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ABSTRACT

We report a dual-modality ghost diffraction (GD) system to simultaneously enable high-fidelity data transmission and high-resolution object
reconstruction through complex disordered media using an untrained neural network (UNN) with only one set of realizations. The pixels
of a 2D image to be transmitted are sequentially encoded into a series of random amplitude-only patterns using a UNN without labels and
datasets. The series of random patterns generated is sequentially displayed to interact with an object placed in a designed optical system
through complex disordered media. The realizations recorded at the receiving end are used to retrieve the transmitted data and reconstruct
the object at the same time. The experimental results demonstrate that the proposed dual-modality GD system can robustly enable high-
fidelity data transmission and high-resolution object reconstruction in a complex disordered environment. This could be a promising step
toward the development of Al-driven compact optical systems with multiple modalities through complex disordered media.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0222851

I. INTRODUCTION

Optical modulation through disordered media has become an
active research topic' ” and has various applications in biomedical
and astronomy fields.”” The main challenge is that the disordered
media are inhomogeneous and variable and corrupt effective
information in the wave propagation path. Some approaches to
addressing this challenge have been developed,”"* '’ e.g., phase
conjugation,” memory effect,’” and shower-curtain effect.'” In
previous studies, pixelated arrays were usually used for intensity
detection, but it could be difficult (or even not available) to
implement in some applications, e.g., non-visible bandwidths or low
light levels.

Recently, ghost diffraction (GD) with structured illumination
and a single-pixel detector''”"” has emerged as an easy-to-
implement approach. The GD was initially realized with entangled
photons generated by spontaneous parametric downconversion
in quantum domain.'""” Subsequently, experiments of GD
with pseudo-thermal light were realized, which promoted its

development in classical domain.'”'* Optical information can be
retrieved based on the second-order correlation between a series
of illumination patterns and the realizations collected by using a
single-pixel detector.!” Advanced algorithms, e.g., differential,”’
normalized,”’ and compressed sensing,”””’ have been developed
to enhance the signal-to-noise ratio of ghost images. Furthermore,
deep learning”"”® has been applied at low samplings and could
perform properly. However, training-based deep learning requires
a large dataset for optimization and could lack the generalization
capability. To get rid of dataset constraints, an untrained neural
network (UNN)?’ was introduced”®”’ and the GD could have a
comparable performance by incorporating a physical model into
neural networks. Although the GD is promising in real-world
scenarios”’ ° (e.g., microscopy’® and communication®), the
current studies focus on developing one modality, and it is difficult
to integrate dual or multiple modalities into one optical system,
especially in complex disordered environments. It is desirable to
explore an integrated GD system to enable multiple modalities in
complex disordered environments.
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Here, we report a dual-modality GD system to simultaneously
enable high-fidelity optical data transmission and high-resolution
ghost reconstruction through complex disordered media. The UNN
is first designed to sequentially encode the pixels of a 2D image (to
be optically transmitted) into a series of random amplitude-only
patterns, and the zero-frequency component of the spectrum is
designed to be proportional to each pixel of the 2D image. The
series of generated random patterns is sequentially embedded into
a spatial light modulator (SLM) in a designed optical system. Opti-
cal wave modulated by the generated random patterns illuminates
an object, and a single-pixel detector is used to record a series of
light intensities. High-fidelity optical data retrieval can be directly
realized by using the realizations, and a high-resolution object is
also recovered, which is enhanced by using block-matching and
3D filtering (BM3D) and UNN, regularized by an explicit denoiser
(UNN-RED). A series of optical experiments are conducted in
complex disordered environments, and the experimental results
verify effectiveness and robustness of the designed dual-modality
GD system.

Il. METHODS

In the designed dual-modality GD system, the pixels of a trans-
mitted 2D grayscale image with 128 x 128 pixels are first encoded
into a series of random amplitude-only patterns using a UNN. The
generation of random amplitude-only patterns is shown in Fig. 1(a).
A uniformly distributed random input is fed into a convolutional
neural network with U-net architecture,” and an amplitude-only
pattern P(m,n) with 128 x 128 pixels can be generated as an output.
Then, the zero-frequency component of the Fourier spectrum of the
output pattern P is extracted and scaled by a magnification factor
MF (e.g., 5000) in order to generate a value H; described by

1
Hi = m X FT[Pi(m!n)](0,0)’ (1)

where i = 1,2, ..., K, K denotes the total number of pixels to be
encoded, and FT denotes Fourier transform. To enable H; being the
Zero
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same as original pixel G; of the 2D image to be transmitted, mean
squared error (MSE) is employed as a loss function, described by

Loss = |Gi — H; ||2 2)

After the optimization, the zero-frequency component of the
Fourier spectrum of pattern P; can be proportional to the pixel Gi.
The above-mentioned process is repeated until all pixels of the 2D
image are encoded into random amplitude-only patterns.

Since the probability distributions of random patterns gen-
erated by the UNN are inconsistent with the light source,” the
transmission quality could be significantly affected. Furthermore,
noise could be inevitably induced by complex disordered media,
preventing a direct application of the generated patterns. To over-
come this challenge, a strategy is further designed, as shown in
Fig. 1(b). To align probability distributions of the generated pat-
terns with Gaussian, a zero-mean Gaussian image is used to be
superimposed with each generated pattern. Therefore, probability
distribution of the pattern can be modified without affecting its orig-
inal zero-frequency component in a Fourier domain. A differential
approach is also employed to suppress noise. Each pattern is further
divided, i.e., (1+ P)/2 and (1 — P)/2. Finally, a shuffle operation is
applied to produce randomized illumination patterns.

A schematic experimental setup for the proposed dual-
modality GD system is shown in Fig. 2(a). A green laser (MGI-III-
532-50 mW) with a wavelength of 532.0 nm and a peak output power
0f 50.0 mW is used. The laser beam is expanded by using an objective
lens with a 40x magnification and then collimated. The collimated
beam is reflected by a mirror and then illuminates the generated
patterns embedded into SLM (Holoeye, LC-R720) with a pixel pitch
of 20.0 ym. A 4f system is designed to project the patterns onto an
object, e.g., USAF 1951 resolution target. The lenses L1 and L2 in
the 4f system have a focal length of 50.0 mm. A water tank with a
dimension of 100.0 mm (length), 200.0 mm (width), and 300.0 mm
(height) is placed in the optical path and is filled with 4000 ml of
clean water. To create a dynamic disordered environment, 15 ml
skimmed milk diluted with 1000 ml clean water is kept dropping
into water tank. A rotator is used to keep operating at 600.0 revo-
lutions per minute (rpm) to create dynamic scattering. Only one set
of realizations is recorded by using a single-pixel silicon photodiode
(Thorlabs, PDA100A2).

In dynamic disordered environments,* temporally varied scal-
ing factors lead to inaccurate data retrieval and object reconstruc-
tion. Here, a fixed reference pattern R(m,n) is applied to correct
the series of dynamic scaling factors. The reference pattern is used
just before each generated illumination pattern. When the reference
pattern and illumination patterns are alternately and sequentially
displayed by SLM, the realizations can be described by

- o - - (- b=y ] RO, ®
Gaussian (1-P)2 (1-P)2 1
’ ; Bii =ya ff 5[1 + P;j(m,n)|dmdn, (4)
B = Fir ff R(m,n)dmdn, (5)
FIG. 1. (a) Generation of random amplitude-only patterns using a UNN, and (b)
Gaussian distribution and a differential approach. A zero-mean Gaussian image is 1
obtained by subtracting its mean from a Gaussian map. Bir = yi /f 2 [1 - Pi(m,n)]dmdn, (6)
APL Mach. Learn. 2, 036114 (2024); doi: 10.1063/5.0222851 2,036114-2

© Author(s) 2024

1%:0€:80 G20Z Joquisides G0


https://pubs.aip.org/aip/aml

APL Machine Learning ARTICLE

@

pubs.aip.org/aip/aml

Rotator

(b)

Ze

The
realizations

realizations  |mmp

Corrected
in Eq. (12)

Reconstruction A two-step
in Eq. (13) }"[

process

FIG. 2. (a) Schematic experimental setup for the proposed dual-modality GD system through complex disordered media. OL: objective lens; SPD: single-pixel detector; L1
and L2: lenses. (b) A schematic of the proposed dual-modality GD system. With one set of collected realizations, the transmitted data can be retrieved in Eq. (7), and the
corrected realizations for imaging can be obtained in Eq. (12). For data transmission, a normalization operation is further performed, and a series of the normalized data are
reshaped into a 2D image. For optical imaging, a coarse image is reconstructed in Eq. (13), followed by a two-step process.

respectively, where B and Bi, denote single-pixel light intensities
corresponding to the reference pattern, Bi; and Bj; denote single-
pixel light intensities corresponding to the illumination patterns
(1+P;)/2 and (1 - P;)/2, respectively, and yiryi1,Jir.yi2 denote
scaling factors. In the developed dual-modality GD system, opti-
cal data transmission is described in Egs. (3)-(6). As shown in
Fig. 1(a), each pixel to be transmitted is first encoded. When optical
wave modulated by the generated pattern propagates in free space,
each portion of optical wave can carry information according to the
Huygens-Fresnel principle. In the optical channel, the object can be
regarded as a disordered medium. Although only a portion of optical
wave propagates, it still carries enough information. It can be con-
sidered that the object has no influence on optical data transmission
and retrieval.
At the receiving end, data retrieval can be described by
B2t B2 ?)
Bir Bir
where B; denotes the retrieved data. Adjacent scaling factors, e.g., y,,
and ¥;p»> €an be assumed to be the same due to the short time interval.
In the developed dual-modality GD system, when optical
imaging is considered, the same set of realizations recorded at the
receiving end can be re-described by

Bj, :ﬁirf R(m,n)O(m,n)dmdn, (8)

Bj = Pa ff %[1 + Pi(m,n)]O(m,n)dmdn, 9)

Bj, =BirffR(m,n)O(m,n)dmdn, (10)

Bj = Bi ff %[1 — Pi(m,n)]O(m,n)dmdn, (11)

where O(m,n) denotes an object and fir, il,/?,-,,ﬁg denote scaling
factors.
Therefore, the corrected realizations can be described by

. B, B
Bi=2L_ 22 (12)
Bir Bir

Then, the object can be reconstructed by
O(m,n) = ((B - (B))[P(m,n) - (P(m,n))]), (13)

where O(m,n) denotes a reconstructed ghost image and (-) denotes
an ensemble average over the total number of realizations. The
recovered ghost image in Eq. (13) suffers from noise. To address this
issue, a two-step process for quality enhancement is implemented.
BM3D" is first utilized to suppress noise in the reconstructed
ghost image. Then, the filtered ghost image is fed into a designed
convolutional neural network (UNN-RED*!) to reconstruct a high-
quality ghost image. Alternating directions method of multipli-
ers (ADMM)* is employed to facilitate the optimization of the
parameters within the neural network and the explicit denoiser,
since a direct differentiation of the explicit denoiser will lead to a

APL Mach. Learn. 2, 036114 (2024); doi: 10.1063/5.0222851
© Author(s) 2024

2,036114-3

1%:0€:80 G20Z Joquisides G0


https://pubs.aip.org/aip/aml

APL Machine Learning ARTICLE

failure in backpropagation. The optimization process in UNN-RED
can be described by

0" = argmin{H[ PU@(O) —B‘

z+a||x_ug(0)_u||j}, (14)
xje1 = x5 —afnlx - f(x)] +A[x - Up(O) —u]},  (15)

Uiyl = Uj — X + U@(O), (16)

where Uy denotes the convolutional neural network with parameters
0,0 denotes the parameters after optimization, A and 7 denote
free parameters to be chosen (e.g., 0.5), x is initialized as 0 in
Eq. (13) to be updated in Eq. (15), u denotes a Lagrange multiplier
vector updated in Eq. (16) and initially set to zero, j denotes the
iteration index, a denotes a step size for the steepest descent and
is defaulted as 1, and f(-) denotes an explicit denoiser function,
e.g., non-local means (NLM).” The NAFNet"* with one block is
adopted for Uyp. It can be found in Eq. (14) that a physical model
based on ghost imaging has been integrated into UNN-RED. After
optimization, a high-quality ghost image can be reconstructed, i.e.,
image (x — u). The UNN-RED is implemented by using NIVIDIA
GeForce 1080 Ti GPU, and ADAM optimizer” with a learning
rate of 0.001 is used. The aforementioned two-step enhancement
process does not require any datasets or labels. A schematic of the
proposed dual-modality GD system is shown in Fig. 2(b). In this
study, supervised neural networks could not be very practical, since
precise pixel encoding is requested and creating comprehensive
datasets is difficult. Therefore, UNN is designed and applied in this
study, and the usage of UNN addresses the challenge to enable data
transmission and object reconstruction with its dataset-independent
characteristic.

lll. RESULTS AND DISCUSSION
A. Different 2D images to be optically transmitted

To verify the developed dual-modality GD system, different
2D grayscale images are optically transmitted in Fig. 2(a) and are
individually encoded into a series of random amplitude-only
patterns using the designed UNN. The generated patterns are
sequentially displayed by SLM to illuminate an object (ie.,
USAF 1951 resolution target) through disordered media. Figure 3
shows the experimental results in the proposed dual-modality GD
system through static and dynamic disordered media, respectively.
In static disordered environments, the experimentally retrieved data
are shown in Figs. 3(a)-3(d), and the reconstructed ghost images
are shown in Figs. 3(e)-3(h). Quality of the experimentally retrieved
images is quantitatively evaluated by using peak signal-to-noise ratio
(PSNR) and structural similarity index measure (SSIM).** As shown
in Figs. 3(a)-3(d), the retrieved data have high PSNR and high SSIM,
and it is demonstrated that the proposed dual-modality GD system
enables high-fidelity image transmission.

To illustrate the quality of the retrieved images, the pixels
along the 30th row of the retrieved images shown in Figs. 3(a) and
3(b) are shown in Figs. 4(a) and 4(b), respectively. It is demon-
strated that the experimentally retrieved data overlap with the

pubs.aip.org/aip/aml

FIG. 3. Experimental results: (a)-(d) the retrieved 2D images in static disordered
media. PSNR values are 39.27, 40.25, 39.12, and 38.24 dB, and SSIM values
are 0.9975, 0.9884, 0.9867, and 0.9884; (e)—(h) the reconstructed objects in static
disordered media with CNR of 24.22, 24.83, 28.16, and 25.02, respectively; (i}—(l)
the retrieved 2D images in dynamic disordered media. PSNR values are 39.71,
38.62, 39.09, and 40.16 dB, and SSIM values are 0.9973, 0.9810, 0.9899, and
0.9877; (m)—(p) the reconstructed objects in dynamic disordered media with
CNR of 23.53, 21.09, 23.68, and 20.67, respectively. The size of the recon-
structed object images is 128 x 128 pixels. For CNR calculations, signal part and
background part are shown in Fig. S1 (see the supplementary material).

original data. PSNR values of Figs. 4(a) and 4(b) are 39.75 and
39.39 dB, respectively. MSE values are 1.06 x 107* and 1.15 x 1074,
respectively. The high PSNR and low MSE demonstrate that the
proposed optical system is feasible and robust for optically trans-
mitting 2D grayscale images. Contrast-to-noise ratio (CNR)" ™" is
calculated to evaluate quality of the reconstructed ghost images. In
Figs. 3(e)-3(h), the reconstructed ghost images have high CNR. It
is demonstrated that the proposed dual-modality GD system can
reconstruct a high-quality object at the same time. Here, element
5 in Group 3 is the finest resolvable feature, and high spatial res-
olution of 78.74 um is achieved. The experimental results shown
in Figs. 3(a)-3(h) demonstrate that the proposed dual-modality
GD system can simultaneously realize high-fidelity optical data
transmission and high-resolution object reconstruction in static
disordered environments.

When optical experiments in dynamic disordered environ-
ments are conducted, optical transmission and imaging results
are shown in Figs. 3(i)-3(p). In Figs. 3(i)-3(l), the experimentally
retrieved 2D images are of high fidelity. Typical comparisons using
the retrieved data at the 30th row of Figs. 3(k) and 3(l) are shown
in Figs. 4(c) and 4(d). PSNR of the data in Figs. 4(c) and 4(d) is
40.87 and 40.31 dB, respectively. MSE values are 8.19 x 10~ and
9.31 x 1077, respectively. It is experimentally demonstrated that the
retrieved data are in accordance with the original data. The recon-
structed ghost images are shown in Figs. 3(m)-3(p), and element
5 in Group 3 is well-resolved. It is demonstrated that high spatial
resolution of 78.74 ym is achieved in the proposed dual-modality
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FIG. 4. (a)-(d) Comparisons between the pixels along the 30th row of the experimentally retrieved images shown in Figs. 3(a), 3(b), 3(k), and 3(/) and those of original images.
Original data refer to a row of the 2D grayscale image to be transmitted and are encoded into a series of random patterns via the UNN.

GD system through dynamic disordered media. Dual modalities, i.e.,
high-fidelity optical data transmission and high-resolution object
reconstruction, are realized in the proposed optical system through
complex disordered media.

B. Different objects to be reconstructed

A 2D image (“butterfly”) is encoded into a series of random
amplitude-only patterns, which are sequentially used to illuminate
an object, and different objects (i.e., “1X,” “95,” “AF,” and “Triple-
bar”) are individually tested in the optical path. Static (clean) water
and dynamic (turbid) water are applied in Fig. 2(a). In the optical
setup with static water, the experimental results are shown in
Figs. 5(a)-5(h). It is shown in Figs. 5(a)-5(d) that the retrieved
images are of high fidelity. PSNR values are higher than 40.0 dB,
and SSIM values are close to 1. The comparisons in the 30th
row of Figs. 5(a) and 5(b) are shown in Figs. 6(a) and 6(b).
PSNR values are 41.00 and 43.45 dB, respectively. MSE values are
7.94 x 107° and 4.52 x 107°, respectively. It is experimentally
demonstrated that high-fidelity data transmission can always be
realized, when different objects are placed in Fig. 2(a). The recon-
structed objects are shown in Figs. 5(e)-5(h). It can be seen that
the recovered objects are of high quality with CNR values higher
than 33.0.

In dynamic disordered environments, the experimental results
are shown in Figs. 5(i)-5(p). In Figs. 5(i)-5(1), high PSNR and high
SSIM are achieved. The pixels along the 30th row of the retrieved
2D images in Fig. 5(k) and 5(I) are shown in Figs. 6(c) and 6(d),
respectively. PSNR values of the experimentally retrieved data in
Figs. 6(c) and 6(d) are 38.70 and 40.23 dB, respectively. MSE values
are 1.35 x 10™* and 9.49 x 107>, respectively. It is demonstrated that
the retrieved data are of high fidelity in dynamic disordered envi-
ronments. The reconstructed objects are shown in Figs. 5(m)-5(p).

The reconstructed images render detailed object information with
high visibility. It is experimentally verified that the proposed
dual-modality GD system has high robustness to simultaneously
reconstruct a high-quality object and retrieve high-fidelity data using

() gmmmen (0) g (d)g

(g)lﬂi@E

(e)

() g g (

(m) (n) (0) (p)
Rl =

FIG. 5. Experimental results: (a)—(d) the retrieved 2D transmitted images in static
disordered media. PSNR values are 41 .51,41.49,41.21, and 40.19 dB, and SSIM
values are 0.9979, 0.9982, 0.9980, and 0.9972; (e)-(h) the reconstructed objects
in static disordered media with CNR of 33.22, 40.11, 36.26 and 39.71, respec-
tively; (i)~(I) the retrieved 2D transmitted images in dynamic disordered media.
PSNR values are 39.96, 39.91, 38.12, and 38.51 dB, and SSIM values are 0.9976,
0.9978, 0.9970, and 0.9969; (m)-(p) the reconstructed objects in dynamic disor-
dered media with CNR of 30.66, 22.19, 25.45 and 25.82, respectively. For CNR
calculations, the signal part and background part are shown in Fig. S1 (see the
supplementary material).
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FIG. 6. (a)—(d) Comparisons between the pixels along the 30th row of the experimentally retrieved images shown in Figs. 5(a), 5(b), 5(k), and 5() and those of the original

image.

only one set of realizations in dynamic and complex disordered
media.

C. Different sampling ratios

The proposed optical system is further verified through dis-
ordered media at different sampling ratios. Imaging through static
(clean) water and dynamic (turbid) water is conducted, and the
experimental results are shown in Fig. 7 when sampling ratios of
12.2%, 24.4%, 36.6%, 48.8%, 61.0%, 73.2%, 85.4%, and 97.6% are
used, respectively. The comparisons in Fig. 7 show effectiveness

12.2%  24.4%  36.6%

1%|1%

48.8%

of the proposed two-step enhancement approach. It is shown in
Figs. 7(a) and 7(b) that the reconstruction quality is dramatically
enhanced with the higher sampling ratio. With the developed
two-step enhancement, object images with the higher visibility
can always be obtained. When the sampling ratio is not smaller
than 24.4%, the reconstructed ghost images can contain clear
information. When dynamic and turbid water is considered, the
experimental results are shown in Figs. 7(c) and 7(d). With
the developed two-step enhancement, the visibility is significantly
enhanced and noise is highly suppressed, as shown in Fig. 7(d). It is
observed that the proposed optical system can recover high-quality

61.0% 732% 854% 97.6%

(d)
EEEEEEEE

FIG. 7. Experimental results at different sampling ratios: (

a) without the two-step enhancement in static environments, (b) with the two-step enhancement in static

environments, (c) without the two-step enhancement in dynamlc environments, and (d) with the two-step enhancement in dynamic environments.
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static disordered environments, (c) without the two-step enhancement in dynamic disordered environments, and (d) with the two-step enhancement in dynamic disordered

environments.

objects at low sampling rates (e.g., 24.4%) in dynamic disordered
environments. In the proposed dual-modality GD system, the
sampling ratio is constrained by the length of the transmitted
data. The experimental results in Fig. 7 demonstrate that high-
quality objects can still be reconstructed in complex disordered
environments even when the length of the transmitted data is
small.

In Figs. 8(a)-8(d), CNR is calculated to quantitatively illus-
trate the quality of the reconstructed objects at different sampling
ratios. In Figs. 8(a) and 8(b), CNR values of the reconstructed object
images have similar variation trends, steadily increasing with the
higher sampling ratio. CNR values of the reconstructed objects with
BM3D and UNN-RED, as shown in Fig. 8(b), are much higher than
those without enhancement as shown in Fig. 8(a). When optical
experiments in dynamic turbid water are conducted, the trends
of CNR variations are similar, as shown in Figs. 8(c) and 8(d).
The average CNR values of the reconstructed object images
without enhancement are in a range of 0.34-1.56, and the average
CNR values with the two-step enhancement increase from
5.27 to 24.17.

IV. CONCLUSIONS

We have reported a dual-modality GD system using a UNN,
simultaneously enabling high-fidelity data transmission and high-
resolution object reconstruction through complex disordered media
using only one set of realizations. A series of random amplitude-only
patterns are generated to carry information of a 2D grayscale image
(to be optically transmitted) using a UNN. The generated random
patterns are embedded into SLM to modulate optical wave, and a

series of single-pixel light intensities are recorded at the receiving
end. With only one set of realizations, high-fidelity data information
can be retrieved, and a high-resolution and high-visibility object can
be recovered. A series of optical experiments have been conducted
to verify the proposed dual-modality GD system. It is demonstrated
that a dual-modality GD system can be realized in a complex disor-
dered environment. The proposed approach could open an avenue
for the development of Al-driven multi-modality optical systems in
complex disordered environments.

SUPPLEMENTARY MATERIAL

Additional information supporting the findings of this work
is provided as a separate file. The supplementary material includes
information about the contrast-to-noise ratio (CNR).
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