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ON THE EQUILIBRIUM STRATEGIES FOR TIME-INCONSISTENT
PROBLEMS IN CONTINUOUS TIME\ast 
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Abstract. In a continuous-time setting, the existing notion of equilibrium strategies for time-
inconsistent problems in the literature, referred to as weak equilibrium, is not fully aligned with the
standard definition of equilibrium in game theory in that the agent may be willing to deviate from
a given weak equilibrium strategy. To address this issue, [Y.-J. Huang and Z. Zhou, Math. Oper.
Res., 46 (2021), pp. 428--451] propose the notion of strong equilibrium for an infinite-time stochastic
control problem in which an agent can control the generator of a time-homogeneous, continuous-time,
finite-state Markov chain at each time. We study weak and strong equilibria in a general diffusion
framework, provide necessary conditions for a strategy to be a strong equilibrium, and prove that
strong equilibrium strategies do not exist for three investment and consumption problems. Finally, we
propose a new notion of equilibrium strategies, referred to as regular equilibrium, show that it implies
weak equilibrium, provide a sufficient condition under which a weak equilibrium strategy becomes a
regular equilibrium, and show that this condition holds for many time-inconsistent problems.

Key words. stochastic control, time-inconsistency, continuous-time setting, equilibrium strate-
gies, portfolio selection
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1. Introduction. When making dynamic decisions, the decision criteria of an
agent at different times may not align with each other, leading to time-inconsistent
behavior: an action that is optimal under the decision criterion today may no longer
be optimal under the decision criterion at a certain future time. The agent's behavior
in the presence of time-inconsistency then depends on whether she is aware of the
inconsistency and whether she can commit her future selves to a strategy that is
optimal under the criterion today, leading to three different types of behavior: naive,
precommitted, and equilibrium strategies; see, for instance, [37], [34], and [1]. In
particular, an equilibrium strategy is a rational choice of the agent if she is fully
aware of time-inconsistency, has no control of her future selves, and thus considers
her selves at different times to be different players in a sequential game.

When the agent makes decisions discretely in time, equilibrium strategies are well
defined and fully discussed in the literature. More precisely, following the setting in
[7], consider an agent who has a planning horizon with a finite end date T and makes
decisions at time t \in \{ 0, 1, . . . , T  - 1\} . The agent's decision drives a Markov state
process, and the agent's decision criterion at time t is to maximize an objective func-
tion J(t, x;u), where x stands for the Markovian state at that time and u represents
the agent's strategy. The agent considers Markovian strategies, so u is a function of
time s \in \{ 0, 1, . . . , T  - 1\} and the Markovian state at that time. A strategy \^u is an
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EQUILIBRIUM FOR TIME-INCONSISTENT PROBLEMS 3861

equilibrium policy if at any time t \in \{ 0, 1, . . . , T  - 1\} and in any state x at that time,
any deviation of the agent's self at time t from \^u(t, x), given that her future selves
still follow \^u, is suboptimal, i.e.,

J(t, x;ut,u) \leq J(t, x; \^u)(1.1)

for any possible action u the agent's self at time t can take, where ut,u(s, x) := u for
s = t and ut,u(s, y) := \^u(s, y) for s \not = t and any state y.1 As noted in Remark 2.6
of [7], the above game-theoretic definition of equilibrium strategies is consistent with
one based on backward induction; for the latter definition, see, for instance, [32], [34],
and [1].

Extending the notion of equilibrium strategies from the above discrete-time set-
ting to a continuous-time setting is nontrivial because in the latter, the change of the
agent's action at one instant of time does not affect the state process and thus usually
has no effect on the agent's objective function either. Formalizing the idea in [37], the
authors of [13] assume that the agent's self at each time t can implement her strategy
in an infinitesimally small, but positive, time period, e.g., [t, t+ \epsilon ); as such, her action
has an impact on the state process. Later, this idea was extended to a stochastic
setting in [17] and [6]. Formally, we can define ut,\epsilon ,\bfa (s, y) := a(s, y) for s \in [t, t + \epsilon )
and ut,\epsilon ,\bfa (s, y) := \^u(s, y) for s /\in [t, t + \epsilon ), where a stands for the strategy that the
agent's self at time t chooses to implement in the period [t, t+ \epsilon ). The authors of [13],
[17], and [6] define \^u to be an equilibrium policy if the following holds for any time
t \in [0, T ), Markovian state x, and action a:

\Delta \^\bfu (t, x;a) := lim sup
\epsilon \downarrow 0

J(t, x;ut,\epsilon ,\bfa ) - J(t, x; \^u)

\epsilon 
\leq 0.(1.2)

As noted in Remark 3.5 of [5], condition (1.2) does not necessarily imply

J(t, x;ut,\epsilon ,\bfa ) \leq J(t, x; \^u)(1.3)

for sufficiently small \epsilon ; the latter condition is a natural definition of equilibrium strate-
gies from the game-theoretic point of view and is a natural counterpart of the condi-
tion (1.1) in the discrete-time setting. However, nearly all studies of time-inconsistent
problems in the literature still use the first-order condition (1.2) to define equilibrium
strategies. The only exception is [29], which considers an infinite-time stochastic con-
trol problem in which an agent can control the generator of a time-homogeneous,
continuous-time, finite-state Markov chain at each time to maximize the expected
running reward in an infinite horizon. The authors exemplify that equilibrium strate-
gies defined through the first-order condition (1.2), named weak equilibrium, are not
necessarily a strong equilibrium that is defined through the direct comparison of ob-
jective function values as in (1.3). The authors assume that at each time the agent

1Here, consistent with most studies on time-inconsistency in the literature, at each time t, the
agent's action is contingent on the value of a certain state process, which itself depends on the agent's
action in the past. As such, although the agent's future self follows a given strategy \^u, the agent's
action u today affects the agent's action in the future indirectly through the value of the state process
in the future. In [37], the authors assume that the agent's action at each time is not contingent on
any state process, and this formulation has been used in [22, 23] as well. Such a formulation may
not be desirable in some settings. For instance, in the problem studied by [37], an agent chooses the
amount of consumption at each time in a given period, and the sum of the consumption is fixed at
a given budget level. In the definition of an equilibrium policy, if the agent's consumption amount
today does not affect her consumption amount in the future, the agent today actually does not have
any freedom to choose the consumption amount due to the budget constraint.
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3862 XUE DONG HE AND ZHAO LI JIANG

can implement a time-homogeneous strategy only, provide a characterization of the
strong equilibrium strategies, and prove the existence of strong equilibrium under
certain conditions.

The framework in [29] cannot be applied to most time-inconsistent problems in
the literature, such as the mean-variance portfolio selection problems in [8] and [2]
and the optimal consumption-investment problem in [17], for three reasons. First, [29]
assumes the state process to be a finite-state Markov chain, while the state processes in
the above problems are diffusions. Second, the objective function in [29], namely the
expected running reward, cannot account for mean-variance criteria in the problems in
[8] and [2]. Third, [29] considers the infinite-time setting and thus time-homogeneous
control strategies only, but in all of the above problems, the time horizon is finite,
and the agents in those problems can take time-inhomogeneous strategies. To address
the above issues, in the present paper we consider a diffusion framework and study
weak and strong equilibria in this framework. This framework is sufficiently general
to include the problems in [8], [2], and [17] as well as an optimal consumption problem
with a bequest as special examples; see section 2.3.

Therefore, the issues of the possibility of an agent deviating from a weak equi-
librium and whether a strong equilibrium exists for time-inconsistent problems in
diffusion settings, albeit economically fundamental and important, remain unsolved.
In this work, we provide an answer. To this end, we first complement the existing
literature by providing a rigorous treatment of weak equilibrium. In particular, we
highlight two features in the definition of weak equilibrium that are largely overlooked
in the literature. The first is the set, denoted as D, of alternatives a that the agent's
self at time t can implement in the period [t, t + \epsilon ). The existing studies on time-
inconsistent problems do not agree on the choice of the set D: some assume it to be
the set of all constant strategies, and others assume it to include nonconstant strate-
gies as well. It is, however, unclear whether the choice of D has any real impact on
determining whether a strategy is an equilibrium. The second is the set of states in
which the actions of the agent's future selves are relevant to the agent's self today. The
studies in the literature assume that the agent today is concerned about the actions
of her future selves in all states, so a strategy is an equilibrium only if she will not de-
viate from it at all times and in all states. We argue that the agent's self today is not
concerned about whether her future selves deviate from a given strategy in the states
that cannot be reached under this strategy. Thus, in defining an equilibrium strategy,
we demand the agent at each time not deviate from this strategy in reachable (not
all) states. See the detailed discussion in section 3.1. After formalizing the definition
of weak equilibrium, we prove a sufficient and necessary condition for a strategy to
be a weak equilibrium and show that whether a strategy is a weak equilibrium does
not depend on the choice of D. We further apply this condition to find certain weak
equilibrium strategies for the problem of optimal consumption with a bequest and
to rigorously verify that the strategies found in [2] and [17] for the problems studied
therein are indeed weak equilibrium.

We then prove two necessary conditions for a strategy with certain regularity
to be a strong equilibrium, assuming that the set D of alternative strategies that
the agent at each time can switch to includes nonconstant strategies. Using these
two conditions, we prove that the problems studied in [2] and [17] and the optimal
consumption problem with a bequest do not have strong equilibrium strategies that
are smooth to a certain degree (i.e., either four-times or six-times differentiable in the
state variable). WhenD contains constant strategies only, we show that the particular
weak equilibrium strategies derived in the literature and in the present paper for the
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EQUILIBRIUM FOR TIME-INCONSISTENT PROBLEMS 3863

problem in [17] and the optimal consumption problem with a bequest are not strong
equilibria. The particular weak equilibrium derived in [2] for the problem therein,
however, is indeed a strong equilibrium when D contains constant strategies only.
This shows that whether a strategy is a strong equilibrium depends on the choice of
D, the set of alternative strategies, contrasting with the finding for weak equilibrium.

The above nonexistence result is unexpected because it contrasts with the finding
in [29] that strong equilibrium exists for an infinite-time stochastic control prob-
lem with a finite-state Markov chain. Note that in the aforementioned three time-
inconsistent problems, the model parameters are constant, the controls are uncon-
strained, and the weak equilibrium strategies that are already derived in the liter-
ature are infinitely smooth. Thus, the nonexistence of strong equilibrium for these
three problems, albeit in the class of strategies that are smooth to a certain degree,
is a strong indication that the notion of strong equilibrium is too restrictive. This
motivates us to propose a new notion of equilibrium strategies, referred to as regular
equilibrium. This notion builds on exact evaluation of the change in value caused
by deviating from a given strategy, namely (1.3), as in the notion of strong equilib-
rium, but only allows the agent to choose alternatives whose value at the current
time and state is different from that of the given strategy. We prove that regular
equilibrium implies weak equilibrium but the reverse implication is not true. Indeed,
we show that the particular weak equilibrium strategy for the optimal consumption
problem with a bequest is not a regular equilibrium. Moreover, we provide a suffi-
cient condition under which weak equilibrium implies regular equilibrium. It turns
out that this condition holds for the problems studied in [2] and [17], so the regular
equilibrium exists for these two problems. Thus, the notion of regular equilibrium is a
step forward from the notion of weak equilibrium towards a better definition of equi-
librium and is mathematically viable because existence can be established for many
time-inconsistent problems. On the other hand, the notion of weak equilibrium is still
useful: as long as the above sufficient condition holds, a weak equilibrium becomes a
regular equilibrium, so taking any alternatives that are different from the weak equi-
librium strategy at the current time and state leads to a smaller objective function
value.

To summarize, our contribution is threefold. First, we conduct a rigorous study
of weak equilibrium strategies in a diffusion framework. Second, we provide neces-
sary conditions for a strategy to be a strong equilibrium and prove the nonexistence
of strong equilibrium with sufficient regularity in three time-inconsistent problems.
Third, we propose a new notion of equilibrium strategies, which is stronger than
and in general different from the notion of weak equilibrium, and provide a sufficient
condition under which weak equilibrium strategies are also equilibria under the new
notion.

While most studies of equilibrium strategies for continuous-time control problems,
including ours, build on the localization approach as pioneered in [37] and [13], where
we compare a given strategy with one that deviates from it locally in time by either
(1.2) or (1.3), there are two alternative approaches to extending the notion of equi-
librium strategies from the discrete-time setting to the continuous-time setting. The
first one is to divide the planning horizon in the continuous-time setting into a finite
number of nonoverlapping subperiods, assume that the agent's self at the beginning
of each subperiod can control her self in this period only, and finally send the length
of each period to zero to obtain a certain strategy in the limit; see, for instance, [36],
[40], [39], [33], and [38]. Under some conditions, the limit, if it exists, is indeed a weak
equilibrium. Example 5.1 in [29] shows that such a limit is not necessarily a strong
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equilibrium.
The other approach, referred to as the fixed-point approach, is exclusively applica-

ble to optimal stopping problems because it exploits special structures of those prob-
lems. This approach employs a recursive algorithm to define equilibrium strategies:
Initially, the agent at each time decides whether to stop or not based on the pre-
committed strategy at that time, so effectively the agent would implement the naive
strategy at any time. At each time, being aware of her future selves implementing the
naive strategy, the agent would adjust her strategy today accordingly. Anticipating
such adjustment in the future, the agent's self today would further change her strat-
egy accordingly. Such a mental process continues until the strategy converges. See for
instance, [24], [25], and [11].2 Noting the possible multiplicity of the equilibrium stop-
ping strategies as defined in the fixed-point approach, [28] and [26] further consider
the optimal equilibrium stopping rule that maximizes the objective function value for
an infinite-horizon, continuous-time optimal stopping problem under nonexponential
discounting. In a very recent paper [3], the authors note that for many problems, with
the notion of equilibrium stopping strategies in the fixed-point approach, deviation
from the action of stopping to the action of continuing does not change the objective
value because in this notion the agent can change her action at one instant of time
only. Naming the above notion mild equilibrium, the authors compare it to weak
equilibrium stopping strategies that are obtained by considering optimal stopping
problems to be a special class of control problems with the control taking binary val-
ues and applying the localization approach with the first-order condition (1.2) used.
Such weak equilibrium stopping strategies have been formulated and employed by [9]
and [12]. The authors of [3] also propose strong equilibrium stopping strategies that
are defined by the localization approach with the direct comparison of objective func-
tion values as in (1.3). Assuming the objective function to be a multiplication of a
discount function and a Markov process taking values in a finite or countably infinite
state space, the authors prove that the optimal mild equilibrium stopping strategy is
a strong equilibrium strategy. Our work differs from [3] in three respects: First, the
control process in our model can take values in an arbitrary subset of the Euclidean
space. Second, the controlled state process in our model is a diffusion. Third, we
consider a general objective function that accounts for time-inconsistency arising not
only from nonexponential discounting but also from state-dependent preferences and
from nonlinear dependence on the expected terminal state, such as the mean-variance
criterion.

Our results also help to address some concerns raised in [39] on the localization
approach to time-inconsistent literature. In the last paragraph of page 4198 therein,
the authors of [39] comment that in the localization approach, it is unclear whether
the feedback strategy ut,\epsilon ,\bfa , which is obtained by pasting two feasible strategies \^u and
a, is still feasible. We define the set of feasible strategies formally and show that ut,\epsilon ,\bfa 

is indeed feasible; see section 2.2. The authors of [39] also comment that the extended

2The authors of [19] and [18] consider a piecewise step discount function in the optimal stopping
problems studied therein. With this particular discount function, there are only countably many
future selves, so the authors first assume a finite number of future selves, then apply backward
induction as in the discrete-time case, and finally send the number of future selves to infinity to
define equilibrium stopping times. As noted by the authors of [27] in their Remark 2.5, the backward
induction approach and the fixed point approach yield the same equilibrium in a finite-horizon
discrete-time setting, but they build on different types of game-theoretic thinking. Moreover, the
fixed point approach can be easily applied to the infinite-horizon setting and to the continuous-time
setting.
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Hamilton--Jacobi--Bellman (HJB) equation in [6] is derived informally. We offer a
rigorous proof in the present paper; see Theorem 3.3 and the sufficient condition in
Lemma B.2 in Appendix B for the assumption we make to derive the theorem.

Recently, the authors of [21] considered non-Markovian equilibrium strategies for
time-inconsistent problems. They define an equilibrium strategy to be one that the
agent is not willing to deviate from for a short period of time unless the deviation
leads to an incremental reward that is positively proportional to the length of the
period; see Definition 2.6 therein. Thus, their definition resembles the notion of weak
equilibrium in a Markovian setting. The authors then show that the equilibrium exists
if and only if a system of backward stochastic differential equations (BSDEs) is well
posed. The authors also consider strict equilibrium, which is analogous to the notion
of strong equilibrium, and argue that the BSDE system can also characterize strict
equilibrium provided that a certain condition holds; see Remarks 2.7(iv), 3.4, and 6.4
therein. The nonexistence of strong equilibrium as shown in the present paper implies
that the condition in [21] does not hold in general. Indeed, as we will show in Theorem
3.3, the rate of incremental reward if the agent deviates from \^u to an alternative a
is zero if a and \^u take the same value at the current time and state, and this fails
the condition in [21]. The authors of [21] also comment in their Remark 2.7(v) that
one can define the so-called f -equilibrium by assuming that the incremental reward
of deviating from the equilibrium strategy is positively proportional to a function f
of the length of the period. The derivation of the two necessary conditions of the
strong equilibrium in the present paper is based on a certain analysis that is related
to the choice of f to be a quadratic function and a cubic function, respectively. Thus,
the nonexistence of strong equilibrium derived in the present paper implies that the
f -equilibrium might not exist in general.

Finally, let us emphasize that the focus of the present paper is to show the nonex-
istence of strong equilibrium and thus to motivate the notion of regular strong equi-
librium, rather than to derive a general existence result for weak equilibrium. For the
latter, there is some recent advancement; see, for instance, [39], [38], and [21].

The remainder of the paper is organized as follows. In section 2 we introduce the
general diffusion framework of time-inconsistent stochastic control problems and ex-
emplify it by the three investment and consumption problems, including those studied
in [2] and [17] and an optimal consumption problem with a bequest. In section 3, we
define the notion of weak equilibrium and prove a sufficient and necessary condition
for a strategy to be a weak equilibrium. In section 4, we define the notion of strong
equilibrium and provide two necessary conditions for a strategy to be a strong equi-
librium. We then prove the nonexistence of strong equilibrium for the above three
investment and consumption problems. In section 5, we define the notion of regular
equilibrium and prove a sufficient condition under which a weak equilibrium strategy
is a regular equilibrium. Section 6 is the conclusion. A lemma on stochastic differ-
ential equations (SDEs) and some sufficient conditions for the assumptions made in
this paper are presented in the appendices. All the proofs are placed in the online
supplementary materials available at http://ssrn.com/abstract=3881455.

2. The model.

2.1. Notation. We introduce some notation first. Throughout the paper, the
state space \BbbX is either (0,+\infty ) or \BbbR n, the n-dimensional Euclidean space. Denote the
Euclidean norm of a vector x as \| x\| . By default, x \in \BbbR n denotes a column vector.
When a vector x is understood as a row vector, we write it as x \in \BbbR 1\times n. Denote by
A\top the transpose of matrix A. Denote by tr(A) the trace of a square matrix A. For

D
ow

nl
oa

de
d 

09
/0

9/
25

 to
 1

58
.1

32
.1

61
.1

80
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

http://ssrn.com/abstract=3881455


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3866 XUE DONG HE AND ZHAO LI JIANG

a differentiable function \xi that maps x \in \BbbR m to \xi (x) \in \BbbR n, its derivative, denoted as
\xi x(x), is an n-by-m matrix with the entry in the ith row and jth column denoting
the derivative of the ith component of \xi with respect to the jth component of x. In
particular, for a mapping \xi from \BbbR m to \BbbR , \xi x(x) is an m-dimensional row vector, and
we further denote by \xi xx the Hessian matrix.

Consider \xi that maps (z, x) \in \BbbZ \times \BbbX to \xi (z, x) \in \BbbR l, where \BbbZ is a certain set. \xi 
is locally Lipschitz in x \in \BbbX , uniformly in z \in \BbbZ , if there exist a sequence of compact
sets \{ \BbbX k\} k\geq 1 with \cup k\geq 1\BbbX k = \BbbX and a sequence of positive numbers \{ Lk\} k\geq 1 such
that for any k \geq 1, \| \xi (z, x)  - \xi (z, x\prime )\| \leq Lk\| x  - x\prime \| \forall z \in \BbbZ , x, x\prime \in \BbbX k. \xi is global
Lipschitz in x \in \BbbX , uniformly in z \in \BbbZ , if there exists constant L > 0 such that
\| \xi (z, x)  - \xi (z, x\prime )\| \leq L\| x  - x\prime \| \forall z \in \BbbZ , x, x\prime \in \BbbX . In the case \BbbX = \BbbR n, \xi is of linear
growth in x \in \BbbX , uniformly in z \in \BbbZ , if there exists L > 0 such that \| \xi (z, x)\| \leq 
L(1 + \| x\| )\forall z \in \BbbZ , x \in \BbbX . In the case \BbbX = (0,+\infty ), \xi has a bounded norm in x \in \BbbX ,
uniformly in z \in \BbbZ , if there exists L > 0 such that \| \xi (z, x)\| \leq Lx\forall z \in \BbbZ , x \in \BbbX . \xi is
of polynomial growth in x \in \BbbX , uniformly in z \in \BbbZ , if there exist L > 0 and integer
\gamma \geq 1 such that \| \xi (z, x)\| \leq L (1 + \varphi 2\gamma (x)) \forall z \in \BbbZ , x \in \BbbX , where \varphi 2\gamma (x) = \| x\| 2\gamma 
when \BbbX = \BbbR n and \varphi 2\gamma (x) = x2\gamma + x - 2\gamma when \BbbX = (0,+\infty ).

Here and hereafter, for a derivative index \alpha = (\alpha 1, . . . , \alpha n), where \alpha 1, . . . , \alpha n are
nonnegative integers, denote | \alpha | := \alpha 1 + \cdot \cdot \cdot + \alpha n. Fix integer r \geq 0. For \xi that
maps x \in \BbbX to \xi (x) \in \BbbR l, we say \xi \in \frakC r(\BbbX ) if \xi (x) has up to rth order continuous

derivatives in x \in \BbbX . We say \xi \in \=\frakC r(\BbbX ) if \xi \in \frakC r(\BbbX ) and \partial \alpha \xi (x)
\partial x\alpha := \partial \alpha 1+\cdot \cdot \cdot +\alpha n\xi (x)

\partial x
\alpha 1
1 ...\partial x\alpha n

n
is

of polynomial growth in x \in \BbbX for any derivative index \alpha with | \alpha | \leq r. Also denote
\frakC 0(\BbbX ) and \=\frakC 0(\BbbX ) as \frakC (\BbbX ) and \=\frakC (\BbbX ), respectively.

Fix integers r \geq 0, q \geq 2r, and real numbers a < b. Consider \xi that maps
(t, x) \in [a, b]\times \BbbX to \xi (t, x) \in \BbbR l. We say \xi \in \frakC r,q([a, b]\times \BbbX ) if for any derivative index \alpha 

with | \alpha | \leq q - 2j and j = 0, . . . , r, the partial derivative \partial j+\alpha \xi (t,x)
\partial tj\partial x\alpha := \partial j+\alpha 1+\cdot \cdot \cdot +\alpha n\xi (t,x)

\partial tj\partial x
\alpha 1
1 ...\partial x\alpha n

n

exists for any (t, x) \in (a, b)\times \BbbX and can be extended to and continuous on [a, b]\times \BbbX .
We say \xi \in \=\frakC r,q([a, b] \times \BbbX ) if \xi \in \frakC r,q([a, b] \times \BbbX ) and \partial j+\alpha \xi (t,x)

\partial tj\partial x\alpha is of polynomial
growth in x \in \BbbX , uniformly in t \in [a, b], for any derivative index \alpha with | \alpha | \leq q  - 2j
and j = 0, . . . , r. Also denote \frakC 0,0([a, b]\times \BbbX ) and \=\frakC 0,0([a, b]\times \BbbX ) as \frakC ([a, b]\times \BbbX ) and
\=\frakC ([a, b]\times \BbbX ), respectively. We say \xi \in \frakC \infty 

b ([a, b]\times \BbbX ) if \xi (t, x) is bounded and infinitely
differentiable in (t, x) \in [a, b]\times \BbbX with bounded derivatives.

Fix certain set D \subseteq \BbbR m and certain set \BbbZ . Consider \xi that maps (z, x, u) \in 
\BbbZ \times \BbbX \times D to \xi (z, x, u) \in \BbbR l. \xi (z, x, u) is locally Lipschitz in (x, u) \in \BbbX \times D, uniformly
in z \in \BbbZ , if there exist a sequence of compact sets \{ \BbbX k\} k\geq 1, \{ Dk\} k\geq 1 with \cup k\geq 1\BbbX k =
\BbbX ,\cup k\geq 1Dk = D and a sequence of positive numbers \{ Lk\} k\geq 1 such that for any k \geq 1,
\| \xi (z, x, u)  - \xi (z, x\prime , u\prime )\| \leq Lk[\| x  - x\prime \| + \| u  - u\prime \| ]\forall z \in \BbbZ , x, x\prime \in \BbbX k, u, u

\prime \in Dk. It
is of polynomial growth in (x, u) \in \BbbX \times D, uniformly in z \in \BbbZ , if there exist integer
\gamma \geq 1 and constant L > 0 such that \| \xi (z, x, u)\| \leq L(1 + \varphi 2\gamma (x))(1 + \| u\| 2\gamma ) for all
(z, x, u) \in \BbbZ \times \BbbX \times D.

Fix integers r \geq 0, q \geq 2r, real numbers a < b, and certain open set \~D \subseteq 
\BbbR m. Consider \xi that maps (t, x, u) \in [a, b] \times \BbbX \times \~D to \xi (t, x, u) \in \BbbR l. We say
\xi \in \frakC r,q,q([a, b]\times \BbbX \times \~D) if for any derivative indices \alpha and \beta with | \alpha | + | \beta | \leq q  - 2j

and j = 0, . . . , r, \partial j+\alpha +\beta \xi (t,x)
\partial tj\partial x\alpha \partial u\beta := \partial j+\alpha 1+\cdot \cdot \cdot +\alpha n+\beta 1+\cdot \cdot \cdot +\beta m\xi (t,x)

\partial tj\partial x
\alpha 1
1 ...\partial x\alpha n

n \partial u
\beta 1
1 ...\partial u\beta m

m

exists for any (t, x, u) \in 

(a, b) \times \BbbX \times \~D and can be extended to and continuous on [a, b] \times \BbbX \times \~D. For any
other set D \subseteq \BbbR m and \xi that maps (t, x, u) \in [a, b] \times \BbbX \times D to \xi (t, x, u) \in \BbbR l,
we say \xi \in \frakC r,q,q([a, b] \times \BbbX \times D) if \xi can be extended to [a, b] \times \BbbX \times \~D and \xi \in 
\frakC r,q,q([a, b]\times \BbbX \times \~D) for some open set \~D \supset D. Finally, we say \xi \in \=\frakC r,q,q([a, b]\times \BbbX \times D)
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if \xi \in \frakC r,q,q([a, b]\times \BbbX \times D) and \partial j+\alpha +\beta \xi (t,x)
\partial tj\partial x\alpha \partial u\beta is of polynomial growth in (x, u) \in \BbbX \times D,

uniformly in t \in [a, b], for any derivative indices \alpha and \beta with | \alpha | + | \beta | \leq q  - 2j and
j = 0, . . . , r.

Finally, denote by \=\frakC r,q
pw([0, T ] \times \BbbX ) the set of of functions \xi with the following

property: there exists a partition 0 = t0 < t1 < \cdot \cdot \cdot < tN - 1 < tN =: T of [0, T ] such
that for any i = 1, . . . , N , \xi , when restricted on [ti - 1, ti) \times \BbbX , can be extended to
[ti - 1, ti]\times \BbbX with \xi \in \=\frakC r,q([ti - 1, ti]\times \BbbX ). Note that \xi (t, x) can be discontinuous at t =
ti, i = 1, . . . , N . Define \frakC r,q

pw([0, T ]\times \BbbX ), \frakC r,q,q
pw ([0, T ]\times \BbbX \times D), and \=\frakC r,q,q

pw ([0, T ]\times \BbbX \times D)
similarly.

2.2. Time-inconsistent stochastic control problems. Consider an agent
who makes dynamic decisions in a given period [0, T ], and for any t \in [0, T ), the
agent at that time faces the following stochastic control problem:

\left\{   
max
\bfu 

J(t, x;u)

subject to dX\bfu (s) = \mu (s,X\bfu (s),u(s,X\bfu (s)))ds
+\sigma (s,X\bfu (s),u(s,X\bfu (s)))dW (s), s \in [t, T ], X\bfu (t) = x.

(2.1)

The agent's dynamic decisions are represented by u, which takes values in \BbbU , a certain

subset of \BbbR m. W (t) :=
\bigl( 
W1(t), . . . ,Wd(t)

\bigr) \top 
, t \geq 0, is a standard d-dimensional

Brownian motion, and we denote by (\scrF t)t\geq 0 the filtration generated by the Brownian
motion augmented by all null sets. The controlled diffusion process X\bfu under u takes
values in \BbbX , which as previously mentioned is set to be either (0,+\infty ) or \BbbR n. \mu and
\sigma are measurable mappings from [0, T ] \times \BbbX \times \BbbU to \BbbR n and to \BbbR n\times d, respectively,
where n stands for the dimension of \BbbX . We consider feedback strategies, so each u is
a mapping from [0, T ]\times \BbbX to \BbbU . The agent's objective function at time t is given as
follows:

J(t, x;u) = \BbbE t,x

\Biggl[ \int T

t

C
\bigl( 
t, x, s,X\bfu (s),u(s,X\bfu (s))

\bigr) 
ds+ F

\bigl( 
t, x,X\bfu (T )

\bigr) \Biggr] 
+G

\bigl( 
t, x,\BbbE t,x[X

\bfu (T )]
\bigr) 
,(2.2)

where C is a measurable mapping from [0, T ) \times \BbbX \times [0, T ] \times \BbbX \times \BbbU to \BbbR , and F and
G are measurable mappings from [0, T ) \times \BbbX \times \BbbX to \BbbR . Here and hereafter, \BbbE t,x[Z]
denotes the expectation of Z conditional on X\bfu (t) = x.

For any feedback strategy u, denote

\mu \bfu (t, x) := \mu (t, x,u(t, x)), \sigma \bfu (t, x) := \sigma (t, x,u(t, x)),

\Upsilon \bfu (t, x) := \sigma (t, x,u(t, x))\sigma (t, x,u(t, x))\top , C\tau ,y,\bfu (t, x) := C
\bigl( 
\tau , y, t, x,u(t, x)

\bigr) 
.

With a slight abuse of notation, u \in \BbbU also denotes the feedback strategy u such that
u(t, x) = u\forall (t, x) \in [0, T ]\times \BbbX , so \BbbU also stands for the set of all constant strategies.

Definition 2.1. A feedback strategy u is feasible if the following hold:
(i) \mu \bfu , \sigma \bfu are locally Lipschitz in x \in \BbbX , uniformly in t \in [0, T ].
(ii) \mu \bfu and \sigma \bfu are of linear growth in x \in \BbbX , uniformly in t \in [0, T ], when \BbbX = \BbbR n

and have bounded norm in x \in \BbbX , uniformly in t \in [0, T ], when \BbbX = (0,+\infty ).
(iii) For each fixed (\tau , y) \in [0, T )\times \BbbX , C\tau ,y,\bfu (t, x) and F (\tau , y, x) are of polynomial

growth in x \in \BbbX , uniformly in t \in [0, T ].
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(iv) For each fixed (\tau , y) \in [0, T ) \times \BbbX and x \in \BbbX , \mu \bfu (t, x) and \sigma \bfu (t, x) are right-
continuous in t \in [0, T ) and limt\prime \geq t,(t\prime ,x\prime )\rightarrow (t,x) C

\tau ,y,\bfu (t\prime , x\prime ) = C\tau ,y,\bfu (t, x) for
any t \in [0, T ).

Denote the set of feasible strategies as U.

Conditions (i) and (ii) in Definition 2.1 ensure the existence and uniqueness of
the solution to the SDE in (2.1); see Lemma A.2 in Appendix A. Moreover, condition
(iii) in Definition 2.1, together with Lemma A.2, implies that

\BbbE t,x

\Biggl[ 
sup

s\in [t,T ]

| C\tau ,y,\bfu (s,X\bfu (s))| + | F (\tau , y,X\bfu (T ))| + \| X\bfu (T )\| 

\Biggr] 
(2.3)

is of polynomial growth in x \in \BbbX , uniformly in t \in [0, T ]. In particular, the objective
function J(t, x;u) is well defined. Condition (iv) in Definition 2.1 imposes a mild
continuity requirement. This requirement is not necessary for the well-posedness of
the problem (2.1) but will be used in the following study, so we include it in the
definition of feasibility for convenience.

We impose the following assumption.

Assumption 2.2. Any u \in \BbbU is feasible.

Here and hereafter, we use D, which is a subset of U, to denote the set of al-
ternative strategies that at each time t the agent can choose to implement in an
infinitesimally small time period. For given t \in [0, T ), \epsilon \in (0, T  - t), \^u \in U, and
a \in D, define

ut,\epsilon ,\bfa (s, y) :=

\Biggl\{ 
a(s, y), s \in [t, t+ \epsilon ), y \in \BbbX ,
\^u(s, y), s /\in [t, t+ \epsilon ), y \in \BbbX .

(2.4)

One can see that ut,\epsilon ,\bfa is feasible because both \^u and a are feasible.

2.3. Examples. Next, we provide several examples that fit into the general
framework (2.1).

2.3.1. Mean-variance problem in [2]. Consider the following problem at time
t discussed in [2]:\left\{   

max
\bfu 

J(t, x;u) := \BbbE t,x[X
\bfu (T )] - \gamma 

2vart,x(X
\bfu (T ))

subject to dX\bfu (s) =
\bigl( 
rX\bfu (s) + bu(s,X\bfu (s))

\bigr) 
ds

+\=\sigma u(s,X\bfu (s))dW (s), s \in [t, T ], X\bfu (t) = x,

(2.5)

where constant r \in \BbbR stands for the risk-free rate, constant b \not = 0 stands for the
mean return rate of a stock, constant \=\sigma > 0 stands for the stock's volatility, constant
\gamma > 0 is the agent's risk aversion degree, x \in \BbbR is the agent's wealth level at time t,
u(s,X\bfu (s)) is the dollar amount invested in a stock at time s, X\bfu (s) is the agent's
wealth at time s, and vart,x denotes the variance operator conditional on X\bfu (t) = x.

We can see that (2.5) is a special case of (2.1) with the dimension of Brownian
motion d = 1, the state space \BbbX = \BbbR , the control space \BbbU = \BbbR , \mu (t, x, u) = rx + bu,
\sigma (t, x, u) = \=\sigma u, F (\tau , y, x) = x - \gamma 

2x
2, G(\tau , y, z) = \gamma 

2 z
2, and C(\tau , y, t, x, u) \equiv 0.

The authors of [8] consider a similar mean-variance problem, which differs from
(2.5) only in that \gamma 

2 is replaced by \=\gamma 
2x1x \not =0 + K1x=0 for some constant \=\gamma > 0 and

K \in \BbbR . All of the analysis of problem (2.5) in the following can apply to the problem
in [8] as well and leads to similar conclusions; see [30, Chapter A.6].
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2.3.2. Investment and consumption in [17]. Consider the following invest-
ment consumption problem studied by [17]:\left\{         

max
\bfu 

\BbbE t,x

\Bigl[ \int T

t
h(s - t) (\zeta (s,X

\bfu (s))X\bfu (s))1 - \gamma 

1 - \gamma ds+ h(T  - t) (X
\bfu (T ))1 - \gamma 

1 - \gamma 

\Bigr] 
subject to dX\bfu (s) = X\bfu (s)

\Bigl[ \bigl( 
r + b\theta (s,X\bfu (s)) - \zeta (s,X\bfu (s))

\bigr) 
ds

+\=\sigma \theta (s,X\bfu (s))dW (s)
\Bigr] 
, s \in [t, T ], X\bfu (t) = x,

(2.6)

where r \in \BbbR , b \not = 0, and \=\sigma > 0 are constants, representing the risk-free rate,
the mean return rate, and volatility of a stock, respectively. The agent's control
u(s,X\bfu (s)) = (\zeta (s,X\bfu (s)), \theta (s,X\bfu (s)))\top has two components: \zeta (s,X\bfu (s)), which
stands for the consumption propensity, and \theta (s,X\bfu (s)), which stands for the per-
centage of the wealth invested in the stock at time s. The agent's wealth process is
denoted as X\bfu . The parameter \gamma > 0 measures the agent's relative risk aversion;
when \gamma = 1, the function z1 - \gamma /(1  - \gamma ) in the objective function of (2.6) and in the
following is understood as ln z. h is a deterministic discount function so that the
discounting in the period from t to s is h(s - t), and it is assumed to be nonnegative,
in \frakC 2([0, T ]), and it satisfies h(0) = 1.

We can see that (2.6) is a special case of (2.1) with the dimension of Brownian
motion d = 1, the state space \BbbX = (0,+\infty ), the control space \BbbU = (0,+\infty ) \times 
\BbbR , \mu (t, x, u) = (r + b\theta  - \zeta )x, \sigma (t, x, u) = \=\sigma \theta x, F (\tau , y, x) = h(T  - \tau )x1 - \gamma /(1  - \gamma ),
G(\tau , y, z) \equiv 0, and C(\tau , y, t, x, u) = h(t - \tau )(\zeta x)1 - \gamma /(1 - \gamma ), where u = (\zeta , \theta )\top .

2.3.3. Optimal consumption with a bequest. Consider an agent who is
endowed with bdt+\=\sigma dW (t) at each instant t \in [0, T ], where b and \=\sigma are two constants
in \BbbR and W (t), t \in [0, T ], is a standard Brownian motion. The agent decides the
amount of consumption at each time t \in [0, T ] with the objective to maximize her
utility for the consumption stream and a bequest for her descendants at time T .
Formally, the agent faces the following problem:

\Biggl\{ 
max
\bfu 

\BbbE t,x

\Bigl[ \int T

t
h(s - t)u(s,X\bfu (s))ds+ \~h(T  - t)X\bfu (T )

\Bigr] 
subject to dX\bfu (s) =

\bigl( 
b - u(s,X\bfu (s))

\bigr) 
ds+ \=\sigma dW (s), s \in [t, T ], X\bfu (t) = x.

(2.7)

Here, u(s,X\bfu (s))ds and X\bfu (s) stand for the agent's consumption and wealth at time
s, respectively, and we allow u(s,X\bfu (s)) to be negative. For the consumption at
time s, the agent applies a discount h(s  - t) to evaluate it at time t, where h is a
deterministic function. For the wealth at time T , which is a bequest for the agent's
descendants, the agent applies a discount \~h(T  - t), where \~h is another deterministic
function. h and \~h are assumed to be nonnegative, in \frakC 2([0, T ]), and they satisfy
h(0) = \~h(0) = 1. The agent is risk-neutral with respect to the random discounted
value of the consumption and bequest, which explains the objective function in (2.7).

The above problem is a special case of (2.1) with the dimension of Brownian
motion d = 1, the state space \BbbX = \BbbR , the control space \BbbU = \BbbR , \mu (t, x, u) = b  - u,
\sigma (t, x, u) = \=\sigma , F (\tau , y, x) = \~h(T  - \tau )x, G(\tau , y, z) \equiv 0, and C(\tau , y, t, x, u) = h(t - \tau )u.

The following assumption is needed in the derivation of a weak equilibrium for
problem (2.7) but is not needed in the proof of nonexistence of strong equilibrium.

Assumption 2.3. Suppose that h\prime (0) \not = 0, \~h\prime (0) = 0, and that \psi , which is the
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3870 XUE DONG HE AND ZHAO LI JIANG

unique solution to the equation

\psi (t) =
1

h\prime (0)

\Biggl[ 
h\prime (T  - t) - \~h\prime (T  - t) - 

\int T

t

\psi (s)h\prime \prime (s - t)ds

\Biggr] 
, t \in [0, T ],(2.8)

satisfies \psi \in \frakC 1[0, T ] and \psi (t) > 0 for all t \in [0, T ].

The requirement \~h\prime (0) = 0 holds for the discount function used in [17], \~h(t) = (1+
\~\rho t)e - \~\rho t for some constant \~\rho , but does not hold for some other commonly used discount
functions, such as generalized hyperbolic discount functions and pseudo-exponential
discount functions. The existence of a unique solution \psi of (2.8) in \frakC 1[0, T ] can be
established by the classical results of Volterra equations, and a sufficient condition for
the positivity of \psi is that [h\prime (t) - \~h\prime (t)]/h\prime (0) > 0 and h\prime \prime (t)/h\prime (0) \leq 0 for all t \in [0, T ];
see Lemma B.1 in Appendix B.3 Note that typically h\prime (0) < 0, so the sufficient
condition stipulates that (i) h\prime \prime (t) \geq 0, t \in [0, T ], and (ii) h\prime (t)  - \~h\prime (t) < 0, t \in [0, T ].
Condition (i) means that h is convex, which holds for a typical discount function.
Condition (ii), which is the same as h(t) - \~h(t) becoming smaller, i.e., more negative,
when t becomes larger, simply means that the difference in how the agent discounts
future consumption and future bequest becomes larger when the future moment is
more distant. Condition (ii) holds in particular when the agent does not discount the
bequest (i.e., \~h \equiv 1) but discounts the consumption (i.e., h\prime (t) < 0, t \in [0, T ]).

3. Weak equilibrium. We introduce the generator of the controlled state process
first. Given u \in U and interval [a, b] \subseteq [0, T ], consider \xi that maps (t, x) \in [a, b]\times \BbbX 
to \xi (t, x) \in \BbbR . Suppose \xi \in \frakC 1,2([a, b]\times \BbbX ), and denote its first-order partial derivative
with respect to t, first-order partial derivative with respect to x, and second-order par-
tial derivative with respect to x as \xi t, \xi x, and \xi xx, respectively. Define the following
generator:

\scrA \bfu \xi (t, x) = \xi t(t, x) + \xi x(t, x)\mu 
\bfu (t, x) +

1

2
tr
\bigl( 
\xi xx(t, x)

\top \Upsilon \bfu (t, x)
\bigr) 
, t \in [a, b], x \in \BbbX .

(3.1)

For \xi \in \frakC 1,2([a, b]\times \BbbX ) that maps (t, x) \in [a, b]\times \BbbX to \xi (t, x) = (\xi 1(t, x), . . . , \xi l(t, x))
\top \in 

\BbbR l, we denote \scrA \bfu \xi (t, x) = (\scrA \bfu \xi 1(t, x), . . . ,\scrA \bfu \xi l(t, x))
\top . Finally, (\scrA \bfu )2\xi and (\scrA \bfu )3\xi 

denote the functions obtained by applying the generator \scrA \bfu twice and thrice, respec-
tively, to \xi .

Here and hereafter, \^u \in U denotes a given strategy, and we examine whether it
is an equilibrium strategy. For each fixed (\tau , y) \in [0, T )\times \BbbX , denote

f\tau ,y(t, x) := \BbbE t,x[F (\tau , y,X
\^\bfu (T ))], g(t, x) := \BbbE t,x[X

\^\bfu (T )], t \in [0, T ], x \in \BbbX .(3.2)

In addition, for fixed (\tau , y) \in [0, T )\times \BbbX and s \in [0, T ], denote

c\tau ,y,s(t, x) := \BbbE t,x[C
\tau ,y,\^\bfu (s,X \^\bfu (s))], t \in [0, s], x \in \BbbX .(3.3)

In the following, \scrA \bfu f\tau ,y denotes the function that is obtained by applying the operator
\scrA \bfu to f\tau ,y(t, x) as a function of (t, x) while fixing (\tau , y), and (\scrA \bfu )2f\tau ,y is defined
likewise. Then, \scrA \bfu f t,x(t, x) denotes the value of \scrA \bfu f\tau ,y at (t, x) while (\tau , y) is also
set at (t, x), and (\scrA \bfu )2f t,x(t, x), (\scrA \bfu )3f t,x(t, x) are interpreted similarly. The above
notation also applies to C\tau ,y,\bfu and c\tau ,y,s.

3We thank an anonymous referee for providing us with the idea of this lemma and its proof.
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To define equilibrium strategies, the agent's selves at different times in [0, T ) are
regarded as different players in a sequential game, and the agent's self at time 0 is the
first player in the game. Thus, the initial state at time 0 is relevant. Throughout the
paper, we assume that the initial value of the controlled diffusion process is a constant
x0 \in \BbbX . Given feasible strategy \^u, Lemma A.2 in Appendix A implies that for any
(t, x) \in [0, T ) \times \BbbX , there exists a unique strong solution to the SDE in (2.1) under
the strategy \^u. Particularly, we denote by X \^\bfu (\cdot ; 0, x0) the solution with initial time 0

and initial state x0. Denote by \=\BbbX x0,\^\bfu 
t the support of the distribution of X \^\bfu (t; 0, x0).

4

Moreover, denote by \BbbX x0,\^\bfu 
t the set of reachable states at time t from the initial state

x0 at time 0 and following the strategy \^u; i.e.,

\BbbX x0,\^\bfu 
t := \r \BbbX x0,\^\bfu 

t \cup \{ x \in \partial \=\BbbX x0,\^\bfu 
t : \BbbP 

\bigl( 
X \^\bfu (t; 0, x0) \in \partial \=\BbbX x0,\^\bfu 

t \cap \BbbB \delta (x)
\bigr) 
> 0 \forall \delta > 0\} ,(3.4)

where \r \BbbX x0,\^\bfu 
t is the interior of \=\BbbX x0,\^\bfu 

t in \BbbX , \partial \=\BbbX x0,\^\bfu 
t is the boundary of \=\BbbX x0,\^\bfu 

t in \BbbX ,
and \BbbB \delta (x) denotes the ball centered at x with radius \delta .5 By definition, we have

\BbbP 
\bigl( 
X \^\bfu (t; 0, x0) \in \BbbX x0,\^\bfu 

t

\bigr) 
= 1.

The set of reachable states slightly differs from the support of the distribution
of X \^\bfu (t; 0, x0) because the former excludes some points on the boundary of the sup-
port that are actually not reachable. For example, consider \BbbX = \BbbR and suppose
X \^\bfu (\cdot ; 0, x0) is a geometric Brownian motion with x0 > 0. Then, \BbbX x0,\^\bfu 

t = (0,+\infty ) and
\=\BbbX x0,\^\bfu 
t = [0,+\infty ). Note that X \^\bfu (t; 0, x0) never visits 0, which is in the support of the

distribution of X \^\bfu (t; 0, x0) but not in the set of reachable states.

3.1. Definition of weak equilibrium. We first study weak equilibrium. Al-
though such strategies have been proposed and studied in the literature, our definition
is slightly different, and our analysis addresses some technical issues that are over-
looked in the literature; see the discussion in the following.

Definition 3.1 (Weak equilibrium). \^u \in U is a weak equilibrium strategy if

for any x \in \BbbX x0,\^\bfu 
t , t \in [0, T ), and a \in D, we have

\Delta \^\bfu (t, x;a) := lim sup
\epsilon \downarrow 0

J(t, x;ut,\epsilon ,\bfa ) - J(t, x; \^u)

\epsilon 
\leq 0.(3.5)

With \BbbX x0,\^\bfu 
t replaced by \BbbX , Definition 3.1 becomes the one used in the literature

to study equilibrium strategies in time-inconsistent problems; see, for instance, [13,
14, 15], [6], [2], [8], and [10], where D is set to be \BbbU , and [17], [16], and [5], where D
is essentially set to be U.

There are two reasons why in the above definition we demand the condition (3.5)

hold for any x \in \BbbX x0,\^\bfu 
t rather than for any x \in \BbbX . First, although the agent's

self today cannot control the action of her future selves, her action today actually
determines the state process in the future based on which her future selves make
decisions. Thus, the agent's self today is not concerned about whether her future
selves deviate from a given strategy in the states that cannot be attained under this
strategy. This argument motivates the authors of [35] to propose a similar notion of

4The support of a distribution on \BbbX is defined to be the smallest closed set in \BbbX such that its
complement has zero measure under this distribution.

5We can equivalently define \BbbX x0,\^\bfu 
t to be the union of \r \BbbX x0,\^\bfu 

t and the smallest relatively close

subset \BbbS of \partial \=\BbbX x0,\^\bfu 
t such that \BbbP (X\^\bfu (t; 0, x0) \in \BbbS ) = \BbbP (X\^\bfu (t; 0, x0) \in \partial \=\BbbX x0,\^\bfu 

t ).
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3872 XUE DONG HE AND ZHAO LI JIANG

equilibrium strategies in a discrete-time, deterministic setting.6 Second, the strategy
derived in [8] for their problem is a weak equilibrium strategy under Definition 3.1,

but is not if \BbbX x0,\^\bfu 
t is replaced by \BbbX . Indeed, this strategy does not satisfy the extended

HJB equation for x < 0 in Definition 2 therein.7

As previously mentioned, the set of reachable states \BbbX x0,\^\bfu 
t slightly differs from

the support of the distribution of X \^\bfu (t; 0, x0). The reason we use the former rather
than the latter in the definition of equilibrium strategies can be seen from the median
maximization problem studied by [20]. Those authors derive an equilibrium strategy
by demanding that the agent's self at any time t not deviate from it in any reachable
state at time t, similar to Definition 3.1. The agent therein, however, will deviate
from the equilibrium strategy if she were at a state that is in the support of the state
process but not reachable. The deviation in this state, however, should not invalidate
an equilibrium strategy because it is not reachable.

Finally, let us comment that our analysis in the following does not use any struc-
ture of the set of reachable states \BbbX x0,\^\bfu 

t . Thus, all the results in the present paper

still hold with \BbbX x0,\^\bfu 
t replaced by \=\BbbX x0,\^\bfu 

t or \BbbX in the definition of equilibrium. Indeed,

we would have encountered fewer technical challenges if \=\BbbX x0,\^\bfu 
t or \BbbX were used because

these two sets have nicer properties than \BbbX x0,\^\bfu 
t .

3.2. Comments on technical assumptions. Before we proceed, let us make
three comments. First, in the following analysis of weak equilibrium and other notions
of equilibrium strategies, we need to make various assumptions on the smoothness
and growth conditions of the functions f\tau ,y, g, and c\tau ,y,s as defined in (3.2) and (3.3);
see Assumptions 3.2, 4.2, and 4.7 in the following. These assumptions might not be
straightforward to verify in general because the functions f\tau ,y, g, and c\tau ,y,s depend on
\^u in a nontrivial way.8 Thus, we provide sufficient conditions for these assumptions in
Appendix B. Roughly speaking, as long as \^u and the model parameters---\mu , \sigma , C, F ,
and G---are sufficiently smooth locally in time and satisfy certain growth conditions,
the above assumptions hold. Second, we do not assume any structure on \BbbU , in which
the control takes values. In particular, \BbbU can be a closed set or an open set, so our
results are broadly applicable. Third, our framework can also apply to deterministic
time-inconsistent problems by simply setting \sigma at 0.

3.3. Sufficient and necessary conditions for weak equilibrium. We im-
pose the following assumption in order to study weak equilibrium strategies.

6The authors of [35] propose that a strategy (s\ast 0, s
\ast 
1, . . . ), where s\ast t stands for the agent's feedback

action at time t, is an equilibrium strategy if for any t, (s\ast 0, . . . , s
\ast 
t - 1, st, s

\ast 
t+1, . . . ) is dominated by

(s\ast 0, . . . , s
\ast 
t - 1, s

\ast 
t , s

\ast 
t+1, . . . ) for any st. The authors argue that the above definition is more desirable

than the following one, which is based on a model in [36]: (s\ast 0, s
\ast 
1, . . . ) is an equilibrium strategy if for

any time t, (s0, . . . , st - 1, st, s\ast t+1, . . . ) is dominated by (s0, . . . , st - 1, s\ast t , s
\ast 
t+1, . . . ) for any (s0, . . . , st).

Note that in the former definition, one is only concerned about the agent's action at time t in the
state that is attainable by (s\ast 0, . . . , s

\ast 
t - 1). In the latter definition, one needs to consider the agent's

action at time t in any state because (s0, . . . , st - 1) is arbitrary.
7The extended HJB equation in Definition 2 of [8] is equivalent to equations (4.1)--(4.3) therein,

and the equation (4.1) can be reformulated as the equation in the fourth last line of page 11 of [8].
Note that all the above equations need to hold for all x \in \BbbR because it is assumed therein in the
definition of equilibrium strategies that (3.5) needs to hold for any x \in \BbbX = \BbbR . The last equation in
the above, however, does not imply the equation in the second to last line of the same page when
x < 0 because fxx(t, x, x) > 0 in this case and, consequently, this equation is not satisfied by the
equilibrium strategy derived by [8] for x < 0; i.e., that strategy is not an equilibrium under the
definition used by [8].

8Other assumptions in the present paper, namely Assumptions 2.2 and 4.5, are easy to verify
because they involve the model parameters, i.e., \mu , \sigma , C, F , and G, only.
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EQUILIBRIUM FOR TIME-INCONSISTENT PROBLEMS 3873

Assumption 3.2. For any fixed (\tau , y) \in [0, T ) \times \BbbX and t \in [0, T ), there exists
\~t \in (t, T ] such that (i) f\tau ,y, g \in \=\frakC 1,2([t, \~t]\times \BbbX ); (ii) c\tau ,y,s \in \frakC 1,2([t, \~t \wedge s]\times \BbbX ) for each
fixed s \in (t, T ] and \partial j+\alpha c\tau ,y,s(t\prime ,x\prime )

\partial tj\partial x\alpha is of polynomial growth in x\prime \in \BbbX , uniformly in
t\prime \in [t, \~t\wedge s] and s \in (t, T ], for any \alpha with | \alpha | \leq 2 - 2j and j = 0, 1; and (iii) G(\tau , y, z)
is continuously differentiable with respect to z.

In the following, we always consider sufficiently small \epsilon , and o(1) denotes a generic
function of \epsilon such that lim\epsilon \downarrow 0 | o(1)| = 0.

Theorem 3.3. Suppose Assumptions 2.2 and 3.2 hold. Then, for any (t, x) \in 
[0, T )\times \BbbX and a \in U, we have

J(t, x;ut,\epsilon ,\bfa ) - J(t, x; \^u) = \epsilon \Delta \^\bfu (t, x;a) + \epsilon o(1),(3.6)

with \Delta \^\bfu (t, x;a) = \Gamma t,x,\^\bfu (t, x;a), where for any (\tau , y) \in [0, T )\times \BbbX ,

\Gamma \tau ,y,\^\bfu (t, x;a) := C\tau ,y,\bfa (t, x) - C\tau ,y,\^\bfu (t, x) +

\int T

t

\scrA \bfa c\tau ,y,s(t, x)ds+\scrA \bfa f\tau ,y(t, x)

+Gz(\tau , y, g(t, x))\scrA \bfa g(t, x).(3.7)

Moreover, \Gamma \tau ,y,\^\bfu (t, x;a) = \Gamma \tau ,y,\^\bfu (t, x; \~a) for any a, \~a \in U with a(t, x) = \~a(t, x),
and, in particular, \Gamma \tau ,y,\^\bfu (t, x;a) = 0 if a(t, x) = \^u(t, x). Consequently, suppose
\BbbU \subseteq D \subseteq U. Then, \^u is a weak equilibrium strategy if and only if

\Delta \^\bfu (t, x;u) \leq 0 \forall u \in \BbbU , x \in \BbbX x0,\^\bfu 
t , t \in [0, T ).(3.8)

Suppose the time t self of the agent deviates from \^u by taking an alternative
strategy a in a small time period with length \epsilon , resulting in the deviating strategy
ut,\epsilon ,\bfa . Theorem 3.3 provides the first-order derivative of the objective value of the
deviating strategy ut,\epsilon ,\bfa with respect to \epsilon at \epsilon = 0. More importantly, it shows that
this derivative depends on the value of the alternative strategy a at the current time
t and state x only.

As a result of the first-order expansion (3.6), Theorem 3.3 provides a sufficient
and necessary condition (3.8) for \^u to be a weak equilibrium strategy. Note that
this condition does not depend on the choice of D because, as we have mentioned,
the first-order derivative of J(t, x;ut,\epsilon ,\bfa ) with respect to \epsilon at \epsilon = 0 depends on the
value of a at (t, x) only. Thus, in the literature, where weak equilibrium strategies
are discussed, different choices of D lead to the same set of equilibrium strategies.

Let us comment that the proof of (3.6) is essentially the same as the analysis
performed in [5] to derive the so-called extended HJB equation, and this analysis is
also used in [17] and [2] to find the weak equilibrium strategies for certain specific
stochastic control problems studied therein. To perform the analysis in the aforemen-
tioned papers, however, one needs to assume certain conditions that are not explicitly
spelled out therein.9 In the present paper, we explicitly state the assumptions we

9Certain conditions are needed to derive the equation in lines 14--17 of page 343 in [5]; in partic-
ular, \scrA \bfu f\tau ,y(t, x) needs to be right-continuous in t. The authors of [5], however, did not assume u
to be right-continuous in t; see Definition 2.2 therein. The authors of [17] consider D to be the set of
all progressively measurable processes; see equations (3.2) and (3.3) therein. In particular, u \in D is
not necessarily right-continuous in t. However, for the limit in lines 13--15 of page 78 to hold for any
t \in [0, T ), one may have to impose certain continuity conditions. The authors of [2] did not define
equilibrium strategies explicitly. In the derivation of equation (14) therein, they implicitly assume a
certain right-continuity property of the alternative strategy that the agent's self at each time t can
implement.
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3874 XUE DONG HE AND ZHAO LI JIANG

need, namely Assumptions 2.2 and 3.2, and prove (3.6) rigorously. Moreover, be-
cause \Delta \^\bfu (t, x; \^u(t, x)) = 0, as shown in Theorem 3.3, condition (3.8) is equivalent to
following extended HJB equation:10

max
u\in \BbbU 

\Delta \^\bfu (t, x;u) = 0, x \in \BbbX x0,\^\bfu 
t , t \in [0, T ).(3.9)

Finally, in the above study of weak equilibrium strategies, we do not assume any
structure on \BbbU , the set in which the control process takes values. In particular, \BbbU can
be a discrete set. Thus, Theorem 3.3 can be applied to optimal stopping and optimal
switching problems as well.

3.4. Weak equilibrium strategies in examples. Next, we derive weak equi-
librium strategies for the three problems in section 2.3. The first two problems have
been studied, and certain weak equilibrium strategies have been derived in the liter-
ature. With the help of Theorem 3.3, we now are able to establish these equilibrium
strategies rigorously.

Proposition 3.4. Suppose \BbbU \subseteq D \subseteq U.
(i) Consider problem (2.5). Define

\^u(t, x) =
1

\gamma 

b

\=\sigma 2
e - r(T - t), t \in [0, T ], x \in \BbbR .(3.10)

Then, Assumptions 2.2 and 3.2 hold, \BbbX x0,\^\bfu 
t = \BbbR \forall t \in (0, T ), and we have

\Delta \^\bfu (t, x;u) =  - b2

2\gamma \=\sigma 2
+ er(T - t)bu - \gamma 

2
e2r(T - t)\=\sigma 2u2, t \in [0, T ), x \in \BbbR , u \in \BbbR .

(3.11)

Moreover, \Delta \^\bfu (t, x;u) \leq 0, and thus \^u is a weak equilibrium strategy.
(ii) Consider problem (2.6). Define

\^u(t, x) =
\Bigl( 
\^\zeta (t, x), \^\theta (t, x)

\Bigr) 
:=

\biggl( 
k(t) - 

1
\gamma ,

b

\gamma \=\sigma 2

\biggr) 
, t \in [0, T ), x \in (0,+\infty ),

(3.12)

where k(t) solves the following equation:

k(t) =

\int T

t

h(s - t)e(1 - \gamma )(r+b2/(2\gamma \=\sigma 2))(s - t)k(s) - 
1 - \gamma 
\gamma e - (1 - \gamma )

\int s
t
k(z) - 1/\gamma dzds

+ h(T  - t)e(1 - \gamma )(r+b2/(2\gamma \=\sigma 2))(T - t)e - (1 - \gamma )
\int T
t

k(s) - 1/\gamma ds, t \in [0, T ].(3.13)

Denote \^\zeta (t, x) as \^\zeta (t) because it does not depend on x, and denote \^\theta (t, x) as
\^\theta because it does not depend on t or x. Then, Assumptions 2.2 and 3.2 hold,

10The equation (3.9) takes a different form from equation (4.1) in the extended HJB equation
proposed in [5] because in the latter the authors introduce the so-called continuation value function
V , which is the agent's objective function value when she follows the equilibrium strategy. The
introduction of the value function necessitates an additional assumption: f\tau ,y(t, x) needs to be twice
differentiable in y; see Theorem 5.2 in [5].
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and we have

\Delta \^\bfu (t, x;u) =

\bigl( 
\zeta x

\bigr) 1 - \gamma 

1 - \gamma 
 - 

\bigl( 
\^\zeta (t)x

\bigr) 1 - \gamma 

1 - \gamma 
+ x1 - \gamma \^\zeta (t) - \gamma 

\Bigl[ 
\^\zeta (t) - \zeta  - b(\^\theta  - \theta )

+
1

2
\gamma \=\sigma 2(\^\theta 2  - \theta 2)

\Bigr] 
, t \in [0, T ), x \in (0,+\infty ), u = (\zeta , \theta ) \in (0,+\infty )\times \BbbR .

(3.14)

Moreover, \Delta \^\bfu (t, x;u) \leq 0, and thus \^u is a weak equilibrium strategy.
(iii) Consider problem (2.7), and suppose Assumption 2.3 holds. Fix any constant

b0 \in \BbbR and define

\^u(t, x) := b0 + k(t)x, t \in [0, T ], x \in \BbbR ,(3.15)

where k(t) =  - \psi \prime (t)/\psi (t), t \in [0, T ], with \psi (t) solving (2.8). Then, Assump-
tions 2.2 and 3.2 hold, and we have

\Delta \^\bfu (t, x;u) \equiv 0, t \in [0, T ), x \in \BbbR , u \in \BbbR .(3.16)

Consequently, \^u is a weak equilibrium strategy.

4. Strong equilibrium.

4.1. Definition of strong equilibrium. Note that even when condition (3.5) is
true, it is still possible that J(t, x;ut,\epsilon ,\bfa ) > J(t, x; \^u) for sufficiently small \epsilon and certain
a, and thus the time-t self of the agent deviates from \^u. This observation motivates
the authors of [29] to define strong equilibrium in their study of a continuous-time,
infinite-horizon, finite-state Markov chain control problem. We mimic their definition
in our diffusion framework.

Definition 4.1 (Strong equilibrium). \^u \in U is a strong equilibrium strategy if

for any x \in \BbbX x0,\^\bfu 
t , t \in [0, T ), and a \in D, there exists \epsilon 0 \in (0, T  - t) such that

J(t, x;ut,\epsilon ,\bfa ) - J(t, x; \^u) \leq 0 \forall \epsilon \in (0, \epsilon 0].(4.1)

Condition (4.1) stipulates that the time-t self of the agent is not willing to deviate
from \^u by implementing an alternative strategy a in an arbitrarily small period, and
if this is true for all a that the agent can choose, then \^u is a strong equilibrium
strategy. By definition, any strong equilibrium strategy must be a weak one. The
reverse implication, however, is not true in general, as we will see in the following
analysis.

4.2. Second-order conditions for strong equilibrium strategies. The fol-
lowing assumption is needed in the study of strong equilibrium.

Assumption 4.2. For any given (\tau , y) \in [0, T )\times \BbbX and t \in [0, T ), there exists \~t \in 
(t, T ] such that \^u \in \=\frakC 1,2([t, \~t]\times \BbbX ) and the following hold: (i) f\tau ,y, g \in \=\frakC 2,4([t, \~t]\times \BbbX );
(ii) c\tau ,y,s \in \frakC 2,4([t, \~t \wedge s] \times \BbbX ) for any s \in (t, T ] and \partial j+\alpha c\tau ,y,s(t\prime ,x\prime )

\partial tj\partial x\alpha is of polynomial
growth in x\prime \in \BbbX , uniformly in t\prime \in [t, \~t \wedge s] and s \in (t, T ], for any \alpha with | \alpha | \leq 
4  - 2j and j = 0, 1, 2; (iii) G(\tau , y, z) is twice continuously differentiable in z and
\mu , \sigma , C(\tau , y, \cdot , \cdot , \cdot ) \in \=\frakC 1,2,2([t, \~t] \times \BbbX \times \BbbU ); and (iv) for any x \in \BbbX , lims\downarrow t c

\tau ,y,s
x (t, x) =

c\tau ,y,tx (t, x), lims\downarrow t c
\tau ,y,s
xx (t, x) = c\tau ,y,txx (t, x), and lims\downarrow t c

\tau ,y,s
t (t, x) exists with the limit

denoted as c\tau ,y,tt (t, x).
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Proposition 4.3. Suppose Assumptions 2.2 and 4.2 hold. Then, for any (t, x) \in 
[0, T )\times \BbbX and a \in U \cap \=\frakC 1,2([0, T ]\times \BbbX ), we have

J(t, x;ut,\epsilon ,\bfa ) - J(t, x; \^u) = \epsilon \Delta \^\bfu (t, x;a) +
1

2
\epsilon 2\Lambda t,x,\^\bfu (t, x;a) + \epsilon 2o(1),(4.2)

where \Delta \^\bfu (t, x;a) is given in Theorem 3.3 and

\Lambda \tau ,y,\^\bfu (t, x;a) := \scrA \bfa C\tau ,y,\bfa (t, x) - \scrA \^\bfu C\tau ,y,\^\bfu (t, x) - 2\scrA \bfa c\tau ,y,t(t, x)

+

\int T

t

(\scrA \bfa )2c\tau ,y,s(t, x)ds+ (\scrA \bfa )2f\tau ,y(t, x) +Gz(\tau , y, g(t, x))(\scrA \bfa )2g(t, x)

+\scrA \bfa g(t, x)\top Gzz(\tau , y, g(t, x))\scrA \bfa g(t, x)(4.3)

for any given (\tau , y) \in [0, T )\times \BbbX .

Proposition 4.3 provides the second-order expansion of J(t, x;ut,\epsilon ,\bfa ) in \epsilon in the
neighborhood of 0. When the first-order derivative is zero, the second-order derivative
determines the sign of J(t, x;ut,\epsilon ,\bfa ) - J(t, x; \^u) and thus whether \^u is a strong equilib-
rium. We observe from (4.3) that, in contrast to \Gamma \tau ,y,\^\bfu (t, x;a), the value of a at (t, x)
alone is insufficient to determine \Lambda \tau ,y,\^\bfu (t, x;a). Indeed, \Lambda \tau ,y,\^\bfu (t, x;a) also depends
on at, ax, and axx at (t, x). Thus, we guess that whether \^u is a strong equilibrium
strategy in general depends on the choice of the set of alternative strategies D. Later
on, we will see an example to confirm the guess.

Theorem 3.3 shows that the first-order derivative is equal to zero for a with
a(t, x) = \^u(t, x), so it is crucial to examine the second order derivative for those a.
To this end, we will provide an alternative representation of \Lambda \tau ,y,\^\bfu (t, x;a) for such a,
and some notation is needed.

According to Theorem 3.3, \Gamma \tau ,y,\^\bfu (t, x;u) depends on the value of u(t, x) only,
so for fixed (\tau , y) \in [0, T ) \times \BbbX , we simply consider \Gamma \tau ,y,\^\bfu to be a mapping from
(t, x, u) \in [0, T ) \times \BbbX \times \BbbU to \Gamma \tau ,y,\^\bfu (t, x;u). Then, with Assumption 4.2 in place,
\Gamma \tau ,y,\^\bfu (t, x;u) is twice continuously differentiable in u, and we denote the first-order
and second-order derivatives as \Gamma \tau ,y,\^\bfu 

u (t, x;u) \in \BbbR 1\times m and \Gamma \tau ,y,\^\bfu 
uu (t, x;u) \in \BbbR m\times m,

respectively. Again, by Assumption 4.2 and assuming u(t, x) to be continuously
differentiable in x, \Gamma \tau ,y,\^\bfu 

u (t, x;u(t, x)) has a continuous first-order derivative in x,
denoted as \nabla x\Gamma 

\tau ,y,\^\bfu 
u (t, x;u(t, x)) \in \BbbR m\times n. Note that \nabla x\Gamma 

\tau ,y,\^\bfu 
u (t, x;u(t, x)) is differ-

ent from \Gamma \tau ,y,\^\bfu 
ux (t, x;u(t, x)), the latter being the partial derivative of \Gamma \tau ,y,\^\bfu 

u (t, x;u)
with respect to x, evaluated at u = u(t, x). \nabla x\Gamma 

t,x,\^\bfu 
u (t, x;u(t, x)) then denotes

\nabla x\Gamma 
\tau ,y,\^\bfu 
u (t, x;u(t, x)) evaluated at (\tau , y) = (t, x).
Denote by \mu ui

(t, x, u) the partial derivative of \mu (t, x, u) with respect to the ith
component of u = (u1, . . . , um)\top , and for given u, denote \mu \bfu 

ui
(t, x) := \mu ui

(t, x,u(t, x)),
i = 1, . . . ,m. Define \sigma ui and \sigma 

\bfu 
ui

similarly, and denote \Upsilon \bfu 
ui
(t, x) := \sigma \bfu 

ui
(t, x)\sigma \bfu (t, x)\top +

\sigma \bfu (t, x)\sigma \bfu 
ui
(t, x)\top , i = 1, . . . ,m. Given [a, b] \subseteq [0, T ], u \in U, and \xi \in \frakC 1,2([a, b] \times \BbbX )

taking values in \BbbR , denote by \scrB \bfu \xi (t, x) the partial derivative of \scrA u\xi (t, x) with respect
to u evaluated at u = u(t, x), i.e., \scrB \bfu \xi (t, x) :=

\bigl( 
(\scrB \bfu \xi )1(t, x), . . . , (\scrB \bfu \xi )m(t, x)

\bigr) 
\in 

\BbbR 1\times m with

(\scrB \bfu \xi )i(t, x) := \xi x(t, x)\mu 
\bfu 
ui
(t, x) +

1

2
tr
\bigl( 
\xi xx(t, x)

\top \Upsilon \bfu 
ui
(t, x)

\bigr) 
, t \in [a, b], x \in \BbbX .

For \xi \in \frakC 1,2([a, b]\times \BbbX ) taking values in \BbbR l, \scrB \bfu \xi is the collection of \scrB \bfu applied to each
component of \xi and is arranged to take values in \BbbR l\times m.
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Proposition 4.4. Suppose Assumptions 2.2 and 4.2 hold. Then, for fixed x \in 
\BbbX x0,\^\bfu 

t , t \in [0, T ), and any a \in U \cap \=\frakC 1,2([0, T ]\times \BbbX ) with a(t, x) = \^u(t, x), we have, for
any (\tau , y) \in [0, T )\times \BbbX ,

\Lambda \tau ,y,\^\bfu (t, x;a) = \Gamma \tau ,y,\^\bfu 
u

\bigl( 
t, x; \^u(t, x)

\bigr) 
\scrA \^\bfu 

\bigl( 
a - \^u

\bigr) 
(t, x)

+
1

2
tr

\biggl\{ 
\Upsilon \^\bfu (t, x)

\bigl( 
ax(t, x) - \^ux(t, x)

\bigr) \top 
\Gamma \tau ,y,\^\bfu 
uu

\bigl( 
t, x; \^u(t, x)

\bigr) \bigl( 
ax(t, x) - \^ux(t, x)

\bigr) \biggr\} 
+ tr

\biggl\{ 
\Upsilon \^\bfu (t, x)

\bigl( 
\nabla x\Gamma 

\tau ,y,\^\bfu 
u

\bigl( 
t, x; \^u(t, x)

\bigr) 
 - \scrB \^\bfu g(t, x)\top Gzz(\tau , y, g(t, x))gx(t, x)

\bigr) \top 
\bigl( 
ax(t, x) - \^ux(t, x)

\bigr) \biggr\} 
.(4.4)

Suppose that \^u(t, x) is a strong equilibrium; then it must be a weak equilibrium,
and thus condition (3.8) holds. Then, for a with a(t, x) = \^u(t, x), Theorem 3.3
implies that \Delta \^\bfu (t, x;a) = \Delta \^\bfu (t, x; \^u) = 0, so the second-order derivative \Lambda t,x,\^\bfu (t, x;a)
determines whether the agent would switch from \^u to a. For such a, \Lambda t,x,\^\bfu (t, x;a)
is given by (4.4). The first term is zero when \^u(t, x) is in the interior of \BbbU because
\^u(t, x) is the maximizer of \Gamma t,x,\^\bfu (t, x;u) in u \in \BbbU . The second and third terms are
quadratic and linear, respectively, in ax(t, x)  - \^ux(t, x). If we allow any alternative
strategy a, ax(t, x)  - \^ux(t, x) can take any value. As a result, as long as the linear
coefficient in the third term is not equal to zero, the sum of the second and third
terms is positive for some a, and thus \Lambda t,x,\^\bfu (t, x;a) is positive for this a, implying
that the agent would switch to a and thus \^u is not a strong equilibrium. Thus, a
necessary condition for \^u to be a strong equilibrium is that the linear coefficient in
the third term of \Lambda t,x,\^\bfu (t, x;a) in (4.4) is zero. To formalize the above discussion, we
need to strengthen Assumption 2.2 as follows.

Assumption 4.5.
(i) \mu (t, x, u) and \sigma (t, x, u) are locally Lipschitz in (x, u) \in \BbbX \times \BbbU , uniformly in

t \in [0, T ].
(ii) For any compact set D \subseteq \BbbU , \mu (t, x, u) and \sigma (t, x, u) are of linear growth in

x \in \BbbX , uniformly in (t, u) \in [0, T ]\times D when \BbbX = \BbbR n, and have bounded norm
in x \in \BbbX , uniformly in (t, u) \in [0, T ]\times D when \BbbX = (0,+\infty ).

(iii) For any compact set D \subseteq \BbbU and (\tau , y) \in [0, T ) \times \BbbX , C(\tau , y, t, x, u) and
F (\tau , y, x) are of polynomial growth in x \in \BbbX , uniformly in (t, u) \in [0, T ]\times D.

(iv) For any (\tau , y) \in [0, T ) \times \BbbX , x \in \BbbX , and u \in \BbbU , \mu (t, x, u) and \sigma (t, x, u) are
right-continuous in t \in [0, T ) and limt\prime \geq t,(t\prime ,x\prime ,u\prime )\rightarrow (t,x,u) C(\tau , y, t

\prime , x\prime , u\prime ) =
C(\tau , y, t, x, u) for any t \in [0, T ).

It is easy to see that Assumption 4.5 implies Assumption 2.2 and essentially
stipulates that all sufficiently smooth and bounded strategies are feasible.

Theorem 4.6. Suppose that Assumptions 4.5 and 4.2 hold and that D \supseteq U \cap 
\frakC \infty 
b ([0, T ] \times \BbbX ). Then, a necessary condition for \^u(t, x) to be a strong equilibrium

strategy is that for any x \in \BbbX x0,\^\bfu 
t and t \in [0, T ) with \^u(t, x) in the interior of \BbbU , the

following system of equations holds:

\Biggl\{ 
\Gamma t,x,\^\bfu 
u (t, x; \^u(t, x)) = 0,

\Upsilon \^\bfu (t, x)
\bigl( 
\nabla x\Gamma 

t,x,\^\bfu 
u

\bigl( 
t, x; \^u(t, x)

\bigr) 
 - \scrB \^\bfu g(t, x)\top Gzz(t, x, g(t, x))gx(t, x)

\bigr) \top 
= 0.

(4.5)
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The first equation in (4.5) is simply the differential form of the extended HJB
equation (3.9), which is a sufficient and necessary condition for \^u to be a weak equi-
librium. If \^u is a strong equilibrium, the second equation of (4.5) also needs to
hold. The left-hand side of this equation consists of two terms. The first term, which
involves \nabla x\Gamma 

t,x,\^\bfu 
u (t, x; \^u(t, x)), arises from the dependence of C, F , and G in the ob-

jective function (2.2) on the current state x. Indeed, suppose that x is in the interior

of \BbbX x0,\^\bfu 
t and \^u(t, x) is in the interior of \BbbU . Then, there exists a neighborhood of

x in the interior of \BbbX x0,\^\bfu 
t such that for any x\prime in this neighborhood, \^u(t, x\prime ) is also

in the interior of \BbbU by its continuity in x\prime . As a result, we can differentiate with
respect to x on both sides of the first equation in (4.5) to derive from the chain rule

that \nabla x\Gamma 
t,x,\^\bfu 
u (t, x; \^u(t, x))+

\partial \Gamma \tau ,y,\^\bfu 
u (t,x;\^\bfu (t,x))

\partial y

\bigm| \bigm| 
(\tau ,y)=(t,x)

= 0, where we recall the defini-

tion of \nabla x\Gamma 
t,x,\^\bfu 
u (t, x; \^u(t, x)) in the discussion preceding Proposition 4.4. As a result,

\nabla x\Gamma 
t,x,\^\bfu 
u (t, x; \^u(t, x)) = 0 if and only if

\partial \Gamma \tau ,y,\^\bfu 
u (t,x;\^\bfu (t,x))

\partial y

\bigm| \bigm| 
(\tau ,y)=(t,x)

= 0, and by (3.7),

the latter is the case if C, F , and G do not depend on the current state x. On the
other hand, the second term, which involves Gzz(t, x, g(t, x)), clearly arises from the
nonlinear dependence of G on \BbbE t,x[X

\^\bfu (T )]: This term vanishes if the nonlinearity is
absent.

As one may guess, the two equations in (4.5) can hardly hold at the same time.
If this is the case, then the strong equilibrium does not exist. As discussed above,
the second equation arises from two sources of time-inconsistency: the dependence of
C, F , and G on the current state and the nonlinear dependence of G on the mean of
the terminal state. Thus, one may conjecture that the strong equilibrium does not
exist with the above two sources of time-inconsistency. Indeed, in section 4.4 we will
prove that for the mean-variance problem (2.5), in which the quadratic dependence
on the mean of the terminal wealth in the objective function therein causes time-
inconsistency, the strong equilibrium does not exist.

For problems (2.6) and (2.7), none of C, F , and G depends on the current state
and G \equiv 0; the time inconsistency in these two problems arises from the dependence
of C and F on the current time. Thus, for these two problems, the second equation
in (4.5) is automatically satisfied. For deterministic time-inconsistent problems, the
second equation in (4.5) also holds because \Upsilon \^\bfu \equiv 0 in this case. Therefore, to study
the existence of strong equilibrium for problems (2.6) and (2.7) and for deterministic
time-inconsistent problems, the information provided by the second-order expansion
of J(t, x;ut,\epsilon ,\bfa ) - J(t, x; \^u) in \epsilon is insufficient. To this end, we need to investigate the
third-order expansion, which will be conducted in the next subsection.

4.3. Third-order conditions for strong equilibrium strategies. To exam-
ine the third-order expansion of J(t, x;ut,\epsilon ,\bfa )  - J(t, x; \^u) in \epsilon , we need additional
smoothness and growth conditions.

Assumption 4.7. For any given (\tau , y) \in [0, T )\times \BbbX and t \in [0, T ), there exists \~t \in 
(t, T ] such that \^u \in \=\frakC 2,4([t, \~t]\times \BbbX ) and the following hold: (i) f\tau ,y, g \in \=\frakC 3,6([t, \~t]\times \BbbX );
(ii) c\tau ,y,s \in \frakC 3,6([t, \~t \wedge s] \times \BbbX ) for any s \in (t, T ] and \partial j+\alpha c\tau ,y,s(t\prime ,x\prime )

\partial tj\partial x\alpha is of polynomial
growth in x\prime \in \BbbX , uniformly in t\prime \in [t, \~t \wedge s] and s \in (t, T ], for any \alpha with | \alpha | \leq 
6  - 2j and j = 0, 1, 2, 3; (iii) G(\tau , y, z) is thrice continuously differentiable in z and
\mu , \sigma , C(\tau , y, \cdot , \cdot , \cdot ) \in \=\frakC 2,4,4([t, \~t] \times \BbbX \times \BbbU ); and (iv) for any x \in \BbbX , lims\downarrow t \xi 

\tau ,y,s(t, x) =
\xi \tau ,y,t(t, x) for \xi \tau ,y,s to be any of \partial \alpha c\tau ,y,s

\partial x\alpha with | \alpha | \leq 4 and lims\downarrow t \xi 
\tau ,y,s(t, x) exists, with

the limit denoted by \xi \tau ,y,t(t, x), for \xi \tau ,y,s to be any of \partial j+\alpha c\tau ,y,s

\partial tj\partial x\alpha with | \alpha | \leq 4 - 2j and
j = 1, 2.
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Although the examination of whether \^u is a strong equilibrium based on the
third-order expansion of J(t, x;ut,\epsilon ,\bfa ) - J(t, x; \^u) in \epsilon is conceptually similar to that
based on the second-order expansion, we only manage to obtain a complete result
in the case in which G \equiv 0 and the dimension of the state space is one (i.e., \BbbX 
is \BbbR or (0,+\infty )) because the calculation involved in addressing the general case is
excessively demanding. The result in this special case, however, is sufficient for our
use to analyze problems (2.6) and (2.7); see section 4.4 below. Notationwise, for
any u \in U with sufficient smoothness, \nabla xx\Gamma 

\tau ,y,\^\bfu (t, x;u(t, x)) denotes the second-
order derivative of \Gamma \tau ,y,\^\bfu (t, x;u(t, x)) with respect to x, and \nabla xx\Gamma 

t,x,\^\bfu (t, x;u(t, x))
stands for \nabla xx\Gamma 

\tau ,y,\^\bfu (t, x;u(t, x)) with (\tau , y) set to be (t, x). \nabla t\Gamma 
\tau ,y,\^\bfu (t, x;u(t, x)) and

\nabla t\Gamma 
t,x,\^\bfu (t, x;u(t, x)) are defined similarly.

Theorem 4.8. Suppose \BbbX = \BbbR or (0,+\infty ), G = 0, Assumptions 4.5 and 4.7
hold, and D \supseteq U \cap \frakC \infty 

b ([0, T ] \times \BbbX ). Then, a necessary condition for \^u(t, x) to be a

strong equilibrium is that for any x \in \BbbX x0,\^\bfu 
t and t \in [0, T ) with \^u(t, x) in the interior

of \BbbU , the following system of equations holds:\left\{       
\Gamma t,x,\^\bfu 
u (t, x; \^u(t, x)) = 0,

\Upsilon \^\bfu (t, x)\nabla x\Gamma 
t,x,\^\bfu 
u (t, x; \^u(t, x)) = 0,

\Upsilon \^\bfu (t, x)\nabla xx\Gamma 
t,x,\^\bfu 
u (t, x; \^u(t, x)) = 0,

\nabla t\Gamma 
t,x,\^\bfu 
u (t, x; \^u(t, x)) + \mu (t, x, \^u(t, x))\top \nabla x\Gamma 

t,x,\^\bfu 
u (t, x; \^u(t, x)) = 0.

(4.6)

Because we assume G = 0, (4.5) reduces to the first two equations of (4.6). If \^u
is a strong equilibrium, the third and fourth equations of (4.6) also need to hold. By
the same reasoning as in the discussion following Theorem 4.6, the third equation,
which involves \nabla xx\Gamma 

t,x,\^\bfu 
u (t, x; \^u(t, x)), arises from the dependence of C and F in the

objective function (2.2) on the current state. Similarly, the fourth equation arises
from the dependence of C and F on the current time t and the current state.

4.4. Nonexistence of strong equilibrium. Now, we are ready to discuss
strong equilibrium strategies for the examples in section 2.3.

Proposition 4.9. Suppose D \supseteq U \cap \frakC \infty 
b ([0, T ]\times \BbbX ).

(i) Consider problem (2.5). Then, any \^u \in \=\frakC 1,4
pw([0, T ] \times \BbbR ) such that \^u(t, x) is

global Lipschitz in x \in \BbbR , uniformly in t \in [0, T ], is not a strong equilibrium
strategy.

(ii) Consider problem (2.6), and suppose that h\prime \prime (0) \not = h\prime (0)2. Then, any bounded
\^u \in \=\frakC 2,6

pw([0, T ]\times (0,+\infty )) such that \mu \^\bfu (t, x) and \sigma \^\bfu (t, x) are global Lipschitz
in x > 0, uniformly in t \in [0, T ], is not a strong equilibrium strategy.

(iii) Consider problem (2.7) with \=\sigma \not = 0, and suppose that \~h\prime \prime (0) \not = \~h\prime (0)2 or
h\prime (0) \not = \~h\prime (0). Then, any \^u \in \=\frakC 2,6

pw([0, T ] \times \BbbR ) such that \^u(t, x) is global
Lipschitz in x \in \BbbR , uniformly in t \in [0, T ], is not a strong equilibrium strategy.

In Proposition 4.9(ii) and (iii), the conditions h\prime \prime (0) \not = h\prime (0)2 and \~h\prime \prime (0) \not = \~h\prime (0)2

hold for commonly used nonexponential discounting functions. For example, consider
the following two forms of h that are used in [17]: h(t) = (1+\lambda t)e - \rho t with \lambda \not = 0 and
h(t) = \lambda e - \rho 1t + (1 - \lambda )e - \rho 2t with \lambda (1 - \lambda ) \not = 0 and \rho 1 \not = \rho 2. It is straightforward to
see that for both forms, h\prime \prime (0) \not = h\prime (0)2.

Proposition 4.9 proves the nonexistence of strong equilibrium among smooth
strategies for the three problems presented in section 2.3. In particular, the weak
equilibrium strategies derived in Proposition 3.4 are not strong equilibria.

The idea of proving Proposition 4.9 is to show that the systems of equations (4.5)
and (4.6) cannot hold for t close to the terminal time T . Because these two systems
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of equations are derived under certain regularity assumptions on \^u, the nonexistence
result in Proposition 4.9 is restricted to the set of strategies that are smooth up to
a certain degree. On the other hand, Proposition 4.9 still holds if the regularity
assumptions therein are imposed only in a subperiod towards the end time T , i.e., in
[T1, T ] for some T1 \in [0, T ), because we only need to examine (4.5) and (4.6) for t
close to T .11

The above nonexistence result relies on the assumption that the set D of alter-
native strategies the agent can choose is larger than \BbbU so that the agent can choose
a with arbitrary partial derivatives with respect to time and state. Given that in
some of the existing studies of weak equilibrium in the literature, D is set to be \BbbU ,
it is natural for us to examine whether the strong equilibrium exists in this case. Al-
though we do not have a complete answer, we are able to examine whether the weak
equilibrium strategies derived in Proposition 3.4 are strong equilibria for D = \BbbU .

Proposition 4.10. Suppose D = \BbbU .
(i) Consider problem (2.5). Then, \^u as defined in (3.10) is a strong equilibrium

strategy.
(ii) Consider problem (2.6), and recall \^u as defined in (3.12). Then, for any

t \in [0, T ) and x > 0, setting u = \^u(t, x), we have J(t, x;ut,\epsilon ,u) - J(t, x; \^u) =
x1 - \gamma 

6 \Theta (t)\epsilon 3 + \epsilon 3o(1), where

\Theta (t) = \^\zeta (t) - \gamma 

\biggl[ 
 - 2

\biggl( 
h\prime (0) + (1 - \gamma )

\biggl( 
r +

b2

2\gamma \=\sigma 2

\biggr) 
+ \gamma \^\zeta (t)

\biggr) 
\^\zeta \prime (t)

+\gamma \^\zeta (t) - 1
\Bigl( 
\^\zeta \prime (t)

\Bigr) 2
\biggr] 
.(4.7)

Consequently, if there exists t \in [0, T ) such that \Theta (t) > 0, then \^u is not a
strong equilibrium strategy.

(iii) Consider problem (2.7), and suppose that Assumption 2.3 holds and h, \~h \in 
\frakC 3([0, T ]). Then, \^u as defined in (3.15) is not a strong equilibrium strategy.

In Proposition 4.10(ii), for some commonly used forms of the nonexponential
discounting function h and reasonable parameter values, \Theta (t) is indeed positive. For
instance, following [17], we set b = 0.07, \=\sigma = 0.2, r = 0.05, and T = 3, and we consider
two types of discounting functions h(t) = (1+\lambda t)e - \rho t and h(t) = \lambda e - \rho 1t+(1 - \lambda )e - \rho 2t

with \lambda = 0.25. By setting \gamma = 0.5, \rho = 0.8, \rho 1 = 0.1, and \rho 2 = 0.8, we plot \Theta (t)/| \Theta (0)| 
as a function of t in the left panel of Figure 1, represented by the solid line when
h(t) = (1 + \lambda t)e - \rho t and by the dashed line when h(t) = \lambda e - \rho 1t + (1  - \lambda )e - \rho 2t. The
right panel plots \Theta (t)/| \Theta (0)| with a different set of parameters: \gamma = 0.9, \rho = 1.2,
\rho 1 = 0.1, and \rho 2 = 1.4. In all these plots, \Theta (t) is positive for certain values of t.

Proposition 4.10 shows that for problems (2.6) and (2.7), the weak equilibrium
strategies derived in Proposition 3.4 are not strong equilibrium even when D = \BbbU .
On the other hand, for problem (2.5), the weak equilibrium derived in Proposition
3.4 is a strong equilibrium when we set D = \BbbU . Recall that Proposition 4.9 shows
the nonexistence of strong equilibrium when we set D \supseteq U \cap \frakC \infty 

b ([a, b] \times \BbbX ). We
then conclude that whether a strategy is a strong equilibrium can possibly depend
on the choice of the set D, i.e., on whether the agent is allowed to take nonconstant
alternative strategies. This is in contrast to the case of weak equilibrium: as seen

11Because this generalization is not significant and its proof becomes unduly complicated, we
choose not to present them here. They are available from the authors upon request.
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Fig. 1. \Theta (t)/| \Theta (0)| as a function of t \in [0, T ), where \Theta is as given by (4.7). The solid lines
correspond to the discounting function h(t) = (1 + \lambda t)e - \rho t, and the dashed lines correspond to the
discounting function h(t) = \lambda e - \rho 1t + (1 - \lambda )e - \rho 2t. We set b = 0.07, \=\sigma = 0.2, r = 0.05, and T = 3
in both the left and right panels. We set \gamma = 0.5, \rho = 0.8, \rho 1 = 0.1, and \rho 2 = 0.8 in the left panel
and \gamma = 0.9, \rho = 1.2, \rho 1 = 0.1, and \rho 2 = 1.4 in the right panel.

from Theorem 3.3, whether a strategy is a weak equilibrium does not depend on the
choice of D.

5. Regular equilibrium. The nonexistence of strong equilibrium strategies as
shown in section 4.4 leads to a dilemma: On the one hand, the notion of weak equi-
librium is based on the first-order approximation of the change in value caused by
deviating from a given strategy, so the agent may still be willing to deviate from a
given weak equilibrium strategy. On the other hand, the notion of strong equilibrium,
which does not use the above approximation, is too restrictive in that strong equi-
librium strategies do not exist. This dilemma motivates us to consider the following
new notion of equilibrium strategies.

Definition 5.1 (Regular equilibrium). \^u \in U is a regular equilibrium strategy

if for any x \in \BbbX x0,\^\bfu 
t , t \in [0, T ), and a \in D with a(t, x) \not = \^u(t, x), there exists

\epsilon 0 \in (0, T  - t) such that (4.1) holds.

When examining whether to deviate from a given strategy \^u at a given time t with
state x, the agent would naturally consider in her calculation only those alternatives
a that are different from the given strategy in an infinitesimally small period of time.
If the agent employs ``approximation"" in examining whether a and \^u are different by
comparing their values at the current time and state (t, x) only, the agent would then
only consider alternatives a with a(t, x) \not = \^u(t, x), leading to the notion of regular
equilibrium.

Note that the notion of regular equilibrium is not as economically sound as the
notion of strong equilibrium due to the above ``approximation;"" the agent may still be
willing to deviate from a regular equilibrium strategy to take another very similar, but
different, strategy. We need this ``approximation,"" however, to expect the existence
of regular equilibrium in many time-inconsistent control problems because we already
showed that the strong equilibrium does not exist.

One possible economic justification for regular equilibrium is inertia, the tendency
to maintain one's current plan without changing it; see, for instance, the discussion
of portfolio inertia in [4] and [31]. The agent never considers the possibility of a small
deviation from \^u to another very similar strategy a that yields the same action as \^u
at the current time with the current state, because such a small change in the strategy
is outweighed by the intrinsic inertia of the agent.
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The following theorem shows that regular equilibrium implies weak equilibrium,
provides a sufficient condition under which a strategy is a regular equilibrium strategy,
and proves a sufficient condition under which regular equilibrium and weak equilib-
rium are equivalent.

Theorem 5.2. Suppose Assumptions 2.2 and 3.2 hold and \BbbU \subseteq D \subseteq U. Recall
\Delta \^\bfu (t, x;u) as given in Theorem 3.3. Then, the following are true:

(i) If \^u is a regular equilibrium strategy, it is also a weak equilibrium strategy.
(ii) \^u is a regular equilibrium strategy if the following hold:

\Delta \^\bfu (t, x;u) < 0 \forall u \in \BbbU with u \not = \^u(t, x), x \in \BbbX x0,\^\bfu 
t , t \in [0, T ).(5.1)

(iii) Suppose that for any x \in \BbbX x0,\^\bfu 
t and t \in [0, T ), the maximization of \Delta \^\bfu (t, x;u)

in u admits a unique maximizer, which in particular holds when \BbbU is a convex
set and \Delta \^\bfu (t, x;u) is strictly quasi-concave in u. Then, \^u is a weak equilib-
rium strategy if and only if it is a regular equilibrium strategy.

Proposition 5.3. Suppose \BbbU \subseteq D \subseteq U.
(i) Consider problem (2.5). Then, \^u as defined in (3.10) is a regular equilibrium

strategy.
(ii) Consider problem (2.6). Then, \^u as defined in (3.12) is a regular equilibrium

strategy.
(iii) Consider problem (2.7), and suppose that Assumption 2.3 holds and h, \~h \in 

\frakC 3([0, T ]). Then, \^u as defined in (3.15) is not a regular equilibrium strategy.

Suppose that we have identified a weak equilibrium strategy \^u. Then, \^u(t, x) must
be the maximizer of \Delta \^\bfu (t, x;u) in u \in \BbbU . Theorem 5.2 shows that if the maximizer
is unique, \^u is also a regular equilibrium. Proposition 5.3 shows that for many time-
inconsistent problems, e.g., problems (2.5) and (2.6), the maximizer of \Delta \^\bfu (t, x;u) in
u \in \BbbU is indeed unique.

The above discussion shows that the notion of weak equilibrium is still useful:
To ensure that the agent is unwilling to deviate from a weak equilibrium to take a
large class of alternative strategies, where such a class is specified in the notion of
regular equilibrium strategies, we only need to check whether the maximizer of the
maximization problem in the extended HJB equation (3.9) is unique.

Finally, Proposition 5.3(iii) shows that a weak equilibrium can possibly not be a
regular equilibrium strategy. Thus, the notion of regular equilibrium is a step forward
from the notion of weak equilibrium towards a better definition of equilibrium.

6. Conclusion. The existing notion of equilibrium strategies for continuous-
time time-inconsistent problems is not aligned with the standard definition of equi-
librium in game theory; i.e., this notion does not imply that the self of an agent at
each time is unwilling to deviate from a given equilibrium strategy. To address this
issue, the authors of [29] propose the notion of strong equilibrium for an infinite-time
horizon, continuous-time stochastic control problem in which an agent can control
the generator of a time-homogeneous, continuous-time, finite-state Markov chain. We
considered a general diffusion framework, which includes as special cases the invest-
ment and consumption problems studied in [8], [2], and [17] as well as another optimal
consumption problem with a bequest, and studied weak and strong equilibria in this
framework.

We proved a sufficient and necessary condition for a strategy to be a weak equi-
librium and showed that it is independent of whether or not the set of alternative
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strategies that the agent can switch to includes nonconstant strategies. We then ex-
amined the weak equilibrium strategies derived in [2] and [17] for the problems studied
therein and found a weak equilibrium strategy for the optimal consumption problem
with a bequest.

We then formulated the notion of strong equilibrium and proved two necessary
conditions for a strategy to be a strong equilibrium. Each of the two conditions
consists of a system of equations, and these equations give us insights that strong
equilibrium can hardly exist. We confirmed these insights by showing that none of
the above three investment and consumption problems admits any strong equilibrium
with sufficient regularity if the set of alternative strategies includes nonconstant ones.

The above nonexistence result motivates us to propose the notion of regular equi-
librium: in this notion the agent also directly evaluates the change in value caused
by deviating from a given strategy, as in the notion of strong equilibrium, but she
is only allowed to choose alternatives that are different from the given strategy at
the current time and state. We proved that a regular equilibrium strategy must be a
weak equilibrium and provided a sufficient condition under which the converse is also
true. We then verified that the investment and consumption strategies in [2] and [17]
satisfy this condition, showing that the notion of weak equilibrium is still useful as
long as this condition holds. Finally, we found that the particular weak equilibrium
strategy we derived for the optimal consumption problem with a bequest is not a reg-
ular equilibrium, showing that regular equilibrium is in general different from weak
equilibrium.

Finally, while Theorem 3.3, which concerns weak equilibrium, can apply to prob-
lems with a finite control set \BbbU , such as optimal stopping problems and optimal
switching problems, the results about strong equilibrium in section 4 cannot apply
to those problems. Indeed, for the latter results, we need to assume that the control
strategies are smooth in the state variable; see Assumptions 4.2 and 4.7 and the as-
sumption that D \supseteq U \cap \frakC \infty 

b ([0, T ] \times \BbbX ) as imposed in Theorems 4.6 and 4.8. Thus,
it remains an open question whether strong equilibrium strategies exist for problems
with a finite control set, such as for optimal stopping problems. On the other hand, for
the case of a continuous control set \BbbU , the result of nonexistence of strong equilibrium
derived in Proposition 4.9 is restricted to the set of sufficiently regular strategies. The
approach in the present paper to studying strong equilibrium, which is to do Taylor
expansion of the increment reward of taking an alternative strategy and committing
to it in a period of time with respect the length of the period, does not apply to strate-
gies that are not sufficiently regular. Thus, it remains an open question whether there
exists a strong equilibrium strategy without sufficient regularity.

Appendix A. A lemma on stochastic differential equations. For each
t \in [0, T ] and x \in \BbbX , consider the following SDE taking values in \BbbX :

dX(s) = \~\mu (s,X(s))ds+ \~\sigma (s,X(s))dW (s), s \in [t, T ], X(t) = x,(A.1)

where (W (s))s\geq 0 is a d-dimensional standard Brownian motion, \~\mu is a mapping from
[0, T ]\times \BbbX to \BbbR n, and \~\sigma is a mapping from [0, T ]\times \BbbX to \BbbR n\times d. We make the following
assumption.

Assumption A.1.
(i) \~\mu (t, x) and \~\sigma (t, x) are measurable in (t, x) \in [0, T ]\times \BbbX and are locally Lipschitz

in x \in \BbbX , uniformly in t \in [0, T ].
(ii) When \BbbX = \BbbR n, \~\mu (t, x) and \~\sigma (t, x) are of linear growth in x \in \BbbX , uniformly in

t \in [0, T ], and when \BbbX = (0,+\infty ), \~\mu (t, x) and \~\sigma (t, x) have bounded norm in
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x \in \BbbX , uniformly in t \in [0, T ].

Lemma A.2. Suppose Assumption A.1 holds. Then, for any t \in [0, T ) and x \in \BbbX ,
there exists a unique strong solution to the SDE (A.1). Moreover, when \BbbX = \BbbR n, for
any integer \gamma \geq 1, there exists a constant L > 0 such that

\BbbE t,x

\Biggl[ 
sup

s\in [t,T ]

\| X(s)\| 2\gamma 
\Biggr] 
\leq L(1 + \| x\| 2\gamma ) \forall t \in [0, T ], x \in \BbbX ,(A.2)

and when \BbbX = (0,+\infty ), for any \gamma \in \BbbR , there exists a constant L > 0 such that

\BbbE t,x

\Biggl[ 
sup

s\in [t,T ]

| X(s)| \gamma 
\Biggr] 
\leq Lx\gamma \forall t \in [0, T ], x \in \BbbX .(A.3)

Appendix B. Sufficient conditions for assumptions. In this section, we
provide sufficient conditions for Assumptions 2.3, 3.2, 4.2, and 4.7, respectively.

Lemma B.1. Suppose h and \~h are nonnegative, in \frakC 2([0, T ]), h(0) = \~h(0) = 1,
h\prime (0) \not = 0, and \~h\prime (0) = 0. Then, (2.8) admits a unique solution in \frakC 1[0, T ]. Moreover,
if [h\prime (t) - \~h\prime (t)]/h\prime (0) > 0 and h\prime \prime (t)/h\prime (0) \leq 0 for all t \in [0, T ], then \psi (t) > 0 for any
t \in [0, T ].

Lemma B.2. Consider a strategy \^u, and suppose the following two conditions
hold:

(i) For each fixed (\tau , y) \in [0, T )\times \BbbX , \mu \in \=\frakC 0,2,2
pw ([0, T ]\times \BbbX \times \BbbU ), \sigma \in \=\frakC 0,2,2

pw ([0, T ]\times 
\BbbX \times \BbbU ), F (\tau , y, \cdot ) \in \=\frakC 2(\BbbX ), C(\tau , y, s, x, u) is right-continuous in s \in [0, T )
for any (x, u) \in \BbbX \times \BbbU , C(\tau , y, s, \cdot , \cdot ) \in \frakC 2,2(\BbbX \times \BbbU ) for each fixed s \in [0, T ],
\partial \alpha +\beta C(\tau ,y,s,x,u)

\partial x\alpha \partial u\beta is of polynomial growth in (x, u) \in \BbbX \times \BbbU , uniformly in s \in 
[0, T ], for any derivative indices \alpha and \beta with | \alpha | + | \beta | \leq 2, and G(\tau , y, z) is
continuously differentiable with respect to z.

(ii) \^u \in \=\frakC 0,2
pw([0, T ] \times \BbbX ), \mu \^\bfu and \sigma \^\bfu are global Lipschitz in x \in \BbbX , uniformly in

t \in [0, T ], and in the case \BbbX = (0,+\infty ), \mu \^\bfu and \sigma \^\bfu have bounded norm in
x \in \BbbX , uniformly in t \in [0, T ].

Then, \^u \in U, and Assumption 3.2 holds.

Lemma B.3. Consider a strategy \^u and suppose the following two conditions hold:
(i) For any fixed (\tau , y) \in [0, T )\times \BbbX , \mu \in \=\frakC 1,4,4

pw ([0, T ]\times \BbbX \times \BbbU ), \sigma \in \=\frakC 1,4,4
pw ([0, T ]\times 

\BbbX \times \BbbU ), F (\tau , y, \cdot ) \in \=\frakC 4(\BbbX ), C(\tau , y, \cdot , \cdot , \cdot ) \in \=\frakC 1,2,2
pw ([0, T ]\times \BbbX \times \BbbU ), C(\tau , y, s, \cdot , \cdot ) \in 

\frakC 4,4(\BbbX \times \BbbU ) for each fixed s \in [0, T ], \partial \alpha +\beta C(\tau ,y,s,x,u)
\partial x\alpha \partial u\beta is of polynomial growth

in (x, u) \in \BbbX \times \BbbU , uniformly in s \in [0, T ], for any derivative indices \alpha and
\beta with | \alpha | + | \beta | \leq 4, and G(\tau , y, z) is twice continuously differentiable with
respect to z.

(ii) \^u \in \=\frakC 1,4
pw([0, T ] \times \BbbX ), \mu \^\bfu and \sigma \^\bfu are global Lipschitz in x \in \BbbX , uniformly in

t \in [0, T ], and in the case \BbbX = (0,+\infty ), \mu \^\bfu and \sigma \^\bfu have bounded norm in
x \in \BbbX , uniformly in t \in [0, T ].

Then, \^u \in U, and Assumption 4.2 holds.

Lemma B.4. Consider a strategy \^u, and suppose the following two conditions
hold:

(i) For any fixed (\tau , y) \in [0, T )\times \BbbX , \mu \in \=\frakC 2,6,6
pw ([0, T ]\times \BbbX \times \BbbU ), \sigma \in \=\frakC 2,6,6

pw ([0, T ]\times 
\BbbX \times \BbbU ), F (\tau , y, \cdot ) \in \=\frakC 6(\BbbX ), C(\tau , y, \cdot , \cdot , \cdot ) \in \=\frakC 2,4,4

pw ([0, T ]\times \BbbX \times \BbbU ), C(\tau , y, s, \cdot , \cdot ) \in 
\frakC 6,6(\BbbX \times \BbbU ) for each fixed s \in [0, T ], \partial \alpha +\beta C(\tau ,y,s,x,u)

\partial x\alpha \partial u\beta is of polynomial growth
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in (x, u) \in \BbbX \times \BbbU , uniformly in s \in [0, T ], for any derivative indices \alpha and
\beta with | \alpha | + | \beta | \leq 6, and G(\tau , y, z) is thrice continuously differentiable with
respect to z.

(ii) \^u \in \=\frakC 2,6
pw([0, T ] \times \BbbX ), \mu \^\bfu and \sigma \^\bfu are global Lipschitz in x \in \BbbX , uniformly in

t \in [0, T ], and in the case \BbbX = (0,+\infty ), \mu \^\bfu and \sigma \^\bfu have bounded norm in
x \in \BbbX , uniformly in t \in [0, T ].

Then, \^u \in U, and Assumption 4.7 holds.
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