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ABSTRACT This paper presents a novel solution for optimal high-level decision-making in autonomous
overtaking on two-lane roads, considering both opposite-direction and same-direction traffic. The proposed
solutionaccounts for key factors such as safety and optimality, while also ensuring recursive feasibility and
stability.To safely complete overtaking maneuvers, the solution is built on a constrained Markov decision
process (MDP) that generates optimal decisions for path planners. By combining MDP with model predictive
control (MPC), the approach guarantees recursive feasibility and stability through a baseline control policy
that calculates the terminal cost and is incorporated into a constructed Lyapunov function. The proposed
solution is validated through five simulated driving scenarios, demonstrating its robustness in handling
diverse interactions within dynamic and complex traffic conditions.

INDEX TERMS Markov decision process, decision making under uncertain environments, autonomous

overtaking, model predictive control.

L. INTRODUCTION

Autonomous overtaking on two-lane roads, whether involving
oncoming traffic or vehicles traveling in the same direction,
is a common yet highly challenging driving task. It plays a
crucial role in improving trip efficiency by overtaking slower
or stationary vehicles ahead (see, for example, [4], [16],
[35], [36], [39], [10]). The core difficulty lies in guaranteeing
safety across various overtaking scenarios, both during the
decision-making phase and the execution of the maneuver.
To perform safe overtaking on two-lane roads, several critical
factors must be taken into account, including the presence
of oncoming vehicles, interactions with vehicles in adjacent
lanes (either in the same or opposite direction), relative dis-
tances and speeds, and diverse environmental or traffic-related
conditions (e.g., road layout, weather, and visibility). These
complexities require decision-making frameworks that

operate effectively under uncertainty while ensuring both
safety and efficiency.

To execute an overtaking maneuver safely and effectively,
the ego vehicle must evaluate the surrounding traffic con-
ditions, including available space in adjacent lanes. This
assessment is critical not only when overtaking slower ve-
hicles by temporarily entering an oncoming lane, where the
risk of encountering opposing traffic is high, but also when
changing lanes in the same direction, where fast-approaching
vehicles from behind must be considered. In both cases, the
maneuver typically occurs at high speeds and requires precise
judgment to ensure sufficient clearance and maintain safety.
Furthermore, the ego vehicle’s field of view is often par-
tially obstructed by the preceding vehicle, especially when
approaching in preparation for overtaking (see Fig. 1). En-
suring safety during overtaking requires the satisfaction of
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FIGURE 1. Autonomous overtaking with the oncoming traffic.
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FIGURE 2. Hierarchical framework with three layers.
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multiple constraints, while the high-level decision maker must
handle rapidly changing and uncertain scenarios, including
unexpected oncoming traffic. These factors present significant
challenges in completing the maneuver safely and success-
fully, particularly when interacting with opposing traffic, as
considered in this paper, which is widely regarded as one of
the most challenging and hazardous maneuvers for human
drivers. Therefore, given the inherent challenges of overtak-
ing, it is crucial to make a series of well-informed, high-level
decisions to perform the maneuver in a safe and timely man-
ner, ultimately improving trip efficiency while meeting safety
requirements.

In such scenarios, decision-making plays a central role in
the ego vehicle, acting as the brain that bridges environ-
ment perception and motion control (see, for example, [6],
[71, [81, [17], [29], [31], [35], [38], [28]). A hierarchical
control structure is often employed to manage this task
effectively [37]. The perception module first gathers and
processes environmental data from sensor readings, provid-
ing the essential information needed for decision-making.
Based on these perception outputs, the decision maker
chooses a suitable action from a predefined set of possible
choices, such as {“maintain”, “abandon”, “initialize”, “pre-
pare”, “recover’}. The high-level decision is forwarded to
the path planner, which generates a trajectory accordingly.
The low-level controller then follows this trajectory, ensuring
the overtaking maneuver is carried out smoothly and safely
(see Fig. 2).

Existing methods for decision-maker design often lack the
necessary assurance of safety and optimality of performance
in complex environments. For example, current reinforcement
learning approaches typically do not provide guarantees of
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stability or constraint satisfaction (see, for example, [2], [5],
[11], [13], [22], [33], [41]). This limitation poses significant
challenges for safety-critical applications such as autonomous
overtaking, where verifying safe behavior is particularly dif-
ficult due to the wide variability in driving scenarios [11],
[13], [22], [41]. To address this concern, Zhang et al. [41]
studied a reinforcement learning approach with safety con-
straints, where a safe policy is learned through optimization
techniques. Nevertheless, their framework does not explicitly
consider high-level decision-making under dynamic and un-
certain traffic conditions, which are essential for real-world
deployment. Rule-based methods are also commonly used in
designing high-level decision-makers for autonomous driving,
but they come with several drawbacks. These methods can be
error-prone, and correct behavior can only be ensured through
exhaustive testing [23]. As demonstrated in [42], even care-
fully designed rule-based systems struggle to handle dynamic
scenarios (e.g., merging vehicles with sudden acceleration)
resulting in collision rates. Given the unpredictable nature
of driving and road conditions, it is impossible to anticipate
and account for every possible scenario during the design
stage. Any oversight or omission, such as the failure to handle
real-time constraint violations in [42], can lead to potentially
dangerous consequences. Kim and Langari [21] employed a
two-player game-theoretic framework to determine the opti-
mal timing and necessity of lane-changing decisions. While
this approach can yield intelligent decisions, it does not incor-
porate safety considerations into the decision-making process.
MDP-based frameworks provide a principled approach
for modelling and solving sequential decision-making prob-
lems under uncertainty [14], [24], [26], [33]. However, while
current work using the MDP approach can increase the proba-
bility of safe actions, it does not provide absolute guarantees,
as there remains a risk of unsafe actions occurring [3], [15],
[43], due to two key factors: the probabilistic nature of state
transitions and the absence of strict constraint enforcement.
In addition, [35] integrates rule-based safety checks with
MDP decision-making to improve overall safety. However,
the method has two key limitations: 1) Safety rules are in-
voked only after the MDP has proposed an action, which
may lead to violations of real-time constraints; 2) The
tree-search-based MDP solver does not guarantee recursive
feasibility in the presence of dynamic traffic environments.
Inspired by the above insights and considering that sub-
stantial progress has already been made in path planning
and low-level vehicle control (see, for example, [9], [12],
[18], [19], [20], [25], [30], [34], [40]), this work shifts its
focus toward high-level decision-making, a critical yet less
explored layer in autonomous vehicle control systems. Differ-
ent from [35], our method integrates hard safety constraints
directly into the MDP-MPC optimization, enabling proactive
and provably safe decisions. The principal contributions are
outlined as follows:
1) To facilitate autonomous decision-making in complex
environments where interactions with other road users
are captured, a safety-constrained MDP framework is
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TABLE 1. Symbol Definitions and Physical Meanings

Symbol  Definition

Yrl Left boundary of the left lane

Vrr Right boundary of the right lane

Yie Lateral position of the centre line of left lane
Vre Lateral position of the centre line of right lane
Ve Cruising speed for the original lane

Vie Cruising speed for the adjacent lane

Vs User-defined speed (less than cruising speed)
At Sampling time

Ax; Longitudinal safety margin (Vehicle j)

Ay; Lateral safety margin (Vehicle j)

proposed. This formulation allows us to formulate the
generation of safe and optimal decisions as a control
problem for MDP.

2) The proposed solution effectively handles dynamic sce-

narios through a safety-constrained MDP approach.
This approach enables the specification of safety con-
straints, such as maintaining a minimum safe margin
(i.e., elliptical collision boundaries), that must be sat-
isfied at every time step between the ego vehicle and
other road users, even when their behavior is partially
unpredictable. To solve the safety-constrained MDP,
an MPC scheme with constraint enforcement is de-
signed. Compared with [42], our MDP-MPC framework
dynamically adapts to uncertainty through online opti-
mization while guaranteeing safety via hard constraints.

3) Recursive feasibility and stability of the new design

are guaranteed under mild conditions without the need
for terminal constraints. This is achieved by carefully
designing a baseline control policy and reformulating
the MDP problem with an associated cost.

The rest of the paper is structured as follows. Section II
provides some preliminaries, and Section III presents the for-
mulation of high-level decision-making for overtaking using
MDP. Section IV proposes an MPC-based solution to the
safety-constrained optimal MDP problem. Section V analyzes
the proposed MDP-based approach, with a focus on recursive
feasibility and stability. Section VI presents five different driv-
ing scenarios to evaluate the power of our new design. We
also evaluate our method against one state-of-the-art base-
line given in [42]. Section VII further analyzes the safety
performance and computational efficiency of the algorithm.
Finally, the main conclusions of the study are summarized in
Section VIII.

Il. PRELIMINARIES

A. NOTATION

Let I denote the set of integers, and R denote the set
of real numbers. These symbols may include subscripts or
superscripts for clarity when context demands. Given a set
D C R", we define its complement as D = R" \ D.

B. MARKOV DECISION PROCESS

The MDP is a fundamental formulation for a hybrid
system [1], [32]. A finite-horizon MDP M is a tuple
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(S, A, f,J,y), where S € RISI represents the state space,
A e R denotes the action space, f:SXxXA—> S is
the state transition function that maps a given state-action
pair to the subsequent state, J(s, a) : S x A — R defines the
scalar cost associated with performing action « in state s and
y € (0, 1] is the discount rate that gives more weight to short-
term reward. In this work, we assume complete knowledge
of all elements in M, and the state transitions follow the
Markovian.

I1l. HIGH-LEVEL DECISION MODELLING VIA MDP

In autonomous driving, the ego vehicle operates as an intelli-
gent agent that must make decisions while navigating complex
and ever-changing environments. A key challenge in this pro-
cess is to find an effective way to abstract both the behaviour
of the ego vehicle and that of surrounding traffic participants
(see, for example [27]). While the decisions themselves, such
as lane following, waiting, and overtaking, are inherently dis-
crete, they are governed by the vehicle’s continuous dynamics
and must respond to the continuously evolving context of the
environment. Therefore, the abstraction must support integra-
tion into a decision-making framework that accounts for both
the discrete nature of high-level choices and the continuous
evolution of the underlying physical system. To address this
challenge, integrating MDP into the decision-making frame-
work of autonomous driving offers great promise, as it enables
the system to simultaneously gather environmental informa-
tion and exploit learned knowledge to optimize decisions. It is
worth noting that the British transport rules are adopted in this
paper, and the results can be easily converted to other traffic
rules.

A. MODELING AUTONOMOUS OVERTAKING WITH MDP

To demonstrate how to use MDP modelling for autonomous
decision-making process, we consider a specific case: Au-
tonomous overtaking, depicted in Fig. 1.

To successfully and safely execute an overtaking maneuver,
the ego vehicle must navigate through multiple discrete event
states, including lane following, waiting, and overtaking. To
ensure safety during autonomous overtaking maneuvers in
complex traffic environments, we propose an MDP-based de-
cision maker, as illustrated in Fig. 3. This innovative approach
integrates safety constraints directly into the decision-making
process (details will be given in Section IV), effectively
addressing the challenges associated with autonomous over-
taking.

Specifically, the components of M are defined as follows:

1) State Space S: As shown in Fig. 3, three MDP states

are considered. Hence, S := {Lanefollowing(Sy),
Waiting (S»), Overtaking (S3)}. Specifically, in state
S1, the ego vehicle should position itself on the left lane
with a cruising speed; in state Sy, the ego vehicle should
slow down or completely stop on the left lane, i.e., the
velocity is less than the cruising speed; in state S3, the
ego vehicle positions itself on the right lane and aims
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FIGURE 3. MDP state transition.

TABLE 2. State Transition Undertaken Actions

W) [ S S5 83
Sy | las)  Nas)  Uap)
Sy | Wa3)  las) 1(as)
Sy | Wap)  la))  las)

to overtake the slower or stationary leading vehicle as
quick as possible.

2) Action Space A and Policy r: To change system state
from S; to §; where i, j € {1, 2, 3}, proper action needs
to be taken. In the overtaking problem, five actions are
considered: initialize (a;), recover (az), prepare (a3),
abandon (a4) and maintain (as). Therefore, the action
space A is defined as A := {ay, az, a3, as, as}. A policy
7 is selected to minimize the cumulative cost defined
in Section IV-B. Under deterministic conditions, the
policy m serves as a function that maps each state to
a corresponding action, i.e., 7 : S — A.

3) States Transition Matrix: The notation S; 1@ g ;' rep-
resents a transition from state S; to the resulting state
S/]- when action ay, is applied, where i, j € {1,2,3}, k €
{1,...,5}, and 1(ay) is a function defined as 1 when
action qy is taken and 0, otherwise. The system transi-
tion matrix is defined in Table 2 in accordance to Fig. 3.
Based on the state transition matrix, the relationships
illustrated in Fig. 3 can be expressed by transition func-
tion:

stk + 1) = f(s(k), a(k)). (1

Remark 1: In Fig. 3, action abandon (a4) indicates that the
model can revise its decisions even after overtaking or lane
transitions have been initiated. In this case, the ego vehicle
should position itself in the left lane at an appropriate speed.

B. MODELING EGO VEHICLE AND SURROUNDING
VEHICLES

To safely carry out an overtaking maneuver, it is important
to effectively model the behaviors of the ego vehicle along
with those of surrounding vehicles. Additionally, modelling
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the road circuit/layout is essential. All this information should
be carefully integrated into the decision-making process as
constraints. These include a simplified vehicle model, physi-
cal and information about oncoming vehicles, based on which
physical and safety constraints of the ego vehicle can be for-
mulated.

Below are the dynamic models representing the ego vehicle
and the vehicles around it:

EgoVehiclee :

Xe(k +1) = xe (k) + ve(k) At

Ve
,stk+1) =58
Yic
(v | stk+1)=5, and
Ve(k 4+ 1) . _ylc_ xld(k)_xe(k)>dsafe (22)
Ve(k + 1) 0| stk+1)=S, and
_ylc_ x[d(k)_xe(k)fdsafe
Ure
sk +1) = 83,
Yre
SurroundingVehicle j :
xj(k+ 1) = x;(k) + vj(k)At + Sa;(k)(Ar)?
vitk+1)=v;(k) +ajlk)At (2b)

yjlk+1) =y;(k), j € {la, Or}

where x.(k), y.(k), v.(k) and a.(k) denote the longitudinal
position, the lateral position, longitudinal speed and accel-
eration at time step k, respectively. ve, Vre, Vs, Vies Yre and
At are defined in Table 1. /; denotes the leading vehicle and
O, denotes vehicle r € O in the adjacent lane. Moreover, the
following assumption is needed throughout the paper.
Assumption 1: O is a finite set with indices {1, 2, ..., m}.
Remark 2: In the MDP model, if the decision
“S1 (Lane following)” is made, then the intermediate-level
path planner will guide the ego vehicle to track the reference
signal (v, y;c) of the left lane. If the decision “S; (Waiting)”
is made and the gap between the ego vehicle and the vehicle
ahead exceeds a constant threshold dj, ., the ego vehicle will
initially decelerate to speed v, to assess the traffic situation.
However, if the distance between the ego vehicle and the
leading vehicle falls below the selected threshold djye,
the ego vehicle will come to a complete stop, reducing its
speed to zero. Without loss of generality, considering both
opposite-direction and same-direction traffic on two-lane
roads, we stipulate that the ego vehicle can only wait for a
safe gap to initiate a change lane in the left lane. Hence, the
y reference is set to y;., the same as when s(k + 1) = ;.
Finally, if the decision is “S3(OQvertaking)”, the path planner
generates smooth paths to ensure that the ego vehicle
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tracks the centre reference signal y,. of the right lane while
maintaining the cruising speed.

Remark 3: This study centers on high-level decision-
making and analyzes its performance. Furthermore, a hier-
archical control framework is implemented for autonomous
vehicles. Hence, it is acceptable to use a relatively sim-
ple model (2a) to represent the vehicle’s dynamics in the
high-level decision-making, as minor inaccuracies will be
compensated by the path planning layer and the low-level
controller. Note that we assume the low-level controller tracks
the planned path perfectly in this paper.

C. OPTIMAL MDP PROBLEM FORMULATION
Minimizing the cumulative cost (rather than the instant cost
of the current state) is the ultimate aim of the ego vehi-
cle over time. That is, the ego vehicle aims to optimize its
decision-making process over a horizon of time, taking into
account the future consequences of its actions. This allows the
vehicle to anticipate potential risks, consider changing traffic
conditions, and make proactive decisions that prioritize safety
and adherence to traffic rules. It is important to design a cost
function to induce the ego vehicle to generate desirable and
safe behaviour, regardless of whether the surrounding traffic
is in the same or opposite direction.

According to different MDP states, here we define costs
associated with each state as:

0, stk) =8,
J(s(k), a(k)) = Y r1, stk) =85> 3
ry, s(k) =83,

where 7| and r, are positive constants with 7; > r, > 0. Note
that the cost values r| > rp > 0 are designed to enforce the
following priorities:

1) Avoid prolonged Waiting (S2): A high cost r; penalizes
unnecessary stops (e.g., blocking traffic or causing rear-
end collisions), ensuring the ego vehicle actively seeks
opportunities to complete the overtaking maneuver.

2) Encourage timely Overtaking (S3): A moderate cost >
promotes efficient overtaking while still allowing tem-
porary lane changes when safe.

3) Default to Lane following (S1): Zero cost for S reflects
the nominal desired state with no additional risk or in-
efficiency.

To further ensure safe and optimal decision-making in the
high-level layer for autonomous overtaking in highly dynamic
and uncertain environments, safety constraints play a crucial
role in shaping the decision-making process. Therefore, these
constraints (i.e., (4d) and (4e)) must be carefully formulated
and effectively addressed, which will be incorporated into the
following optimization problem.

Finally, the high-level decision-making is represented as the
optimization problem below:

: k
min kZ:(:) Y I (s(k). a(k)) (4a)
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s.t. Statetransition function (1) (4b)
Vehicles' dynamics (2) (4¢)
(xe<k>A—x;c,-(k)>2 N (yAk)A—y jy,(k))z -1 @d)
0 < xy, (k) — xe(k) < (ve(k) — vy, (k))tha
i
stk+1) # 8 (4e)

where the discount factor y € (0, 1] balances the weight be-
tween immediate and future costs, and Ax;, Ay; are defined
in Table 1 and can be calculated by incorporating the geometry
(length and width) of Vehicle j and the ego vehicle. These are
assumed to be available from sensing. The double arrow im-
plies that constraint (4e) enforces a safety-critical implication:
if the leading vehicle is within the time-to-collision threshold
t:hd, the ego vehicle must abandon “S| (Lane following)” and
switch to “S3 (Overtaking)” or “S, (Waiting)”.

From the perspective of accomplishing overtaking maneu-
vers, the ego vehicle strives to advance along its designated
lane, where the instantaneous cost is minimised (as indicated
in (4a)). Simultaneously, constraint (4d) enforces a minimum
safe distance between the ego vehicle and surrounding vehi-
cles, modeled as an elliptical boundary. This ensures collision
avoidance. However, when a slower (or stationary) leading
vehicle appears ahead of the ego vehicle, adhering to safety
constraints (4d) and (4e), the ego vehicle is not always per-
mitted to adopt the “S| (Lane following)” decision. From (3)
and (4a) we know that the ego vehicle cannot always take
“S> (Waiting)” state as this will result in larger cost, i.e.,
contrary to our goal. Consequently, after a certain period, the
ego vehicle must complete the overtaking maneuver (as long
as its speed surpasses that of the leading vehicle) and resume
its trajectory on the road.

This new formulation (4) allows us to initiate, execute, hold
or even abandon an overtaking maneuver. Next, an MPC-
based framework will be developed to address the optimal
MDP problem, enabling the design of high-level control while
efficiently managing constraints.

IV. SOLUTION TO SAFETY-CONSTRAINED OPTIMAL MDP
PROBLEM

A. MPC-BASED DECISION-MAKING ALGORITHM

The optimal decision-making problem formulated in (4)
presents two key challenges. First, autonomous decision-
makers must ensure both safety and optimality while oper-
ating in highly dynamic and uncertain environments. This
necessitates continuous updates of the system and envi-
ronmental states, along with corresponding adjustments to
decisions. Second, solving an infinite-horizon optimization
problem in real time is computationally intractable. To over-
come these challenges, we employ the receding horizon ap-
proach in MPC. This method transforms the infinite-horizon
optimization problem into a finite-horizon one, making it
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TABLE 3. Mapping Between MDP Actions and MPC Control Objectives

MDP Action High-Level Decision

MPC Control Objective

Terminal State Reference

ay (Initialize)  Start overtaking

Return to the

ar (Recover) -
original lane

az (Prepare) Slow down/wait

Maintain yj.

as (Abandon)  Abort overtaking
Continue current

as (Maintain) state

Track right lane center y,. with cruising speed v,.;
Enforce safety constraints (4d)—(4e).

Track left lane center y;. with speed v.;
Ensure safe distance dg,f from the leading vehicle.

Decelerate to v or stop (ve =0) if d < dgyfe;

Revert to y;. and adjust speed to avoid collisions;
Prioritize (4d) over optimality.

Hold current lane (y;. or yy.);
Maintain speed (v¢ or vy).

S3 (Overtaking)

S'1 (Lane Following)

So (Waiting)

§'1 or S, (Context-dependent)

Unchanged (S 1, S5, or §3)

more manageable. The optimization problem is then solved
repeatedly with regular updates to the system state and
environmental information. Table 3 is given to clarify the con-
nection between MDP actions and MPC’s control objectives.
Moreover, the control algorithm is outlined in Algorithm 1.
Unlike standard MDP solvers that use dynamic program-
ming, Algorithm 1 selects actions through online constrained
optimization. This avoids the curse of dimensionality while
enforcing hard safety guarantees, which is critical for au-
tonomous driving.

In Algorithm 1, Y, := [ymin, Ymax], Ve := [Umin, Umax],
t;ha > 01s to be determined later.

Remark 4: Algorithm 1 captures the essence of Fig. 3 from
an optimal control perspective, aligning with the core idea
behind MPC-based methods. The MPC formulation approx-
imates the infinite-horizon MDP by solving a finite-horizon
optimization at each step. The terminal cost Jy(s(N)) is
derived from a baseline policy (Section V-A) to guaran-
tee stability without explicit terminal constraints. The ego
vehicle aims to minimize the cumulative cost in (4a) by
selecting optimal actions, while accounting for MDP state
transitions (1), vehicle and environment dynamics (2), and
safety constraints (4d)—(4e). In short, our safety-constrained
MDP framework ensures that safety requirements are met
during decision-making. However, it is important to note that
autonomous driving behavior depends heavily on environ-
mental conditions. These can be addressed by adjusting key
design parameters in the algorithm. For instance, in rainy or
snowy weather, the safety distance parameter dy, . should be
increased to allow for longer stopping distances.

V. RECURSIVE FEASIBILITY AND STABILITY OF MDP

To analyze the stability of the proposed novel MDP solution,
we will first design a baseline control policy 7 to calculate the
terminal cost J¢(s(N)) which covers the cost-to-go.

A. BASELINE CONTROL POLICY DESIGN
For simplicity, the following sets are defined as collections of
state tuples satisfying specific conditions:

D,: The ego vehicle is approaching the adjacent lane ve-
hicles and the time to collision (TTC) is no greater than a
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predefined threshold #,4,, i.€.,

Dy = {(ve(is k) — |U0,(i; K)Dtinar > |x0,(i; k) — x.(i; k)|}.
)
Dy;: When the ego vehicle is approaching a leading vehicle
and the corresponding TTC is no more than #,4, it starts to
evaluate whether to change its action from as to alternative
ones, 1.e.,

Dy = {xy, (65 k) — xe (i k) < (e(is k) — vy, (&5 k)trnat. (9)

Dyser (Dy10): When the ego vehicle is on the original lane, its
distance to the leading vehicle should always be larger than a
predefined safe distance dy, ., i.e.,

Dyer = {xe(is k) — xld(i; k) > dsafe}v (10)

Dyje := {X/d(i; k) — xe(is k) > dsufe}v

where i > N.

The above sets act as Boolean propositions in the baseline
policy designed in the following Tables 4-6.

Since the terminal state of MDP can fall into one of the
three states, we design a baseline control policy for each of
them.

e Case 1: s(N; k) = Sy (Lane following), y.(N; k) = v,

(xe(N; k), ve(N; k) € Dyer | Dyie
o Case?2: s(N; k)=>S8 (Waiting), ye(N; k)=yic, (x.(N; k),
Ve(N; k)) € Dy

e Case 3: s(N; k) = S3 (Overtaking)

The baseline policies used to calculate the terminal cost are
given in Tables 4-6.

Then based on the rule-based policies given in Tables 4-6
and Assumption 1, after a finite time jump we have that

(1)

S(IN;k)y=8S;1 — -+ = S3 — 5
S(IN;k)=8S, > - = 53 > 5
S(N;k)y=83 — -+ — §3 — §]. (12)

Remark 5: From Assumption 1, it is established that the
worst case entails the ego vehicle waiting for a finite period,
allowing all oncoming vehicles on the opposite lane to pass by.
Subsequently, the ego vehicle initiates the overtaking maneu-
ver and eventually returns to its original lane to continue along
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Algorithm 1: Optimal MDP Problem Solved via MPC-
Based Method.

1: Given initial states 5(0), (x.(0), y.(0), v.(0)) and
(x(0), y;(0), v (0)).
2: Determine the the optimal action a*(i; k) for the
following optimal problem
N-L
TI}}J; Z Y I (s k), ais k) +Jp(s(N)) ()
a
i=0

s.t. s(i+ 1; k) = f(s(i; k), a(i; k)),
Xe(i + 15 k) = xe (i k) + ve (i5 k) At
F o
s+ 1 k) =8
Yie

vy ] sG+1;k) =S, and

G+ 1 k) Yie ’xld(i; k) —x.(i; k)>dsafe
e .9 N N
[e(i+l;k;|_ 07 s+ 1;k)=Srand

Vie | x, (i3 k) —xe(is k) <dsqpe

,s(i+ 13 k) = S3,

Ye(i; k) € Yo, ve(is k) € Ve,

Xj(i + 1, k) = Xj(i; k) + vj(i; k)At
+3a(i k(A1)

v+ 1: k) = v;(i: k) + a; (s k) At

yili+15k) =y;(i; k), j € {la, Or},

(xe(i; k) —x; k>>2 N (yea; k) =y k)>2> '

Ax;j Ay;
J € {la, O/} (6)
0 < xp, (@5 k) — x.(i; k) < (ve(is k) — vy, (@5 k)trpa
i
s(i+1; k) # 8y. )
3: Apply the first action a*(0; k) from the optimal

sequence
4: k <k + 1 and go to step 2).

TABLE 4. The Logic Conditions of the Choice of Policy = When the Terminal
State Starts From s(N; k) = S;

policy 7 | logic conditions (i;k),i > N
as(isk) Dser || Df

az(i;k) Dsie & Dy & Dy
ay(isk) Dste & Dy & DL
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TABLE 5. The Logic Conditions of the Choice of Policy  When the Terminal
State Starts From s(N; k) = S,

policy 7 | logic conditions (i;k),i > N
ay(isk) s

as(isk) Dy & Dy & Dy
as(is k) Dr & D]

TABLE 6. The Logic Conditions of the Choice of Policy  When the Terminal
State Starts From s(N; k) = S3

policy 7 | logic conditions (i;k),i > N
ax(isk) Dier

as(isk) D, & D

as (i k) D, & D

the road. Consequently, it can be inferred that the occurrence
of (12) is a natural outcome of this process.

Next, we will calculate the terminal cost based on the afore-
mentioned baseline control policy. According to (3) and (12),
we can use stage cost J(-) to calculate the immediate cost for
each step in (12), and then we have

Tr(sNY) = "y (G k), alis k). (13)

i=N
It follows from Assumption 1 that J¢(s(N)) in (13) is
bounded. This means that there exists a constant J; > 0 such
that Jf(S(N)) < Jf.

Before presenting the recursive feasibility of the proposed
MDP solution, we will first give Lemma 1 to show the
feasibility of the aforementioned baseline control policy in
Tables 4-6. In this lemma, we introduce S as a buffer distance
(e.g., braking distance). This guarantees the ego vehicle can
stop without collision even if the leading vehicle suddenly
brakes. This implies that we have the minimum safe distance
dsage > Axj + B. Additionally, t,,4, 4, represent the maxi-
mum allowed time to collision (TTC).

Lemma 1: Suppose that Assumption 1 holds. If #4, t;har
and dy, r, satisfy the following inequalities for all i > N

dsafe 2 Ax] + ﬁa .] € {ld’ Or}’ /3 > O (143.)
dsafe
tihd = 14b
= o k) — vy, G B (140)
d
Ithdr = safe €0, (14¢)

—_ . . 9 r
[ve(is k) — [vo, (i k)|

then, the baseline control policy is feasible for each case of
the terminal state s(N; k).

Proof: According to Tables 4-6, we will prove the conclu-
sion from the following three cases.

In Case 1, where the ego vehicle is on the left lane, we
verify the safety constraint based on Table 4 and conditions
(14a)—(14c). We established that if the logic condition is (Dy,;
| D7), inequality (6) holds for the leading vehicle (i.e., j = ;)
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and i = N. Similarly, suppose the logic condition is (Dg, &
Dy & D). In this situation, the safety constraint (6) is satisfied
for both the ego vehicle and surrounding traffic, especially
for oncoming vehicles, since the ego vehicle remains in its
designated lane. Additionally, when the logic condition is
Dyge & Dy & D), it is straightforward to verify that (6)
holds for all vehicles (j € {l;, O,}).

In Case 2, it is easy to verify that safety constraint (6)
holds for all j € {l;, O,} based on Table 5 and conditions
(14a)—(14c).

In Case 3, where the ego vehicle is on the right lane, we an-
alyze the logic conditions given in Table 6. If logic condition
is Dy, or (D, & DY) and according to (14¢), we conclude
that (6) holds for all j € {l;, O,}. Furthermore, in Case 3, we
address the logic condition (D5,, & D). From s(N; k) = S3

we can deduce that at the predicted time step (N — 1; k) the
following inequality

(eN =15 k)= v, (N = 1 k)iar <o, (N —1; &)

—x.(N—1; k) 5)

holds no matter s(N — 1; k) = Sy, s(N — 1; k) = S, or s(N —
1; k) = S5 (refer to Tables 4-6).
According to (2) we have

Xo; (N3 k) = xe(N3 k) = xo,(N — 15 k) — x.(N — 15 k)
+ (vo; (N — 1 k) — v (N — 15 k) At

1
+ 5a,)_,.(zv — 1;k)(Ar)?. (16)
Thus, it follows from (14a), (14c), (15) and (16) that there
exists a large enough 8 > 0 such that

x()j(N; k) — x.(N; k) > dsafe - B
> A)Cj.

This implies that the safety constraint (6) holds. Therefore, we
can conclude that the baseline control policy is feasible. The
proof is completed. n

B. RECURSIVE FEASIBILITY
This subsection shows that Algorithm 1 returns a feasible
control action at all times if it is feasible at the beginning.
Theorem 1: Provided Assumption 1 and inequalities (14)
are valid, feasibility of Algorithm 1 at time k = O ensures
feasibility for all subsequent time steps k > O.
Proof: At time k, the following optimal action and corre-
sponding nominal state are given as:

a*(k) := (a*(0; k),a*(1; k), ...,a" (N — 1; k))

s*(k) == (s*(0; k), s*(1; k), ..., s"(N — 1; k), s*(N; k)).
(I7)

It follows from the conclusion of Lemma 1 that the follow-
ing safety constraint holds at prediction horizon N for each
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case of terminal state:

(MN; k) — x; (Vs k>)2 + <ye(1v; k) — j(V: k)>2 -
Ax; Ay,

(18)

According to the baseline control policy given in Tables 4—
6, at time k, we can figure out the action a*(N; k) and state
S*(N + 1; k).

Correspondingly, the following sequences are constructed
and will be proven feasible for time k + 1:

atk+1):= @ (1;k),...,a"(N — 1; k), a"(N; k))

stk+1) =15 k),....s"(N=1;k), s"(N; k), s*(N+1; k)
(19)

Similarly, from Lemma 1 we have

Xe(N+1; k) —x;(N+1; k) i Ve(N+1; k) =y (N+1; k)\ >
Ax; Ayj

>1.

Thus, we can conclude that (19) is a feasible solution to
Algorithm 1 at time k + 1. The proof is completed. |

C. STABILITY ANALYSIS

Ensuring the stability of the algorithm is essential when
employing MDP to model autonomous overtaking, as it guar-
antees reliable and accurate model outputs and enhances the
practical applicability of the proposed method. Consequently,
developing a stable MDP-based control algorithm is vital for
effectively managing the overtaking maneuvers of ego vehi-
cles and ensuring their successful execution.

Definition 1: MDP is said to be stable if s(k) = S; for all
time k > kr where k7 is a positive integer.

Theorem 2: Assuming Assumption 1 and conditions (14)
are satisfied, Algorithm 1 yields a solution that stabilizes the
MDP.

Proof: To demonstrate stability, we first examine the value
function of Vyy at step k concerning the cost incurred by fea-
sible sequences at step k + 1. According to (5), at time k, the
value function is given by:

N-1
Vi) =3y (s* (s k). @ (i k) + Tp(sH(N))
i=0
N-—1 -
= J(s"(0: k), a*(0: k) + Y ¥ (5" (G k). @i k)
i=1

+Jr(s*(N)), (20)

where J¢(-) is defined in (13) and J¢(s*(N)) € {J5, (s*(NV)),

J1, (s*(N)), J; (s*(N))} according to three choices of terminal
sate s*(N; k) € {S1, S», S3}.
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At time step k + 1, the cost function with the feasible se-
quences is expressed as:

N-—1
Vn(k+1) = Yyl k). a* i k) + TV, @1)

i=1

where ff(s(N )) can be calculated by combining (13) and (12)
with the first term of (13) being removed at time step k. That
means the following inequality holds

Tr(s(N)) < Jr(s*(N)). (22)
Then it follows from (20)—(22) that
Vy(k+1) = Vy(k) < Vy(k + 1) — Vy (k)
< —J(s*(0; k), a*(0; k)). (23)

Therefore, we can conclude that Vyj(k 4 1) — V5 (k) < Osince
all cost J are non-negative. In addition, Vy;(k 4 1) — Vi (k) =
0 if and only if s(k) = S1 (i.e., steady state) which s(k) can
achieve after a finite time k7. Hence, from Definition 1 we
conclude that the MDP chain is stable. The proof is com-
pleted. |

Remark 6: This section demonstrates that the proposed
MDP-based MPC algorithm for high-level decision-making
can successfully and safely accomplish autonomous overtak-
ing maneuvers. The establishment of the formal properties
like recursive feasibility and the stability of the proposed au-
tonomous overtaking algorithm have threefold implications:
i) guarantee the safety and effectiveness of the autonomous
overtaking process; ii) make the new formulation and its so-
lution easier to be applied to real-world autonomous driving
scenarios; iii) improve computation efficiency which facili-
tates real-time applications.

VI. DRIVING SCENARIOS TESTING

In this section, we validate the effectiveness of the pro-
posed MDP-based solution through simulations of two-lane
traffic scenarios, including bidirectional country road and
single-directional road. For all driving scenarios, the testing
environments are created using MATLAB’s Driving Scenario
Designer.

Remark 7: To bridge the gap between high-level decision-
making and actual vehicle control, an MPC-based method is
employed in the path-planning layer to generate dynamically
feasible trajectories based on the high-level decisions. This
hierarchical structure reflects the separation of responsibilities
across different time scales: the high-level decision-making
module operates at a lower frequency (on the order of sec-
onds), modeling the ego vehicle’s behavior using the dynamic
model in (2); meanwhile, the MPC-based path-planning layer
runs at a higher frequency (on the order of milliseconds),
utilizing the widely used kinematic model presented in the
system (1) of [36] to ensure real-time responsiveness and
smooth execution.
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TABLE 7. Parameter Specification

Lane Values(m) | Parameters Values | Vehicle Values(m)
Wide 3.6 ve(m/s) 26 Wide 1.9
Yri 3.1 vs(m/s) 16 Ax; 4
Vrr -4.1 dgqfe(m) 17 Ay; 1.6
Yie 1.3 tiha(s) 5 [ 3
Yre -2.3 trhdr(S) 10 B 13

A. SIMULATION PARAMETERS
To clarify all variables and units used in the simulation, we
first define vectors x, = (X, Ve, 6, V) With heading angle 6,
andx; = (x;, vj, y;) with j € {l;, O,}, where the unit of x, is
(m, m, rad, m/s) and the unit of x; is (m, m/s, m).
1) The initial state of the ego vehicle is x.(0) =
[25m, 1.3 m, Ord, 26 m/s].
2) The MDP states and actions are represented numerically
as follows
e §:=1,8:=2,85:=3
® a1 :=4,ay:=5,a3 :=6,a4 :=7,a5 := 8.
3) Prediction horizon and sampling time
e For the high-level decision-making layer, a predic-
tion horizon of N = 7 with a time step of At = 1sis
used.
e For the path-planning layer, the horizon is set to
N, = 3 with a prediction interval of 7, = 0.25s.
In other words, high-level decisions are updated once
every four path-planning steps.
4) The instant cost function is defined as

0, stk) =35,
J(s(k),a(k)) = {10, stk) =S> (24)
2, s(k) = S3.

5) Some other parameters are given in Table 7.

6) To avoid division by zero in (14b) and (14c), we add a
minimum threshold ¢, = 0.01 m/s in our implementa-
tion.

Based on the simulation parameters described above, we
first examine four driving scenarios involving interactions
with oncoming vehicles. In these scenarios, the ego vehicle
must safely overtake a slower leading vehicle by temporarily
entering the opposite lane without causing a collision. Sub-
sequently, to show the generality of the proposed framework,
we consider an additional scenario in which vehicles in both
lanes travel in the same direction.

B. SCENARIO 1: NO ONCOMING VEHICLES
In this scenario, we consider the simplest case where the
sensors of the ego vehicle detect the presence of a stationary
leading vehicle in the same lane and a stationary oncoming
vehicle in the opposite lane. The initial state of leading vehi-
cle is x;,(0) = [100m, Om/s, 1.3 m] with q;, = 0m/s? and
Ve = 26m/s.

The total simulation duration is set to 8 seconds, with the
outcomes illustrated in Figs. 4-7.
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FIGURE 4. MDP state transition in Scenario 1. 1 := Lane following,
3 := Overtaking, 4 := abandon, 5 := recover, 8 := maintain.

FIGURE 5. The longitudinal and lateral (x and y) positions of the ego
vehicle in Scenario 1.
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FIGURE 6. The states and control inputs of the ego vehicle in Scenario 1.

Fig. 4 illustrates that, at the beginning, the ego vehicle
is following lane (i.e., a(t = Os) = 8(maintain), s(t = Os) =
I(Lane following)). After 1(s), the ego vehicle decides to
start to change to the opposite lane to overtake the parked
leading vehicle (i.e., a(t = ls) = 4(initialize), s(t = 1s) =
3(Overtaking)) since the sensors detect that the opposite lane
is free and no oncoming vehicles (see Fig. 7). From Fig. 4
we know that the “maintain” action maintains for 2s. At
t = 4s, the distance between the leading vehicle and the
ego vehicle is greater than dy,r.. Therefore, the high-level
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FIGURE 7. A series of screenshots for the overtaking process in Scenario
1. The leading and the ego vehicle are represented by the black and the
blue rectangular, respectively.

controller updates its decision, directing the ego vehicle to
return to its original lane (i.e., a(t = 4s) = S(recover), s(t =
4s) = 1(Lane following)), and then track the reference signal
(ve, yic) of the left lane. A series of screenshots of the over-
taking process can be seen in Fig. 7. A video demonstration of
this case is available at https://youtu.be/eiZ5rHkkzIS. Overall,
the whole process can be summarized as:

15

—>1i>3ﬁ>-~-—>3i>li>~-—> 1.

C. SCENARIO 2: MANOEUVRING THROUGH PATIENCE
WITH STOP AND WAIT STRATEGY

In contrast to Scenario 1, this scenario involves two
oncoming vehicles moving at a constant speed on the
opposite lane. The initial states of oncoming vehi-
cles are xp,(0) =[174m, —24m/s, —=2.3m] and xp,(0) =
[155m, —24 m/s, —2.3 m]. In this case, the ego vehicle not
only needs to slow down, but also has to come to a complete
stop and wait until both oncoming vehicles pass by.

The overall simulation time is 8 s, and the simulation results
are shown in Figs. 8—11.

From Fig. 8 we observe that at the beginning the ego vehicle
is following lane. After 1s, the sensors detect that the opposite
lane has been occupied by two oncoming vehicles which are
close to the ego vehicle (see Fig. 11). Thus, due to the safety
constraint (6) the high-level generates an optimal command
to ego vehicle to slow down (i.e., a(t = ls) = 6(prepare),
s(t = 1s) = 2(Waiting)) and wait for future gaps. Also, from
Fig. 10 we can see that the speed of the ego vehicle v
smoothly decreases to zero. The ego vehicle remains in the
“Waiting” state (which includes slowing down or stopping)
for 3s. Once the opposite lane becomes clear, the high-level
controller updates its decision, allowing the ego vehicle to ini-
tiate the overtaking maneuver (i.e., a(t = 4s) = 4(initialize),
s(t = 4s) = 3(Overtaking)), and the ego vehicle accelerates,
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FIGURE 8. MDP state transition in Scenario 2. 1 := Lane following,
2 := Waiting, 3 := Overtaking, 4 := abandon, 5 := recover, 6 := prepare,
8 := maintain.
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FIGURE 9. The longitudinal and lateral (x and y) positions of the ego
vehicle in Scenario 2.
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FIGURE 10. The states and control inputs of the ego vehicle in Scenario 2.

overtakes the stationary leading vehicle, seen Fig. 10. The
overtaking process takes 2s. Then because the distance be-
tween the leading vehicle and the ego vehicle is greater than
dsafe, the decision-maker generates a new command direct-
ing the ego vehicle to return to its initial lane (i.e., a(t =
6s) = S(recover), s(t = 6s) = 1(Lane following)). A series
of screenshots of the overtaking process can be seen in
Fig. 11. A video demonstration of this scenario is available at
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FIGURE 11. A series of screenshots for the overtaking process in Scenario
2. The leading, the oncoming vehicles and the ego vehicle are represented
by the black, the orange and the blue rectangular, respectively.

https://youtu.be/7AKmpvPjEek. Overall, the whole process in
Scenario 2 can be summarized as:

15 1828 L2838 L3358

s L

D. SCENARIO 3: FOLLOWING THE LEADING VEHICLE AS A
PRIMARY APPROACH IN RESTRICTED LANE

Different from the above two scenarios, this case
involves a slowly moving leading vehicle travelling
at a constant speed. Additionally, three oncoming

vehicles are involved in the opposite lane at a con-
stant speed. The initial state of leading vehicle is
x;,(0) =[100m, 15m/s, 1.3m], and the initial states of
oncoming vehicles are xp, (0) = [300m, —24m/s, —2.3m],
x0,(0) =[350m, —24m/s, —2.3m] and x0,(0) =
[400m, —24 m/s, —2.3 m]. This scenario illustrates the
ego vehicle’s ability to autonomously slow down and follow
a slower leading vehicle when the opposite lane is blocked,
patiently waiting for a safe opportunity to perform the
overtaking maneuver.

The total simulation time is 17 s, and the simulation results
are presented in Figs. 12—14. From Figs. 12 and 14, one can
see that the ego vehicle is driving on the left lane, but its
sensors detect the presence of a slowly moving leading vehicle
ahead of it, while the opposite lane is unoccupied. Therefore,
the ego vehicle decides to initialize overtaking (i.e., a(t =
1's) = 4(initialize), s(t = 1s) = 3(Overtaking)). However, 3 s
later, the sensors of the ego vehicle detect that there are on-
coming vehicles in front of it and they are getting closer to it.
Thus, to avoid collision (i.e., to satisfy safety constraint (6)),
a new decision is made at the high level, instructing the ego
vehicle to merge back into its original lane and wait for future
gaps att = 4s. Also, from Fig. 15 we can see that the ego ve-
hicle slows down and follows the speed of the leading vehicle
for 5 s until the opposite lane is free when it restarts overtaking
att = 9s. Then, when the safety distance between the leading
vehicle and the ego vehicle is satisfied, it returns to the original
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FIGURE 12. MDP state transition in Scenario 3. 1 := Lane following,
2 := Waiting, 3 := Overtaking, 4 := abandon, 5 := recover, 7 := abandon,
8 := maintain.
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FIGURE 13. The longitudinal and lateral (x and y) positions of the ego
vehicle in Scenario 3.

lane at r = 14s. A series of screenshots of the overtaking
process can be seen in Fig. 14. A video demonstration of this
case is available at https://youtu.be/M8aTbIHTHVs.

Overall, the whole process in Scenario 3 can be summa-
rized as:

8

1551438 . 53528 50438

s331Ss

E. SCENARIO 4: DYNAMIC ENVIRONMENT CHALLENGES
WITH SUDDEN ONCOMING VEHICLES ACCELERATION
In contrast to Scenario 3, this scenario involves the first two
oncoming vehicles moving at a constant speed, while the
third oncoming vehicle accelerates at a variable rate. The
initial states of the leading vehicle and the first two oncom-
ing vehicles are the same as x;,(0), x0p, (0), xp,(0) given in
Scenario 3. The settings for the third oncoming vehicle are
given as xp,(0) = [528m, —4m/s, —2.3m]. It first proceeds
at constant speed —4m/s for 10s, followed by an accelera-
tion of —1.5m/s? for 1.5s. Then it speeds up further with
a = —2m/s? for 1s. After finishing this acceleration process,
it moves forward at a constant speed of —24m/s. The changes
in the speed for the whole process are shown in Fig. 16.

This scenario is designed to demonstrate that the novel
MDP solution can handle emergency and unexpected situa-
tions effectively in dynamic and uncertain traffic conditions.
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The overall simulation time is 20s, and the simulation results
are shown in Figs. 17-20.

In the initial 4s, the situation is the same as Scenario 3
(see Figs. 17 and 20). From Fig. 19 we can see that the ego
vehicle first starts slowing down and then follows the leading
vehicle for about 5s. That means 5s later, the opposite lane
is available to overtake even though there is a slow oncom-
ing vehicle, which it is far from the ego vehicle, so the ego
vehicle restarts overtaking at + = 9s. Unexpectedly, the on-
coming vehicle suddenly accelerates while the ego vehicle is
overtaking on the opposite lane, creating a safety risk. Hence,
the ego vehicle decides to change back to its original lane
and continue following the leading vehicle. When ¢ = 12s,
the opposite lane is re-available and the decision is to
re-initiate overtaking. Fig. 19 shows that the ego vehicle accel-
erates to finish overtaking quickly, and then returns back to the
original lane at7 = 17s. A series of screenshots of the overtak-
ing process can be seen in Fig. 20. A video demonstration of
this scenario is available at https://youtu.be/meX6Vym3TzM.
The whole process in Scenario 4 can be summarized as:

15 51438 530028 504830

22438 L3318 50

Remark 8: The computational time of our algorithm scales
linearly with the prediction horizon N, as the Algorithm 1
requires solving N sequential constrained optimizations. For
N € {5,7, 10}, the maximum computational time for optimal
decision-making at each time step on an Intel i5-118G7 CPU
is {0.4, 0.7, 1} seconds, below the high-level control system’s
sampling time Ty = Is. The complexity is O (N - n®) where
n is the state dimension, dominated by QP solves in MPC.
This computational duration, being significantly less than the
allocated sampling interval, convincingly demonstrates the
real-time feasibility and practical applicability of our pro-
posed algorithm in time-critical control scenarios.

To further highlight the advantages of the proposed MDP-
based framework, we next consider a scenario in which vehi-
cles in both lanes travel in the same direction. Comparisons
with the rule-based decision-making framework presented
in [42] will also be provided.

F. SCENARIO 5: OVERTAKING IN SAME DIRECTION
We consider the scenario illustrated in Fig. 21. In this sce-
nario, a slow-moving leading vehicle (black), travelling at
15m/s, is positioned 40m ahead of the ego vehicle (blue).
An orange vehicle in the adjacent lane is located 5Sm behind
the ego vehicle, travelling at a speed of 30m/s, while the ego
vehicle is moving at 26m/s. Additionally, a grey vehicle starts
from the position (—15, —60)m and attempts to merge onto
the main road from a side road at an angle of 29 degrees. We
assume that its speed profile is given in Fig. 22.

This scenario is designed to demonstrate how different
decision-making frameworks generate varying decisions for
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FIGURE 16. The changes in the speed of the third oncoming vehicle.

the same case, ensuring safety. The total simulation time is
11s, and the results are presented in Figs. 23-26.

The sensors of the ego vehicle detect a slow-moving vehicle
ahead, while the adjacent lane is currently unavailable for
a lane-change maneuver, as shown in Fig. 21. From speed
changes shown in Fig. 24, it can be observed that the ego
vehicle initially decelerates, then follows the leading vehicle
while waiting for a sufficient safety gap to initiate a lane
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FIGURE 18. The longitudinal and lateral (x and y) positions of the ego
vehicle in Scenario 4.

change. In contrast, when using the decision-making logic
diagram presented in Fig. 5 of [42], the ego vehicle first
attempts to create a safe gap by accelerating if the adjacent
lane is not immediately available. Once the required safety
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spacing is achieved, it promptly initiates a lane change. If the
safety condition is not met, the vehicle continues to follow the
leading vehicle in compliance with safety constraints. Then,
based on the changes in the y-direction shown in Fig. 24, it
can be observed that approximately 2 s later, the ego vehicle
performs a lane change to initiate an overtaking maneuver.

Unexpectedly, around ¢ = 3s, the sensors detect a faster
vehicle merging from the side road. To ensure safety, the
proposed MDP-based framework generates a “Waiting” com-
mand, prompting the ego vehicle to take an “abandon” action
and “return” to its original lane and continuing to follow the
leading vehicle. In contrast, as shown in Figs. 24 and 25, the
rule-based framework generates an “Accelerating” command,
causing the ego vehicle to “remain” in its current lane and
speed up in an attempt to create a safe gap with the merging
vehicle. However, the merging vehicle is moving too quickly,
forcing the ego vehicle to accelerate to avoid a collision,
as depicted in Figs. 24 and 25. Even though the rule-based
method generates an “Accelerating” command, compared the
time to collision (TTC) under these two frameworks, Fig. 26
demonstrates that the TTC obtained from the MDP-based
approach is significantly larger than that obtained from the
rule-based method. From Fig. 26 we can see that the min-
imum TTC under the rule-based framework is 0.04 s while
it is 5s under the MDP-based framework. Such an increase
in minimum TTC significantly enhances safety in real-world
implementations.

Additionally, in terms of passenger comfort, according to
the following equation

aRule _ ,MDP
ms ms

Rule
s

Improvement = x 100%

where a,,; denotes the mean square of the acceleration pro-
file, the proposed MDP-based approach demonstrates a 16%
improvement.

A video demonstration of the MDP-based approach for this
scenario is available at {https://youtu.be/vssatOSvHRO}, and
the corresponding rule-based demonstration can be found at
{https://youtu.be/Y2yB2vpseac}.
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VIl. DISCUSSIONS

Compared with the existing methods such as [3], [15], [35],
[43], our proposed solution, based on safety-constrained MDP
(see safety hard constraints (6)—(7) given in Algorithm 1), can
effectively ensure safety requirements in highly dynamic and
uncertain environments on two lanes in opposite directions
(see Scenario 4). This approach enables the specification of
constraints that ensure a minimum safe distance between the
ego vehicle and other road users, thereby improving safety
margins. In addition, compared with the rule-based frame-
work presented in [42], Scenario 5 demonstrates that the
proposed MDP-based framework not only effectively ensures
safety but also enhances passenger comfort on two lanes in
the same direction.

The decisions generated by MDP at the high level can be
used to guide the objectives of MPC at the low level, thereby
decomposing the computational task into smaller, more man-
ageable sub-tasks. This combination allows for leveraging the
fast response capability of MPC, reducing the computation
time required for each decision-making process. Moreover, in
an MPC-based solution to the MDP problem, using a simpli-
fied model instead of a complex physical model can reduce the
computational burden of each optimization while maintaining
sufficient accuracy. Additionally, Assumption 1 restricts the
analysis to finite nearby vehicles, but this is consistent with the
limited perception range and computational horizon of prac-
tical systems. Extensions to unbounded vehicle sets would
require probabilistic safety bounds, which we leave for future
work.

While we assume perfect knowledge of surrounding vehi-
cles’ states for theoretical analysis (similar to [15], [33]), real-
world implementations would integrate sensor fusion (e.g.,
LiDAR, camera, V2X) with noise filtering. Our safety con-
straints (4d)—(4e) inherently provide robustness to bounded
uncertainties, as the elliptical safe margin can be enlarged
to account for perception errors. For example, if the position
error of surrounding vehicles is within €, the safety constraint

(4d) can be modified to (x"(z;fe(k))z + (ye(z)y;i’:k) ) > 1.
Moreover, the perfect tracking assumption simplifies the high-
level analysis, but in practice, tracking errors can be handled
by robust low-level control designs (e.g., MPC, PID) [25],
[30].

Our current action set (e.g., initialize, recover, prepare)
is specifically designed to model the key decision states in-
volved in overtaking maneuvers, rather than general driving
behaviour. These high-level actions capture the key stages
of overtaking, including initiation, preparation, execution,
and recovery, and are sufficient for managing the complex-
ity of this task within our hierarchical control framework.
Although the action space may appear simplistic for full
real-world driving, it is intentionally scoped to overtaking
scenarios. More task-general action spaces could certainly
be explored in future work, especially when expanding
to broader driving behaviors (e.g., merging, intersection
handling).
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FIGURE 21. Vehicles in two lanes travel in the same direction. The speed
limit is 70 mph. The desired speed for the left lane is vc = 26m/s and
vre = 30m/s for the right lane. .
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FIGURE 22. Speed of merging vehicle from side road.

The four preset speed levels (v, vy, Uye, 0) in our high-
level MDP are deliberately designed to balance optimality and
real-time safety. Within the hierarchical control framework,
the MDP governs macro-level decisions (e.g., lane changes
or overtaking initiation), where coarse speed discretization
is sufficient to encode safe maneuver choices. Fine-grained,
continuous speed adjustments are delegated to the low-level
controller through dynamic tracking and constraint enforce-
ment. This separation ensures that speed discretization does
not compromise system-level optimality, as the low-level con-
troller compensates for any quantization errors. Moreover,
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FIGURE 23. MDP state transition in Scenario 5. 1 := Lane following,
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FIGURE 24. Comparisons of speeds and lane change under MDP-based
and rule-based decision-making frameworks.

these speed levels are intrinsically aligned with safety con-
straints: v, and v, comply with traffic rules (e.g., speed
limits), whereas v and O serve as emergency fallbacks to
ensure safety (i.e., dyqfe) in critical situations (see (4d)—(4e)).
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This discretization reflects a principled trade-off—simplifying
high-level decision-making without compromising safety or
practical feasibility, as evidenced by the collision-free results
across all tested scenarios (Section VI).

VIIl. CONCLUSION
This paper presents a novel high-level MDP solution for
making safe and optimal decisions in autonomous overtak-
ing scenarios, particularly in dynamic environments with
oncoming vehicles. By carefully formulating the top-level
decision-making process within a hierarchical control struc-
ture as an MDP control problem, we have designed an MPC
scheme that optimises overtaking decisions while ensuring
safety. The link between high-level decision-making and
lower-level behaviours and the status of the ego vehicle is
crucial for ensuring accurate decision-making. We abstract the
behaviour of the ego vehicle and surrounding vehicles, inte-
grating these elements into the MDP-based decision-making
framework. To ensure the recursive feasibility and stability
of the proposed solution, we introduced a feasible baseline
control policy to calculate the terminal cost that is involved in
online solving the optimal MDP problem.

The performance of the new design is evaluated on the
MATLAB platform with Yalmip solver using five driving
scenarios on two lanes no matter of opposite directions or
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in the same direction. The testing results indicate that the
developed MDP solution is able to make rational decisions
under dynamic and unknown driving environments. While this
work focuses on overtaking actions, the proposed framework
can be extended to other driving scenarios by augmenting the
action set. For instance, intersection navigation: Add actions
for traffic light compliance (e.g., ag: stop at the red light). The
safety constraints (4d)—(4e) would similarly apply to these
new actions, ensuring unified risk-aware decision-making. In
future work, we plan to enhance robustness under imperfect
perception, including techniques for sensor fusion, noise fil-
tering, and uncertainty propagation within the decision layer.
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