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Abstract

Purpose Precise segmentation of blueberry maturity is critical for optimizing harvestsched-
ules and maintaining product quality. Traditional methods, which rely on manualinspection,
are not only labor-intensive but also cost-inefficient. This study presents a novelframework
that integrates deep learning-based super-resolution reconstruction (SRR) withsemantic
segmentation to provide a fast and accurate solution for maturity assessment.

Methods The SRR module enhances image resolution, enabling more detailed feature
extraction.Semantic segmentation models—incorporating convolutional neural networks
(CNNs), Transformer-based models, and the Mamba-based state space architecture—further
improvesegmentation precision.

Results Experimental results indicate that the MambalR modelachieves a structural similar-
ity index measure (SSIM) of 82.26% in SRR tasks, while the Mamba-based segmentation
model attains a mean Intersection over Union (mloU) of 83.15%.

Conclusion By uniting SRR and semantic segmentation, our framework not only advances
thetechnical accuracy of maturity detection but also holds strong potential for real-time,
cost-effective deployment in precision agriculture systems, supporting intelligent decision-
making at scale.

Keywords Blueberry maturity monitoring - Mamba-based deep learning - Semantic
segmentation - Super-resolution reconstruction - UAV imagery

Introduction

Vaccinium corymbosum, commonly referred to as the blueberry, is a small blue fruit widely
recognized for its low-calorie yet nutrient-dense composition. Blueberries are rich in antho-
cyanins, which are known to support retinal health and prevent eye fatigue and myopia.
Additionally, their antioxidant properties have been shown to slow aging, enhance memory,
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and reduce the risk of certain cancers (Rowland et al., 2012; Silva et al., 2020). Due to their
high nutritional value and appealing flavor, blueberries have gained prominence as a global
superfood. This rising demand has led to the proliferation of blueberry plantations, boosting
both global production and consumption (Banerjee et al., 2020; Bauer & Visuals, 2008; Li
et al., 2021a, b). Their nutritional benefits and market potential have solidified blueberries
as a key cash crop in global agriculture.

Global cultivation of blueberries is largely driven by their rich nutritional profile (Bauer
& Visuals, 2008). Traditionally, blueberry harvesting relies heavily on manual labor (Prasad
et al., 2018). However, this process is both labor-intensive and time-consuming. Maturity
assessment of blueberries has conventionally depended on the experience of the picker and
visual inspection, which are prone to subjective biases. Accurate assessment of crop matu-
rity is essential for producers, as blueberries, unlike fruits such as apples and bananas, do
not continue to ripen after harvest and exhibit a firm, tart texture when immature (Kader,
1997). Immature blueberries are not suitable for sale, while overripe berries soften and rot
quickly, reducing their shelf life. Consequently, precise determination of blueberry maturity
is critical for maximizing yield and profitability. These challenges have prompted the explo-
ration of automated, scalable monitoring solutions, particularly those leveraging computer
vision and UAV-assisted technologies to replace or augment manual assessment.

Advances in both hardware and software technologies, coupled with growing market
demand, have led to the development of mechanized harvesting solutions, such as self-
propelled carts (Prasad et al., 2018), over-the-row (OTR) machines (Takeda et al., 2017),
and semi-mechanical equipped with hand-held shakers (Kim et al., 2018), are used to assist
manual harvesting. While these innovations have enhanced picking efficiency, they continue
to face challenges in accurately assessing blueberry maturity, particularly due to environ-
mental factors like leaf shading and the small size of the fruit. To address these limitations,
computer vision algorithms have been introduced, improving the precision and efficiency of
maturity detection in agricultural products.

Molto et al. (1992) were among the first to implement a visual localization system for
estimating the number of mature citrus fruits through image analysis of their reflectance
spectra during harvest. Similarly, Mendoza and Aguilera (2004) employed a computer
vision system to classify the maturity of various banana varieties based on color, spotting,
and texture, achieving a 98% accuracy rate, thereby demonstrating the potential of computer
vision in fruit maturity prediction. Building on this, Farooque et al. (2013) utilized digital
color cameras on wild blueberry harvesters to quantify berry loss by comparing pre- and
post-harvest yields. Kaur et al. (2018) further refined this approach by using discrete cosine
transformation and other image processing techniques to analyze the color, texture, and size
of plums, achieving a final error rate of less than 2.4% in determining their maturity class.

The rapid advancement of deep learning technologies has further revolutionized com-
plex computer vision tasks. Convolutional neural networks (CNNs), which can automati-
cally detect important image features without prior knowledge or human intervention, have
become a cornerstone in deep learning applications (Alzubaidi et al., 2021). Numerous stud-
ies have explored CNN-based fruit maturity assessments. Anatya et al. (2020) classified the
maturity of five fruit types—popcorn, mango, melon, banana, and tomato—achieving a clas-
sification accuracy of 61% using a CNN model. Zhao et al. (2021) proposed a CNN-based
algorithm for classifying melon maturity in complex environments, such as greenhouses.
Aherwadi et al. (2022) developed a maturity classification model for bananas using three
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datasets, concluding that CNN, particularly with AlexNet, is the most suitable deep learn-
ing method for detecting banana maturity and quality. Behera et al. (2021) employed Faster
R-CNN to enhance model performance and modified the mean Intersection over Union
(mloU) to account for occluded fruit. In addition, the YOLO (You Only Look Once) algo-
rithm, a CNN-based object detection framework, has been shown to significantly improve
processing speed and accuracy compared to traditional R-CNN methods. Variants such as
Mogo YOLO (Koirala et al., 2019), Apple YOLO (Tian et al., 2019), and Wild Blueberry
YOLO (MacEachern et al., 2023) have been developed to estimate fruit maturity and yield.

Despite the significant progress achieved by deep learning techniques in assessing blue-
berry maturity, several critical technical challenges remain unresolved. Before these meth-
ods can be fully applied to field-scale blueberry monitoring, it is important to understand
the limitations of their enabling platforms, such as UAVs. The performance of computer
vision models for blueberry maturity assessment is highly dependent on the quality of
images captured in diverse environmental conditions at the planting site (Liu et al., 2020).
Unmanned aerial vehicles (UAVs) offer a compact, versatile solution by providing high-
resolution, multispectral data, making them increasingly popular for monitoring fruits and
other agricultural products (Radoglou-Grammatikis et al., 2020; Tsouros et al., 2019). UAVs
can adjust flight altitudes based on different monitoring targets, offering distinct advantages
over satellite-based remote sensing, such as reduced cloud and atmospheric interference,
higher spatial resolution, and lower operational costs (Osco et al., 2021). Moreover, UAVs
can efficiently and flexibly cover extensive farmland areas, enhancing both speed and cost
control. During orchard surveillance, UAV-generated air thrust can also help uncover fruits
concealed by dense foliage (Matese et al., 2015; Primicerio et al., 2012). However, chal-
lenges persist. Vibration from the UAV during image capture (Ellenberg et al., 2016) and the
inability to closely approach the target often result in motion blur and reduced image resolu-
tion (Sieberth et al., 2014), which can obscure key information and complicate blueberry
detection. These limitations necessitate advanced post-processing techniques to enhance
image quality and support accurate downstream analysis.

To address the image degradation caused by UAV limitations, super-resolution recon-
struction (SRR) is a computer vision technique aimed at mitigating image motion blur and
enhancing image resolution (Park et al., 2003). SRR approaches generally rely on three
categories of algorithms: interpolation-based, reconstruction-based, and machine learning-
based algorithms (Li et al., 2020). Each class presents distinct limitations. Interpolation-
based SRR algorithms generate pixel values by resizing images based on spatial pixel
relationships. While computationally simple and efficient, these methods often fail to pre-
serve fine details, leading to suboptimal reconstructions. Reconstruction-based algorithms
utilize prior knowledge and mathematical models to generate high-resolution images but are
less effective with texture-rich content. Traditional machine learning-based SRR models,
which learn mappings between low- and high-resolution images from extensive datasets,
offer better visual outcomes but are computationally demanding and challenging to optimize
(Xiang et al., 2022). The introduction of the SRCNN algorithm marked a breakthrough in
SRR, utilizing only three convolutional layers and an end-to-end training framework (Dong
et al., 2016). This development paved the way for deep learning-based SRR. Subsequent
innovations include EDSR (Lim et al., 2017), RCAN (Zhang et al., 2018), SRGAN (Ledig
et al., 2017), Real-ESRGAN (Wang et al., 2021a, b), and MambalR (Guo et al., 2024), all
of which have been applied across various domains such as medical imaging (Hatvani et al.,
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2019; Li et al., 2021a, b), facial recognition (Jiang et al., 2023), and remote sensing (Wang
et al., 2022a, b; Zhao et al., 2024a, b).

Blueberry clusters present a unique challenge for maturity assessment, as individual
berries within the same cluster may vary in ripeness, while others remain immature. This
heterogeneity, compounded by background interference from dense foliage and branching,
complicates accurate maturity evaluation. While object detection algorithms are capable of
identifying individual blueberries, they are less efficient in assessing maturity across entire
planting areas. To overcome these limitations, this study proposes a semantic segmentation
approach, enabling the differentiation of blueberries by maturity level at the pixel level.

Existing research on fruit maturity assessment has predominantly employed ground-
based vehicles (Bargoti & Underwood, 2017; Koirala et al., 2019) or near-infrared spectros-
copy (Shah et al., 2020). Studies focused on blueberry maturity, particularly for wild and
plantation-grown varieties, have largely concentrated on improving detection algorithms
like YOLO (Liu et al., 2023; MacEachern et al., 2023; Zhao et al., 2025). Although multi-
source data collection techniques have been explored, UAV-based data acquisition from
blueberry fields and comparative analyses of SRR architectures in conjunction with seman-
tic segmentation have yet to be fully investigated.

The objective of this study is to propose an ensemble approach for assessing the overall
maturity of blueberry plantations using SRR and semantic segmentation models. First, a
deep learning-based SRR training dataset is constructed, which is used to train SRR net-
works based on various deep learning algorithms. The quality of the reconstructed blueberry
images is then evaluated using peak signal-to-noise ratio (PSNR) and structural Similarity
Index (SSIM) metrics. Subsequently, a semantic segmentation network is trained using the
original high-resolution blueberry dataset. The trained model is then applied to different test
sets, and the results are compared and analyzed for overall performance.

Methodology

The methodology of this study is summarized in Fig. 1. Initially, high-resolution (HR)
images of the blueberry plantation, captured with a consumer-grade UAV at a resolution
of 512 x 512 pixels, are downsampled to create low-resolution (LR) images with a resolu-
tion of 128 x 128 pixels. Using a training dataset, the nonlinear mapping between these LR
and HR images is learned by selected SRR models. Based on this mapping, SR images are
reconstructed from the LR images. These reconstructed SR images are then segmented at
the pixel level using a pre-trained blueberry segmentation model, which classifies and labels
each pixel corresponding to the blueberry fruit. The performance of various SRR algorithms
is then quantitatively analyzed using the segmentation results, and the distribution and ripe-
ness of blueberries—both ripe and unripe—across the plantation are evaluated. Details of
each step are provided in subsections Data collection through Blueberry segmentation.

Survey site
The study was conducted in a blueberry plantation located in Chengjiang County, Yuxi City,

China, as shown in Fig. 2. The region’s subtropical monsoon climate, with mild winters,
cool summers, and an average annual temperature of 15-20 °C, provides optimal growing
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Fig. 1 Workflow of the proposed framework for blueberry maturity assessment. (Data Collection: High-
resolution aerial images are collected using an unmanned aerial vehicle (UAV) over blueberry plantations.
Super-resolution Reconstruction: The original high-resolution images (512 x 512) are downsampled to
low-resolution (128 x128) to train SRR models using seven different SRR algorithms. These models
reconstruct low-resolution images to enhance spatial resolution. Segmentation: The reconstructed and
original HR images are input into various semantic segmentation algorithms to predict pixel-wise matu-
rity levels. Quantification: The segmentation results are analyzed to evaluate the effect of different SRR
methods on segmentation performance and to quantify the coverage of mature and immature blueberries
across the dataset.)

SRR
models

conditions for blueberries. The area receives 1,000 to 1,200 millimeters of precipitation
annually, ensuring sufficient moisture for the crop. Chengjiang’s average altitude of 1,800
m creates substantial diurnal temperature variation, which promotes the accumulation of
sugars and anthocyanins in blueberries. The region’s acidic to slightly acidic soil, rich in
organic matter and minerals, further supports blueberry cultivation, as blueberries favor
acidic soils.

Data collection

For data acquisition, a DJI Mini 3 drone was used, weighing 248 g and featuring a flight
time of 38 min, a field of view (FOV) of 82.1°, and a maximum image resolution of 4000
%3000 pixels. To optimize image quality, data collection took place under clear skies with
light breezes. The drone flew at an altitude of 3 m, capturing the entire plantation in approxi-
mately 0.5 h. Although the dataset was acquired from a single plantation, it exhibits con-
siderable diversity. Due to staggered harvesting practices, blueberries at various stages of
maturity coexisted naturally, ensuring a wide range of color, shape, and density distribu-
tions. Additionally, the UAV was operated at varying distances and viewing angles across
the field, introducing variability in image scale, occlusion, and illumination. Such diversity
is essential for improving the robustness of machine learning models in agricultural settings
and aligns with other UAV-based remote sensing applications (Muksimova et al., 2024;
Zhao et al., 2024c, d).
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Fig. 2 Location map of blueberry plantation areas
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Data preprocessing

During the data preprocessing stage, the UAV-captured images were cropped using a sliding
window technique, where each window extracted a smaller section of the original image,
producing a series of image segments. Each original high-resolution (HR) image had a reso-
Iution of 512 x 512 pixels, ensuring adequate detail for subsequent processing. From each
original high-resolution image, 1,000 cropped images were generated. These HR images
were then downsampled to 128 x 128 pixels using a degradation model, creating LR images.
The image preprocessing phase also included data augmentation techniques such as rotating
the images by 180 degrees, applying horizontal and vertical flips, and scaling the images
by factors of 0.6, 0.7, 0.8, and 0.9. This augmented the dataset, enhancing the diversity of
visual perspectives and expanding its size by a factor of 30. Parameters for window size and
stride were optimized through preliminary experiments to strike a balance between compu-
tational efficiency and model performance. Specifically, a window size of 128 pixels and
a stride of 32 pixels were used, as determined through preliminary experiments to balance
detail capture and computational cost.

Super-resolution reconstruction

Deep learning-based SRR is utilized to enhance the quality of the LR images. To train the
SRR model, a training dataset was prepared by downsampling the HR images with a deg-
radation model. These LR images were used as input, with the HR images serving as the
ground truth. Given that different SRR models employ various architectures and strategies
for handling image features like edges and textures, seven deep learning-based SRR algo-
rithms were selected for this study: Real-ESRGAN, SRCNN, EDSR, SwinIR, RCAN, HAT,
and MambalR. During training, the LR images were input into the SRR models, and a loss
function was applied to quantify the difference between the predicted SR images and the
actual HR images, thus optimizing the SRR models. After training, new LR images were
processed by the trained SRR models to generate corresponding SR images. The quality of
these SR images was evaluated using two metrics: Peak Signal-to-Noise Ratio (PSNR) and
SSIM.

Architectures of SRR networks

Numerous researchers have developed various SRR models based on distinct network
architectures. In this study, seven SRR models employing different network strategies were
selected for comparison to achieve optimal blueberry maturity assessment, as illustrated
in Fig. 3. In this diagram, “Conv” represents convolutional layers, and “Deconv” denotes
deconvolutional layers.

The SRCNN model, one of the earliest SRR models based on deep learning, begins by
applying bicubic interpolation to LR images. It then proceeds with three stages: feature
extraction, nonlinear mapping, and reconstruction, followed by optimizing the loss between
the interpolated and reference images. Although SRCNN’s simple architecture allows for
fast computation, it struggles with capturing complex image features and demonstrates
suboptimal performance when handling large datasets. The EDSR model improves upon
SRCNN by removing the BatchNorm (BN) layers, which consume memory resources.
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This change allows more residual blocks to be stacked, thereby enhancing model per-
formance. The RCAN model incorporates a channel attention mechanism with residual
blocks, enabling it to adaptively readjust feature channels within a deep network, improv-
ing accuracy in complex image restoration tasks. Real-ESRGAN, an improvement over
ESRGAN, integrates perceptual and adversarial losses, making it particularly effective at
reconstructing images with complex textures and fine details, closely approximating real-
world visuals. Transformer-based architectures have also been explored in SRR. Initially
developed for natural language processing (Vaswani et al., 2017) Transformer architectures
have since been adapted for computer vision tasks. SwinlR, introduced by, builds on the
Swin Transformer (Liu et al., 2021) and utilizes a sliding window mechanism for self-
attention within local image windows, efficiently capturing both local and global image fea-
tures. HAT (Hybrid Attention Transformer) (Chen et al., 2023) combines multiple attention
mechanisms, including channel attention and window-based self-attention, to capture global
dependencies across layers for improved feature extraction and accurate image reconstruc-
tion. Finally, MambalR, based on a selectively structured state space mode (Guo et al.,
2024), leverages the global receptive field advantage to capture long-distance dependencies
in images. Its Residual State Space Block (RSSB) enhances the model’s ability to address
issues like local pixel forgetting and channel redundancy.

Training of the networks

During training, iterative optimization is conducted to update model parameters based on
the loss between each LR image input and the corresponding HR image. For CNN-based
models, the Adam optimizer (Singarimbun et al., 2019) is used with the L1 loss function,
as defined below:

1 _ _
Li(OR) = 3 150 D0 150 || Ong = g | (1)

where O, ; and R, ; represent the pixel values at position (7, j) in the HR image and the SR
image, respectively, and p xq is the image resolution.

In generative adversarial network (GAN)-based models, perceptual loss and adversarial
loss are employed to enhance the realism of reconstructed images. Perceptual loss measures
the difference between generated and target images based on high-level features extracted
by a pre-trained network (e.g., VGG), ensuring that the SR images resemble real-world
images beyond simple pixel-level accuracy:

Lperceptual = Z ij\il H ¢z (ISR) - ¢z (]HR) H 3 (2)
Loaw = —log (D( G (Z) )) (3)
Lp = —(log (D(=)) +log(1 — D(G (2)))) 4

here, ¢, denotes the feature map extracted by the pre-trained network at layer i, Igg is
the generated SR image, and IR is the target HR image. Adversarial loss is a core com-
ponent in Generative Adversarial Networks (GANSs) used to train the generator to make its
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generated images as realistic as possible to fool the discriminator. For the generator, G (2)
represents the image generated by the generator, D is the discriminator, and z is the input
noise or the low-resolution image. For the discriminator, x is the true image.

Evaluation metrics

The performance of the SRR models was evaluated using PSNR and SSIM. PSNR quanti-
fies image similarity by comparing the mean squared error (MSE) between the original
and reconstructed images, with a higher PSNR indicating closer resemblance. SSIM evalu-
ates similarity by incorporating brightness, contrast, and structural information, with values
closer to 1 signifying greater similarity (Wang et al., 2021a, b).

In the following Eq. (5), R (4, j) represents the SRR image, while O (4, j) denotes the
original HR image with dimensions p % ¢q. PSNR, defined in Eq. (6), quantifies the similar-
ity between the SRR and original HR images. Here, MAX, represents the highest gray value
within the image, conventionally set to 255. A higher PSNR value indicates greater image
similarity. In Eq. (7), 1o and o represent the mean of the total pixels in the image O and
the variances of image R. The covariance between O and R is denoted by oo r. Constants
C, and C, are introduced to prevent division by zero in the denominator:

1
MSE = — 277, 295[0(i,5) = R 5)) )
MAX?
PSNR =10 x gy, ( et > ©
2 2
SSIM (O,R) = Cuopr+Ci) (20 or+Cy) -

(np+usn+C)(cg+o%+Ch)

Blueberry segmentation
Network architecture

Image semantic segmentation, a fundamental task in computer vision, aims to assign a pre-
defined category label to each pixel in an image (Csurka & Perronnin, 2011). Deep learning-
based segmentation methods offer significant advantages by training on large pixel-labeled
datasets, enabling neural networks to learn complex mappings between visual features
and semantic labels. By leveraging scene information and high-level semantic features,
these models can accurately interpret detailed image content, leading to a comprehensive
understanding of diverse semantic categories (Zeiler & Fergus, 2014). In this study, eight
semantic segmentation architectures were employed to assess blueberry ripeness across an
entire plantation: FPN, U-Net, DeepLabV3Plus, Unet++, MANet, DPT, ChangeMamba,
and UperNet.

FPN Feature Pyramid Networks (FPN) were introduced in 2017 to tackle multi-scale object
detection by constructing pyramid features (Lin et al., 2017). Prior approaches relied solely
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on final feature map outputs, where lower-level features excelled in spatial accuracy but
lacked semantic richness, and upper-level features offered stronger semantics but weaker
localization. FPN addresses this by connecting high-level, low-resolution features with low-
level, high-resolution ones in a top-down manner. This integration enhances the detection of
small objects without increasing computational load.

UperNet The design of UperNet builds upon FPN and the Pyramid Pooling Module (PPM).
UperNet is explored for the task of unified perceptual parsing, aiming to help machine
vision systems recognize as many visual concepts as possible from a given image. UperNet
can learn the differences between various image datasets and perform joint reasoning (Xiao
et al., 2018). Additionally, it is capable of predicting pixel-level texture labels using only
image-level annotations.

U-Net U-Net is a deep learning-based convolutional neural network that consists of an
encoder (down-sampling path) and a decoder (up-sampling path), forming a distinctive
U-shaped architecture (Ronneberger et al., 2015). It consists of an encoder for down-sam-
pling and a decoder for up-sampling, connected by skip connections, which retain spatial
information for better localization. Despite its widespread use, U-Net has limitations, such
as the uncertainty regarding optimal network depth and skip connections being restricted to
the same scale.

Unet++ Unet++, an enhanced version, addresses these issues by efficiently integrating net-
works of varying depths and redesigning skip connections to aggregate multi-scale features.
This redesign increases flexibility and improves inference speed (Zhou et al., 2018).

DeeplLabV3Plus DeepLabV3Plus is another encoder-decoder architecture that uses atrous
convolution and atrous separable convolution to expand the receptive field and extract
multi-scale features (Chen et al., 2018). These features are fused, and a 1 x 1 convolution is
applied to adjust channel numbers. However, DeepLabV3Plus faces challenges in computa-
tional efficiency when processing large images.

MA-Net MA-Net addresses these challenges by introducing the Position Attention Block
(PAB), which leverages a self-attention mechanism to model the interdependencies between
features in the spatial dimension, thus capturing pixel-to-pixel spatial dependencies across
the entire image (Li et al., 2022). Additionally, MA-Net employs the Multi-Scale Fusion
Attention Block (MFAB) to capture channel dependencies between feature maps. This

@ Springer



56 Page 12 of 31 Precision Agriculture (2025) 26:56

attention mechanism enables MA-Net to effectively capture rich contextual dependencies
and adaptively integrate local features with global dependencies.

DPT DPT is a dense prediction network built on the Transformer architecture, which pro-
cesses representations at a fixed high resolution and provides a global receptive field at each
stage (Ranftl et al., 2021). The use of Transformers allows DPT to excel in dense prediction
tasks by capturing long-range dependencies within the image.

ChangeMamba ChangeMamba, based on the VMamba architecture, introduces spatio-
temporal state space models for image segmentation (Chen et al., 2024). It employs a cross-
scanning module to process image blocks across multiple spatial directions simultaneously,
effectively capturing long-range contextual information. This multi-dimensional approach
enhances performance on high-resolution images while maintaining computational effi-
ciency. ChangeMamba’s structural design allows it to handle subtle variations in dynamic
scenes, making it robust and adaptable for complex image tasks where high accuracy and
efficiency are essential.

Evaluation metrics

To assess the performance of blueberry maturity segmentation, four prevalent metrics are
utilized: Precision, Recall, Fl-score, and Intersection over Union (IoU). The IoU metric
quantitatively evaluates the extent of overlap between the predicted and actual results, with
a higher IoU reflecting enhanced segmentation accuracy.

TP
Precision = —————
recision = PP )
TP
Recall = 7p T FN (10)

2 x Precision x Recall
F1— = 11
seore Precision + Recall (D

TP

JoU=— -+
T TPYFN+FP

(12)
Here, TP stands for true positives, i.e., pixels correctly segmented as targets; FP stands for
false positives, i.e., non-target pixels mistaken for targets; and FN stands for false negatives,
i.e., real targets mistaken for non-target pixels. In this study, both loU and mean IoU (mlIoU)
were calculated to comprehensively evaluate the segmentation performance across three
regions: the background, the mature part of the blueberry fruit, and the unripe part.
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Result
Datasets and experiment setup
Datasets description

The SRR model in this study was trained using a specialized blueberry dataset, tailored
specifically for the assessment of maturity levels. This dataset comprises 1,000 images,
each with a resolution of 512 x 512 pixels, collected directly from a blueberry plantation
to ensure the inclusion of domain-specific characteristics. These curated images cover a
wide range of ripeness stages, providing diverse visual features essential for accurate super-
resolution reconstruction.

The corresponding LR image set was created by applying a controlled degradation pro-
cess to the original high-resolution HR images. This process simulated the types of blurring
and resolution loss commonly observed in real-world UAV imagery. By mimicking realistic
conditions, this approach enhanced the model’s capacity to generalize across diverse image
qualities and improved its robustness in both natural and agricultural environments.

9=(f® LI 4 (13)

in this equation, g represents the LR image, while f denotes the HR image. The function
h corresponds to the point spread function (PSF) modeled under uniform linear motion,
describing the degradation process. The symbol ® indicates the convolution operation
applied between h and f. The downsampling operation is represented by |, which reduces
the image resolution by a factor s (the magnification factor). The bicubic interpolation algo-
rithm is employed to perform the downsampling operation, reducing the resolution of the
image by a factor of s. Additionally, n represents Gaussian white noise, which is added to
simulate random noise encountered during image acquisition.

To diversify the training dataset and increase the efficiency of the training process, LR
sub-images of size lsup X lsyup pixels are randomly extracted and paired with their cor-
responding HR sub-images, resized to slsup X Slsup pixels, where s represents the mag-
nification factor. These patch pairs provided training samples that capture varied spatial
patterns and scale variations, thereby boosting reconstruction performance.

To simulate real-world scenarios of low-resolution and blurry imagery, the correspond-
ing LR image set was generated by applying degradation techniques to the HR images. This
degradation process allowed the model to generalize effectively across various image quali-
ties, enhancing its robustness in both natural and agricultural environments. The approach
ensures that the model performs well even under challenging conditions, such as suboptimal
image captures during field operations.

Experimental setup
In this study, seven SRR models—Real-ESRGAN, SRCNN, EDSR, SwinIR, RCAN, HAT,
and MambalR—were selected to reconstruct low-resolution blueberry images. Each model

brings distinct strengths in addressing challenges such as noise reduction, texture preserva-
tion, and high-resolution feature extraction. This selection allows for a comprehensive com-
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parison across diverse architectural designs. The SRR process was conducted in three key
phases: (1) Training: The seven SRR networks were trained on the same dataset, consisting
of HR blueberry images. (2) Reconstruction: The trained models were used to reconstruct
LR images from the test dataset, producing super resolution (SR) outputs. (3) Evaluation:
The performance of each model was evaluated using Peak Signal-to-Noise Ratio (PSNR)
and SSIM metrics to assess reconstruction quality.

For the semantic segmentation task, the procedure was structured as follows: (1) Train-
ing: The proposed semantic segmentation network was trained on the HR blueberry image
dataset, using both training and validation sets. (2) Segmentation: The trained model was
applied to perform pixel-wise semantic segmentation on the test set. (3) Evaluation: The
segmentation results were quantitatively assessed using Intersection over Union (IoU) and
mean Intersection over Union (mloU) metrics to measure the accuracy of the blueberry
maturity classification at the pixel level.

This dual approach ensures a thorough evaluation of both image reconstruction and
semantic segmentation performance, enhancing the accuracy of blueberry maturity
assessment.

To ensure reproducibility and fairness, all SRR models were trained under a unified
configuration: 300 training epochs, a batch size of 16, an initial learning rate of 0.00005
(decayed by half every 50 epochs), and the L1 loss function optimized using the Adam
algorithm. Training was performed on a local workstation equipped with an NVIDIA RTX
4090 GPU (24 GB VRAM) and 64 GB RAM, providing sufficient computational resources
for high-resolution image reconstruction.

For the semantic segmentation task, training was conducted on a dedicated high-per-
formance computing server equipped with a Tesla V100 GPU (32 GB), an Intel® Xeon®
E5-2698 v4 CPU, and running Ubuntu 20.04. The environment utilized PyTorch 2.2.1 with
CUDA 12.2 and cuDNN 8.8.0. The models were trained using 448 x 448 input images, a
batch size of 8, and an initial learning rate of 1e-5 for a total of 20,000 iterations. The Adam
optimizer and cross-entropy loss were used across all segmentation networks. Encoder-
decoder pairs such as UNet++, DPT, and ChangeMamba were initialized with pretrained
weights, where available, to facilitate faster convergence and improved performance.

Inference for both SRR and segmentation tasks was conducted on the same local work-
station used for SRR training (RTX 4090 GPU), ensuring a consistent environment for
runtime benchmarking. A detailed summary of the training environments and configuration
parameters for both tasks is provided in Table 1.

Analysis of the super-resolution reconstruction

This study employed deep learning-based SRR models, each leveraging different archi-
tectural strategies, to enhance the resolution of LR blueberry images. Table 2 presents the
performance evaluation results of various SRR methods on a test set of LR images with a
fourfold magnification factor. As shown in Table 1 and Fig. 4, most deep learning-based SRR
methods outperform the traditional Bicubic interpolation method in terms of Peak Signal-
to-Noise Ratio (PSNR) and SSIM, demonstrating superior image reconstruction capabili-
ties. Notably, while Real-ESRGAN achieves a PSNR 0f 26.06 dB and an SSIM of 67.62%,
slightly lower than those of the Bicubic method, this does not indicate poor performance.
Real-ESRGAN incorporates a perceptual loss function, which is specifically designed to
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Table 1 Training configurations Experiment configuration SRR Models Segmentation
for SRR and semantic segmenta- Models
tion models Operating system Ubuntu 18.04 Ubuntu 20.04
Bit architecture 32 bit 32 bit
Random Access Memory 64GB 64GB
GPU NVIDIA GeForce Tesla V100
RTX 4090
Memory 24GB 32GB
CPU Intel(R) Xeon(R) Intel(R)
Platinum i9-13900k Xeon(R) ES-
2698 v4
Pytorch 1.10 2.2.1
CUDA 11.1 12.2
Cudnn 8.0.4 8.8.0

Table 2 Evaluation metrics of different methods on the LR testsets with the magnification factor of 4

Metrics Bicubic Real-ESRGAN SRCNN EDSR  SwinlR RCAN HAT  MambalR
PSNR(dB)  28.19 26.06 29.80 30.68 30.78 30.81 30.86  30.87
SSIM(%) 73.93 67.62 79.11 81.79 82.01 82.13 82.25  82.26

Bold values indicate the best results

Real-ESRGAN RCAN MambalR

Fig. 4 Comparison of the visual effects of the reconstructed images based on the eight methods

prioritize high-frequency details and enhance texture realism (Johnson et al., 2016). This
approach may result in lower PSNR and SSIM values, which focus on pixel-level accuracy,
but it excels in generating visually realistic images that closely resemble natural scenes.
Consequently, Real-ESRGAN is particularly advantageous in applications where percep-
tual quality is paramount. Among the SRR models evaluated, MambalR exhibited the best
performance, achieving a PSNR of 30.87 dB and an SSIM of 82.26%. The images recon-
structed by MambalR closely matched the original high-resolution images, underscoring
the effectiveness of its selection mechanism and hardware-aware state-space architecture.
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This superior performance highlights MambalR’s potential for high-fidelity image recon-
struction tasks, particularly in agricultural contexts requiring detailed feature preservation
for accurate maturity assessments.

Figure 4 illustrates the comparison between the original HR image and images recon-
structed by various SRR methods. The Bicubic method shows a significant loss in image
quality, particularly in edge clarity and texture detail, resulting in blurred lines and degraded
visual features. In contrast, deep learning-based SRR methods exhibit superior performance
in retaining edge sharpness and preserving texture details, yielding images that are visually
closer to the original HR images. However, challenges remain. Figure 4 highlights that
the SR images produced by the Bicubic method are the most blurred, reflecting the lowest
perceptual quality. This observation is consistent with the Bicubic algorithm’s performance
in Table 2, where it ranks near the bottom in PSNR and SSIM metrics. Although Real-
ESRGAN scores lowest in these quantitative measures, its SR images are visually superior,
appearing sharper and with reduced noise compared to other methods. However, the details
and textures generated by Real-ESRGAN still differ from those in the true HR images.
Excluding Bicubic and Real-ESRGAN, other SRR methods produce images that closely
match the original HR images in terms of detail and texture, indicating their effectiveness
in generating high-quality SR images. Overall, qualitative visual assessments complement
quantitative analyses, with MambalR achieving an optimal balance between visual and
quantitative quality.

Building on this analysis, MambalR stands out for its significant global receptive field,
allowing it to capture intricate details and preserve textures more effectively than other
methods. This ability to reproduce complex features in blueberry images highlights the
model’s strengths, particularly for agricultural applications where texture and detail are cru-
cial for assessing fruit maturity. Despite advancements in clarity and detail restoration, deep
learning-based methods face inherent trade-offs between sharpness and realism, such as
potential over-smoothing of edges. Nonetheless, these SRR models represent a substantial
improvement over traditional methods like Bicubic, making them well-suited for blueberry
image reconstruction.

Analysis of semantic segmentation
Single model performance

For the semantic segmentation task, the dataset captured by the UAV was divided into train-
ing, validation, and test sets at a 7:2:1 ratio. All images were meticulously labeled using the
Labelme tool to ensure high-quality ground truth data. The study employed three encoder
types—CNN, Transformer, and Mamba architectures—combined with eight different seg-
mentation architectures: FPN, U-Net, DeepLabV3Plus, Unet++, MANet, DPT, Change-
Mamba, and UperNet, resulting in 27 unique semantic segmentation models. Additionally,
two ensemble models were constructed to further enhance performance. The performance
is summarized in Table 3.

IoU (Intersection over Union) was used to evaluate segmentation accuracy across three
target categories: ripe blueberries, unripe blueberries, and background. A higher IoU indi-
cates better segmentation accuracy. The mean IoU (mloU) results reveal that CNN-based
encoders, particularly ResNeXt101 32 x8 d and ResNetl101 variants of Unet++, demon-
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Table 3 Segmentation perfor-
mance of various models

Bold values indicate the best
results

# Decoder Encoder TIoU IoU mloU
Mature Immuature
CNN-based Encoder
1 FPN EfficientNet-b5  75.18 63.73 78.46
2 UNet EfficientNet-b5  76.39 64.52 79.17
3 Deep- EfficientNet-b5  71.04 59.04 75.34
LabV3++
UNet++ EfficientNet-b5  77.49 64.91 79.69
5 FPN ResNeXt101 32 77.95 66.06 80.26
x8d
6 UNet ResNeXt101 32 78.64 66.16 80.53
x8d
7 Deep- ResNeXt101 32 75.96 64.38 78.95
LabV3+ x8d
8 UNet++ ResNeXt101 32 79.93 67.70 81.54
x8d
9 FPN ResNet101 75.32 63.30 78.36
10 UNet ResNet101 77.34 64.66 79.54
11 Deep- ResNet101 74.35 60.94 77.08
LabV3+
12 UNet++ ResNet101 78.82 66.39 80.64
13 MANet EfficientNet-bS  73.82 63.98 78.08
14 MANet ResNeXt101 32 77.71 66.20 80.24
x8d
15 MANet ResNet101 76.21 64.48 79.12
Transformer-based Encoder
16 FPN SegFormer(mit_ 77.47 64.00 79.33
b5)
17 UNet SegFormer(mit_ 75.49 64.50 78.88
b5)
18 MANet SegFormer(mit_ 77.52 64.25 79.44
b5)
19 DPT DINOv2(vit_1) 80.67 67.99 81.87
20 DPT DINOv2(vit_b) 80.50 66.79 81.37
21 DPT DINOv2(vit_s) 80.10 66.87 81.31
Mamba-based Encoder
22 Change- VMamba (base) 78.27 65.73 80.25
Mamba
23 Change- VMamba (tiny) 78.38 66.23 80.48
Mamba
24 Change- VMamba 78.09 65.17 79.98
Mamba (small)
25 UperNet VMamba (base) 77.92 64.38 79.61
26 UperNet VMamba (tiny) 78.17 65.31 80.06
27 UperNet VMamba 77.53 64.33 79.47
(small)
Ensemble Model
8 +19 +23 (ours) 81.82 70.29 83.13
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strated strong segmentation capabilities, achieving mloU values of 81.54 and 80.64, respec-
tively. ResNeXt101 32 x8 d excelled in handling background complexity, outperforming
other models in background classification accuracy.

In the Transformer-based experiments, DPT and its variants using the DINOv2 model
family (DINOv2(vit_1), DINOv2(vit_b), DINOv2(vit_s)) achieved impressive results.
DINOv2(vit_1), in particular, achieved the highest accuracy for ripe and unripe fruit classifi-
cation tasks, with an mloU of 81.87, surpassing other models in detailed fruit segmentation.

Additionally, the Mamba-based Encoder demonstrated strong performance, with all six
tested models showing high robustness, maintaining mloU values around 80. This con-
sistent performance not only highlights the adaptability of the Mamba architecture across
different semantic segmentation tasks but also suggests its significant potential for further
optimization and extension.

By analyzing these models in detail, this study finds that networks based on different
Encoders each have unique strengths in addressing the semantic segmentation of blueberry
fruits. While CNN, Transformer, and Mamba architectures differ in their segmentation per-
formance across various categories, overall, Transformer and Mamba architectures exhibit
greater potential in handling high-complexity image details, whereas the CNN architecture
excels in computational efficiency and background processing.

Based on the Precision, Recall, F1-score, mloU, and Mature IoU metrics discussed
in Sect. 2.5.3, this study compares the segmentation performance of the best-performing
Ensembled fusion methods across different test sets. These include the HR test set, the test
set generated using the Bicubic method, and the SR test sets produced by six other SRR
models. As shown in Table 4, SRCNN delivers the highest Precision at 89.64%, while the
HR test set achieves the best results in Recall, F1-score, mloU, and Mature IoU, with val-
ues of 91.97%, 90.39%, 83.13%, and 81.82%, respectively. In contrast, the Bicubic test set
exhibits the poorest performance across all evaluation metrics. Among the SRR methods,
the five SR test sets show similar results, with MambalR leading the group, delivering the
best performance across the SR test sets, second only to the HR test set. The other SRR
methods display comparable outcomes, further highlighting MambalR’s edge in segmenta-
tion accuracy.

Figure 5 visually compares the segmentation results for partially mature and immature
blueberries, with the second column providing ground truth labels for reference. The HR
test set demonstrates the most accurate segmentation, closely matching the ground truth,
while the Bicubic method shows significant errors and omissions. SRR-based test sets
markedly improved segmentation accuracy, with MambalR performing particularly well.
Figure 6 further highlights that all SRR-based test sets significantly outperform the Bicubic

Table 4 Segmentation results of the testsets reconstructed by different SRR models using ensemble segmen-
tation model

Metrics (%) HR Bicubic Real-ESRGAN SRCNN EDSR  SwinlR RCAN  MambalR

Precision 88.90 86.98 88.02 89.64 87.88  88.12 87.92 88.93
Recall 9197 85.19 87.76 88.14 89.08  91.31 91.55 91.64
Fl-score 90.39 87.45 87.88 88.85 89.00  89.66 89.66 89.67
mloU 83.13 78.84 79.36 80.86 81.06  82.01 82.01 82.04
Mature IoU ~ 81.82  78.22 77.09 80.27 80.30  80.76 80.78 80.90

Bold values indicate the best results
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Image Label HR Bicubic Real-ESRGAN SRCNN EDSR SwinIR RCAN  MambalR

Fig. 5 Qualitative comparison of segmentation results across different SRR methods on sample test im-
ages.(Each column presents the segmentation output of a specific SRR method (e.g., SRCNN, Real-
ESRGAN, MambalR) followed by semantic segmentation using the same model. The first two columns
show the original UAV image and its corresponding ground truth mask. The red regions represent mature
blueberries, while green regions represent immature ones. Yellow circles highlight key regions of interest
where differences in segmentation performance are most apparent—such as missed detections or over-
segmentation. Models like MambalR and SwinIR generally provide clearer and more accurate segmenta-
tion in these challenging areas.)

Image Label __H icubi icubi MambalR

Fig. 6 Comparative results of different semantic segmentation models applied to HR, Bicubic, and Mam-
balR-enhanced datasets. (Each block shows the segmentation results of a specific segmentation model
(e.g., DeepLabV3+, UNet++, MANet) under three different input conditions. The red masks correspond
to mature blueberries, and the green masks indicate immature ones. This figure demonstrates how model
performance varies with input image quality and highlights the advantage of using SRR-enhanced im-
agery, particularly with the MambalR method. The results indicate that MambalR consistently improves
segmentation accuracy across all models. Ensemble results are shown at the bottom-right as a baseline
for optimal performance.)
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method, underscoring the efficacy of SRR models in enhancing segmentation accuracy for
blueberry maturity assessment.

Ensemble learning approach

This study enhanced the accuracy and robustness of blueberry maturity segmentation by
employing an ensemble learning approach. This method combines 27 segmentation mod-
els based on CNN, Transformer, and Mamba architectures. By leveraging the strengths of
multiple models, ensemble learning typically achieves superior prediction performance in
complex tasks, particularly in high-complexity scenarios like image segmentation (Dong et
al., 2020).

To construct the final integration model, we first evaluated the segmentation performance
of all 27 models and selected the top-performing ones with mloU values exceeding 81.
Specifically, three representative models were chosen: ResNeXt101 32 x8 d in UNet++
(CNN-based), DINOv2(vit_1) in DPT (Transformer-based), and ChangeMamba (VMamba-
tiny) (Mamba-based). These models were selected for their complementary strengths:
ResNeXt101 32 x8 d excels in detailed segmentation of complex backgrounds, DINOv2
captures fine texture and edge information, and ChangeMamba demonstrates superior light-
weight performance and temporal modeling capabilities. By integrating these models, this
study effectively merged their strengths to enhance overall segmentation performance. The
ensemble was implemented by averaging the softmax outputs (pixel-wise probability maps)
of the three models. This late fusion strategy was chosen to maintain the diversity of feature
representations while reducing variance.

The ensemble model, which combined these top models, achieved superior performance,
with an mIoU of 83.05 in the first ensemble and 83.13 in a more diverse version. These
results significantly surpassed the individual models’ performance, showcasing the effec-
tiveness of ensemble learning in improving segmentation accuracy, particularly for blue-
berry fruits with irregular textures and edges.

Discussion

Finally, this study tested the robustness of our method on degraded input data, focusing on
three aspects: (1) the effect of different scaling ratios on model performance; (2) the impact
of varying degrees of Gaussian blur on the input data; and (3) the effect of different intensi-
ties of Gaussian noise on the input data.

The influence of magnification factor

The effectiveness of SRR is profoundly influenced by the magnification factor, which gov-
erns the enlargement ratio from LR to HR. Variations in magnification significantly affect
the model’s ability to recover intricate image details, a critical aspect in tasks such as blue-
berry maturity segmentation. Lin et al. (2024) demonstrated that the magnification factor
not only substantially affects visual quality but also impacts performance metrics like Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM). Moreover,
multiscale approaches have enhanced SRR models’ adaptability to different magnification
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factors by optimizing network architectures, thereby improving both reconstruction quality
and model robustness, as highlighted by Cheng et al. (2022). In light of these findings, this
study examines the effects of varying magnification factors on the performance of SRR,
specifically in the context of blueberry maturity segmentation.

The experimental procedure was structured as follows: A high-resolution blueberry
image dataset was first generated with a resolution of 512 x 512. To simulate realistic image
degradation, this HR dataset was downsampled to a LR dataset (x1-LR) with a resolution of
128 x 128, using the degradation model detailed in Eq. 13. Subsequently, SRR was applied
to the x1-LR dataset at magnification factors of 2, 3, 4, and 5, resulting in datasets labeled
as x2-SR, x3-SR, x4-SR, and x5-SR, respectively.

During the training phase, the training and validation subsets of the HR blueberry data-
set were used to train an ensemble model, from which the optimal segmentation model
was selected. This model was then utilized to evaluate segmentation performance on the
SRR datasets reconstructed at different magnification levels. The mean Intersection over
Union (mloU) was employed to quantify segmentation performance across scales. Figure 7
presents the segmentation results for each SRR test set, labeled as x(m)-SR to represent
the results at magnification level m, alongside x1-LR for the segmentation results on the
original LR dataset.

Figure 7 also illustrates the robustness of different training models under the same and
varying magnification factors. The results indicate that as the magnification factor increases,
the mloU of all reconstructed images progressively improves, stabilizing after 3x magnifi-
cation. These findings suggest that higher magnification ratios can enhance the segmenta-
tion accuracy of SRR models, reducing the disparity between reconstructed images and
ground truth labels. Notably, the proposed ensemble method consistently outperforms other
models across magnification levels, with MambaDense and DPT following closely. At 2x
magnification, DPT surpasses MambaDense by 0.87% and maintains slightly higher mloU

Fig.7 Segmentation results of images from SR test sets obtained with different magnification factors
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values in subsequent magnifications. DeepLab V3 +performs comparatively worse, lag-
ging behind other algorithms by approximately 10%. However, computational cost rises
significantly with increasing magnification factors. For blueberry image segmentation, a 4x
magnification offers the optimal balance between segmentation accuracy and computational
efficiency, although the exact computational time data require further validation. Figure 8
presents a comparative visualization of segmentation accuracy across different magnifica-
tion levels, complementing the numerical results shown in Fig. 7. It provides an intuitive
illustration of how increased magnification enhances segmentation accuracy, highlighting
the consistent performance gains achieved by the proposed ensemble model compared to
other architectures. This figure further supports the conclusion that 4x magnification offers
the best trade-off between accuracy and computational efficiency for practical deployment
in blueberry maturity monitoring.

Effect of the Gaussian blur

The size of the Gaussian blur kernel is a key determinant in the performance of SRR, as
it influences the level of detail degradation in low-resolution images. In this study, Gauss-
ian blur was applied during the image degradation process before SRR training and infer-
ence, simulating the defocus and motion-induced blur commonly observed in UAV imagery.
Specifically, the original high-resolution images were convolved with Gaussian kernels of
different sizes—11 (Blur_Iv1), 15 (Blur_lv2), 21 (Blur_Iv3), and 25 (Blur_lv4)—to gener-
ate corresponding blurred low-resolution inputs. These degraded images were then used
as input to the SRR models to evaluate their impact on subsequent segmentation accuracy.
In terms of precision, the study observed a gradual increase as the Gaussian blur kernel
size expanded from 11 to 25, with the precision rate rising from 90.07 to 90.82%. This pat-
tern suggests that greater blurring suppresses noise, enabling the model to more effectively
distinguish the boundaries of blueberry fruits, thereby enhancing segmentation accuracy in

New Model Performance with Updated Color Scheme and Markers
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Fig. 8 Evaluating the accuracy of blueberry maturity segmentation across different magnifications
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certain cases. This observation is consistent with the well-established advantages of Gauss-
ian blur in image processing, which include noise reduction and improved local contrast by
smoothing out unnecessary details(Aakerberg et al., 2022).

Despite the improvement in precision, Fig. 9 shows a decline in the mean Intersection
over Union (mloU) with increasing Gaussian blur kernel sizes. Among the models tested,
the Ensemble model, MambaDense, and UperNet demonstrated relative resilience, with
performance drops of 17.54%, 14.98%, and 14.94%, respectively, as blur increased. Never-
theless, the Ensemble model consistently outperformed the others. Although Gaussian blur
can improve detection accuracy for certain blueberry fruits by reducing noise, it generally
hampers overall segmentation performance as the kernel size increases. This is primarily
due to the loss of critical edge information and fine textures, especially in blueberries with
complex surfaces and irregular boundaries(Wang et al., 2019, 2022a, b). Consequently, the
model’s capacity to accurately segment such features diminishes, resulting in lower seg-
mentation performance overall.

Effect of different intensities of Gaussian noise

In this experiment, varying levels of noise variance were introduced to evaluate their impact
on the segmentation performance of hyperspectral SRR-reconstructed blueberry images.
Gaussian noise was applied during the image degradation process prior to SRR reconstruc-
tion, simulating real-world UAV imaging conditions where sensor noise or environmental
disturbances can degrade image quality. Specifically, zero-mean Gaussian white noise with
different variances was added directly to the low-resolution input images used to train and
evaluate the SRR models. The noise added to each pixel follows a normal distribution:

n(z,y) ~ N(0,0?) (14)
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Fig. 9 Evaluation of blueberry maturity segmentation accuracy under different Gaussian blur levels
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where #(x, ) is the noise added at pixel (x, y), and &° is the variance controlling noise
intensity.

Noise variance represents the intensity of noise added to each image, influencing both
image quality and segmentation accuracy. As shown in Fig. 10, when 6= 1 (Noise_1v0), the
noise variance is 0, meaning no noise was added. At 6= 2 (Noise_Iv1l), corresponding to
a variance of 0.01, only minimal noise was present, causing negligible interference in the
image. However, as o increased, noise levels escalated: Noise 1v2 (o =3, variance =0.05),
Noise 1v3 (o =4, variance =0.1), and Noise _Iv4 (c =5, variance =0.2). With higher noise
levels, interference in the images became more pronounced, leading to noticeable degrada-
tion in segmentation quality.

The overall performance metrics, as depicted in Fig. 10 through mIoU values, show that
when o= 0, the proposed Ensemble model achieved the highest mIoU score of 83.13%.
As o increased to 2, a slight decline in performance was observed for the Ensemble, DPT,
MambaDense, and UperNet models, while other algorithms exhibited a more significant
drop, with mloU reductions ranging from 24.2 to 41.5%. At o= 3, all models experienced
a sharp decline in performance. These findings indicate that higher noise levels not only
degrade model accuracy but also significantly impair segmentation performance in spatial
tasks. As noise variance increases, critical edges and details in the blueberry images become
obscured, making accurate segmentation more challenging. While minor noise leads to only
slight reductions in accuracy, excessive noise invariably causes substantial performance
deterioration, undermining the model’s ability to produce reliable segmentation outcomes.

Distribution map of blueberry maturity with segmentation results
Figure 11 provides a comprehensive visual representation of blueberry growth and ripe-

ness distribution, which can be instrumental in advancing precision agriculture practices.
The UAV imagery used in this figure was captured under controlled greenhouse conditions,
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Fig. 10 Evaluation of segmentation performance under varying levels of Gaussian noise
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Fig. 11 Spatial Distribution and Segmentation Results of Blueberries. (a) Distribution map with location
information captured under greenhouse conditions using UAV imagery. (b) Pixel-level mask visualization
of blueberry maturity segmentation results, generated using the proposed ensemble segmentation model.
Red indicates mature fruits and green indicates immature fruits

which ensured stable lighting and minimized environmental interference. Figure 11(a)
overlays segmentation results in location data, offering an intuitive understanding of the
overall field conditions. By spatially mapping blueberry maturity across the plantation,
this visualization supports critical agricultural decisions, such as targeted harvesting, dis-
ease prevention, and controlled application of fertilizers and pesticides. The integration of
location-specific maturity data not only facilitates more efficient resource allocation but
also enhances the accuracy of yield estimates, ultimately contributing to increased crop
productivity.

The mask representation (Fig. 11b) delivers additional insights by categorizing pixels
based on maturity levels. This pixel-level segmentation enables precise quantification of
the proportion of ripe versus unripe blueberries, with mature fruits comprising 31% of all
fruits in Fig. 11b. Such detailed information allows growers to pinpoint optimal harvesting
periods, reducing the risk of underripe or overripe yields. By timing harvests to the specific
maturity needs of different areas, farmers can better align with market demand, minimize
waste, and increase the overall quality of produce.

In regions where agriculture remains predominantly labor-intensive, including devel-
oping countries like China, the strategic timing of harvests enabled by these segmenta-
tion maps holds significant potential. By optimizing harvest schedules, growers can avoid
labor shortages during peak seasons, lower associated costs, and manage workflows more
efficiently. These visualizations thus support both the financial and operational aspects of
precision agriculture, helping farmers make timely, data-informed decisions that increase
profitability.

The mapping of maturity across large plantations further underscores the potential of
UAV-based imagery for scalable, cost-effective agricultural management. By combin-
ing UAV-captured imagery with SRR and semantic segmentation, growers gain access
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to high-resolution, actionable insights without the need for high-cost camera equipment.
This approach broadens the accessibility of advanced monitoring techniques, especially for
small- to medium-scale farmers, highlighting the feasibility and impact of computer vision
technologies in supporting sustainable agriculture.

Ultimately, these mapping visualizations contribute to a more robust and scalable system
for real-time monitoring, empowering farmers to adapt to dynamic field conditions and pro-
actively manage resources to achieve optimal crop health and yield. The practical utility of
these visualized outputs, as shown in Fig. 11, lies in their ability to transform raw image data
into precise, easy-to-interpret information that drives informed decision-making, solidify-
ing the role of UAV and SRR technologies as pivotal tools in modern agricultural practices.

Conclusion

This study presents a novel approach that combines deep learning-based SRR with semantic
segmentation to assess blueberry maturity, addressing challenges posed by low-resolution
UAV imagery and the need for efficient ripeness detection in cultivation settings. Initially,
SRR techniques enhance the resolution of low-quality images, after which 27 semantic
segmentation models, spanning CNN, Transformer-based architectures, and the Mamba
network, are evaluated. By integrating the top-performing models from each category
into an ensemble, the method achieves significant improvements in segmentation accu-
racy by leveraging the distinct advantages of each model type. The ensemble demonstrates
superior stability and precision in determining blueberry ripeness, validating its practical
applicability.

The Mamba-based network, in particular, excels in both SRR and segmentation tasks.
Its architecture effectively preserves image details while minimizing blurring, resulting in
high-resolution images with superior reconstruction fidelity compared to other networks.
Additionally, its lightweight design and cross-scale feature extraction capabilities enable
reliable detection of blueberries in complex environments, underscoring its potential to
enhance both segmentation performance and model robustness.

This study also assessed the robustness of the proposed method under various data deg-
radation scenarios, including different scaling ratios, Gaussian blur, and noise intensities.
The results indicate that segmentation accuracy improves with increasing magnification
up to 4x, beyond which further magnification yields diminishing returns while substan-
tially increasing computational costs. Furthermore, while larger Gaussian blur kernels may
improve recognition in certain cases, overall segmentation performance deteriorates with
excessive blurring. Similarly, moderate noise levels may cause slight improvements, but
higher noise intensities severely degrade segmentation accuracy. These findings highlight
the importance of controlling data degradation in practical applications to maintain model
effectiveness.

Future research will focus on refining the Mamba architecture by integrating SRR and
semantic segmentation across diverse environmental conditions and data modalities. A par-
ticular emphasis will be placed on monitoring the detailed maturity stages of blueberry
crops, allowing for more granular assessments of growth progression. Additionally, future
efforts will include pixel-based analysis of sample plots for yield prediction, expanding the
application from ripeness evaluation to direct estimation of crop yields. These advance-
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ments are expected to significantly contribute to smart agricultural management, enhancing
precision farming techniques for optimized resource use and increased productivity.

Supplementary Information The online version contains supplementary material available at https://doi.org
/10.1007/s11119-025-10252-2.
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