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ABSTRACT

Objective. Early detection of knee osteoarthritis is crucial for improving patient
outcomes. While conventional imaging methods often fail to detect early changes and
require specialized expertise for interpretation, this study aimed to investigate the use of
frontal plane kinematic data during step-up (SU) and step-down (SD) tests to classify
and predict early osteoarthritis (EOA) using machine-learning techniques.

Methods. Forty-three recreational table tennis players (eighty-six legs: 42 with EOA and
44 without EOA) underwent SU and SD tests. Frontal plane kinematics was analyzed
using two-dimensional video analysis with markers placed at five key anatomical
landmarks. Horizontal displacement measurements were compared between groups
using independent ¢-tests. Unsupervised learning (Louvain clustering) was used to
identify distinct movement patterns, whereas supervised learning algorithms were
employed to classify EOA status. The feature importance was assessed using feature
permutation importance (FPI).

Results. Significant differences were observed between EOA and non-EOA groups in
frontal plane kinematics during SU and SD tests (p < 0.001 for most variables). Louvain
clustering identified four distinct kinematic profiles with varying proportions of EOA
(ranging from 41.2% to 70.7%). Supervised learning models achieved high performance
in classifying EOA status, with Random Forest, gradient boosting, and decision tree
algorithms achieving 100% classification accuracy (AUC = 1.000) on the test dataset.
FPI consistently highlighted the horizontal displacements of the ankle and femur during
SU and of the pelvis and femur during SD as the most influential predictors.
Conclusions. Machine-learning analysis of frontal plane kinematics during SU and
SD tests showed promising potential for EOA detection and classification, offering a
cost-effective and accessible alternative to conventional imaging-based approaches.
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INTRODUCTION

Knee osteoarthritis (OA) is a prevalent degenerative joint disease that affects millions of
people worldwide, causing pain, stiffness, and a reduced quality of life (Whittaker et al.,
2021). According to recent World Health Organization data, osteoarthritis affects over 520
million people globally, making it the most common joint disorder worldwide and one
of the leading causes of disability (WHO, 2022). The prevalence is expected to increase
dramatically due to aging populations, rising obesity rates, and increased participation in
high-impact sports, creating an urgent need for effective early detection and intervention
strategies (Migliore et al., 2023). In addition, early detection and intervention in the initial
stages of OA, known as early OA (EOA), have gained significant recognition for their
potential to improve long-term outcomes and slow disease progression (Migliore et al.,
2023). However, current diagnostic methods often fail to identify OA until significant joint
damage occurs, highlighting the need for more sensitive and specific tools to detect EOA
(Chu et al., 2012; Ryd et al., 2015).

Individuals who engage in sports characterized by frequent pivoting and repeated impact
movements face an elevated risk of developing knee osteoarthritis. Table tennis demands
players to perform quick directional shifts, constant lateral movements, and continuous
weight transfers during matches (Biz et al., 2022; Vannini et al., 2016). While table tennis
is generally associated with higher levels of shoulder injuries compared to other racket
sports, the knee joint still accounts for approximately 5% of acute injuries experienced
by table tennis players (Kondric et al., 2011). Research comparing former elite table tennis
players with non-athletic controls found that 68.2% of ex-elite table tennis players reported
symptoms of knee pain compared with only 27.3% of the control group (p =0.02) (Rajabi
et al., 2012). This significantly higher prevalence of knee symptoms appears to be primarily
attributed to the distinctive movement patterns inherent to the sport, specifically the
continuous pivoting and rapid changes in direction (Lam et al., 2019; Shao et al., 2020).
Given these findings, there is growing concern about the potential long-term impact on
recreational players who regularly participate in table tennis. This population may be
particularly valuable for investigating early detection strategies for osteoarthritis, as they
could be susceptible to premature development of the condition.

While age, sex, body mass index (BMI), and genetic factors play significant roles in OA
development, recent research has shifted the focus from these static factors to dynamic
biomechanical alterations as crucial elements in OA development and progression (Zengini
et al., 2018). Abnormal movement patterns can lead to altered joint loading, potentially
contributing to cartilage degradation and OA onset (Dell'Isola et al., 2017). These changes
in joint kinematics can be subtle during the early stages of the disease, making them
difficult to detect using conventional clinical assessments (Chu et al., 2012; Ryd et al.,
2015). An increased knee adduction moment during gait is associated with a higher risk
of OA progression (Miyazaki et al., 2002). Furthermore, altered knee flexion angles and
moments during walking have been observed in individuals with early-stage knee OA
(Favre, Erhart-Hledik & Andriacchi, 2014; Miindermann, Dyrby & Andriacchi, 2005).
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Functional performance tests, such as step-up (SU) and step-down (SD) tests, have
emerged as valuable tools for assessing lower limb function in patients with knee OA
(Almeida et al., 2021). The SU and SD tests are reliable and valid for assessing functional
performance in individuals with knee OA (Almeida et al., 2021). Moreover, these tests
demonstrated good responsiveness to changes following the interventions in patients with
OA (Almeida et al., 2021). Several studies have used SU and SD kinematics to investigate
knee OA. Pain during stair climbing is an early indicator of knee OA (Hensor et al., 2015).
Altered knee kinematics during stair ascent and descent have been reported in individuals
with knee OA (Kaufman et al., 2001). Differences in the knee and hip angles during stair
descent were observed between patients with OA and healthy controls (Igawa ¢ Katsuhira,
2014). While these studies primarily focused on sagittal plane kinematics, our study aimed
to analyze frontal plane kinematics during SU and SD. This approach is crucial because
frontal plane movements, such as knee adduction, may have a more significant impact
on joint stress than sagittal plane movements (Miindermann, Dyrby & Andriacchi, 2005;
Sharma et al., 2001). By examining the frontal plane kinematics, the present study can
potentially gain more insight into the biomechanical factors that contribute to EOA
development and progression.

Current diagnostic methods often fail to identify OA until significant joint damage
occurs, highlighting the need for more sensitive and specific tools to detect EOA (Chu
et al., 2012; Ryd et al., 2015). Conventional diagnostic approaches such as radiography,
magnetic resonance imaging (MRI), and arthroscopy have notable limitations that restrict
their effectiveness for early detection and large-scale screening. These limitations include
high cost and limited accessibility, particularly for MRI and arthroscopy; time-intensive
procedures requiring specialized facilities; inconsistent interpretation with significant inter-
observer variability; and the need for highly trained specialists for result interpretation.
Furthermore, standard radiography often fails to detect early cartilage changes (Guermazi
et al., 2011; Hayashi, Guermazi ¢ Kwoh, 2014), while more sensitive imaging methods
may identify incidental findings that do not correlate with clinical symptoms (Culvenor
et al., 2019; Horga et al., 2020). These limitations underscore the need for more accessible,
objective, and cost-effective methods to detect EOA before irreversible joint damage occurs.

The application of machine-learning techniques to biomechanical data offers a promising
approach for the accurate and early detection of OA. Although recent studies have
demonstrated the potential of machine learning (ML) in OA research using magnetic
resonance imaging (MRI) or radiography data, these methods may have limitations in
detecting EOA (Pedoia et al., 2019; Tiulpin et al., 2019). Although some studies have used
inertial measurement unit sensors for kinematic analysis in OA prediction, the clinical
applicability of these methods may be limited (Clermont et al., 2019). Our study aimed to
address these limitations by utilizing a two dimensional (2D) video analysis of SU and SD
test kinematics combined with machine-learning techniques. This approach offers a more
practical and clinically feasible method for EOA detection while potentially maintaining
high prediction and classification accuracy (Kobsar et al., 2017; Osis et al., 2016).

Building on this foundation, this research aimed to: (1) use unsupervised learning
algorithms to identify distinct groups based on frontal plane kinematic patterns during SU
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and SD tests; (2) develop supervised learning models to classify between EOA and non-
EOA status (binary classification); and (3) identify the most influential kinematic variables
associated with EOA by focusing on SU and SD tests and employing both clustering and
classification approaches. The present study hypothesized that: (1) individuals with EOA
would demonstrate significantly different frontal plane kinematic patterns during SU and
SD tests compared to those without EOA; (2) these kinematic patterns could be classified
into distinct subgroups using unsupervised ML; and (3) supervised ML algorithms could
accurately classify EOA status using these kinematic variables as predictive features.

METHODS
Study design and participants

This observational, cross-sectional study was designed to investigate early indicators of
OA using kinematic analysis. The research protocol was approved by the Sangji University
Institutional Review Board (1040782-230814-HR-09-117), and all participants provided
written informed consent prior to the commencement of the study.

The study population consisted of 43 recreational table tennis players (86 legs in total),
ranging in age from 40 to 70 years, who had participated in amateur table tennis for more
than 5 years. The Early Osteoarthritis Questionnaire (EOAQ) was used to identify the
presence or absence of early osteoarthritis symptoms among participants (Migliore et al.,
2023). The experimental group (1 = 42 legs; 25 males and 17 females) included individuals
responding “frequently” or “rarely” to the initial two EOAQ items. The control group
(n =44 legs; 21 males and 23 females) consisted of those answering “never” to these
questions.

Exclusion criteria were established to maintain a focused study population and minimize
confounding factors. Individuals were deemed ineligible if they had experienced a lower-
extremity injury within the previous six months, had a history of hip surgery, rheumatoid
arthritis, diagnosed osteoarthritis, or neurological conditions. Detailed participant
characteristics and study flow are presented in Table 1 and Fig. 1, respectively.

EOAQ

The EOAQ, a recently developed instrument for assessing early-stage knee OA, served as
the primary screening tool. The 11-item questionnaire was structured into two domains:
Clinical features (two items) and patient-reported outcomes (nine items). Each item offers
three response options reflecting symptom frequency over the preceding six months:
“Never”, “Rarely (one to three episodes)”, and “Frequently (more than three episodes)”.
The EOAQ was designed to capture subtle symptomatic and functional alterations
characteristic of incipient knee OA, thereby facilitating early detection and intervention

(Migliore et al., 2023).

Experimental protocol

Each participant completed three SU and SD trials per leg. To ensure proper execution,
the participants underwent thorough familiarization with the testing protocol, including
detailed instructions and practice attempts. All the tests were performed barefoot to
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Table 1 Participants characteristics.

EOA, early osteoarthritis; HD, horizontal displacement; SU, step up; SD, step down.

Excluded

« Imputation for missing
data (n = 49 data

points)

Included in the
study (n=209 data

Excluded
* Local outlier (n = 18
data points)

and September

recreational table
tennis players (N
=43, 86 legs; 86*
3 repetition=258

Preprocessing
v Features

« Sex

« Age

* Height

+ Weight

« BMI

«+ Pelvic horizontal displacement during step up

« Femur horizontal displacement during step up

+ Knee horizontal displacement during step up

« Lower leg horizontal displacement during step up
+ Ankle horizontal displacement during step up

+ Pelvic horizontal displacement during step down
« Femur horizontal displacement during step down
+ Knee horizontal displacement during step down

« Lower leg horizontal displacement during step down
+ Ankle horizontal displacement during step down

Training data }
(80%, n=168)

v Targets

Final model

« Individuals with and without early osteoarthritis
based on EOAQ

Test data

(20%, n=41)

Machine learning models
« Logistic regression
kNN

« Decision tree

+ Random forest

+ Gradient boosting

« Support vector machine

Variables without EOA (n=44) with EOA (n=42) P

Sex M=21;F=23 M=25;F=17 0.224
Age 58.17 £ 11.90 59.40 £ 13.00 0.457
Height 163.46 + 6.70 165.40 &+ 8.90 0.074
Weight 64.22+ 11.29 64.70 + 12.80 0.778
BMI 23.94+ 3.32 23.48 £ 3.06 0.294
Pelvis HD-SU 8.75+ 2.16 9.72+ 1.86 0.001
Femur HD-SU 749+ 1.40 9.25+ 1.50 <0.001
Knee HD-SU 426+ 1.37 539+ 1.83 <0.001
Lower leg HD-SU 327+ 1.26 437+ 1.58 <0.001
Ankle HD-SU 0.14+ 0.23 0.38 + 0.28 <0.001
Pelvis HD-SD 4.15+ 1.51 5.14+ 1.51 <0.001
Femur HD-SD 3.70+ 1.82 4.40+ 2.35 0.016
Knee HD-SD 243+ 2.56 3.31+ 3.93 0.054
Lower leg HD-SD 1.80 + 2.31 2.66+ 2.76 0.015
Ankle HD-SD 0.78 £ 0.67 1.63+ 2.25 <0.001

Notes.

Train models
5-fold cross-validation

|

« AUC

« recall

- F1

Evaluate models
* accuracy

« Precision

importance

Identifying critical factor
+ Feature permutation

« Shapley Additive Explanation

Predictive
model

Figure 1 Methodological framework for machine learning-based early osteoarthritis detection and
classification. The systematic approach implemented in this study, including participant selection, data
acquisition, preprocessing of kinematic features, unsupervised clustering analysis, supervised model devel-
opment with cross-validation, and feature importance evaluation. BMI, body mass index; EOA, early os-
teoarthritis; EOAQ, Early Osteoarthritis Questionnaire; AUC, area under the curve.
Full-size & DOLI: 10.7717/peerj.19471/fig-1
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eliminate footwear-related variability. The leg testing order was randomized to mitigate
potential order effects.

For the SU test, participants initiated the movement with one leg positioned on a 20 cm
height step box while maintaining the alignment of the hip, knee, and foot. The participants
received both visual demonstrations and verbal instructions on SU performance, without
specific guidance on knee and hip alignment. The test was concluded when the participant
raised their non-positioned leg until heel contact was made with the step-box surface. The
SD test began with the participants seated with their feet and knees parallel to the hip width.
As in the SU test, the participants were provided demonstrations and verbal instructions
without specific alignment cues. The test was completed when the participant lowered the
non-stance leg until heel contact was achieved with the floor in front of the step box. This
protocol was designed to capture the natural movement patterns during functional tasks,
potentially revealing early indicators of knee osteoarthritis.

Kinematic data acquisition

Kinematic data were collected using a high-resolution video. A smartphone (iPhone 15;
Apple Inc., Cupertino, CA, USA) equipped with 4 K video capability (2,556 x 1,179 pixels,
240 fps) was used. The device was mounted on a tripod, 60 cm above the ground level
and positioned 250 cm anterior to the participants. Post-collection, video recordings were
processed using specialized motion analysis software (Kinovea® version 0.8.15; Kinovea,
Bordeaux, France). A 2D video analysis was selected for this study based on its clinical
feasibility, accessibility, and demonstrated utility in previous research examining frontal
plane kinematics (Osis et al., 2016; Weon ¢» Ha, 2024). While 3D motion capture systems
offer greater precision, the 2D approach allows for more straightforward implementation
in clinical settings without requiring specialized laboratory equipment.

The landmarking of anatomical points was performed manually by an experienced
physical therapist with over 10 years of clinical experience. Yellow spherical markers were
placed directly on the specified anatomical landmarks prior to video recording. A 2D video
analysis was used to quantify the horizontal displacement of five key anatomical landmarks
in the frontal plane during the SU and SD tests (Figs. 2 and 3). The horizontal displacement
of the five key anatomical landmarks included that of the pelvis (PHD), femur (FHD),
knee (KHD), lower leg (LHD), and ankle (AHD). Yellow spherical markers were affixed to
the anterior superior iliac spine (pelvis), femoral midpoint (femur), patellar center (knee),
tibial tuberosity (lower leg), and superior aspect of the navicular bone (ankle).

Kinematic analysis

Using Kinovea software, marker trajectories were tracked throughout the SU and SD
tests. During data processing, these markers were tracked manually within the Kinovea
software by the same researcher to ensure consistency in trajectory analysis. The maximum
horizontal displacement was quantified for each marker (Fig. 3) (Weon ¢ Ha, 2024).
Displacement was calculated as the distance between the marker’s initial position and its
point of maximum excursion during the SU and SD tests. The lateral displacement was
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Step down

Pre-processing: trajectory analysis

| |

Step up and down kinematic parameters extraction

 Pelvic horizontal displacement during step up * Pelvic horizontal displacement during step down

» Femur horizontal displacement during step up * Femur horizontal displacement during step down

* Knee horizontal displacement during step up * Knee horizontal displacement during step down

» Lower leg horizontal displacement during step up » Lower leg horizontal displacement during step down
* Ankle horizontal displacement during step up » Ankle horizontal displacement during step down

Figure 2 Process of kinematic parameters extraction for step up and down.
Full-size Gal DOI: 10.7717/peer;j.19471/fig-2

recorded as a positive value, whereas the medial displacement was assigned as a negative
value.

This analytical approach provides insights into joint stability and movement patterns.
The magnitude and direction of the displacement values offered valuable information:
larger positive values indicated greater lateral movement, larger negative values signified
greater medial movement, and values approximating zero suggested minimal joint
movement and enhanced stability. Analysis of the PHD, FHD, KHD, LHD, and AHD
allowed for a comprehensive assessment of postural control and joint stability during
the SU and SD tasks, potentially revealing postural control strategies and compensatory
mechanisms.

MACHINE-LEARNING METHODOLOGY

This study utilized both unsupervised and supervised machine-learning techniques

to analyze kinematic data. All analyses were performed using Orange data mining
software (version 3.3.0; Ljubljana, Slovenia) and Python (version 3.6.15; Python Software
Foundation).
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Figure 3 (A) Five yellow spherical markers in the anatomical landmarks for initial position during
step-up using two-dimensional video analysis. (B) Assessment of the horizontal displacement based on
trajectory of five key anatomical points during step-up in the frontal plane. (C) Assessment of the hor-
izontal displacement based on trajectory of five key anatomical points during step-down in the frontal
plane.

Full-size &l DOI: 10.7717/peerj.19471/fig-3

Data preparation and preprocessing

The dataset comprised 15 features: Five demographic variables (sex, age, height, weight,
and BMI) and ten kinematic measures (PHD, FHD, KHD, LHD, and AHD for both the
SU and SD tasks). A total of 258 data points, derived from three repeated measurements
per participant, were used in the machine-learning models. The EOAQ results were
dichotomized to indicate the presence or absence of EOA. Prior to analysis, we conducted
thorough data preparation procedures. First, all continuous variables were examined for
normality using Shapiro—Wilk tests and visual inspection of histograms. For the machine
learning analysis, continuous features were standardized using z-score normalization to
ensure all variables contributed equally to the models regardless of their original scales. The
present study conducted a thorough exploratory data analysis to identify missing values,
which were subsequently addressed by eliminating incomplete cases.

Unsupervised learning: louvain clustering algorithm

To ensure model accuracy, the present study employed boxplots to visualize the variable
distributions. Outliers were then removed using a local outlier factor method with the
following parameters: 9% contamination, 20 neighbors, and the Euclidean metric. An
unsupervised clustering model for the SU and SD kinematic patterns was developed using
the Louvain clustering algorithm (Ekerete et al., 2021). This method was chosen because
of its ability to handle complex datasets and automatically determine the optimal number
of clusters. The algorithm incorporates Euclidean distancing on raw data and principal
component analysis to enhance clustering efficiency. Louvain clustering automatically
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identified four distinct clusters in the integrated dataset. Cluster validity was assessed
using two complementary metrics: the Davies—Bouldin index (which quantifies the average
similarity between clusters, where lower values indicate better separation) and the Calinski—
Harabasz index (which reflects the ratio of between-cluster to within-cluster variance, with
higher values indicating better-defined clusters). These metrics were supplemented with
comprehensive statistical analysis of between-cluster differences to fully evaluate the
distinctiveness of the identified clusters.

To rigorously assess the distinctiveness of these kinematic patterns, the 15 features were
compared across clusters using one-way analysis of variance, with the statistical significance
set at p < 0.05. For multiple comparisons, we implemented Tukey’s post-hoc analysis, thus
controlling for type I errors in our statistical analysis.

Supervised learning for EOA classification
For the supervised learning phase, we used 15 features to classify the binary EOA outcomes.
After excluding missing data, the final dataset (n =209) was divided into training (80%,
n=168) and testing (20%, n = 41) sets. We evaluated six ML algorithms: k-nearest
neighbors (kNN), decision tree, AdaBoost, gradient boosting, Random Forest, and support
vector machine. Each model was trained using 5-fold cross-validation to ensure robustness
and generalizability.

To optimize model performance, we conducted extensive hyperparameter tuning using
grid search with 5-fold cross-validation on the training dataset. The search space and
optimal hyperparameters for each algorithm were as follows:

e For Random Forest: number of estimators [50, 100, 200] and maximum depth [5, 10,
None] were explored, with 100 estimators and max_depth = 10 identified as optimal.

e For gradient boosting: learning rate [0.01, 0.1, 0.2], number of estimators [100, 200,
300], and maximum depth [3, 5, 7] were tested, with learning_rate = 0.1, n_estimators
= 200, and max_depth = 3 selected as optimal.

e For AdaBoost: base estimator (Decision Tree with max_depth 1, 2, 3), learning rate [0.1,
0.5, 1.0], number of estimators [50, 100, 200], and algorithm [‘SAMME’, ‘SAMME.R’]
were evaluated, with Decision Tree (max_depth = 1), learning_rate = 1.0, n_estimators
= 100, and algorithm = ‘SAMME’ identified as optimal.

e For support vector machine: kernel type [‘linear’, ‘rbf, ‘poly’], C [0.1, 1, 10], and
gamma [‘scale’, ‘auto’] were evaluated, with a linear kernel, C = 1, and gamma = ’scale’
identified as optimal.

e For decision tree: criterion [‘gini’, ‘entropy’], maximum depth [None, 5, 10], minimum
samples split [2, 5, 10], and minimum samples leaf [1, 2, 4] were tested, with gini
criterion, unlimited depth, min_samples_split = 2, and min_samples_leaf = 1 selected
as optimal.

e Fork-nearest neighbors: number of neighbors [3, 5, 7, 9], weights [‘uniform’, ‘distance’],
algorithm [‘auto’, ‘ball_tree’, ‘kd_tree’], and metric [‘euclidean’, ‘manhattan’] were
explored, with seven neighbors, distance weighting, auto algorithm, and manhattan
distance identified as optimal.
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To prevent overfitting, we implemented several strategies: (1) strict separation of training
and testing data, (2) 5-fold cross-validation during model development, (3) regularization
through hyperparameter tuning, and (4) comparison of training and testing performance
to detect potential overfitting.

Model validation and feature importance analysis

Our primary performance metric was the area under the receiver operating characteristic
curve (AUC), which was computed for both the training and test sets and averaged
across classes. AUC measures the model’s ability to discriminate between classes, with
higher values indicating better discrimination. We also considered secondary metrics: (1)
accuracy, which represents the proportion of correctly classified instances; (2) precision,
which indicates the proportion of positive identifications that were actually correct; (3)
recall, which measures the proportion of actual positives that were correctly identified;
and (4) F1-score, which is the harmonic mean of precision and recall, providing a balance
between these two metrics. All metrics were averaged across classes. Model performance was
classified based on AUC values as follows: excellent (>0.9), good (0.8-0.9), fair (0.7-0.8),
and poor (<0.7), in accordance with established guidelines (Hwang et al., 2024).

To determine the relative importance of the predictors, we employed a dual approach
combining feature permutation importance and SHapley Additive exPlanations (SHAP)
(Hwang et al., 2024). The feature permutation importance method assessed the impact on
the model performance, quantified by the AUC change, when randomly shuffling each
feature’s value. Features that caused larger performance decrements upon permutation
were considered more crucial to the model’s predictive power. To complement this, we
utilized SHAP values to provide a visual representation of the influence of each feature
on the model predictions. SHAP summary plots were generated, arranging the predictors
on the y-axis in order of importance, with the most influential at the top. The x-axis
displayed the SHAP values, illustrating both the magnitude and direction of the impact of
each feature on the model output. This comprehensive approach to feature importance
analysis offered valuable insights into the specific ways in which different variables shaped
our predictions, thereby enhancing the interpretability of our ML models and providing a
nuanced understanding of the factors that contribute to EOA classification.

RESULTS

Statistical analysis

A total of 43 recreational table tennis players were included in this study, with 44 and 42
legs in the non-EOA and EOA groups, respectively (Table 1). There were no significant
differences between the groups in terms of sex distribution (p = 0.22), age (p = 0.46),
height (p=0.07), weight (p =0.78), BMI (p =0.29), or KHD during SD (p =0.05). In
addition, significant differences were observed in all SU and SD kinematics except for KHD
during SD. The EOA group demonstrated significantly higher values for PHD (p =10.001),
FHD (p < 0.0001), KHD (p < 0.0001), LHD (p < 0.0001), and AHD (p < 0.0001) during
SU and PHD (p < 0.0001), FHD (p =0.016), LHD (p =0.015), and AHD (p < 0.0001)
during SD compared with the non-EOA group.
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Table 2 Comparisons of features between the clusters classified by Louvain clustering unsupervised machine learning.

Variables Cluster 1 (n=57) Cluster 2 (n=51) Cluster 3 (n=42) Cluster 4 (n=41) p

EOAQ (-)OA=31;(+)OA =26 (-)OA =30; (+)OA =21 (-)OA=17; (+)OA =25 (-)OA=12;(+)OA =29 0.019
Sex M=11;F=46 M=51;F=0 M=21;F=21 M=26;F=15 <0.001
Age 62.07 £ 5.60 4480+ 11.30 66.45 + 8.40 62.39+ 10.10 <0.001
Height 159.32 4+ 5.00 172.27 + 7.20 160.64 + 6.10 166.44 + 6.30 <0.001
Weight 57.69 + 4.92 76.02 + 9.22 57.55+ 5.32 61.49+ 7.23 <0.001
BMI 22.73+ 1.57 25.59+ 2.42 2228+ 1.28 22.14+£ 1.55 <0.001
PHD-SU 9.21+ 1.55 8.08 = 1.92 9.53+ 1.74 10.72+ 0.92 <0.001
FHD-SU 8.06 + 1.26 7.78 &+ 1.64 7.81+ 1.38 10.16 = 1.11 <0.001
KHD-SU 5.03+ 1.54 4.01+£ 1.27 3.68+ 0.77 6.87 £ 0.47 <0.001
LHD-SU 3944+ 1.54 2.90 + 0.95 3.124+ 0.73 5.61+ 0.49 <0.001
AHD-SU 0.27 £ 0.23 0.21+£ 0.22 0.39+ 0.37 0.26 £ 0.31 0.017
PHD-SD 3.534+ 0.97 4.57+ 141 6.07 + 1.17 5.354+ 1.01 <0.001
FHD-SD 2254+ 1.27 4.60+ 1.64 5.80 £ 0.79 495+ 1.22 <0.001
KHD-SD —0.63 £ 2.62 4.46+ 2.36 5.37+ 2.16 4.46 + 2.36 <0.001
LHD-SD —0.40 £ 2.05 329+ 1.55 3.86 + 1.51 3.80+ 0.97 <0.001
AHD-SD 0.57 + 0.46 0.81 + 0.60 0.98 + 0.52 2.59+ 2.62 <0.001

Notes.

EOA, early osteoarthritis; EOAQ, Early Osteoarthritis Questionnaire; PHD, pelvic horizontal displacement; FHD, femur horizontal displacement; KHD, knee horizontal
displacement; LHD, lower leg horizontal displacement; AHD, ankle horizontal displacement; SU, step up; SD, step down.

ML-based analysis
Comparisons of features between the louvain clusters

To validate the quality and distinctiveness of the Louvain clustering solution, we calculated
widely-used cluster validity indices. The Davies—Bouldin index was 2.09, and the Calinski—
Harabasz index was 59.26. While the Davies—Bouldin index was somewhat high (lower
values indicate better separation), the Calinski—-Harabasz index supported the presence of
distinct groupings in our data. The Louvain clustering algorithm identified four distinct
clusters (C1-C4) with significant differences in all features (all p < 0.001, except for
AHD-SU (p=10.017) and portion of EOA (p =0.019)) (Table 2). Tukey’s post-hoc analysis
revealed that those in C2 had the youngest age (44.80 £ 11.30 years, p < 0.001 vs. all
other clusters) and highest BMI (25.59 £ 2.42, p < 0.001 vs. all other clusters). C2
included exclusively males, whereas the other clusters had a mixed sex composition.
For SU kinematics, C4 exhibited the largest horizontal displacements for the pelvis, femur,
knee, and lower leg, all significantly higher than other clusters (p < 0.001). During SD,
C3 showed the largest pelvis and femur displacements, while C4 had significantly higher
ankle displacement (p < 0.001 vs. all other clusters). C1 exhibited negative mean values for
the knee and lower leg displacements during SD, significantly different from other clusters
(p < 0.001). These distinct kinematic profiles suggested potential subgroups within the
EOA population, with varying proportions of EOA cases across clusters: C1 (45.6%), C2
(41.2%), C3 (59.5%), and C4 (70.7%).

Hwang et al. (2025), PeerJ, DOI 10.7717/peerj.19471 11/24


https://peerj.com
http://dx.doi.org/10.7717/peerj.19471

Peer

Table 3 Performance metrics of six machine-learning algorithms for classifying groups with and
without EOA in the training and test datasets.

Performance metrics of six machine learning algorithms in the training dataset

Model AUC Acc F1 Precision Recall
Gradient boosting 0.983 0.940 0.941 0.941 0.940
kNN 0.822 0.750 0.749 0.750 0.750
Logistic regression 0.851 0.827 0.827 0.827 0.827
Random forest 0.999 0.976 0.976 0.976 0.976
Support vector machine 0.914 0.851 0.851 0.855 0.851
Decision tree 0.964 0.935 0.934 0.936 0.935
Performance metrics of six machine learning algorithms in the test dataset
Model AUC Acc F1 Precision Recall
Gradient boosting 1.000 1.000 1.000 1.000 1.000
kNN 0.957 0.902 0.902 0.902 0.902
Logistic regression 0.923 0.927 0.927 0.927 0.927
Random forest 1.000 1.000 1.000 1.000 1.000
Support vector machine 0.995 0.976 0.976 0.977 0.976
Decision tree 1.000 1.000 1.000 1.000 1.000
Notes.

AUC, area under curve; Acc, Accuracy; kNN, k-nearest neighbors.

Classifying models of ML

The performances of the six machine-learning models in classifying groups with and
without EOA during model training and testing are summarized in Table 3 and Fig. 4.
In the training dataset, the Random Forest (AUC, 0.999 (excellent); accuracy, 0.976;
F1, 0.976; precision, 0.976; recall, 0.976), gradient boosting (AUC, 0.983 (excellent);
accuracy, 0.940; F1, 0.941; precision, 0.941; recall, 0.940), and decision tree (AUC,
0.964 (excellent); accuracy, 0.935; F1, 0.934; precision, 0.936; recall, 0.935) algorithms
demonstrated excellent predictive performance with AUC values exceeding 0.95. The high
Fl1-scores for these algorithms indicate an optimal balance between precision and recall,
suggesting that these models correctly identified EOA cases with minimal false positives
and false negatives. In the test dataset, the Random Forest, gradient boosting, and decision
tree algorithm models achieved perfect classification (AUC = 1.000 (excellent); accuracy
= 1.000; F1 = 1.000; precision = 1.000; recall = 1.000), demonstrating exceptional
ability to differentiate between EOA and non-EOA cases. This consistent performance
across all metrics demonstrates the robust generalizability of our models, particularly the
tree-based algorithms (Random Forest and gradient boosting), which maintained their
high performance from training to testing set.

Feature importance analysis using both the feature permutation importance and SHAP
methods revealed consistent patterns across multiple machine-learning models (Fig. 5).
For the Random Forest model, the four most important features were AHD-SU, FHD-SU,
FHD-SD, and PHD-SD. The SHAP analysis indicated that higher values of AHD-SU,
FHD-SU, FHD-SD, and KHD-SU were associated with increased model predictions. The
gradient boosting model identified the same top four features, with SHAP analysis showing
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Model performance in the traning and test set
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Figure 4 Performance metrics of six machine learning algorithms in the training and test set.
Full-size &l DOI: 10.7717/peer;j.19471/fig-4

that higher values of AHD-SU, FHD-SU, and PHD-SD but lower values of FHD-SD
influenced the predictions. Similarly, the decision tree model highlighted AHD-SU,
FHD-SU, PHD-SD, and FHD-SD as the most important features. The SHAP results for
the Decision Tree aligned with those of the gradient boosting model, indicating that higher
AHD-SU, FHD-SU, and PHD-SD but lower FHD-SD were associated with increased
predictions.

DISCUSSION

This study employed both unsupervised and supervised machine-learning techniques to
analyze the frontal plane kinematics during SU and SD for the detection and classification
of EOA. The results of this study support our hypotheses. Significant differences in frontal
plane kinematics were observed between participants with and without EOA during

SU and SD tests, confirming our first hypothesis. The Louvain clustering algorithm
successfully identified four distinct movement patterns with varying proportions of EOA
cases, supporting our second hypothesis. Finally, the supervised ML models achieved
excellent classification performance (AUC = 1.000 for Random Forest, gradient boosting,
and decision tree algorithms on the test dataset), strongly supporting our third hypothesis
that frontal plane kinematics during functional tasks can accurately predict EOA status.
These methods show promising potential for identifying distinct movement patterns in
individuals with EOA. They also enable accurate classification, providing insights into the
biomechanical characteristics of EOA.
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Figure 5 (A) Feature permutation importance of decision tree, (B) SHAP analyses of decision tree, (C)
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ture permutation importance of Random Forest, (F) SHAP analyses of Random Forest in the training
set for classifying groups with and without EOA. EOA, Early osteoarthritis; SU, step-up; SD, step-down;
PHD, pelvic horizontal displacement; FHD, femur horizontal displacement; KHD, knee horizontal dis-
placement; LHD, lower leg horizontal displacement; AHD, ankle horizontal displacement.
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However, we acknowledge that the perfect classification performance (AUC = 1.000)

achieved by our tree-based models on the test dataset warrants careful consideration of

potential overfitting. Despite implementing several methodological safeguards—including

strict separation of training and test sets, k-fold cross-validation during model development,

regularization through hyperparameter tuning, and feature selection based on domain

knowledge—the possibility of overfitting cannot be entirely ruled out, particularly given our

relatively small sample size. Several factors may contribute to the high model performance:

(1) the distinct biomechanical differences between individuals with and without EOA may

be particularly pronounced in our specific population of recreational table tennis players;

(2) our focus on frontal plane kinematics during challenging functional tasks may have

captured highly discriminative movement patterns; and (3) our careful data preprocessing
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and feature extraction may have enhanced signal-to-noise ratio. Nevertheless, these
exceptionally high performance metrics should be interpreted with caution until validated
in larger, independent cohorts. External validation with diverse populations would be
essential to establish the generalizability of these findings and confirm the true predictive
power of our approach.

Compared to conventional diagnostic methods for OA (radiography, MRI, and
arthroscopy), our approach offers several distinct advantages. Traditional imaging methods
often fail to detect early cartilage changes (Guermazi et al., 2011), have limited accessibility
due to high cost, require specialized facilities, and need highly trained specialists for
interpretation. Our approach of using 2D video analysis of functional tasks with machine
learning focuses on functional impairments rather than structural changes, potentially
detecting disease earlier. It requires minimal equipment (smartphone camera and basic
markers) and can be implemented quickly in routine clinical assessment, making it more
accessible for widespread screening and early detection efforts.

While deep learning approaches have shown promising results in medical applications,
we opted for traditional machine learning methods in this study for several reasons. First,
our sample size (86 legs) is more suitable for traditional ML methods, which can perform
effectively with smaller datasets compared to deep learning approaches that typically
require larger training sets. Second, traditional ML methods offer better interpretability of
feature importance, which is crucial for understanding the specific biomechanical factors
contributing to EOA detection. This interpretability is particularly important for clinical
applications where clinicians need to understand the basis for the model’s predictions.
Finally, traditional ML methods require less computational resources and can be more
easily implemented in clinical settings, aligning with our goal of developing a practical
diagnostic tool. These considerations, combined with the high performance achieved by
our selected ML algorithms (as demonstrated in our results), support our methodological
choice.

The Louvain clustering algorithm identified four distinct clusters, each with distinct
kinematic profiles, aligned with the growing recognition of OA as a heterogeneous condition
with distinct phenotypes (Deveza et al., 2017; Van Spil et al., 2020). The varying proportions
of EOA cases across clusters suggested that certain kinematic patterns may be more strongly
associated with EOA.

C1 exhibited a valgus movement pattern during SD, consistent with previous findings
of increased knee valgus during gait in individuals with medial compartment knee OA
and those at risk of OA progression (Chang et al., 2004; Felson et al., 2013; Sharma et al.,
2001). This pattern may represent a compensatory mechanism to reduce the medial
compartment loading, as suggested by several biomechanical studies (Miindermann,
Dyrby & Andriacchi, 2005; Simic et al., 2011). C2 was characterized by a higher BMI,
which is supported by previous research showing that individuals with a higher BMI
exhibited greater knee abduction moments during gait, potentially increasing the risk of
OA development and progression (Blazek et al., 2013; Harding et al., 20125 Messier et al.,
2016). C3 demonstrated the highest outward kinematics during SD, particularly in the
pelvis and femur horizontal displacements, aligning with studies that observed increased

Hwang et al. (2025), PeerJ, DOI 10.7717/peerj.19471 15/24


https://peerj.com
http://dx.doi.org/10.7717/peerj.19471

Peer

lateral trunk lean and altered hip kinematics during stair descent in individuals with
knee OA (Hicks-Little et al., 2012; Hicks-Little et al., 2011; Igawa & Katsuhira, 2014). C4
exhibited the highest outward kinematics during SU, particularly for the pelvis, femur,
knee, and lower leg horizontal displacements. This exaggerated movement pattern may
indicate compensatory strategies or instability associated with early joint degeneration,
which is consistent with studies that have observed altered frontal plane kinematics during
stair ascent in individuals with knee OA (Gongalves et al., 2017).

The supervised learning models demonstrated high performance in classifying the EOA
status, with Random Forest, gradient boosting, and decision tree algorithms achieving
perfect classification (AUC = 1.000) on the test dataset. These results surpass the
performance of previous studies, such as Pedoia et al. (2019), who achieved an AUC of 0.89
using MRI data (Pedoia et al., 2019); Ashinsky et al. (2017), who reported an accuracy of
0.75 using T2 maps (Ashinsky et al., 2017); and Mezghani et al. (2017), who achieved AUC
of 0.85 in classifying knee OA severity using gait kinematics (Mezghani et al., 2017). The
superior performance in our study may be attributed to the use of functional kinematic
data from the SU and SD tests, which potentially capture more relevant information about
joint function and early degenerative changes than static imaging or level walking data.
Moreover, our 2D video analysis approach offers significant advantages over traditional 3D
motion capture or wearable sensor systems in terms of accessibility, cost-effectiveness, and
ease of implementation in clinical settings, while still providing high classification accuracy
for EOA detection.

The consistently high performance of the decision tree-based algorithms (Random
Forest, gradient boosting, and decision tree) can be attributed to their ability to capture
nonlinear relationships and interactions between features, handle high-dimensional data,
and automatically select the most relevant features. These characteristics are particularly
beneficial in the complex biomechanical context of EOA, where the relationship between
joint movement and disease status may be highly nonlinear and context-dependent.

The effectiveness of SU and SD kinematics in EOA classification can be explained
by the biomechanical challenges of these tasks. These activities require greater joint
range of motion and higher forces than level walking, potentially exacerbating the subtle
joint alterations present in EOA. Previous studies have shown that stair negotiation is
more demanding and results in higher knee joint moments than level walking (Nadea,
McFadyen ¢ Malouin, 2003), potentially unmasking compensatory mechanisms or joint
instabilities that are not apparent during less challenging tasks.

The feature importance analysis consistently highlighted AHD-SU, FHD-SU, PHD-
SD, and FHD-SD as the most influential predictors. The prominence of AHD-SU as a
predictive feature aligns with the concept of OA as a “whole-joint” disease affecting multiple
tissues and biomechanical factors (Brandt et al., 2006; Loeser et al., 2012). Increased ankle
movement in the frontal plane during weight-bearing activities may indicate compensatory
strategies to maintain balance or redistribute load in the presence of early knee joint
changes. This observation is supported by studies reporting altered ankle kinematics
and kinetics in individuals with knee OA (Levinger et al., 2012; Miindermann, Dyrby ¢
Andriacchi, 2005). Specifically, individuals with knee OA often exhibit greater lateral foot
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pressure and altered ankle eversion during weight-bearing tasks, which may manifest as
increased horizontal ankle displacement in our 2D analysis. The importance of FHD-SU
and PHD-SD in predicting the EOA status is consistent with previous research highlighting
the role of proximal joint kinematics in knee OA. Studies have observed altered hip and
pelvic kinematics during stair ascent and descent in individuals with knee OA, suggesting
potential compensatory mechanisms to reduce knee joint loading (Hicks-Little et al., 2012).
Greater femoral horizontal displacement during step-up likely reflects altered frontal plane
hip control, which can modify the distribution of forces across the knee joint surfaces.
The association between increased PHD-SD and EOA may represent a compensatory
lateral trunk lean strategy, which has been documented as a mechanism to reduce knee
adduction moment in individuals with medial compartment knee OA (Miindermann,
Dyrby & Andriacchi, 2005; Simic et al., 2011). This altered movement pattern shifts the
body’s center of mass laterally, potentially reducing medial compartment loading but
creating abnormal movement patterns that may be detected in early disease stages.

The models showed divergent results regarding the direction of FHD-SD in predicting
EOA. The Random Forest model indicated that increased outward movement was
associated with EOA, whereas the gradient boosting and decision tree models suggested
that inward (valgus) movement was predictive of EOA. This discrepancy may reflect the
complexity of the EOA biomechanics and the potential existence of different subgroups
within the EOA population. Similar conflicting findings have been reported in the literature
(Astephen et al., 2008; Favre, Erhart-Hledik ¢ Andriacchi, 2014), underscoring the need for
further research to elucidate the specific biomechanical patterns associated with the
different stages and subtypes of knee OA. The divergent findings regarding FHD-SD across
the different algorithms may also be attributed to the specific strengths of each method.
Random Forest may capture a more global pattern of increased outward movement
associated with EOA, whereas gradient boosting and decision tree may identify more
localized or stage-specific patterns, where inward movement is indicative of EOA. This
discrepancy highlights the potential of machine-learning approaches to uncover complex
nonlinear relationships in biomechanical data that may not be apparent in traditional
statistical analyses.

The present study has several key limitations that should be acknowledged. First, our
cross-sectional design limits the ability to establish causal relationships between kinematic
patterns and EOA development. Longitudinal studies are needed to determine whether
the observed patterns precede or result from EOA. Second, while sufficient for the current
analysis, our relatively small sample (43 participants, 86 legs) may limit the generalizability
of our findings. Despite implementing methodological safeguards against overfitting
(including five-fold cross-validation, maintaining a separate test set, and using multiple
performance metrics), caution is warranted when interpreting the results. In addition,
due to the relatively small dataset size, we were unable to create a separate validation set
beyond our training and test sets. This three-way split (training, validation, and test sets)
is considered ideal practice in machine learning as it allows for unbiased hyperparameter
optimization on the validation set before final evaluation on the test set. Larger, more
diverse cohorts should be examined to validate and refine these models. Third, our 2D
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video analysis methodology cannot capture out-of-plane movements, which may result
in measurement errors when movements occur outside the primary recording plane.
Additionally, perspective errors and marker occlusion can affect measurement accuracy.
Despite these limitations, we selected 2D video analysis for its greater clinical applicability
and feasibility compared to 3D motion capture, which typically requires specialized
laboratory settings, expensive equipment, and technical expertise. Fourth, focusing
only on frontal plane kinematics may not capture the full complexity of EOA-related
movement patterns. Future studies should incorporate multiplane analysis and additional
biomechanical variables (e.g., kinetics and muscle activation) for a more comprehensive
understanding of EOA-related movement patterns. Fifth, while the EOAQ was developed by
an international expert panel specifically for early OA detection, comprehensive validation
studies establishing its sensitivity and specificity have not yet been published. The EOAQ
represents one of the first standardized instruments designed specifically for detecting
early-stage knee OA before significant structural changes are evident on conventional
imaging, making it suitable for our research question. However, future studies would
benefit from correlating EOAQ results with other clinical and imaging biomarkers to
establish its diagnostic accuracy.

Future research should expand upon our current methodology in several key directions.
First, deep learning models (such as convolutional neural networks and recurrent neural
networks) could be implemented to potentially improve classification performance and
automatically extract relevant features from raw kinematic data without the need for
manual feature engineering. Second, investigating the ability of machine learning models
to distinguish between different severity levels of EOA would provide valuable clinical
insights for disease progression monitoring and treatment planning. Third, incorporating
different view variations (including sagittal and transverse planes) would offer a more
comprehensive three-dimensional analysis of movement patterns associated with EOA.
Finally, developing techniques to address self-occlusion during movement analysis would
improve the reliability of kinematic measurements, particularly in complex functional tasks.
These advancements would collectively enhance the clinical applicability and diagnostic
accuracy of machine learning-based EOA detection using kinematic data.

CONCLUSION

This study demonstrated the potential of ML analysis of frontal plane kinematics during
SU and SD tests to detect and classify EOA among recreational table tennis players.
These findings contribute to a growing body of evidence supporting the use of functional
biomechanical assessments in EOA diagnosis and management. While these results are
promising, they should be considered preliminary given our relatively small and specific
study population. Future research should focus on validating these findings in larger,
more diverse cohorts, investigating the longitudinal changes in kinematic patterns during
EOA progression, and exploring the integration of kinematic data with other clinical and
imaging biomarkers to enhance the detection and prognosis of EOA.

Hwang et al. (2025), PeerJ, DOI 10.7717/peerj.19471 18/24


https://peerj.com
http://dx.doi.org/10.7717/peerj.19471

Peer

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This research was supported by the Sangji University Research Fund (2023-29). The funders
had no role in study design, data collection and analysis, decision to publish, or preparation
of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Sangji University Research Fund: 2023-29.

Competing Interests
The authors declare there are no competing interests.

Author Contributions

e Ui-jae Hwang conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.

e Kyu Sung Chung performed the experiments, analyzed the data, prepared figures and/or
tables, and approved the final draft.

e Sung-min Ha conceived and designed the experiments, performed the experiments,
prepared figures and/or tables, authored or reviewed drafts of the article, funding, and
approved the final draft.

Human Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

The present study conformed to the ethical guidelines of the 1975 Declarations of
Helsinki. This study was approved by the Sangji University Institutional Review Board
(1040782-230814-HR-09-117). Informed consent for publication of the images was
obtained from the patient.

Data Availability
The following information was supplied regarding data availability:
The raw measurements are available in the Supplementary File.

Supplemental Information
Supplemental information for this article can be found online at http:/dx.doi.org/10.7717/
peerj.19471#supplemental-information.

REFERENCES

Almeida GPL, Monteiro 10, De Oliveira Dantas RG, Tavares MLA, De Paula Lima PO.
2021. Reliability, validity and responsiveness of the step up and down (StUD) test
for individuals with symptomatic knee osteoarthritis. Musculoskeletal Science and
Practice 56:102454 DOI 10.1016/j.msksp.2021.102454.

Hwang et al. (2025), PeerJ, DOI 10.7717/peerj.19471 19/24


https://peerj.com
http://dx.doi.org/10.7717/peerj.19471#supplemental-information
http://dx.doi.org/10.7717/peerj.19471#supplemental-information
http://dx.doi.org/10.7717/peerj.19471#supplemental-information
http://dx.doi.org/10.1016/j.msksp.2021.102454
http://dx.doi.org/10.7717/peerj.19471

Peer

Ashinsky BG, Bouhrara M, Coletta CE, Lehallier B, Urish KL, Lin PC, Goldberg
IG, Spencer RG. 2017. Predicting early symptomatic osteoarthritis in the hu-
man knee using machine learning classification of magnetic resonance images
from the osteoarthritis initiative. Journal of Orthopaedic Research 35:2243-2250
DOI10.1002/jor.23519.

Astephen JL, Deluzio KJ, Caldwell GE, Dunbar MJ. 2008. Biomechanical changes at the
hip, knee, and ankle joints during gait are associated with knee osteoarthritis severity.
Journal of Orthopaedic Research 26:332—341 DOI 10.1002/jor.20496.

Biz C, Puce L, Slimani M, Salamh P, Dhahbi W, Bragazzi NL, Ruggieri P. 2022. Epi-
demiology and risk factors of table-tennis-related injuries: findings from a scoping
review of the literature. Medicina 58:572 DOI 10.3390/medicina58050572.

Blazek K, Asay JL, Erhart-Hledik J, Andriacchi T. 2013. Adduction moment increases
with age in healthy obese individuals. Journal of Orthopaedic Research 31:1414-1422
DOI 10.1002/jor.22390.

Brandt K, Radin E, Dieppe P, Van De Putte L. 2006. Yet more evidence that
osteoarthritis is not a cartilage disease. Annals of the Rheumatic Diseases 65:1261-1264
DOI 10.1136/ard.2006.058347.

Chang A, Hayes K, Dunlop D, Hurwitz D, Song J, Cahue S, Genge R, Sharma L. 2004.
Thrust during ambulation and the progression of knee osteoarthritis. Arthritis ¢
Rheumatism 50:3897—3903 DOI 10.1002/art.20657.

Chu CR, Williams AA, Coyle CH, Bowers ME. 2012. Early diagnosis to enable
early treatment of pre-osteoarthritis. Arthritis Research & Therapy 14:212-221
DOI 10.1186/ar3845.

Clermont CA, Benson LC, Edwards WB, Hettinga BA, Ferber R. 2019. New consid-
erations for wearable technology data: changes in running biomechanics during a
marathon. Journal of Applied Biomechanics 35:401-409 DOI 10.1123/jab.2018-0453.

Culvenor AG, Qiestad BE, Hart HF, Stefanik JJ, Guermazi A, Crossley KM. 2019. Preva-
lence of knee osteoarthritis features on magnetic resonance imaging in asymptomatic
uninjured adults: a systematic review and meta-analysis. British Journal of Sports
Medicine 53:1268-1278 DOI 10.1136/bjsports-2018-099257.

Dell’Isola A, Smith S, Andersen MS, Steultjens M. 2017. Knee internal contact force
in a varus malaligned phenotype in knee osteoarthritis (KOA). Osteoarthritis and
Cartilage 25:2007-2013 DOI 10.1016/j.joca.2017.08.010.

Deveza LA, Melo L, Yamato T, Mills K, Ravi V, Hunter D. 2017. Knee osteoarthritis
phenotypes and their relevance for outcomes: a systematic review. Osteoarthritis and
Cartilage 25:1926-1941 DOI 10.1016/j.joca.2017.08.009.

Ekerete I, Garcia-Constantino M, Diaz-Skeete Y, Nugent C, McLaughlin J. 2021.
Fusion of unobtrusive sensing solutions for sprained ankle rehabilitation exercises
monitoring in home environments. Sensors 21:7560 DOI 10.3390/521227560.

Favre J, Erhart-Hledik JC, Andriacchi TP. 2014. Age-related differences in sagittal-
plane knee function at heel-strike of walking are increased in osteoarthritic patients.
Osteoarthritis and Cartilage 22:464—471 DOI 10.1016/j.joca.2013.12.014.

Hwang et al. (2025), PeerJ, DOI 10.7717/peerj.19471 20/24


https://peerj.com
http://dx.doi.org/10.1002/jor.23519
http://dx.doi.org/10.1002/jor.20496
http://dx.doi.org/10.3390/medicina58050572
http://dx.doi.org/10.1002/jor.22390
http://dx.doi.org/10.1136/ard.2006.058347
http://dx.doi.org/10.1002/art.20657
http://dx.doi.org/10.1186/ar3845
http://dx.doi.org/10.1123/jab.2018-0453
http://dx.doi.org/10.1136/bjsports-2018-099257
http://dx.doi.org/10.1016/j.joca.2017.08.010
http://dx.doi.org/10.1016/j.joca.2017.08.009
http://dx.doi.org/10.3390/s21227560
http://dx.doi.org/10.1016/j.joca.2013.12.014
http://dx.doi.org/10.7717/peerj.19471

Peer

Felson DT, Niu J, Gross KD, Englund M, Sharma L, Cooke TDV, Guermazi A, Roemer
FW, Segal N, Goggins JM. 2013. Valgus malalignment is a risk factor for lateral knee
osteoarthritis incidence and progression: findings from the multicenter osteoarthri-
tis study and the osteoarthritis initiative. Arthritis & Rheumatism 65:355-362
DOI 10.1002/art.37726.

Gongalves GH, Selistre LFA, Petrella M, Mattiello SM. 2017. Kinematic alter-
ations of the lower limbs and pelvis during an ascending stairs task are asso-
ciated with the degree of knee osteoarthritis severity. The Knee 24:295-304
DOI 10.1016/j.knee.2017.01.007.

Guermazi A, Roemer FW, Burstein D, Hayashi D. 2011. Why radiography should no
longer be considered a surrogate outcome measure for longitudinal assessment
of cartilage in knee osteoarthritis. Arthritis Research & Therapy 13:247-257
DOI 10.1186/ar3488.

Harding GT, Hubley-Kozey CL, Dunbar M]J, Stanish WD, Wilson JLA. 2012. Body
mass index affects knee joint mechanics during gait differently with and with-
out moderate knee osteoarthritis. Osteoarthritis and Cartilage 20:1234—1242
DOI10.1016/j.joca.2012.08.004.

Hayashi D, Guermazi A, Kwoh CK. 2014. Clinical and translational potential of MRI
evaluation in knee osteoarthritis. Current Rheumatology Reports 16:391-399
DOI 10.1007/s11926-013-0391-6.

Hensor EM, Dube B, Kingsbury SR, Tennant A, Conaghan PG. 2015. Toward a clinical
definition of early osteoarthritis: onset of patient-reported knee pain begins on
stairs. Data from the osteoarthritis initiative. Arthritis Care ¢ Research 67:40—47
DOI 10.1002/acr.22418.

Hicks-Little CA, Peindl RD, Fehring TK, Odum SM, Hubbard TJ, Cordova ML.

2012. Temporal-spatial gait adaptations during stair ascent and descent in
patients with knee osteoarthritis. The Journal of Arthroplasty 27:1183-1189
DOI 10.1016/j.arth.2012.01.018.

Hicks-Little CA, Peindl RD, Hubbard TJ, Scannell BP, Springer BD, Odum SM,
Fehring TK, Cordova ML. 2011. Lower extremity joint kinematics during stair
climbing in knee osteoarthritis. Medicine & Science in Sports & Exercise 43:516-524
DOI 10.1249/MSS.0b013e3181f257be.

Horga LM, Hirschmann AC, Henckel ], Fotiadou A, Di Laura A, Torlasco C, D’Silva
A, Sharma S, Moon JC, Hart AJ. 2020. Prevalence of abnormal findings in 230
knees of asymptomatic adults using 3.0 T MRI. Skeletal Radiology 49:1099-1107
DOI 10.1007/s00256-020-03394-z.

Hwang U-J, Kwon O-Y, Kim J-H, Yang S. 2024. Machine learning models for classifying
non-specific neck pain using craniocervical posture and movement. Musculoskeletal
Science and Practice 71:102945 DOI 10.1016/j.msksp.2024.102945.

Igawa T, Katsuhira J. 2014. Biomechanical analysis of stair descent in patients
with knee osteoarthritis. Journal of Physical Therapy Science 26:629—631
DOI 10.1589/jpts.26.629.

Hwang et al. (2025), PeerJ, DOI 10.7717/peerj.19471 21/24


https://peerj.com
http://dx.doi.org/10.1002/art.37726
http://dx.doi.org/10.1016/j.knee.2017.01.007
http://dx.doi.org/10.1186/ar3488
http://dx.doi.org/10.1016/j.joca.2012.08.004
http://dx.doi.org/10.1007/s11926-013-0391-6
http://dx.doi.org/10.1002/acr.22418
http://dx.doi.org/10.1016/j.arth.2012.01.018
http://dx.doi.org/10.1249/MSS.0b013e3181f257be
http://dx.doi.org/10.1007/s00256-020-03394-z
http://dx.doi.org/10.1016/j.msksp.2024.102945
http://dx.doi.org/10.1589/jpts.26.629
http://dx.doi.org/10.7717/peerj.19471

Peer

Kaufman KR, Hughes C, Morrey BF, Morrey M, An K-N. 2001. Gait characteris-
tics of patients with knee osteoarthritis. Journal of Biomechanics 34:907-915
DOI 10.1016/S0021-9290(01)00036-7.

Kobsar D, Osis ST, Boyd JE, Hettinga BA, Ferber R. 2017. Wearable sensors to predict
improvement following an exercise intervention in patients with knee osteoarthritis.
Journal of Neuroengineering and Rehabilitation 14:1 DOI 10.1186/s12984-016-0214-x.

Kondri¢ M, Matkovié B, Furjan-Mandié G, HadZi¢ V, Dervisevic E. 2011. Injuries in
racket sports among Slovenian players. Collegium Antropologicum 35:413—417.

Lam W-K, Fan J-X, Zheng Y, Lee WC-C. 2019. Joint and plantar loading in table
tennis topspin forehand with different footwork. European Journal of Sport Science
19:471-479 DOI10.1080/17461391.2018.1534993.

Levinger P, Menz HB, Morrow AD, Feller JA, Bartlett JR, Bergman NR. 2012. Foot
kinematics in people with medial compartment knee osteoarthritis. Rheumatology
51:2191-2198 DOI 10.1093/rheumatology/kes222.

Loeser RF, Goldring SR, Scanzello CR, Goldring MB. 2012. Osteoarthritis: a disease of
the joint as an organ. Arthritis and Rheumatism 64:1697 DOT 10.1002/art.34453.

Messier SP, Beavers DP, Herman C, Hunter DJ, De Vita P. 2016. Are unilateral
and bilateral knee osteoarthritis patients unique subsets of knee osteoarthri-
tis? A biomechanical perspective. Osteoarthritis and Cartilage 24:807—813
DOI 10.1016/j.joca.2015.12.005.

Mezghani N, Ouakrim Y, Fuentes A, Mitiche A, Hagemeister N, Vendittoli P-A,

De Guise JA. 2017. Mechanical biomarkers of medial compartment knee os-
teoarthritis diagnosis and severity grading: discovery phase. Journal of Biomechanics
52:106—-112 DOI 10.1016/j.jbiomech.2016.12.022.

Migliore A, Alekseeva L, Avasthi SR, Bannuru RR, Chevalier X, Conrozier T,
Crimaldi S, De Campos GC, Diracoglu D, Gigliucci G. 2023. Early Osteoarthri-
tis Questionnaire (EOAQ): a tool to assess knee osteoarthritis at initial stage.
Therapeutic Advances in Musculoskeletal Disease 15:1759720X221131604
DOI10.1177/1759720X221131604.

Miyazaki T, Wada M, Kawahara H, Sato M, Baba H, Shimada S. 2002. Dynamic
load at baseline can predict radiographic disease progression in medial com-
partment knee osteoarthritis. Annals of the Rheumatic Diseases 61:617—622
DOI 10.1136/ard.61.7.617.

Miindermann A, Dyrby CO, Andriacchi TP. 2005. Secondary gait changes in patients
with medial compartment knee osteoarthritis: increased load at the ankle, knee, and
hip during walking. Arthritis & Rheumatism 52:2835-2844 DOI 10.1002/art.21262.

Nadeau S, McFadyen BJ, Malouin F. 2003. Frontal and sagittal plane analyses
of the stair climbing task in healthy adults aged over 40 years: what are the
challenges compared to level walking? Clinical Biomechanics 18:950-959
DOI 10.1016/50268-0033(03)00179-7.

Hwang et al. (2025), PeerJ, DOI 10.7717/peerj.19471 22/24


https://peerj.com
http://dx.doi.org/10.1016/S0021-9290(01)00036-7
http://dx.doi.org/10.1186/s12984-016-0214-x
http://dx.doi.org/10.1080/17461391.2018.1534993
http://dx.doi.org/10.1093/rheumatology/kes222
http://dx.doi.org/10.1002/art.34453
http://dx.doi.org/10.1016/j.joca.2015.12.005
http://dx.doi.org/10.1016/j.jbiomech.2016.12.022
http://dx.doi.org/10.1177/1759720X221131604
http://dx.doi.org/10.1136/ard.61.7.617
http://dx.doi.org/10.1002/art.21262
http://dx.doi.org/10.1016/S0268-0033(03)00179-7
http://dx.doi.org/10.7717/peerj.19471

Peer

Osis ST, Hettinga BA, Macdonald S, Ferber R. 2016. Effects of simulated marker
placement deviations on running kinematics and evaluation of a morphometric-
based placement feedback method. PLOS ONE 11:e0147111
DOI 10.1371/journal.pone.0147111.

Pedoia V, Norman B, Mehany SN, Bucknor MD, Link TM, Majumdar S. 2019. 3D
convolutional neural networks for detection and severity staging of meniscus and
PFJ cartilage morphological degenerative changes in osteoarthritis and anterior
cruciate ligament subjects. Journal of Magnetic Resonance Imaging 49:400-410
DOI 10.1002/jmri.26246.

Rajabi R, Johnson GM, Alizadeh MH, Meghdadi N. 2012. Radiographic knee os-
teoarthritis in ex-elite table tennis players. BMC Musculoskeletal Disorders 13:1-6
DOI10.1186/1471-2474-13-1.

Ryd L, Brittberg M, Eriksson K, Jurvelin JS, Lindahl A, Marlovits S, Méller P,
Richardson JB, Steinwachs M, Zenobi-Wong M. 2015. Pre-osteoarthritis:
definition and diagnosis of an elusive clinical entity. Cartilage 6:156-165
DOI 10.1177/1947603515586048.

Shao S, Yu C, Song Y, Baker JS, Ugbolue UC, Lanzoni IM, Gu Y. 2020. Mechanical
character of lower limb for table tennis cross step maneuver. International Journal
of Sports Science & Coaching 15:552-561 DOI 10.1177/1747954120922936.

Sharma L, Song J, Felson DT, Cahue S, Shamiyeh E, Dunlop DD. 2001. The role of knee
alignment in disease progression and functional decline in knee osteoarthritis. Jama
286:188-195 DOI 10.1001/jama.286.2.188.

Simic M, Hinman RS, Wrigley TV, Bennell KL, Hunt MA. 2011. Gait modification
strategies for altering medial knee joint load: a systematic review. Arthritis Care ¢
Research 63:405—-426 DOT 10.1002/acr.20380.

Tiulpin A, Klein S, Bierma-Zeinstra SM, Thevenot J, Rahtu E, Meurs Jv, Oei EH,
Saarakkala S. 2019. Multimodal machine learning-based knee osteoarthritis
progression prediction from plain radiographs and clinical data. Scientific Reports
9:20038 DOI 10.1038/541598-019-56527-3.

Van Spil W, Bierma-Zeinstra S, Deveza L, Arden N, Bay-Jensen A-C, Kraus VB,
Carlesso L, Christensen R, Van Der Esch M, Kent P. 2020. A consensus-based
framework for conducting and reporting osteoarthritis phenotype research. Arthritis
Research & Therapy 22:1-7 DOI 10.1186/s13075-019-2050-4.

Vannini F, Spalding T, Andriolo L, Berruto M, Denti M, Espregueira-Mendes ]J,
Menetrey J, Peretti G, Seil R, Filardo G. 2016. Sport and early osteoarthritis: the role
of sport in aetiology, progression and treatment of knee osteoarthritis. Knee Surgery,
Sports Traumatology, Arthroscopy 24:1786—1796 DOI 10.1007/s00167-016-4090-5.

Weon Y-S, Ha S-M. 2024. Movement characteristics during functional movement
according to knee varus type. Journal of Musculoskeletal Science and Technology
8:9-13 DOI 10.29273/jmst.2024.8.1.9.

Whittaker J, Runhaar J, Bierma-Zeinstra S, Roos E. 2021. A lifespan approach to
osteoarthritis prevention. Osteoarthritis and Cartilage 29:1638—1653
DOI 10.1016/j.joca.2021.06.015.

Hwang et al. (2025), PeerJ, DOI 10.7717/peerj.19471 23/24


https://peerj.com
http://dx.doi.org/10.1371/journal.pone.0147111
http://dx.doi.org/10.1002/jmri.26246
http://dx.doi.org/10.1186/1471-2474-13-1
http://dx.doi.org/10.1177/1947603515586048
http://dx.doi.org/10.1177/1747954120922936
http://dx.doi.org/10.1001/jama.286.2.188
http://dx.doi.org/10.1002/acr.20380
http://dx.doi.org/10.1038/s41598-019-56527-3
http://dx.doi.org/10.1186/s13075-019-2050-4
http://dx.doi.org/10.1007/s00167-016-4090-5
http://dx.doi.org/10.29273/jmst.2024.8.1.9
http://dx.doi.org/10.1016/j.joca.2021.06.015
http://dx.doi.org/10.7717/peerj.19471

Peer

World Health Organization (WHO). 2022. Musculoskeletal conditions. Available at
https://www.who.int/news-room/fact-sheets/detail/musculoskeletal-conditions (accessed
on 15 December 2023).

Zengini E, Hatzikotoulas K, Tachmazidou I, Steinberg J, Hartwig FP, Southam L,
Hackinger S, Boer CG, Styrkarsdottir U, Gilly A. 2018. Genome-wide analyses using
UK Biobank data provide insights into the genetic architecture of osteoarthritis.
Nature Genetics 50:549-558 DOI 10.1038/541588-018-0079-y.

Hwang et al. (2025), PeerJ, DOI 10.7717/peerj.19471 24/24


https://peerj.com
https://www.who.int/news-room/fact-sheets/detail/musculoskeletal-conditions
http://dx.doi.org/10.1038/s41588-018-0079-y
http://dx.doi.org/10.7717/peerj.19471

