z(t)F(t) + G(t)).

This paper presents a novel VP-CDNN model, which innovatively incorporates a
time-varying parameter function χ(t), significantly enhancing the solving performance
of time-varying Sylvester equations. Through rigorous mathematical proofs, the study
confirms the superior performance of this model in terms of convergence and robustness.
Specifically, the VP-CDNN not only achieves super-exponential convergence performance
but also demonstrates strong robustness characteristics, all of which have been thoroughly
validated through multiple theorems. In the comparative simulation experiments, the
VP-CDNN exhibited significant advantages in convergence speed.
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In the literature [56], Xiao constructed an innovative finite-time varying-parameter
convergent differential neural network (FT-VP-CDNN) aimed at solving nonlinear and
non-convex optimization problems. The study not only provides a detailed analysis of the
network’s performance but also presents its design formula, which is specifically expressed
as follows:

Ė(t) = −ϑ(t)F (E(t)− E+(t) + Ẽ(t)),

where ϑ(t) = ε exp(t) = εet > 0 represents a time-varying parameter function. Research
indicates that the proposed finite-time varying-parameter convergent differential neural
network (FT-VP-CDNN) demonstrates significant performance advantages over the finite-
time fixed-parameter convergent differential neural network (FT-FP-CDNN).

In [120], an IEZNN model was proposed to address the TVMI under noise interference.
The IEZNN model performs well in handling relatively small time-varying noise; however,
its performance is significantly affected by noise interference. As the noise level increases,
the convergence accuracy of the model may degrade, and it may even fail to accurately
approximate the theoretical solution. To address this limitation and further enhance
performance, Xiao constructed a novel variable-parameter noise-tolerant zeroing neural
network (VPNTZNN) model in this study. The mathematical formulation of the model is
presented as follows:

B(t)Ẏ(t) = −Ḃ(t)Y(t)− µ1(t)(B(t)Y(t)− I)

− µ2(t)
∫ t

0
(B(t)Y(t)− I)dτ + D(t).

The design formula is derived from the error function in Equation (1) and the design
principles outlined in Equation (3), where µ1(t) and µ2(t) are defined as follows:

µ1(t) = 3 exp
( at

2
)
− a

2 ,

µ2(t) = exp(at).

Here, t ∈ [0,+∞) and α ∈ (0,+∞). Notably, µ1(t) and µ2(t) are time-varying parame-
ters that remain strictly positive. Additionally, D(t) denotes the external noise.

Through rigorous theoretical analysis and proof, the superior performance of the
VPNTZNN model in terms of convergence and robustness has been fully validated. For fur-
ther developments on variable parameters, refer to Table 2. The taxonomy of ZNN architec-
tures discussed in this section is illustrated in Figure 4.

VPZNN AFZNN IEZNN DIEZNN

oznn

with Time-

varying 

Parameter
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Activation 

Function

with 

Single-

integral
with 

Double-

integral

Figure 4. Taxonomy of ZNN Architectures.
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Table 2. Development of varying parameters.

Variable Parameter Parameter Year Literature

θ(t) = ζ + tγ ζ > 0, γ > 0 2018 [121]

θ(t) = pt + p p > 0 2019 [122]

θ(t) = tp + p p > 0 2019 [123]

θ̇(t, x) = c · sign(|x|) c > 0 2020 [124]

θ(t) =

{
tq + q, if 0 < q ≤ 1
qt + 2qt + p, if q > 1

q > 0 2021 [125]

θ(t) = β exp(λ1 arccot(t) + λ2t) β, λ1, λ2 > 0 2021 [126]{
θ1(t) = 3 exp

(
αt
2
)
− α

2
θ2(t) = exp(αt)

α > 0 2022 [120]

θ(t) =

{
γ1kα1t

1 , if t < δ0

γ1kα1δ0
1 , if t ≥ δ0

γ1, k1, α1, δ0 > 0 2023 [96]

θ(t) = γ exp(∥E(t)∥) γ > 0 2023 [127]

θ(t) = ϱ exp((tκ + κ)ϑ(t)) ϱ, κ > 0 2024 [128]

θ(t) = ϱ exp((βt + β)∥E(t)∥) ϱ, β > 0 2024 [129]

4. Applications of Zeroing Neural Networks
This chapter will comprehensively discuss the research progress and practical applica-

tions of ZNN in various fields.
In 2023, Liao et al. proposed a dynamic robot position tracking method based on

complex number representation (see reference [43]) and designed an optimization strategy
for the real-time measurement and minimization of robot spacing. They further developed
a CZND model for dynamic solving, with the formulation expressed as follows:

EΦ(t) + Υ(t) = 0.

In the CTVME, Φ(t), representing the instantaneous position of the following robot,
needs to be solved in real time. Based on the ZNN design framework, by solving the
CTVME problem online, the zeroing neural dynamics method demonstrates its efficiency
and feasibility in robot coordination. The error function is

P(t) = EΦ(t) + Υ(t).

This is used to quantify the error in the CTVME problem. The time derivative of P(t)
is defined as follows:

Ṗ(t) = −γ(t)P(t).

Further, we can obtain

ĖΦ(t) + EΦ̇(t) + Υ̇(t) = −γ(EΥ(t) + Υ(t)).
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The CZND model is

EΦ̇(t) = −γEΦ(t)− Υ̇(t)− γΥ(t).

In 2014, Xiao et al. proposed a method based on the ZNN model to solve prob-
lems related to robotic arms [130]. The kinematic equation of the robotic arm is typically
expressed as

g(t) = f (θ(t)),

ġ(t) = G(θ(t))θ̇(t).

The error function is defined as follows:

E(t) = rw − r(t),

where rw(t) represents the desired path to be tracked. By integrating the previously
proposed formulas with the original ZNN model design equations outlined in the article,
the wheeled mobile manipulator’s dynamics are derived as follows:

G(θ(t))θ̇ = ṙw(t) + γ(rw − f (θ(t))).

A series of comprehensive experiments were carried out using the formulas outlined
earlier. The results indicate that the ZNN method outperforms the traditional GNN
approach in terms of accuracy.

With the development of ZNN, its application in robotic arm control has become
increasingly widespread. Notable examples include minimum motion planning and control
for redundant robotic arms [131,132], cooperative motion planning for robotic manipulator
arms [83,84,93,106,133], multi-robot systems [134], path tracking for mobile robots [81,135],
redundant robotic manipulators [86,87,136,137], four-joint planar robotic arms [47,94],
motion tracking for mobile manipulators [102], coordinated path tracking for dual robotic
manipulators [88], solving multi-robot tracking and formation problems [89], vehicular
edge computing [138], and mobile object localization [49], among others.

Chaotic systems, first discovered by Edward Lorenz half a century ago, are a class
of typical nonlinear systems [139]. Since their discovery, chaotic systems have become a
focal point of research due to their wide range of practical applications, including in fields
such as power systems [140], financial systems [141], ecological systems [142], and secure
communication [143]. However, their inherent uncertainty, non-repeatability, and unpre-
dictability make solving chaotic system problems highly challenging. The introduction of
the ZNN model offers a reliable solution to effectively address issues in chaotic systems,
particularly in environments with noise and uncertainties. The basic approach involves
constructing models for the master and response systems:

ẋm(t) = fm(xm(t)) + ω(t), ẋr(t) = fr(xr(t)) + µ(t),

where xm(t) and xr(t) represent the states of the master and response systems, fm(·)
and fr(·) are the nonlinear dynamics of the systems, ω(t) denotes external disturbances,
and µ(t) is the control input. The synchronization error is defined as e(t) = xm(t)− xr(t),
and the ZNN control law is given by ė(t) = −γe(t), ensuring exponential convergence of
the error. To enhance noise immunity, the ZNN can incorporate integral and double-integral
structures to mitigate low-frequency and high-frequency disturbances.

Studies have shown that ZNN-based models perform excellently in chaotic control.
For example, Aoun et al. [144] proposed the NZNN, which successfully achieved three-
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dimensional synchronization in the SFM system. Xiao et al. [145] combined the ZNN
with sliding mode control to develop the FXTRC strategy, achieving nearly 10 times faster
convergence in various chaotic systems.

In 2023, Jin et al. introduced a time-varying fuzzy parameter zeroing neural network
(TVFPZNN) model designed to achieve the synchronization of chaotic systems in the
presence of external noise interference [146].

To demonstrate the superiority of the TVFPZNN, Jin conducted two synchronization
experiments using the Chen chaotic system and an autonomous chaotic system, employing
different fuzzy membership functions. During these experiments, three types of irregular
noise were introduced to rigorously evaluate the model’s robustness. As documented
in [146], the mathematical formulation of the Chen chaotic system is given by

ẏ1(t) = a(y2(t)− y1(t)),

ẏ2(t) = dy1(t)− y1(t)y3(t) + cy2(t),

ẏ3(t) = y1(t)y2(t)− by3(t).

In the presence of external noise interference, the master chaotic system can be repre-
sented as 

ẏm1(t) = a(ym2(t)− ym1(t)) + ϖ1(t),

ẏm2(t) = dym1(t)− ym1(t)ym3(t) + cym2(t) + ϖ2(t),

ẏm3(t) = ym1(t)ym2(t)− bym3(t) + ϖ3(t).

The response chaotic system, incorporating the controller, can be represented as
ẏr1(t) = a(yr2(t)− yr1(t)) + µ1(t),

ẏr2(t) = dyr1(t)− yr1(t)yr3(t) + cyr2(t) + µ2(t),

ẏr3(t) = yr1(t)yr2(t)− byr3(t) + µ3(t).

As presented in reference [146], the mathematical formulation of the TVFPZNN model
is given by

fm(zm(t)) + η(t)− fr(zr(t))− µ(t)

= −(at+2k + λpt + p2)F (zm(t)− zr(t)) + η(t).

The expression at+2k + λpt + p2 denotes the fuzzy time-varying parameters.
In Experiment B [146], the researchers performed a comparative analysis of the PTVR-

ZNN [147], AFT-ZNN [148], FPZNN [149], and TVFPZNN models for controlling the
Chen chaotic system in both noise-free and noisy environments. The results demonstrated
that, in the noise-free environment, all four models successfully achieved synchronization.
However, in the presence of noise, only the TVFPZNN model was able to stably synchronize
the Chen chaotic system. Moreover, under noise-free conditions, the Chen chaotic system
controlled by the TVFPZNN exhibited the fastest convergence speed and the lowest error,
further validating the superior performance of this model.

In Experiment C [146], the researchers examined the synchronization problem of the
autonomous chaotic system. The mathematical formulation of the autonomous chaotic
system is given by
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
ż1(t) = p(z2(t)− z1(t)) + z2(t)z3(t),

ż2(t) = (r − p)z1(t)− z1(t)z3(t) + rz2(t),

ż3(t) = sz2(t)z2(t)− qz3(t),

Similarly, in the presence of external noise interference, the master chaotic system can
be represented as

żm1(t) = p(zm2(t)− zm1(t)) + zm2(t)zm3(t) + ϖ1(t),

żm2(t) = (r − p)zm1(t)− zm1(t)zm3(t) + rzm2(t) + ϖ2(t),

żm3(t) = szm2(t)zm2(t)− qzm3(t) + ϖ3(t).

The response chaotic system, incorporating the controller, can be represented as
żr1(t) = p(zr2(t)− zr1(t)) + zr2(t)zr3(t) + µ1(t),

żr2(t) = (r − p)zr1(t)− zr1(t)zr3(t) + rzr2(t) + µ2(t),

żr3(t) = szr2(t)zr2(t)− qzr3(t) + µ3(t).

In this context, π(t) and µ(t) represent the controllers.
The experiment evaluated the performance of the aforementioned models in control-

ling the autonomous chaotic system under noisy conditions. The results showed that the
TVFP-ZNN model outperformed the other models by a significant margin.

Over the past decade, the rapid development of the ZNN has made a significant
impact across various fields. It has demonstrated significant effectiveness, particularly in
robotic control. In tasks such as trajectory tracking, motion planning, and formation control,
the ZNN is especially suitable for real-time control applications due to its rapid conver-
gence and ability to handle disturbances, providing precise responses. Table 3 presents a
performance comparison of the ZNN across various applications. Additionally, the ZNN
has been successfully applied in chaos system control, drone coordination, and chaos circuit
synchronization, highlighting its versatility and strong performance in dynamic control
tasks. In addition to its applications in robot control and chaotic systems, as mentioned
earlier, the ZNN has also been widely used in image information processing [150,151], mul-
tidimensional spectral estimation [152], mathematical ecology [153], IPC system pendulum
tracking [154], and mobile target localization [155–157], among other areas.

Table 3. Performance comparison table of ZNN in various applications.

Model Application Scenarios Position Error Integral Structure Reference

HADTZTM Manipulator motion planning 10−5 No [158]
FTZNN Manipulator motion planning 10−5 No [159]
ITFCZNN Manipulator motion planning 10−4 No [160]
RZND Manipulator motion planning 10−4 Single [161]
FTCND Manipulator motion planning 10−4 No [162]
STZNN Manipulator motion planning 10−5 Single [163]
VP-CDNN Manipulator motion planning 10−7 No [121]
DZNN Manipulator motion planning 10−8 No [164]
CNDSM Manipulator motion planning 10−4 Single [165]
FER-DZNN Manipulator motion planning 10−5 Single [166]
CZND multi-agent system control 10−4 No [43]
AP-FTZND multi-agent system control 10−7 No [167]
TVFP-ZNN Chaotic system 10−6 No [146]
NZNN Chaotic system 10−4 Single [144]
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5. Conclusions
This paper presents a comprehensive review on the application of the ZNN model

in addressing time-varying problems, focusing on its model structure. The models dis-
cussed include single-integral and double-integral structures with noise immunity, general
nonlinear function structures, finite-time convergence structures, fixed-time convergence
structures, predefined-time convergence structures, and variable-parameter structures.
Furthermore, the paper also explores the robustness of the ZNN in addressing noise, ex-
ternal disturbances, and system uncertainties, demonstrating its engineering practicality
in tasks such as trajectory tracking and chaos control. The successful application of the
ZNN in complex systems, such as multi-arm collaborative control, multi-agent formation,
and nonholonomic robot path planning, highlights its powerful capability in handling
high-dimensional, dynamic, and coupled problems.

As the ZNN model continues to evolve, its applications have become widespread
across various practical domains. However, several key challenges still persist in this
field. (1) Higher-order dynamics or multiple-integral structures improve performance but
increase computational complexity. In real-time or resource-constrained environments,
balancing performance and computational cost is a key challenge. (2) The ZNN model
relies on gradient information, making it suitable for convex optimization problems, but it
still faces challenges in non-convex or multi-modal optimization problems. In the future,
combining the ZNN with swarm intelligence or evolutionary algorithms could enhance its
global search capability. (3) The application of zeroing neural networks could be expanded
to more fields. In conclusion, this review provides a reference for beginners who wish
to gain a deeper understanding of how zeroing neural networks efficiently solve time-
varying problems.
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ZNN zeroing neural network
GNN gradient neural network
TVCMI time-varying complex matrix inversion
TVCMP time-varying complex matrix pseudoinversion
TVNE time-varying nonlinear equation
TVOLS time-varying overdetermined linear system
TVSME time-varying Stein matrix equation
TVNM time-varying nonlinear minimization
NNP nonconvex nonlinear programming
MOO multi-objective optimization
TVQO time-varying quadratic optimization
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TVP time-varying problems
NT noise-tolerant
RNN recurrent neural network
VEH harris hawks algorithm
ZND zeroing neural dynamics
BZND bounded zeroing neural dynamics
NCZNN novel complex-valued zeroing neural network
NIEZNN nonlinear activation integral-enhanced zeroing neural network
C-AF coalescent activation function
FTNTZNN fixed-time noise-tolerant zeroing neural network
VAF versatile activation function
NRNN novel recursive neural network
TVFPZNN time-varying fuzzy parameter zeroing neural network
VPNTZNN variable-parameter noise-tolerant zeroing neural network
FT-VP-CDNN finite-time varying-parameter convergent differential neural network
VP-CDNN variable-parameter recurrent neural network
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