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ELECTROMAGNETIC WAVES GENERATED BY A HYBRID
DIELECTRIC-PLASMONIC DIMER*
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Abstract. We know that the electric field generated by a plasmonic nano-particle (with negative
permittivity) is given as a polarization of the incident electric field. Similarly, the electric field
produced by a dielectric nano-particle (with positive but high permittivity) is given as a polarization
of the incident magnetic field. In this work, we demonstrate that a hybrid dimer—composed of two
closely coupled nano-particles, one plasmonic and the other dielectric—can polarize both the incident
electric and the magnetic fields. Consequently, such hybrid dimers have the potential to modify both
the electric permittivity and magnetic permeability of the surrounding medium. However, this dual
modification occurs only when the two nano-particles share common resonant frequencies. We derive
the asymptotic expansion of the fields generated by these hybrid dimers in the subwavelength regime
for incident frequencies near their shared resonant frequencies.
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1. Introduction and the main result.

1.1. Motivation. The interaction of light with nanoscale materials has revolu-
tionized the understanding and manipulation of electromagnetic fields at subwave-
length scales, paving the way for transformative applications in photonics, sensing,
and metamaterials; see [6, 15, 23, 29, 34, 35]. Among the various nanostructures,
hybrid dimers—composed of plasmonic and dielectric nano-particles represent a sig-
nificant advancement due to their ability to interact with both the electric and the
magnetic components of incident electromagnetic fields. Indeed, plasmonic nano-
particles, characterized by their negative permittivity at optical frequencies, generate
intense localized electric fields through surface plasmon resonances, effectively polar-
izing the incident electric field; see [5, 7, 10, 15, 20, 21, 22, 27]. In contrast, dielectric
nano-particles with high positive permittivity are known for their low-loss interaction
with the magnetic component of light, driven by displacement currents that produce
magnetic dipole resonances; see [3, 9, 25, 30, 32]. When combined in a hybrid dimer,
these nano-particles exhibit coupled electromagnetic responses, allowing simultaneous
polarization of both the electric and the magnetic fields. This unique dual interaction
makes hybrid dimers a promising platform for engineering media with tailored electric
permittivity and magnetic permeability [24, 33].

A critical feature of hybrid dimers is their ability to achieve resonant frequency
alignment between the plasmonic and dielectric components. This resonance matching
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enhances their electromagnetic coupling, enabling the formation of hybrid modes with
strong field localization and enhancement. Recent studies have demonstrated that
these hybrid modes can lead to significant field amplification in the gap between
nano-particles, often referred to as “hot spots,” which are central to applications such
as surface-enhanced Raman spectroscopy (SERS), nanoscale biosensing, and nonlinear
optics [2, 26, 33].

In this work, we explore the theoretical and computational aspects of hybrid
dimer interactions in the subwavelength regime. By deriving the asymptotic expan-
sion of the fields generated near the common resonant frequencies of plasmonic and
dielectric nano-particles, we aim to elucidate the underlying mechanisms driving the
dual polarization effects. This approach provides a robust framework for understand-
ing how hybrid dimers can modify the electromagnetic properties of the surrounding
medium, offering new insights into their role in advanced photonic devices. Below,
we list a few advantages of using hybrid dimers over homogeneous dimers of the form
plasmonic-plasmonic or dielectric-dielectric dimers.

1. Field polarization mechanisms by hybrid dimers. These hybrid dimers com-
bine the complementary nature of plasmonic (electric field-driven) and di-
electric (magnetic field-driven) responses, creating dual polarization effects.
The combination allows for both the electric permittivity e and the magnetic
permeability @ modulation, which is unique to hybrid structures. In a next
work, we will analyze with more details the case when we have a cluster of
such dimers, regularly arranged in a given bounded domain, and show how
the generated effective medium is a modulation, by averaging, of both the per-
mittivity and the permeability offering a way how to design single or double
negative electromagnetic media.

2. Field localization and enhancement. Hybrid dimers exhibit enhanced field
localization and polarization in the gap region, benefiting from the syner-
gistic effects of plasmonic and dielectric components. Indeed, in the case of
homogeneous dimers, as plasmonic-plasmonic, strong electric field enhance-
ments are localized in the gap, but losses due to ohmic heating can dampen
efficiency. Regarding dielectric-dielectric dimers, we have relatively moderate
enhancement but with less ohmic loss in comparison to plasmonic counter-
parts. Therefore, using heterogeneous dimers might improve both the en-
hancement, as for plasmonics, and reduce the ohmic loss, as for dielectrics.

3. Potential applications. The ability of hybrid dimers to modulate both e¢ and
w1 enables applications in designing metamaterials with tunable refractive in-
dices, broadband absorbers, and devices requiring simultaneous electric and
magnetic field control. Homogeneous plasmonic-plasmonic dimers are widely
used in SERS, photothermal therapy, and plasmonic sensing due to their
strong electric field enhancements, while dielectric-dielectric dimers are ideal
for applications requiring low loss, such as photonic waveguides and resonators
with high-Q factors. Therefore, hybrid dimers can offer possibilities to be used
in both the mentioned applications, as they share the qualities and avoid their
disadvantages, to some extent.

1.2. Main results. Let D; and Dy be two bounded and C?-regular domains in
R3, and model D := D; U Dy to stand for a dimer composed of two nano-particles
Dy and D,. We assume that D; is a dielectric nano-particle; namely, its permittivity
and permeability constants enjoy the following properties:
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(1)
65,1) =5 with Re(e(l)) >1 and 65,1):1 outside Dy,
€0

1 . p®
Ho

while p,’ = = 1 in the whole space R3. The nano-particle D, is taken to be a

plasmonic one, i.e., with a moderately contrasting relative permittivity 652) = %

enjoying negative real values,

b

R(EP) <0 and €? ~1 with €? =1 outside D,

. o e . .
and a permeability satisfying ,u?) = % =1 in the whole space R3. More details
will be given later on the related quantities. The electromagnetic wave propagation,

in the time-harmonic regime, with the presence of the dimer D satisfies
Curl(E) —ikpu.-H=0 inR3,

(1.1)
Curl(H) +ike, E=0 inR3,

where the total field (E, H) is of the form (E := EI" + ES H := H!"* + H*) and the
incident plane wave (E1"¢, HI"¢) is of the form

(1.2) E™(x,0,p) = pe’™ " and  H'(,0,p) = (0 x p) "7,

with 0,p € S2, S? being the unit sphere, such that 6 - p = 0, as the direction of
incidence and polarization, respectively, and the scattered field (E*, H®) satisfies the
Silver—Miiller radiation condition (SMRC) at infinity:

—1 S(ﬂ i, SZL’ — i
(13) ey HoG@) x 5= B@) = 0 ().

This problem is well-posed in appropriate Sobolev spaces (see [12] and [28]), and
we have the following behaviors:

(L4) Bo() = & (E"O<f>+0(|alc|>> el

||

and

o) = O (HOO(JE) L0 <1>) as || — oo,

] ||

where (E°°(&), H*(&)) is the corresponding electromagnetic far-field pattern of (1.1)
in the propagation direction & := &

Next, we present the necessary assumptions on the model (1.1) to derive the main
results.

Assumption 1.1.
1. Assumption on the dimer. Suppose that each component D,, of D can be
represented by D,, = aB,, + 2, with the parameter a > 0 and the location
zm for m=1,2. Denote

a:=max{diam(D;),diam(D3)} and d:=dist(D,D3).
We take
(1.5) d=apa',

with ¢ such that 0 < ¢ < 1, and ag is a positive constant independent of a.
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2. Assumptions on the permittivity and permeability of each particle. Regarding
the permittivity, we assume that

m = V1= noa?2 ifxe Dy,

(1.6) n(z) ==
mi=ea? —1~1 with ®(?) <0 ifweD,

where 79 is a constant in the complex plane independent of the parameter

a, such that R(n9) € RT. Moreover, regarding the permeability u(rm), we
‘o (m) _ _

assume that y, ~ =1 for m=1,2.

3. Assumption on the shape of By,.
(a) Regarding the shape Bj. Since

(1.7) Hp (div =0) (B;) = Curl (Hy (Curl) NH (div =0)) (By),
where
Hp (Curl) NH (div =0) (By)

= {E € L3(By), such that Curl (F) € L?(By),

div(F) = 0in By, andv X E = OonaBl}

(see, for instance, [4, Theorem 3.17]), then there exists

Gn.m.B, € Ho (Curl) NH (div = 0) (By),

such that
(1.8) egzl,)m,Bl =V X bnm,p, With vX¢nmp, =0and V- onmp, =0,
where e,g’zm p, € Ho (div=0)(B1) is an eigenfunction, corresponding to the

eigenvalue )\%1)(31), related to the Newtonian operator Np, (-) defined, from
L2(B;) to L2(By), by'

1 1

No, ()@= [ By,
ie.,
Np, (eﬁjjn, Bl) = AD(By)el) 5 B
We assume? that for By,
(1.9) o8, (Y) dy ® Gy, (y)dy # 0 for certainng €N,

Bl Bl
!The Newtonian operator Np, (-) is bounded from L2(B1) to H?(B1).

2To reduce the length of the notation in what follows, we eliminate the need to depend on the
vector ¢, m, B, With respect to multiplicity index m.
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and
1 / (3) / 3)
e g (x)dr ® e, g (z)dr # 0,
Zn: A£L3)(Bl) By n,By B, 1, B

where 67(3)31 € VHarmonic(B;) is an eigenfunction, corresponding to the

cigenvalue A\ (B1), related to the Magnetization operator VMp, (-) defined,
from IL2(B;) to L2(By), by

VB0 =Y [ V() Ewa

ie.,
(1.10) VMp, (e;3>) = A®(B)e® in By

(b) Regarding the shape Bs. For Ba, we assume that
S bum@dye / O, () dy 20,
n Bz B2
where ¢, g, (-) satisfy (1.7) in By, and

/B ef’*)’BQ (z)dz ® /B efi),Bz (x)dx # 0 for certainn, €N,
2 2

where efi)BQ(-) € VHarmonic(Bs) is an eigenfunction, corresponding to the

eigenvalue )\S’)(Bg), related to the Magnetization operator VMp, (-).

To gain more information about the used spaces Hy (div= 0)(Bn),
VHarmonic(B,,), and the eigensystems that relate to the Newtonian op-
erator Np,_ (-) and the Magnetization operator VMp, (), with m=1,2, it is
recommended that the readers refer to Remark 2.3.

4. Assumption on the used incident frequency k. Define the vector Magnetiza-
tion operator VMp, (-) as (2.2). Under the Helmholtz decomposition of L>-
space given by (2.1), denote ()\513) (B2), e%?’)) as the corresponding eigensystem
of VM$, () over the subspace VHarmonic. There exist complex constants
¢ and dy, with Re(co), Re(dp) € R, such that

(1.11)
1 — k*na? )\5110)(31) =+4coa” and 1+ 772)\513*)(32) =+dya", ax1,

where )\%10)(31) is the eigenvalue corresponding to e%lo) in By, related to the

Newtonian operator Np, (-), and A%S)(Bg) is the eigenvalue to egi) in B,
related to the Magnetization operator VMp, (-).

The conditions (1.6) and (1.11) can be derived from the Lorentz model by choosing

appropriate incident frequency k. Indeed, recall the Lorentz model for the relative

permittivity that

*

2

1.12 =1 Fp
(1.12) €r = +m>

where k;, is the plasmonic frequency, k¢ is the undamped frequency resonance of the

background, and £ is the damping frequency with & < 1. The details are given in
Appendix A.
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NOTATION. The prefic SM indicates elements in the supplementary materials
document. For example, subsection SM1.1 refers to that subsection in M171968_SM.
pdf [local/web 483KB].

Based on the above conditions, we are now in a position to state our main result.

THEOREM 1.2. Let Assumption 1.1, on the problem (1.1)—(1.2)—(1.3), which is
generated by the dimer D, be satisfied. Let x be away from D; then, for t,h € (0,1)
such that

4 —h — 4t >0,

the scattered wave admits the following expression:

2
(1.13) Eé(z) = k* Z [Tk(x,zm) ‘R, — Y@k(x,zm) X Qm]

min(3;7—2h—3t;10—2h—Tt
—+ O (CL ( )) )

and its far-field admits the following expansion:

(1.14) E®(3)= 1= 3 etk [(I — 2®2) Ry + ik x O
L0 (amin(3;7—2h—3t;10—2h—7t)) )

Here, (Ql,Rl,QQ,RQ) is the vector solution to the following algebraic system:

~ ik —h p(1) ne
I3 0 —Biz —Bu Q1 T a’ };Po,1 H(z1)
(1.15) 0 Iy =By —Bos | B _ a* P ETm(z)
' —B31 —Bsx I3 0 Q2 iknya® P(()g CH™C(29) |
_841 _842 0 IS R2 ileioa’g_h Pg),% . ElnC(ZQ)
with

ko 5 npa
613 = TCO CL3 hPéy% . Tk(Zl,ZQ),

823 = ]{72 a3 P((f% : V(I)k;(zh 22)7
Bsi :=k*npa® P(()T% Ti(22,21),

n2 3 ho0
By IZTdOWO’ hPE),)'V‘I’k(Zz,Zl)7

k2
Biyi= D 3P TPy (21, 2),
co

Boy:=k*a? P((fi - Tr(z1,22),
Bsy :=k*npa® P(()g V@ (22,21),

k2772 3— 2
842 ::Tdoas hPéy% 'Tk(ZQ,Zl),

where Y (-, ) is the dyadic Green’s kernel given by
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1
k2

where ®p(-,-) is the fundamental solution of the Helmholtz equation given by

(1.16) Ti(-:) = 75 VVOL(:,-) + Pi(,-) I3,

ciklz—yl

1.1 (0] =
( 7) k($7y) 4 |$ — y|a Z‘#y,

I3 is the identity matriz, and Pé{?, for i, =1,2, are the polarization tensors defined
by

P~ [ bnm@dr® [ onm(@)d
B,

By
1
P2 = 7/ e® x)dx@/ el (z)dz,
0,1 zn:/\g)(Bl) o B ( 5 n, B
P = Gnpa(x)dz® | P p, () da,
n BQ BZ

P((f%:/ ef’*)’BQ(m)da:(@/ 62)732(z)dx,
BZ BZ

with ¢n(-) satisfying (1.8) and ed) fulfilling VMp, (eS’)) = /\513)(32) eld.

Moreover, if we further extract the very dominant term (@1, R2), in D, from the
solution to the algebraic system (1.15), it leads to the following corollary.

COROLLARY 1.3. Let x be away from D; then for t,h € (0,1) fulfilling the condi-
tion

4 —h —4t >0,

the following expansion for the scattered field holds:

( ik
E%(z) = £k {Z(Q)Tk(:r,zo) P B (z) — anqu)k(x,zo) x P§ - HI™ ()

(1.18)

L0 (amin(s—h+t; 3;10—2h—T7t; 9—3h—5t))
and the following expansion for the far-field holds:
(1.19)

E®(2) =

k? —ikd-z —h |72 5o A (2) nce ﬁ0k2
Tar© o’ {%(ISU@@'PUQ'EI (20) = co

min(3—h+t; 3; 10—2h—7t; 9—3h—5t
+ O (a ( )) 9

#x P HI™ (%)

where zy denotes the intermediate point between z; and z2, and Pé}i and ng% are
given in Theorem 1.2.

The analysis performed in this work is related to small-scaled nano-particles (rel-
ative to the wavelength). The results related to extended particles at low frequencies
regimes can be similarly derived. We made the choice of small-scaled nano-particles
because of the different applications we have in mind in material sciences and imaging,
for instance. Also, we are aware that in the scattering coefficients, via the different
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polarization tensors and the coefficients ¢y and dg, we have taken into account only the
very dominant terms, neglecting the small perturbations (that are related to damping
and radiative losses).

We conclude this subsection by mentioning the following compact formulas for
rewriting the tensors Pé{ 2, with 1 <4,7 <2, and their values for the particular case
where the nano-particles are balls.

1. The tensor

Pg)}% = ¢n07Bl (.Z’) dr ® (bnO,Bl (.Z') dz
Bq By

reduces, under the particular case of By being the unit ball, i.e., By = B(0,1),
and ng = 1, to

y 12
(1.20) Pl = 1.

)

2. We have the compact form of the tensor

Pl @z e [ 6.5, d = (2)-P(Q) (x) d,

B2

where @ is the matrix given by equation (SM2.58).
3. We rewrite the tensor P((f% as
1 .
P .= _ / e (z)dx ® / e® (z)dzx
0,1 ; Aglg)(Bl) B, n,Bl( ) B, n,Bl< )

= [ VMg!(Isxs,)(z)dz.
B,

In addition, under the particular case of By being the unit ball, i.e., By =
B(0,1), we obtain
P’ = 4nl;.

4. Finally, the tensor
Pé?% = / efi)’Bz (z)dz ® / 65332 (z)dx
BQ B2

reduces, under the particular case of By being the unit ball, i.e., Bo = B(0,1),
and n, = 1, to

2 47
(1.21) Py = 5

The computation details can be found in subsection A.2. We observe that for the
case of balls, the main tensors P((ﬂ and P[(f% are not vanishing and are proportional
to the identity matrix.

3.

1.3. Discussion about the results. The estimation of the electromagnetic
fields generated by a single type of nano-particles is already known in the literature;
see [3, 9] for dielectric nano-particles and [10, 20] for plasmonic nano-particles. The
related results correspond to those derived here by keeping only the block matrix

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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given by (Bis,Bas, Bs1,B41) or (Bia,Bas, Bsa, Bya), respectively, in (1.15). The origi-
nality here is to have derived the fields generated by such hybrid dimers having not
only different shape but also different contrasting materials. We call such hybrid
dimers heterogeneous dimers, while those dimers with similar, or the same, scales are
called homogeneous dimers. An analysis for a homogeneous dimer composed of two
spherically shaped plasmonic nano-particles can be found in [34, 35].

The approximations of the electric fields in (1.13) and (1.14) are modeled by
the vectors @Q1,Q2, R1, and Rs, which are solutions of the algebraic system (1.15).
Precisely, (); and R; model the magnetic and electric poles of the nano-particles D,
7 =1,2, respectively. Inverting this algebraic system, using the Born series expansions,
provides one with a cascade of field approximations where the most dominant field
is described in (1.19). In this corollary, we see that the generated electromagnetic
field by the dimer is a combination of the electric pole generated by the plasmonic
nano-particle and magnetic pole generated by the dielectric nano-particle. This shows
how the dimer plays a role of dipole to generate the electromagnetic field. The higher
order terms in the Born series describe the two types of contributions that are worth
mentioning.

1. The first class of contributions consists in the higher order terms modeling
multipoles for each nano-particle, taken in isolation. Such higher order terms
are also seen when deriving the expansion for single nano-particle.

2. The second class of contributions consists in the mutual interaction between
the two nano-particles. These terms model the multiple scattering between
the two nano-particles.

Based on this classification of the contributions, the mutual interaction between the
two nano-particles, forming the heterogeneous dimer, is richer, as compared to single
nano-particles or homogeneous dimers, as these contributions enter into the game as
combinations of higher order modes, for each nano-particle, with mutual interactions
between the two nano-particles.

Such a mutual interaction between the two nano-particles is possible only because
they are tuned to resonate at common incident frequencies. Otherwise, we can also
excite the dimer with frequencies away from the common resonances but eventually
near to resonances of one of the nano-particles; then the dimer will predominantly
behave as a single nano-particle.

As a plasmonic-dielectric dimer has the potential of generating both electric and
magnetic polarizations, we expect to use a cluster of such dimers to generate both
effective electric permittivity and magnetic permeability. As we excite such systems
with nearly resonating incident frequencies, we expect to be able to generate both
single negative (permittivity or permeability) or eventually double negative (permit-
tivity and permeability). Such an investigation will be reported in a forthcoming work.
Let us mention that the use of a cluster of nano-particles (single nano-particle) to gen-
erate single negative permeability of single negative permittivity is already confirmed
in [8] and [11], respectively.

The rest of the paper is organized as follows. In section 2, we introduce some pre-
liminaries, including the L2-Helmholtz decomposition and the Lippmann—Schwinger
system of equations for the solution to (1.1). Based on the Lippmann—Schwinger
system, we present the a priori estimates first for a single nano-particle and then for
the dimer of nano-particles. The estimations for the related scattering coefficients,
i.e., corresponding to the induced polarization tensors, are analyzed as well. In sec-
tion 3, the precise form of the linear algebraic system is investigated. Section 4 is
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devoted to proving Theorem 1.2 and Corollary 1.3, on the basis of the outcomes in
sections 2 and 3. Appendix A will be devoted to the justification of some mentioned
results in section 1.

2. Some preliminaries and a priori estimates. In this section, we present
some necessary preliminaries and significant a priori estimates. For the preliminaries,
we cite some key points for the completeness of the paper; see [9] for more details.

2.1. L?(B)-Helmholtz decomposition. The following direct sum provides a
useful decomposition of L2(B)-space; see [13, Chapter IX, Table I, Page 314]:

21)  L*(B) = Hy (div="0)(B) & Hy (Curl = 0) (B) & VHarmonic(B),
where

Hy (div=0) (B) := {E € L*(B), divE=0inB, v- E=0 on B},
Ho (Curl =0) (B) :={E € L*(B), CtlE=0inB, v x E=0 on 0B},

and

VHarmonic(B) := {E: E=Vy,¥€H"(B), Ay =0inB}.

12 3
From the decomposition (2.1), we define P, P, and P to be the natural projectors as
follows:

Pie L*(B) — Hy (div = 0) (B), Pm L*(B) — Hy (Curl = 0) (B)

3
and P:=1L2*(B) — VHarmonic(B).

2.2. Lippmann—Schwinger integral formulation of the solution. For any
vector field F', we define the Newtonian operator N Ik)() and the Magnetization oper-
ator VME(-) as follows:

(2.2)
NE(F) () = /

| ®i(@y)Fy)dy and VMp(F)(@)=Y | Vi(e.y) Fly)dy.

where ®y(+,-) is the fundamental solution of the Helmholtz equation given by (1.17).
The solution to (1.1) of the integro-differential form can be formulated as the following
proposition.

PROPOSITION 2.1. The solution to the problem (1.1) satisfies
(2.3) E(z) + VMp(nE)(x) — K Np(n E)(x) = B™™(x), z€R’

where n(-) is defined by (1.6).

Proof. The proposition can be proved by utilizing the Stratton—Chu formula di-
rectly; see [12, Theorem 6.1] for more detailed discussions. 0

Motivated by the study of the L.S.E given by (2.3), on the subspaces involved in
the LL2-space decomposition (see, for instance, (2.1)), using spectral theory techniques,
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it is crucial for us to discuss the Magnetization operator with vanishing frequency,
i.e.,, VM(-) := VMPO(-), and the Newtonian operator with vanishing frequency, i.e.,
N(-) := N°(), on the L.H.S of (2.3). This idea is clarified by the following remark.

Remark 2.2. The case for a domain D being small leads to the expansions of the
Magnetization operator VM (-) and the Newtonian operator N5 (-), defined in (2.2)
as

VM (F)a) = VMo (F) )+ 5 No(F)o) + 1o [ Py

127
k? A(z,y) - F(y)
(I) NI NI
2/ VT TR W
(2.4) _ Ly R / VVlo—y"-Fly)dy, veD
. Ar £ ’/l+1 €T Yy Y, X )
and
ik
z%mw:%waZ/F@@
1 (ik)n Tt
(2.5) 2 (T [ le=s" F@)dn. weD.

where A(-,-) is the matrix given by A(z,y) :=(x —y) ® (x —y). For more details on
the derivation of (2.4) and (2.5), we refer the readers to [9, section 2.2].

In addition to the above remark, the following behaviors of the Magnetization
operator and the Newtonian operator on the subspaces involved in the L2-space de-
composition, given by (2.1), hold.

Remark 2.3. Two points are in order.

1. The Newtonian operator Np(-) projected onto the subspace Hy(div = 0)(B)
(respectively, Ho(Curl = 0)(B)) admits an eigensystem that we denote by
(A%l)(B);egi)B) (respectively, ()\%2)( B); S)B)) Besides, we have

(2.6) /egf;)B(y)dy:0Vn eNandj=1,2.
B

2. For the Magnetization operator, the following relations hold.
* VME(-) projected onto the subspace Hy(div = 0)(B) is a vanishing operator,
ie.,
(2.7) V E € Hy (div = 0) (B) we have VM5 (E) = 0.
* VME(-) projected onto the subspace Hg(Curl = 0)(B) satisfies
(2.8) YV E€Hy(Curl=0) (B) we have VME(E) = k> NE(E) + E x5,

where xp(+) is the characteristic function set.
x VMp(-) projected onto the subspace VHarmonic admits an eigensystem

that we denote by ()\23)(3), Sﬂg)
()

For the existence and the construction of ()\7({)( B);e, plnen,j =1,2,3, we refer the
reader to [20, section 5]. More properties for the Magnetlzation operator, such as the
self-adjointness, positivity, spectrum, boundedness, etc., can be found in [1, 14, 16,
17, 18] and [31]. Besides, (2.6) can be proved by using (2.1) and knowing that I3 €
VHarmonic.
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2.3. A priori estimates. Based on the decomposition (2.1), we present here
some necessary a priori estimates related to the electric total field F, derived from
the Lippmann—Schwinger equation (2.3), and some scattering coefficients, which play
an important role in the proof of our main results. In order to achieve this, we will
require an intermediate result that will clarify the total field estimates that can be
derived from a single nano-particle, whether it’s dielectric or plasmonic. This is the
subject of the following lemma.

LEMMA 2.4 (estimate for just one nano-particle). Under Assumption 1.1, we
consider the problem (1.1) with only one distributed nano-particle. Let k fulfill

- 1F coa
U a? )‘gblo) (Bl)

Then, for h <2, the following hold:
1. the electric field generated by a single dielectric nano-particle

HE||L2(B1) =0 (alfh) )

k2

2. the electric field generated by a single plasmonic nano-particle
I1ElL2(m,) = O (™),
and, regardless of the nano-particle used, we have
2 /.
(2.9) P (E) = 0.

Proof. See subsection SM1.1. ]

Furthermore, in what follows, we will frequently use certain notations that require
clarification.

NOTATION. In the presence of a dimer, we denote by E,,(-) the restriction of E(-)
onto the nano-particle Dy, for m =1,2, i.e., Ey,(-) := E|p,,(-). Besides, we denote
by F(-) the vector field that we obtain by scaling F(-) from D to B, i.e.,

F(n) = F(z+an), neB.

Based on the estimates of the total electric field generated by the presence of a
single nano-particle, whether it’s dielectric or plasmonic (see Lemma 2.4), we develop
the following proposition to estimate the total electric field generated by the presence
of a dimer.

PROPOSITION 2.5 (estimation for the dimer). Under Assumption 1.1, we consider
the problem (1.1) for the dimer D. Let k fulfill

2 _ 1Fcoa® N
m a? /\5110) (B1)
Then, for t,h € (0,1), the following estimation holds:

BE)|  —o@n. [b(r)

B (B)

(2.10)

=0 (amin(l;47h73t)) ,
L2(B2)

L2(B1)

=0 (a‘h) .
L2(Bz)

o).

L2(B1)
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In addition, we have
2, 2,
(2.12) P <E1> =P (EQ) = 0.

Proof. See subsection SM1.2. ]

In addition to estimating the electric total field generated by a dimer, which
can be found in Proposition 2.5, it’s necessary to estimate the scattering coefficients
related to the problem (1.1). The purpose of the following definition is to define the
scattering coefficients related to the problem (1.1), associated with the used dimer,
which will be utilized to justify our derived results.

DEFINITION 2.6. We define W1, Wo, V1, and Vs to be solutions of

(2.13) (I+m VMp k — k*m N ) (Wh) () =P(z,21), x €Dy,
1
(2.14) (I +m2 VME) — K Np, )(Wg)( )=P(P(x,22)), x€ Dy,
(2.15) (I + 10 VMpF — k20 N5 ) (Vi) (2) = I, z€D,,, m=1,2,
where, for m=1,2, the operators VMDM( ) and N, () are the adjoint operators to
VMkm(-) and N’“m(~), introduced in (2.2), and P(ac z) is the matriz expressed by
(I — Z)l I3
Pz, z) = | (x—2)2l3
(l‘ — Z)g, Ig

Based on the estimates given in Proposition 2.5, and using the notations intro-
duced by Definition 2.6, we provide in the following proposition the estimates related
to problem (1.1) having scattering coefficients.

PROPOSITION 2.7 (estimation of the scattering coefficients). For h € (0,2), under
assumption (1.11), the following estimations hold:
1. Regarding the scattering parameter Wy, defined by (2.13), we have
(2.16)

B (1) b ()

2. Regarding the scattering parameter Wy, defined by (2.14), we have

=0(a'™") and
L2(B1)

=0O(a®) forj=2,3.

L2(B1)

(2.17)
ﬁ»(m)

3. Regarding the scattering parameter V,,, defined by (2.15), for m = 1,2, we

=0(a®").
L2(B2)

~0(). B (1) =0 and [ (i)

L2(B2)

have
2.18 i —0(a) and |V —0 (™.
(2.18) Wi s (a®) an 2 2 (a™")
Proof. See subsection SM1.3. O

3. Linear algebraic system of the dimer. In this section, we shall present
the linear algebraic system derived from the L.S.E (2.3) by projecting the solution
E onto the two subspaces Hy(div = 0) and VHarmonic. We start by using (1.7) to
derive, for m = 1,2, the following expression:
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1
P(E,,) = Curl(Fy,) in D,,, with v x F,, =00ondD,,

(3.1) and  div(F,,) = 0in Dy,
Set

3
(3-2) Qm =T1m /D Fm(y) dy and Ry, := Nim /D ]P)(Em) (y> dy,

where 7y, is defined in (1.6).
PROPOSITION 3.1. Under Assumption 1.1, for t,h € (0,1), such that
4 h—4t>0,

the coefficients (Q1, R1,Q2, R2), defined in (3.2), built up from the solution to the
problem (1.1), satisfy the following algebraic system:

ik —hp1) Inc
I3 0 —Biz —Bu Q1 0 a’ (2)P0,1 “H™(21)
0 Is =By —Bau| |Ri|_ a’ Py - BI"(z)
— B3 —Bss I3 0 Q2 ik a® Pég 'HInC(ZQ)
_ 841 - 842 0 I3 Ry iLin a37h Pé?% . EInC(ZQ)
Error%l)
Error?
(3.3) | Bprop)
TTOT2
Erroréz)
with
E*ng .
813 = TCIOO (l3 h PE)%% : Tk(zla 22)7
623 = k‘2 a?’ P((fi . Vd)k(zl, 22),
831 = k4 M2 a5 P(()g . Tk(ZQ, Zl),
k2
Ba1:= igj agihPEf% . V@k(ZQ,Zl),
. Ko 5, (1)
814 .:Tcoa P071 -Vq)k(zl,zg),
824 = k‘2 a3 P((fi . Tk(zl, 2’2),
832 = ]{32 7’]2 a5 PE)B . V(I)k(ZQ, Zl),
k2 )
842 = TZZE a57h PE)?% . Tk(ZQ, Zl);
where
PO = | bupp(@)dz® [ Guy 5, (7)da,
Bl Bl

1
P = 7/ ef’) (x)dw@/ 623) (x)dx,
0,1 ; )\%3) (Bl) B »B1 B, ,B1

PO=S"| bun(2)de® [ ¢up,(2)de,
n Bz BZ

PR = [ eV @dee [ o @)
Bo Bo
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with ¢ny, B, (1) satisfying (1.9) and ¢, B, (-) being given by (1.8). Besides,

Ermrgn —0 (amin(3;7—2h—3t)> 7 Ermrgz) —0 (amin(4;7—h—4t)) 7
Ermrél) _ O(amin(6;97h74t))’ Errorf) -0 (amin(47h;77h74t;673t;772h73t)) ‘
Proof. See section SM2. ]

4. Proof of the main result. In this section, the proof of Theorem 1.2 is
presented as the following four steps with all the necessary propositions given in the
previous sections.

(I) Derivation of the scattered wave E*(zx).
Thanks to the L.S.E given by (2.3) and the fact that £ = E1"¢ + E*, we deduce
that
E*(x) = = VMp(nE)(x) + k* Nj(n E)(z),

which, by letting = outside D and using (1.16), can be rewritten as

2
z) = k? /DT,C(W) n(y) E(y)dy = k* m;nm /D Ti(z,y) - Em(y) dy.

1 3
Besides, by splitting F,, as E,, = P(E,,) + P(E,,) (see (2.12)) and using the fact
that VMk(-)|HO(div:0) is a vanishing operator we get

= k? an/ Dee.) P (Ey) (9) dy

Dy,

+k2 an/ Tkxy) H?;)(E )(y>dy

Dy,

D g2 an/ V@kxy)xF (y)dy

m=1

-y an/ Ti(@,y) - B(En) (y) dy-

On the R.H.S of the above expression, by expanding V®y(x,-) and Tj(z,-), near the
center z,,, with m =1,2, and using (3.2) we obtain

2
(4.1)  E*(z) = —k? Z {V‘I)k(x,zm) X Qm — Tk(x,zm)Rm} + Remainder,
y

m=1

where Remainder is given by

2 1
Remainder := —k? Z Nim, / VO (z, 2 + 1ty — 2m)) - (Y — 2m) dt

m=1 Dy Jo Y'Y

2 1
X Fo(y) dy + k* Z N / VYi(z,zm +t(y — 2zm))

m=1 D7n 0 v

%P (g zm) dt - P (Epn) () dy.
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Next, we estimate the term Remainder.

| Remainder|
2 1
S S e R e T I L
me1 o YvY ]LQ(Dm)
2 1 3
3 H |9z 1= 2)) Pz P (B)
m=1 o Y Lz(Dm) ]LZ(Dm)

+
H—'2(B7n)

2 . 3 .
St 3 bl [HFm B (En) U(Bm/)].

Thanks to (2.11), (1.6), and the formula (SM2.23), we deduce that

Remainder = O (a47h) .

Hence, (4.1) becomes

(4'2) Es(x) =k Z [Y@k(‘razm) X Qm — Tk(frvzm) Ry | + O(a47h)a

m=1

where (Q1, R1,Q2, R2) is solution of (3.3).
(IT) Derivation of the far-field E°°(&).

To estimate the far-field, we use the fact that £ = E"¢ + E* the formula (2.2),
and formula (1.4) to obtain

- k2 - - —ik &
FW@=Z;U—w®@:ée'kmeEwa D=D;UDs,

6) k2 o o
D Em-sed). [ By
™ D;

+ —n2 (If:?:®£)-/ e kY Es(y) dy.
T D>

By expanding the function y — e~ **#¥ at y = z,,, with m = 1,2, we obtain

2
EX¥@) === > nm (I-i0%)- / [emhEam — ke ke 2m (y — 2,.) - &] By (y)dy

m=1 Dm

2
(4.3) + Y RO,

k4 A A - ! —ikz-(z —z
Rg,lb) = Py M (I —2®%)- / ((y — zm) x)Q/ (1—t)e ik (z1+t(y—2m)) dtE,,(y)dy.
D 0

It is direct to get from (1.6) that the following holds:

3 1 T
(44) RV =0(a|Bilp,) and B =0(a} |Eallap,)-
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1 3
Based on Lemma 2.4, formula (2.9), by splitting E,,, as E,, =P(E,,) + P(E,), we

use (2.6) and the estimations derived in (4.4) to rewrite (4.3) as

N K o oo A\ —ikdez
P2@)= 1= 3 ([=d@d)- 5 [ B(B) by
m=1

m

2

1
— 24— M (I — 2R 1) etk -zm / T (y—zm) P(En) (y)dy
0 m=1 Dm
2 2 3 7
(4.5) + B + BY + 0(a? | Billiap,)) + 9 (aF |1 B2lliacoyy)

k _— 3
R i= —i T (I — 3@ ) e . / & (y = 2n)B(En)(y) dy, m=1,2.

4 Dy
Then, using (1.6), the following estimation holds:
IL2(D2)> .

RP =0(a? and RY =0|(a?
L2(Dy)

Thus, we can deduce from (4.5) that

IP’(El) IP’(Ez)

5 2
B0 = S g g0 et [ B @y

m=1 m

BE

P(Ey)

—— —E®1) e hEEm B (y— 2m) P
S (=9 7) | =) BB
+0<% >+0<3P(E2)
L2(Dq)

47
LZ(D2)>
3 7
+0 (a2 ||E1||L2(D1)> + @ (az IIEzIILz(D2>) ;

m=1 m
which, by using (3.1) and the notations given by (3.2), indicates

2
k2
(4.6) (@) = o= Y eI ([ -3 ®@2) Ry + ik & X Q] + ErrorV,
T
1

m=
where the vectors (Qm, Rm),,,_; » are the solutions of the linear algebraic system given

by (1.15), and
+0| a?
L2(Dy)

7
+ @ <a2 HEQH]LQ(DZ)> )

which can be estimated, by using Lemma 2.4 and Proposition 2.5, as O (a*~"). Hence,
(4.6) becomes

Error® =0 ( H ]P(El) (E2)

> +0 (a% HE1HJL2(D1)>

L2(D2)

2
(4.7)  E®(&) = g S eI (I 3@2) Ry + ik &% Q] + O (a*™"),

m=1

where (Q1, R1,Q2, R2) is solution of (3.3).
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We have seen from the estimation of the scattered field E*(-), given by (4.2), and
the estimation of the far-field E°°(+), given by (4.7), that the determination of (Q1, R1,
@2, R2) is of great importance to achieve the estimation of both E*(-) and E*(-). The
goal of the next step is to determine the dominant part related to (Q1, R1,Q2, R2).
(III) Invertibility of the algebraic system (3.3).

We recall that (Q1, R1,Q2, R2) is the solution to

I3 0 —Bis —Bu Q1 1@7&0@3—}1 Pé}i 'Hlnc(zl)
0 Iy =By —Bau| | R a’® P(()?i BT (z)
—Bs1 —Bs2 I3 0 Q2 ikmnaa® P&%~HI”C(22)
— By —Byo 0 I3 Ry iL;o a3—h Pé?% . EInC(ZQ)
.

(2)

(48) n Ermr%l)
Error,

(2)
2

Error

Error

Notice that the R.H.S of (4.8) is perturbed by the presence of an additive vector error
term. Next, we investigate the associated unperturbed algebraic system given by

~ ik — (1) nc
I3 0 —Biz —Bu Q1 Tora’ };)P0,1 CH(z1)
(4.9) 0 I3 —Bas —DBos | @1 _ a? Pg,l - ETre(zy)
' By =By Iy 0 Q> iknsa® P - HIm(z)
_ 641 - 642 0 I3 Rs iniglo a3—h P((f% . EI'ILC(Z2)

It is clear that the difference between the solution to (4.9) and the solution to (4.8)
satisfies the following algebraic system:

I3 0 =Bz —Bu Q1 — Q1 Errory")

0 I3 — 823 — 824 . R1 - Rl _ ET’I"O’I"P)
—Bs1 —Bsx I3 0 Q:— Q2| | Error |’
=By =B 0 I3 Ry — R, Errorl?

which is invertible under the condition 4 — h — 4¢ > 0. By inverting the above system
using Born series, we obtain

1)

Q1 — Qs Error;

R, — Rl Error®
4.10 A = K. - 1,
( ) Q2 — QQ % " Errorél)

Ry — Ry B Erroréz)

where the matrix K,, is given by

0 0 Bz By
0 0 Bz Bo
831 832 0 0

(4.11) K, =
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In order to evaluate the L.H.S of (4.10), we keep only the zeroth order term and the
first order term on the R.H.S of the Born series to derive the following estimations:
(4.12)

|Q1 — Q1| < E?"rorgl) + a?’*hd*&"Ermrél) + a?’*hd*QErmrém =0 (amin(sﬁ*?h*g”) ,

Ry = Rul  Brvor?) + (a2 +a®2d~%) Brror") + - Brror?
—0 (amin(4;7fhf4t))

Q> = Qs| S Errorl!) +a®d ™3 Error{V + (a°d ™2 + a''~"d"*) Error{”
-0 (amin(6;9—h—4t;8—3t)>

|Ry — R2| < Erroréz) + a3_hd_2Ermr(1) +a®hd- Erroriz)
—0 (amin(4—h;7—h—4t;6—3t;7—2h—3t,10—2h—7t)) '

(IV) The corresponding revised Foldy—Lax approximation.
We recall first the scattered field expansion given by (4.2),

2

B (@) = =k 3 [V0u(@,20) X Q= Talw,2) - Rur] + O (a*"),

m=1

where (Q1,R1,Q2, R2) is the solution to (3.3). Now, by using the estimates derived
n (4.12), under the condition 4 — h — 4¢ > 0, and the fact that z is away from D, we
obtain

ES(x) = —k? Z {V@k Z,2m) X Qm — Yi(x, zm) .Rm}

m=1

)

L0 (amln(?); 7—2h—3t;10—2h—7t))

where (Ql, R1,Qo, ]:22) is the solution to the unperturbed algebraic system (4.9). This
justifies (1.13). Similarly, by recalling the far-field expression given by (4.7) and using
the estimates derived in (4.12), with the condition 4 — h — 4¢ > 0, and the fact that z
is away from D, we can obtain

2
- k —ikZ zm A N\ RS A
(& :Eméle [ fz®a:)Rm+zkx®Qm}

(amm(37 2h—3t; 1072h77t))

+

)

where (Q1, R1,Q2, R2) is the solution to (4.9). This justifies (1.14) and ends the proof
of Theorem 1.2.

~ 4.1. Proof of Corollary 1.3. We start by recalling, from (4.9), that (Ql,f%l,
@2, R2) is a vector solution of the following algebraic system:

~ k h (1) nc
I3 0 — Blg — 814 Ql z:i: ng a®” (Q)P -HT ( )
0 Is  —Bys —DBos| [Ri _ a*Pgy - B1(21)
_631 _632 I3 0 Q~2 anQ (L5 P(%) HInc( 2) )
—By1 — By 0 I3 Ry inifloa?ﬁh P((f% L ETe(2,)
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which is invertible under the condition 4 — h — 4t > 0. By inverting the above system
using Born series, we obtain

(4.13)
Ql iikgc? a3—h Péz _Hlnc(zl) zikzz(;) 3— hP(l) Hlnc( )
Ri|_| P -E™(z) K a* P EIe(2)
Q2 - iknoa® P - HIe(2,) + Z n’ i ke 5p) CHIme(2) ’
4 2 0722 2 n>1 tRT2a 0722 22
R2 iLi) a3—h PE)’% . EInC(ZQ) fé CL3 h PE),% . EInC(ZQ)

where the matrix K, is given by (4.11). By keeping the dominant part of > -, K,
which is K, the second term on the R.H.S of the above equation will be reduced to

i 1 ne
ikzm 3— hP( ) . HI ( )
SP(Z) Elnc(zl)

c=Ke zkngaE’P&% HIme(2y)
iLi] 37hP(2) .Elnc( )
Zk??g a® Bis-P ) Hlnc(ZQ) + d a®~ hBQg . P((f% . EInC(ZQ)
Zk7]2(15323 ) Hlnc( )+ 3 hB24 ng; Elnc( )

1:{:770 3— hB P(l) Hlnc( )+a3832 P(2) Elnc( 1)

1:{:2;) 3-h B, . P(l) HI”C(21)+CL3B42 ]_:)(()21 Elnc( 1)

By estimating component by component the above vector, using the expression of the
matrix B;;, given in Proposition 3.1, and plugging the obtained result into (4.13), we
can obtain the following estimations:

(4 14)
~ ok _3h_
O, = i?oo a3 hP(l) HIM( 1)+C’)(a9 3h 5t)7

K one
R =a® P} Bl (1) + o0 @ P Ta(en,20) PG BM(22) + 0”7,

A - ne Zk — ne
Qn ik B 1)+ P Y 1 oy ) PR ()
+ O( 1172hd75)
Ry = 2 a3 hP(Z) EInC( 2)_|_O(amin(n—zh—st;14—3h—8t))_
j:do

It is direct to observe from the above estimations that (Q1, Ry) dominates (R;,Qz).

Consequently, by returning back to (1.13) and using the above observation we can get
that

E*(z) = k2 {Tk(x,zg) Ry — Y@k(x,zl) X Ql]

X |:Tk($721) Ry — V(I)k(x 25) X Q2:| n (’)( min(3;7—2h— 3t;10—2h—7t)).

Since « is away from D for the scattered wave, by utilizing the estimation of (Rl, Qg)7
we can know that the second term on the R.H.S is estimated of order O(a®). Hence,
with (4.14),
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E(z) = L2 {Tk(x,zg) Ry — y‘ﬁk(fﬂ,h) % Q1] o (amin(3;772h73t;1072h77t))

— nc /Lk nc
=+k2g3 " Bi T (x,29) .P((f% - EIne(z) — c:O Y@k(a:, 21) X Péﬂ -Hi (21)]
e (amin(3;7f2h73t;1072h77t;973h75t))

which, by taking Taylor expansion of H/"¢(-) and E"¢() at the intermediate point,
between 2, and zp with |27 — 22| < df, ie.,

1
HI™(21) = HI(2) + ik / (KO- Cot(51=20)) (9L . 0) (0, (21 — 7)) dt
0
:HInc(ZO) + 10 (at) ,

1
EI"e(zy) = B¢ (20) + ik / eth0-(zott(z2=20)) (9L 5 0) (0, (29 — 2)) dt
0

— EInC(ZO) +0 (at) ,
gives us under the condition 4 — i — 4¢ > 0 that
(4.15) E(z) = tha® " Z% T (x,22) 'P(()?% : EInC(ZO)
i ko

VO (x,21) X P((H -HI”C(ZO)
co Y ’

+ O(arllin(S—h+t; 3;10—2h—Tt; 9—3h—5t)) )
Based on (4.15), the last step consists in taking the Taylor expansion near the inter-
mediate point zg for the functions Y (x, ) and V®(z,-), i.e.,
Yi(x,22) = Vi(z,20) + O (at) and V®(z,21) = VOs(z,20) + O (at),

where we can use the fact that x is away from D to derive

B (@) = £k2a* ™ | 20y (2, 20) - P - B (z0)

0

ikmno

V& (2, 20) x P -HI"C(ZO)]
Co Y

+ O(amin(S—h—i-t; 3; 10—2h—Tt; 9—3h—5t))
which justifies (1.18). Furthermore, by returning back to (1.14) we obtain
kZ
T an
k2 o - . -
+ = {e*l’ml ([—2®%) Ry +ike #8524 x QQ}
s

+ O(amin(3;772h73t;1072h77t))
)

E*(3) =1~ [e” ™= (1= 3@ @) Ry +ike ™ i x Q]

which, by using the expression of (R1,Q) in (4.14), and the fact that the second term
on the R.H.S of the above equation is of order O(a?), can be further simplified as

k2 - 3 - s
= [e—“fm (I—3®%) Ry +ike %84 5 % @,
Vs

+ O (anlin(3;7—2h—3t;10—2h—7t) )

E®(%) =
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Now, taking Taylor expansion of z — e~ k%% at the intermediate point z, between
21 and 29 with |21 — 23] < a?, we obtain

k2 . - -
= e {(F:@@@)-Rﬁik@x@}
™

+ O(at (‘R2| + |Q1|)) + O(amin(3;772h73t;1072h77t))'

E>(2)

Now, using the expression of (R, Q1) in (4.14), we can derive the estimation
la* (|Re| +|@u])| S a® "

and the following expression for E°°(-) under the condition 4 — h — 4t > 0 that

k2 . .
B> (#) =+ —a* e l;’? (I-@®&) Py - BIm(z)
T 0

- k2%i x P) ~H{””(zo)]

)

L0 (amin(37h+t; 3:10—2h—Tt; 973h75t))

where the last step consists in taking Taylor expansion for the incident fields, similar
to (4.15), to justify (1.19). The proof of Corollary 1.3 is now complete.

Appendix A.

A.1. Lorentz model and the common resonant frequencies. Here we show
that the conditions (1.6) and (1.11) can be derived from the Lorentz model by choosing
appropriate incident frequency k. Indeed, recall the Lorentz model for the relative
permittivity that
2

Al =1 7]%
(A1) =1+ e

where k;, is the plasmonic frequency, k¢ is the undamped frequency resonance of the
background, and £ is the damping frequency with £ < 1. In D,,, with m =1,2, we
respectively denote &, as the damping frequencies, kg ,, as the undamped frequencies,
and k, ., as the according plasmonic frequencies. Let

k/’071 = k?(), kip71 = ]{)p in Dl
and kg 2, kp 2 such that
(AQ) kg,g < kal < k(Q)’Q + kl2772 in Dz.

1. Regarding the dielectric resonance. If the frequency k is chosen to be real
and k? close to the undamped resonance frequency kg ; in the format that

B2 k2 — k}%,l a? )\%10) (B1) k’(2),1
AN T 2 h
(17 Rleo) o) & (g oy o 0B
0
(A.3) =—k2,a® AP Bk, [1+ O0@")],
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and
S(co)a® (k* — kg 1)
(1 R(co) a™)

where A%?(Bl) is an eigenvalue of the Newtonian potential operator Ng, (-),
then there holds that

R(m) = a2 (A;IO)(Bl)kal)_l (1+ 0@

k& ==+ = FS(co) a* A3 (B1) kg1 k1 [1+ O(a")]

and
%(771) = i%(C()) (A;?(Bl) kg,l) - +0(a"),

which implies that D1 behaves as a dielectric nano-particle. Furthermore, by
choosing k satisfying (A.3), we derive that

1- k2n1 a? )\,(11)(31) = :I:coah;

0
see (1.11). For more details, we refer the readers to [9, Remarks 1.1 and 1.2].
2. Regarding the plasmonic resonance. Using the introduced notations, we start
by recalling the Lorentz model for the permittivity related to the nano-particle
Dy, given by (A.1),

@) k2,
2 P,
=14 ——>2
r k%yg — k2 —ik&
kf,,z

Ko~ (K1 — k22 a2 XD (B) R, [1+ O(ah)]) — k&

Ay

Hence,

Koo [ — Ky + K2, a® A (B KR, [1+ O] ]

Re(4?) =1+ () 2 2
(20— k8, + k2, @ AR (B RZ, [1+ O] + (k)

Besides, by using (A.2) and the fact that & < 1, we can deduce that

Re (65.2)) < 0.
Then Dy behaves like a plasmonic nano-particle. Furthermore, by choosing
k such that

A (B2) k2, (1 F o Re (dy))

(A.4) k= kg, + : ,

|]. + ah do
and letting & be given by

a” Im (do) A\ (Ba) K.,
11 ado| /K2, [1F ahdol® + AP (Ba) k2, [1 F a” do|

we deduce that

& ==

1+ AP (By) = £doa”
see (1.11).
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According to the analysis above, there is a frequency k that can be considered as a
dielectric resonance and a plasmonic resonance under certain conditions. Indeed, by
equating (A.3) and (A.4), we obtain

k21 a2 Aoy (By)
h

kg 1|1 - a2
’ S“(co)a
(1 Rleo)a) & (g o — Ko (B
TN M (Ba) k2, (1 F a” Re (do))
0:2 |1 F ah d0|2 ’

which, by keeping only the dominant terms, gives us condition
(A.5) kg,l = k8,2 + A(S)(B2) kp 2

establishing a correlation between the Lorentz model parameters associated with the
dielectric nano-particle Dy, i.e., kg1, and the parameters associated with the plas-
monic nano-particle Ds, i.e., ko2 and kpo. Hence, under the condition (A.5), and
the smallness assumption on both &; and &;, we deduce that the dielectric resonance
equals the plasmonic resonance up to an additive small error term. To put it simply,
a hybrid dielectric-plasmonic dimer can have a common resonance.

A.2. Justification of (1.20)—(1.21). The computations have been divided into
four parts.
1. Computation of Péﬁ.

12
P&% = ¢n0’31 (LL') dr @ ¢n0,5’1 (LL') de = 73‘[37
B B s

where we have assumed that B; is being the unit ball, i.e., By = B(0,1), and
no = 1; see [11, section 3.1, formula (3.1)].
2. Computation of Péf%.

P(()l2 = Z </>n B, (2)dz® | ¢ B,(z)dx,

B>
which by using the fact that
bnpa(@)dr = — | Q(x)- e, (v)do
2 Bs
gives us
(1
Pia=2_ f, Q) enn(@dre | Q) () de

_Z Q’ nt ]LZ(BZ)®/ Q nBz( ) €z

Q@) > (Q,el s )z (my ®@ g, (@) da

Bs n

Q(z) P (Q) (x) da.
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3. Computation of Pé?}.

@._\v_ L (3) (3)
Pyi= Z )\1(13)(31) /B1 en B, (x)dx ® /131 €. By (x)dx

_ () L (3)

- zn: (e >L2<Bl) ? /B AP (By) s
(1.10) 3 (.G

=2 <I‘°” b, >L2(Bl) ¥ /Bl VMg, (eg)BJ (z) dw

_ (3) —1(,3)
_ /B > (Be,) Ly, @ VM5! (5, ) () do

= [ vMgH (Y (B, ® d
Ll B1 Z 336n,B1 ]L2(Bl)®6n’Bl (l‘) €

n

_ / VM5! (Is x5,) (z) da.

B

Besides, in the case where By is the unit ball, i.e., By = B(0,1), we know that
1 .
V]\4B1 (13) = §I3 m Bl;

see [20, formula (1.17)]. Hence,

Py = / 3Iyde = 3 |By| Iy = 4n I

B1

4. Computation of ngg.

P((f% ::/ ef’*)732(w) dx@/ efi)732(x) dx.
BQ BQ

By letting By be the unit ball, i.e., By = B(0,1), and the index n, = 1, we
obtain

see, for instance, [19, subsection 4.5.3].
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