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Abstract
Purpose  Precise segmentation of blueberry maturity is critical for optimizing harvestsched-
ules and maintaining product quality. Traditional methods, which rely on manualinspection, 
are not only labor-intensive but also cost-inefficient. This study presents a novelframework 
that integrates deep learning-based super-resolution reconstruction (SRR) withsemantic 
segmentation to provide a fast and accurate solution for maturity assessment.
Methods  The SRR module enhances image resolution, enabling more detailed feature 
extraction.Semantic segmentation models—incorporating convolutional neural networks 
(CNNs),Transformer-based models, and the Mamba-based state space architecture—further 
improvesegmentation precision.
Results  Experimental results indicate that the MambaIR modelachieves a structural similar-
ity index measure (SSIM) of 82.26% in SRR tasks, while the Mamba-based segmentation 
model attains a mean Intersection over Union (mIoU) of 83.15%.
Conclusion  By uniting SRR and semantic segmentation, our framework not only advances 
thetechnical accuracy of maturity detection but also holds strong potential for real-time, 
cost-effective deployment in precision agriculture systems, supporting intelligent decision-
making at scale.

Keywords  Blueberry maturity monitoring · Mamba-based deep learning · Semantic 
segmentation · Super-resolution reconstruction · UAV imagery

Introduction

Vaccinium corymbosum, commonly referred to as the blueberry, is a small blue fruit widely 
recognized for its low-calorie yet nutrient-dense composition. Blueberries are rich in antho-
cyanins, which are known to support retinal health and prevent eye fatigue and myopia. 
Additionally, their antioxidant properties have been shown to slow aging, enhance memory, 
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and reduce the risk of certain cancers (Rowland et al., 2012; Silva et al., 2020). Due to their 
high nutritional value and appealing flavor, blueberries have gained prominence as a global 
superfood. This rising demand has led to the proliferation of blueberry plantations, boosting 
both global production and consumption (Banerjee et al., 2020; Bauer & Visuals, 2008; Li 
et al., 2021a, b). Their nutritional benefits and market potential have solidified blueberries 
as a key cash crop in global agriculture.

Global cultivation of blueberries is largely driven by their rich nutritional profile (Bauer 
& Visuals, 2008). Traditionally, blueberry harvesting relies heavily on manual labor (Prasad 
et al., 2018). However, this process is both labor-intensive and time-consuming. Maturity 
assessment of blueberries has conventionally depended on the experience of the picker and 
visual inspection, which are prone to subjective biases. Accurate assessment of crop matu-
rity is essential for producers, as blueberries, unlike fruits such as apples and bananas, do 
not continue to ripen after harvest and exhibit a firm, tart texture when immature (Kader, 
1997). Immature blueberries are not suitable for sale, while overripe berries soften and rot 
quickly, reducing their shelf life. Consequently, precise determination of blueberry maturity 
is critical for maximizing yield and profitability. These challenges have prompted the explo-
ration of automated, scalable monitoring solutions, particularly those leveraging computer 
vision and UAV-assisted technologies to replace or augment manual assessment.

Advances in both hardware and software technologies, coupled with growing market 
demand, have led to the development of mechanized harvesting solutions, such as self-
propelled carts (Prasad et al., 2018), over-the-row (OTR) machines (Takeda et al., 2017), 
and semi-mechanical equipped with hand-held shakers (Kim et al., 2018), are used to assist 
manual harvesting. While these innovations have enhanced picking efficiency, they continue 
to face challenges in accurately assessing blueberry maturity, particularly due to environ-
mental factors like leaf shading and the small size of the fruit. To address these limitations, 
computer vision algorithms have been introduced, improving the precision and efficiency of 
maturity detection in agricultural products.

Moltó et al. (1992) were among the first to implement a visual localization system for 
estimating the number of mature citrus fruits through image analysis of their reflectance 
spectra during harvest. Similarly, Mendoza and Aguilera (2004) employed a computer 
vision system to classify the maturity of various banana varieties based on color, spotting, 
and texture, achieving a 98% accuracy rate, thereby demonstrating the potential of computer 
vision in fruit maturity prediction. Building on this, Farooque et al. (2013) utilized digital 
color cameras on wild blueberry harvesters to quantify berry loss by comparing pre- and 
post-harvest yields. Kaur et al. (2018) further refined this approach by using discrete cosine 
transformation and other image processing techniques to analyze the color, texture, and size 
of plums, achieving a final error rate of less than 2.4% in determining their maturity class.

The rapid advancement of deep learning technologies has further revolutionized com-
plex computer vision tasks. Convolutional neural networks (CNNs), which can automati-
cally detect important image features without prior knowledge or human intervention, have 
become a cornerstone in deep learning applications (Alzubaidi et al., 2021). Numerous stud-
ies have explored CNN-based fruit maturity assessments. Anatya et al. (2020) classified the 
maturity of five fruit types—popcorn, mango, melon, banana, and tomato—achieving a clas-
sification accuracy of 61% using a CNN model. Zhao et al. (2021) proposed a CNN-based 
algorithm for classifying melon maturity in complex environments, such as greenhouses. 
Aherwadi et al. (2022) developed a maturity classification model for bananas using three 
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datasets, concluding that CNN, particularly with AlexNet, is the most suitable deep learn-
ing method for detecting banana maturity and quality. Behera et al. (2021) employed Faster 
R-CNN to enhance model performance and modified the mean Intersection over Union 
(mIoU) to account for occluded fruit. In addition, the YOLO (You Only Look Once) algo-
rithm, a CNN-based object detection framework, has been shown to significantly improve 
processing speed and accuracy compared to traditional R-CNN methods. Variants such as 
Mogo YOLO (Koirala et al., 2019), Apple YOLO (Tian et al., 2019), and Wild Blueberry 
YOLO (MacEachern et al., 2023) have been developed to estimate fruit maturity and yield.

Despite the significant progress achieved by deep learning techniques in assessing blue-
berry maturity, several critical technical challenges remain unresolved. Before these meth-
ods can be fully applied to field-scale blueberry monitoring, it is important to understand 
the limitations of their enabling platforms, such as UAVs. The performance of computer 
vision models for blueberry maturity assessment is highly dependent on the quality of 
images captured in diverse environmental conditions at the planting site (Liu et al., 2020). 
Unmanned aerial vehicles (UAVs) offer a compact, versatile solution by providing high-
resolution, multispectral data, making them increasingly popular for monitoring fruits and 
other agricultural products (Radoglou-Grammatikis et al., 2020; Tsouros et al., 2019). UAVs 
can adjust flight altitudes based on different monitoring targets, offering distinct advantages 
over satellite-based remote sensing, such as reduced cloud and atmospheric interference, 
higher spatial resolution, and lower operational costs (Osco et al., 2021). Moreover, UAVs 
can efficiently and flexibly cover extensive farmland areas, enhancing both speed and cost 
control. During orchard surveillance, UAV-generated air thrust can also help uncover fruits 
concealed by dense foliage (Matese et al., 2015; Primicerio et al., 2012). However, chal-
lenges persist. Vibration from the UAV during image capture (Ellenberg et al., 2016) and the 
inability to closely approach the target often result in motion blur and reduced image resolu-
tion (Sieberth et al., 2014), which can obscure key information and complicate blueberry 
detection. These limitations necessitate advanced post-processing techniques to enhance 
image quality and support accurate downstream analysis.

To address the image degradation caused by UAV limitations, super-resolution recon-
struction (SRR) is a computer vision technique aimed at mitigating image motion blur and 
enhancing image resolution (Park et al., 2003). SRR approaches generally rely on three 
categories of algorithms: interpolation-based, reconstruction-based, and machine learning-
based algorithms (Li et al., 2020). Each class presents distinct limitations. Interpolation-
based SRR algorithms generate pixel values by resizing images based on spatial pixel 
relationships. While computationally simple and efficient, these methods often fail to pre-
serve fine details, leading to suboptimal reconstructions. Reconstruction-based algorithms 
utilize prior knowledge and mathematical models to generate high-resolution images but are 
less effective with texture-rich content. Traditional machine learning-based SRR models, 
which learn mappings between low- and high-resolution images from extensive datasets, 
offer better visual outcomes but are computationally demanding and challenging to optimize 
(Xiang et al., 2022). The introduction of the SRCNN algorithm marked a breakthrough in 
SRR, utilizing only three convolutional layers and an end-to-end training framework (Dong 
et al., 2016). This development paved the way for deep learning-based SRR. Subsequent 
innovations include EDSR (Lim et al., 2017), RCAN (Zhang et al., 2018), SRGAN (Ledig 
et al., 2017), Real-ESRGAN (Wang et al., 2021a, b), and MambaIR (Guo et al., 2024), all 
of which have been applied across various domains such as medical imaging (Hatvani et al., 
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2019; Li et al., 2021a, b), facial recognition (Jiang et al., 2023), and remote sensing (Wang 
et al., 2022a, b; Zhao et al., 2024a, b).

Blueberry clusters present a unique challenge for maturity assessment, as individual 
berries within the same cluster may vary in ripeness, while others remain immature. This 
heterogeneity, compounded by background interference from dense foliage and branching, 
complicates accurate maturity evaluation. While object detection algorithms are capable of 
identifying individual blueberries, they are less efficient in assessing maturity across entire 
planting areas. To overcome these limitations, this study proposes a semantic segmentation 
approach, enabling the differentiation of blueberries by maturity level at the pixel level.

Existing research on fruit maturity assessment has predominantly employed ground-
based vehicles (Bargoti & Underwood, 2017; Koirala et al., 2019) or near-infrared spectros-
copy (Shah et al., 2020). Studies focused on blueberry maturity, particularly for wild and 
plantation-grown varieties, have largely concentrated on improving detection algorithms 
like YOLO (Liu et al., 2023; MacEachern et al., 2023; Zhao et al., 2025). Although multi-
source data collection techniques have been explored, UAV-based data acquisition from 
blueberry fields and comparative analyses of SRR architectures in conjunction with seman-
tic segmentation have yet to be fully investigated.

The objective of this study is to propose an ensemble approach for assessing the overall 
maturity of blueberry plantations using SRR and semantic segmentation models. First, a 
deep learning-based SRR training dataset is constructed, which is used to train SRR net-
works based on various deep learning algorithms. The quality of the reconstructed blueberry 
images is then evaluated using peak signal-to-noise ratio (PSNR) and structural Similarity 
Index (SSIM) metrics. Subsequently, a semantic segmentation network is trained using the 
original high-resolution blueberry dataset. The trained model is then applied to different test 
sets, and the results are compared and analyzed for overall performance.

Methodology

The methodology of this study is summarized in Fig.  1. Initially, high-resolution (HR) 
images of the blueberry plantation, captured with a consumer-grade UAV at a resolution 
of 512 × 512 pixels, are downsampled to create low-resolution (LR) images with a resolu-
tion of 128 × 128 pixels. Using a training dataset, the nonlinear mapping between these LR 
and HR images is learned by selected SRR models. Based on this mapping, SR images are 
reconstructed from the LR images. These reconstructed SR images are then segmented at 
the pixel level using a pre-trained blueberry segmentation model, which classifies and labels 
each pixel corresponding to the blueberry fruit. The performance of various SRR algorithms 
is then quantitatively analyzed using the segmentation results, and the distribution and ripe-
ness of blueberries—both ripe and unripe—across the plantation are evaluated. Details of 
each step are provided in subsections Data collection through Blueberry segmentation.

Survey site

The study was conducted in a blueberry plantation located in Chengjiang County, Yuxi City, 
China, as shown in Fig. 2. The region’s subtropical monsoon climate, with mild winters, 
cool summers, and an average annual temperature of 15–20 °C, provides optimal growing 
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conditions for blueberries. The area receives 1,000 to 1,200 millimeters of precipitation 
annually, ensuring sufficient moisture for the crop. Chengjiang’s average altitude of 1,800 
m creates substantial diurnal temperature variation, which promotes the accumulation of 
sugars and anthocyanins in blueberries. The region’s acidic to slightly acidic soil, rich in 
organic matter and minerals, further supports blueberry cultivation, as blueberries favor 
acidic soils.

Data collection

For data acquisition, a DJI Mini 3 drone was used, weighing 248 g and featuring a flight 
time of 38 min, a field of view (FOV) of 82.1°, and a maximum image resolution of 4000 
× 3000 pixels. To optimize image quality, data collection took place under clear skies with 
light breezes. The drone flew at an altitude of 3 m, capturing the entire plantation in approxi-
mately 0.5 h. Although the dataset was acquired from a single plantation, it exhibits con-
siderable diversity. Due to staggered harvesting practices, blueberries at various stages of 
maturity coexisted naturally, ensuring a wide range of color, shape, and density distribu-
tions. Additionally, the UAV was operated at varying distances and viewing angles across 
the field, introducing variability in image scale, occlusion, and illumination. Such diversity 
is essential for improving the robustness of machine learning models in agricultural settings 
and aligns with other UAV-based remote sensing applications (Muksimova et al., 2024; 
Zhao et al., 2024c, d).

Fig. 1  Workflow of the proposed framework for blueberry maturity assessment. (Data Collection: High-
resolution aerial images are collected using an unmanned aerial vehicle (UAV) over blueberry plantations. 
Super-resolution Reconstruction: The original high-resolution images (512 × 512) are downsampled to 
low-resolution (128 × 128) to train SRR models using seven different SRR algorithms. These models 
reconstruct low-resolution images to enhance spatial resolution. Segmentation: The reconstructed and 
original HR images are input into various semantic segmentation algorithms to predict pixel-wise matu-
rity levels. Quantification: The segmentation results are analyzed to evaluate the effect of different SRR 
methods on segmentation performance and to quantify the coverage of mature and immature blueberries 
across the dataset.)
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Fig. 2  Location map of blueberry plantation areas
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Data preprocessing

During the data preprocessing stage, the UAV-captured images were cropped using a sliding 
window technique, where each window extracted a smaller section of the original image, 
producing a series of image segments. Each original high-resolution (HR) image had a reso-
lution of 512 × 512 pixels, ensuring adequate detail for subsequent processing. From each 
original high-resolution image, 1,000 cropped images were generated. These HR images 
were then downsampled to 128 × 128 pixels using a degradation model, creating LR images. 
The image preprocessing phase also included data augmentation techniques such as rotating 
the images by 180 degrees, applying horizontal and vertical flips, and scaling the images 
by factors of 0.6, 0.7, 0.8, and 0.9. This augmented the dataset, enhancing the diversity of 
visual perspectives and expanding its size by a factor of 30. Parameters for window size and 
stride were optimized through preliminary experiments to strike a balance between compu-
tational efficiency and model performance. Specifically, a window size of 128 pixels and 
a stride of 32 pixels were used, as determined through preliminary experiments to balance 
detail capture and computational cost.

Super-resolution reconstruction

Deep learning-based SRR is utilized to enhance the quality of the LR images. To train the 
SRR model, a training dataset was prepared by downsampling the HR images with a deg-
radation model. These LR images were used as input, with the HR images serving as the 
ground truth. Given that different SRR models employ various architectures and strategies 
for handling image features like edges and textures, seven deep learning-based SRR algo-
rithms were selected for this study: Real-ESRGAN, SRCNN, EDSR, SwinIR, RCAN, HAT, 
and MambaIR. During training, the LR images were input into the SRR models, and a loss 
function was applied to quantify the difference between the predicted SR images and the 
actual HR images, thus optimizing the SRR models. After training, new LR images were 
processed by the trained SRR models to generate corresponding SR images. The quality of 
these SR images was evaluated using two metrics: Peak Signal-to-Noise Ratio (PSNR) and 
SSIM.

Architectures of SRR networks

Numerous researchers have developed various SRR models based on distinct network 
architectures. In this study, seven SRR models employing different network strategies were 
selected for comparison to achieve optimal blueberry maturity assessment, as illustrated 
in Fig. 3. In this diagram, “Conv” represents convolutional layers, and “Deconv” denotes 
deconvolutional layers.

The SRCNN model, one of the earliest SRR models based on deep learning, begins by 
applying bicubic interpolation to LR images. It then proceeds with three stages: feature 
extraction, nonlinear mapping, and reconstruction, followed by optimizing the loss between 
the interpolated and reference images. Although SRCNN’s simple architecture allows for 
fast computation, it struggles with capturing complex image features and demonstrates 
suboptimal performance when handling large datasets. The EDSR model improves upon 
SRCNN by removing the BatchNorm (BN) layers, which consume memory resources. 
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Fig. 3  Schematic depiction of SRR network architecture

 

1 3

56  Page 8 of 31



Precision Agriculture (2025) 26:56

This change allows more residual blocks to be stacked, thereby enhancing model per-
formance. The RCAN model incorporates a channel attention mechanism with residual 
blocks, enabling it to adaptively readjust feature channels within a deep network, improv-
ing accuracy in complex image restoration tasks. Real-ESRGAN, an improvement over 
ESRGAN, integrates perceptual and adversarial losses, making it particularly effective at 
reconstructing images with complex textures and fine details, closely approximating real-
world visuals. Transformer-based architectures have also been explored in SRR. Initially 
developed for natural language processing (Vaswani et al., 2017) Transformer architectures 
have since been adapted for computer vision tasks. SwinIR, introduced by, builds on the 
Swin Transformer (Liu et al., 2021) and utilizes a sliding window mechanism for self-
attention within local image windows, efficiently capturing both local and global image fea-
tures. HAT (Hybrid Attention Transformer) (Chen et al., 2023) combines multiple attention 
mechanisms, including channel attention and window-based self-attention, to capture global 
dependencies across layers for improved feature extraction and accurate image reconstruc-
tion. Finally, MambaIR, based on a selectively structured state space mode (Guo et al., 
2024), leverages the global receptive field advantage to capture long-distance dependencies 
in images. Its Residual State Space Block (RSSB) enhances the model’s ability to address 
issues like local pixel forgetting and channel redundancy.

Training of the networks

During training, iterative optimization is conducted to update model parameters based on 
the loss between each LR image input and the corresponding HR image. For CNN-based 
models, the Adam optimizer (Singarimbun et al., 2019) is used with the L1 loss function, 
as defined below:

	
L1(O, R) = 1

pq

∑
p−1
i=0

∑
q−1
j=0 ∥ Oi,j − Ri,j ∥ � (1)

where Oi, j and Ri, j represent the pixel values at position (i, j) in the HR image and the SR 
image, respectively, and p×q is the image resolution.

In generative adversarial network (GAN)-based models, perceptual loss and adversarial 
loss are employed to enhance the realism of reconstructed images. Perceptual loss measures 
the difference between generated and target images based on high-level features extracted 
by a pre-trained network (e.g., VGG), ensuring that the SR images resemble real-world 
images beyond simple pixel-level accuracy:

	 Lperceptual =
∑

N
i=1 ∥ ϕ i (ISR) − ϕ i (IHR) ∥ 2

2� (2)

	 Ladv = −log (D( G (z) ))� (3)

	 LD = − (log (D( x )) + log(1 − D(G (z) )))� (4)

here, ϕ i denotes the feature map extracted by the pre-trained network at layer i, ISR is 
the generated SR image, and IHR is the target HR image. Adversarial loss is a core com-
ponent in Generative Adversarial Networks (GANs) used to train the generator to make its 
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generated images as realistic as possible to fool the discriminator. For the generator, G (z) 
represents the image generated by the generator, D is the discriminator, and z is the input 
noise or the low-resolution image. For the discriminator, x is the true image.

Evaluation metrics

The performance of the SRR models was evaluated using PSNR and SSIM. PSNR quanti-
fies image similarity by comparing the mean squared error (MSE) between the original 
and reconstructed images, with a higher PSNR indicating closer resemblance. SSIM evalu-
ates similarity by incorporating brightness, contrast, and structural information, with values 
closer to 1 signifying greater similarity (Wang et al., 2021a, b).

In the following Eq. (5), R (i, j) represents the SRR image, while O (i, j) denotes the 
original HR image with dimensions p   × q. PSNR, defined in Eq. (6), quantifies the similar-
ity between the SRR and original HR images. Here, MAXI represents the highest gray value 
within the image, conventionally set to 255. A higher PSNR value indicates greater image 
similarity. In Eq. (7), µO and σR represent the mean of the total pixels in the image   O and 
the variances of image R. The covariance between   O and  R is denoted by σOR. Constants 
C1 and C2 are introduced to prevent division by zero in the denominator:

	
MSE = 1

pq
Σ p−1

i=0 Σ q−1
j=0[O (i, j) − R (i, j)]2� (5)

	
PSNR = 10 × lg10

(
MAX2

I

MSE

)
� (6)

	
SSIM (O, R) = (2µ Oµ R + C1) (2σ OR + C2)

(µ 2
O + µ 2

R + C1) (σ 2
O + σ 2

R + C2) � (7)

Blueberry segmentation

Network architecture

Image semantic segmentation, a fundamental task in computer vision, aims to assign a pre-
defined category label to each pixel in an image (Csurka & Perronnin, 2011). Deep learning-
based segmentation methods offer significant advantages by training on large pixel-labeled 
datasets, enabling neural networks to learn complex mappings between visual features 
and semantic labels. By leveraging scene information and high-level semantic features, 
these models can accurately interpret detailed image content, leading to a comprehensive 
understanding of diverse semantic categories (Zeiler & Fergus, 2014). In this study, eight 
semantic segmentation architectures were employed to assess blueberry ripeness across an 
entire plantation: FPN, U-Net, DeepLabV3Plus, Unet++, MANet, DPT, ChangeMamba, 
and UperNet.

FPN  Feature Pyramid Networks (FPN) were introduced in 2017 to tackle multi-scale object 
detection by constructing pyramid features (Lin et al., 2017). Prior approaches relied solely 

1 3

56  Page 10 of 31



Precision Agriculture (2025) 26:56

on final feature map outputs, where lower-level features excelled in spatial accuracy but 
lacked semantic richness, and upper-level features offered stronger semantics but weaker 
localization. FPN addresses this by connecting high-level, low-resolution features with low-
level, high-resolution ones in a top-down manner. This integration enhances the detection of 
small objects without increasing computational load.

UperNet  The design of UperNet builds upon FPN and the Pyramid Pooling Module (PPM). 
UperNet is explored for the task of unified perceptual parsing, aiming to help machine 
vision systems recognize as many visual concepts as possible from a given image. UperNet 
can learn the differences between various image datasets and perform joint reasoning (Xiao 
et al., 2018). Additionally, it is capable of predicting pixel-level texture labels using only 
image-level annotations.

U-Net  U-Net is a deep learning-based convolutional neural network that consists of an 
encoder (down-sampling path) and a decoder (up-sampling path), forming a distinctive 
U-shaped architecture (Ronneberger et al., 2015). It consists of an encoder for down-sam-
pling and a decoder for up-sampling, connected by skip connections, which retain spatial 
information for better localization. Despite its widespread use, U-Net has limitations, such 
as the uncertainty regarding optimal network depth and skip connections being restricted to 
the same scale.

Unet++  Unet++, an enhanced version, addresses these issues by efficiently integrating net-
works of varying depths and redesigning skip connections to aggregate multi-scale features. 
This redesign increases flexibility and improves inference speed (Zhou et al., 2018).

DeepLabV3Plus  DeepLabV3Plus is another encoder-decoder architecture that uses atrous 
convolution and atrous separable convolution to expand the receptive field and extract 
multi-scale features (Chen et al., 2018). These features are fused, and a 1 × 1 convolution is 
applied to adjust channel numbers. However, DeepLabV3Plus faces challenges in computa-
tional efficiency when processing large images.

MA-Net  MA-Net addresses these challenges by introducing the Position Attention Block 
(PAB), which leverages a self-attention mechanism to model the interdependencies between 
features in the spatial dimension, thus capturing pixel-to-pixel spatial dependencies across 
the entire image (Li et al., 2022). Additionally, MA-Net employs the Multi-Scale Fusion 
Attention Block (MFAB) to capture channel dependencies between feature maps. This 
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attention mechanism enables MA-Net to effectively capture rich contextual dependencies 
and adaptively integrate local features with global dependencies.

DPT  DPT is a dense prediction network built on the Transformer architecture, which pro-
cesses representations at a fixed high resolution and provides a global receptive field at each 
stage (Ranftl et al., 2021). The use of Transformers allows DPT to excel in dense prediction 
tasks by capturing long-range dependencies within the image.

ChangeMamba  ChangeMamba, based on the VMamba architecture, introduces spatio-
temporal state space models for image segmentation (Chen et al., 2024). It employs a cross-
scanning module to process image blocks across multiple spatial directions simultaneously, 
effectively capturing long-range contextual information. This multi-dimensional approach 
enhances performance on high-resolution images while maintaining computational effi-
ciency. ChangeMamba’s structural design allows it to handle subtle variations in dynamic 
scenes, making it robust and adaptable for complex image tasks where high accuracy and 
efficiency are essential.

Evaluation metrics

To assess the performance of blueberry maturity segmentation, four prevalent metrics are 
utilized: Precision, Recall, F1-score, and Intersection over Union (IoU). The IoU metric 
quantitatively evaluates the extent of overlap between the predicted and actual results, with 
a higher IoU reflecting enhanced segmentation accuracy.

	
Precision = TP

TP + FP
� (9)

	
Recall = TP

TP + FN
� (10)

	
F1 − score = 2 × Precision × Recall

Precision + Recall
� (11)

	
IoU = TP

TP + FN + FP
� (12)

Here, TP stands for true positives, i.e., pixels correctly segmented as targets; FP stands for 
false positives, i.e., non-target pixels mistaken for targets; and FN stands for false negatives, 
i.e., real targets mistaken for non-target pixels. In this study, both IoU and mean IoU (mIoU) 
were calculated to comprehensively evaluate the segmentation performance across three 
regions: the background, the mature part of the blueberry fruit, and the unripe part.
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Result

Datasets and experiment setup

Datasets description

The SRR model in this study was trained using a specialized blueberry dataset, tailored 
specifically for the assessment of maturity levels. This dataset comprises 1,000 images, 
each with a resolution of 512 × 512 pixels, collected directly from a blueberry plantation 
to ensure the inclusion of domain-specific characteristics. These curated images cover a 
wide range of ripeness stages, providing diverse visual features essential for accurate super-
resolution reconstruction.

The corresponding LR image set was created by applying a controlled degradation pro-
cess to the original high-resolution HR images. This process simulated the types of blurring 
and resolution loss commonly observed in real-world UAV imagery. By mimicking realistic 
conditions, this approach enhanced the model’s capacity to generalize across diverse image 
qualities and improved its robustness in both natural and agricultural environments.

	 g = (f ⊗ h)↓ bicubic
s + η � (13)

in this equation, g represents the LR image, while f  denotes the HR image. The function 
h corresponds to the point spread function (PSF) modeled under uniform linear motion, 
describing the degradation process. The symbol ⊗  indicates the convolution operation 
applied between h and f . The downsampling operation is represented by ↓, which reduces 
the image resolution by a factor s (the magnification factor). The bicubic interpolation algo-
rithm is employed to perform the downsampling operation, reducing the resolution of the 
image by a factor of s. Additionally, η represents Gaussian white noise, which is added to 
simulate random noise encountered during image acquisition.

To diversify the training dataset and increase the efficiency of the training process, LR 
sub-images of size lsub × lsub pixels are randomly extracted and paired with their cor-
responding HR sub-images, resized to slsub × slsub pixels, where s represents the mag-
nification factor. These patch pairs provided training samples that capture varied spatial 
patterns and scale variations, thereby boosting reconstruction performance.

To simulate real-world scenarios of low-resolution and blurry imagery, the correspond-
ing LR image set was generated by applying degradation techniques to the HR images. This 
degradation process allowed the model to generalize effectively across various image quali-
ties, enhancing its robustness in both natural and agricultural environments. The approach 
ensures that the model performs well even under challenging conditions, such as suboptimal 
image captures during field operations.

Experimental setup

In this study, seven SRR models—Real-ESRGAN, SRCNN, EDSR, SwinIR, RCAN, HAT, 
and MambaIR—were selected to reconstruct low-resolution blueberry images. Each model 
brings distinct strengths in addressing challenges such as noise reduction, texture preserva-
tion, and high-resolution feature extraction. This selection allows for a comprehensive com-
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parison across diverse architectural designs. The SRR process was conducted in three key 
phases: (1) Training: The seven SRR networks were trained on the same dataset, consisting 
of HR blueberry images. (2) Reconstruction: The trained models were used to reconstruct 
LR images from the test dataset, producing super resolution (SR) outputs. (3) Evaluation: 
The performance of each model was evaluated using Peak Signal-to-Noise Ratio (PSNR) 
and SSIM metrics to assess reconstruction quality.

For the semantic segmentation task, the procedure was structured as follows: (1) Train-
ing: The proposed semantic segmentation network was trained on the HR blueberry image 
dataset, using both training and validation sets. (2) Segmentation: The trained model was 
applied to perform pixel-wise semantic segmentation on the test set. (3) Evaluation: The 
segmentation results were quantitatively assessed using Intersection over Union (IoU) and 
mean Intersection over Union (mIoU) metrics to measure the accuracy of the blueberry 
maturity classification at the pixel level.

This dual approach ensures a thorough evaluation of both image reconstruction and 
semantic segmentation performance, enhancing the accuracy of blueberry maturity 
assessment.

To ensure reproducibility and fairness, all SRR models were trained under a unified 
configuration: 300 training epochs, a batch size of 16, an initial learning rate of 0.00005 
(decayed by half every 50 epochs), and the L1 loss function optimized using the Adam 
algorithm. Training was performed on a local workstation equipped with an NVIDIA RTX 
4090 GPU (24 GB VRAM) and 64 GB RAM, providing sufficient computational resources 
for high-resolution image reconstruction.

For the semantic segmentation task, training was conducted on a dedicated high-per-
formance computing server equipped with a Tesla V100 GPU (32 GB), an Intel® Xeon® 
E5-2698 v4 CPU, and running Ubuntu 20.04. The environment utilized PyTorch 2.2.1 with 
CUDA 12.2 and cuDNN 8.8.0. The models were trained using 448 × 448 input images, a 
batch size of 8, and an initial learning rate of 1e-5 for a total of 20,000 iterations. The Adam 
optimizer and cross-entropy loss were used across all segmentation networks. Encoder-
decoder pairs such as UNet++, DPT, and ChangeMamba were initialized with pretrained 
weights, where available, to facilitate faster convergence and improved performance.

Inference for both SRR and segmentation tasks was conducted on the same local work-
station used for SRR training (RTX 4090 GPU), ensuring a consistent environment for 
runtime benchmarking. A detailed summary of the training environments and configuration 
parameters for both tasks is provided in Table 1.

Analysis of the super-resolution reconstruction

This study employed deep learning-based SRR models, each leveraging different archi-
tectural strategies, to enhance the resolution of LR blueberry images. Table 2 presents the 
performance evaluation results of various SRR methods on a test set of LR images with a 
fourfold magnification factor. As shown in Table 1 and Fig. 4, most deep learning-based SRR 
methods outperform the traditional Bicubic interpolation method in terms of Peak Signal-
to-Noise Ratio (PSNR) and SSIM, demonstrating superior image reconstruction capabili-
ties. Notably, while Real-ESRGAN achieves a PSNR of 26.06 dB and an SSIM of 67.62%, 
slightly lower than those of the Bicubic method, this does not indicate poor performance. 
Real-ESRGAN incorporates a perceptual loss function, which is specifically designed to 
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prioritize high-frequency details and enhance texture realism (Johnson et al., 2016). This 
approach may result in lower PSNR and SSIM values, which focus on pixel-level accuracy, 
but it excels in generating visually realistic images that closely resemble natural scenes. 
Consequently, Real-ESRGAN is particularly advantageous in applications where percep-
tual quality is paramount. Among the SRR models evaluated, MambaIR exhibited the best 
performance, achieving a PSNR of 30.87 dB and an SSIM of 82.26%. The images recon-
structed by MambaIR closely matched the original high-resolution images, underscoring 
the effectiveness of its selection mechanism and hardware-aware state-space architecture. 

Table 2  Evaluation metrics of different methods on the LR testsets with the magnification factor of 4
Metrics Bicubic Real-ESRGAN SRCNN EDSR SwinIR RCAN HAT MambaIR
PSNR(dB) 28.19 26.06 29.80 30.68 30.78 30.81 30.86 30.87
SSIM(%) 73.93 67.62 79.11 81.79 82.01 82.13 82.25 82.26
Bold values indicate the best results

Fig. 4  Comparison of the visual effects of the reconstructed images based on the eight methods

 

Experiment configuration SRR Models Segmentation 
Models

Operating system Ubuntu 18.04 Ubuntu 20.04
Bit architecture 32 bit 32 bit
Random Access Memory 64GB 64GB
GPU NVIDIA GeForce 

RTX 4090
Tesla V100

Memory 24GB 32GB
CPU Intel(R) Xeon(R) 

Platinum i9-13900k
Intel(R) 
Xeon(R) E5-
2698 v4

Pytorch 1.10 2.2.1
CUDA 11.1 12.2
Cudnn 8.0.4 8.8.0

Table 1  Training configurations 
for SRR and semantic segmenta-
tion models
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This superior performance highlights MambaIR’s potential for high-fidelity image recon-
struction tasks, particularly in agricultural contexts requiring detailed feature preservation 
for accurate maturity assessments.

Figure 4 illustrates the comparison between the original HR image and images recon-
structed by various SRR methods. The Bicubic method shows a significant loss in image 
quality, particularly in edge clarity and texture detail, resulting in blurred lines and degraded 
visual features. In contrast, deep learning-based SRR methods exhibit superior performance 
in retaining edge sharpness and preserving texture details, yielding images that are visually 
closer to the original HR images. However, challenges remain. Figure  4 highlights that 
the SR images produced by the Bicubic method are the most blurred, reflecting the lowest 
perceptual quality. This observation is consistent with the Bicubic algorithm’s performance 
in Table 2, where it ranks near the bottom in PSNR and SSIM metrics. Although Real-
ESRGAN scores lowest in these quantitative measures, its SR images are visually superior, 
appearing sharper and with reduced noise compared to other methods. However, the details 
and textures generated by Real-ESRGAN still differ from those in the true HR images. 
Excluding Bicubic and Real-ESRGAN, other SRR methods produce images that closely 
match the original HR images in terms of detail and texture, indicating their effectiveness 
in generating high-quality SR images. Overall, qualitative visual assessments complement 
quantitative analyses, with MambaIR achieving an optimal balance between visual and 
quantitative quality.

Building on this analysis, MambaIR stands out for its significant global receptive field, 
allowing it to capture intricate details and preserve textures more effectively than other 
methods. This ability to reproduce complex features in blueberry images highlights the 
model’s strengths, particularly for agricultural applications where texture and detail are cru-
cial for assessing fruit maturity. Despite advancements in clarity and detail restoration, deep 
learning-based methods face inherent trade-offs between sharpness and realism, such as 
potential over-smoothing of edges. Nonetheless, these SRR models represent a substantial 
improvement over traditional methods like Bicubic, making them well-suited for blueberry 
image reconstruction.

Analysis of semantic segmentation

Single model performance

For the semantic segmentation task, the dataset captured by the UAV was divided into train-
ing, validation, and test sets at a 7:2:1 ratio. All images were meticulously labeled using the 
Labelme tool to ensure high-quality ground truth data. The study employed three encoder 
types—CNN, Transformer, and Mamba architectures—combined with eight different seg-
mentation architectures: FPN, U-Net, DeepLabV3Plus, Unet++, MANet, DPT, Change-
Mamba, and UperNet, resulting in 27 unique semantic segmentation models. Additionally, 
two ensemble models were constructed to further enhance performance. The performance 
is summarized in Table 3.

IoU (Intersection over Union) was used to evaluate segmentation accuracy across three 
target categories: ripe blueberries, unripe blueberries, and background. A higher IoU indi-
cates better segmentation accuracy. The mean IoU (mIoU) results reveal that CNN-based 
encoders, particularly ResNeXt101_32 × 8 d and ResNet101 variants of Unet++, demon-
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# Decoder Encoder IoU 
Mature

IoU 
Immuature

mIoU

CNN-based Encoder
1 FPN EfficientNet-b5 75.18 63.73 78.46
2 UNet EfficientNet-b5 76.39 64.52 79.17
3 Deep-

LabV3++
EfficientNet-b5 71.04 59.04 75.34

4 UNet++ EfficientNet-b5 77.49 64.91 79.69
5 FPN ResNeXt101_32 

× 8 d
77.95 66.06 80.26

6 UNet ResNeXt101_32 
× 8 d

78.64 66.16 80.53

7 Deep-
LabV3+

ResNeXt101_32 
× 8 d

75.96 64.38 78.95

8 UNet++ ResNeXt101_32 
× 8 d

79.93 67.70 81.54

9 FPN ResNet101 75.32 63.30 78.36
10 UNet ResNet101 77.34 64.66 79.54
11 Deep-

LabV3+
ResNet101 74.35 60.94 77.08

12 UNet++ ResNet101 78.82 66.39 80.64
13 MANet EfficientNet-b5 73.82 63.98 78.08
14 MANet ResNeXt101_32 

× 8 d
77.71 66.20 80.24

15 MANet ResNet101 76.21 64.48 79.12
Transformer-based Encoder
16 FPN SegFormer(mit_

b5)
77.47 64.00 79.33

17 UNet SegFormer(mit_
b5)

75.49 64.50 78.88

18 MANet SegFormer(mit_
b5)

77.52 64.25 79.44

19 DPT DINOv2(vit_1) 80.67 67.99 81.87
20 DPT DINOv2(vit_b) 80.50 66.79 81.37
21 DPT DINOv2(vit_s) 80.10 66.87 81.31
Mamba-based Encoder
22 Change-

Mamba
VMamba (base) 78.27 65.73 80.25

23 Change-
Mamba

VMamba (tiny) 78.38 66.23 80.48

24 Change-
Mamba

VMamba 
(small)

78.09 65.17 79.98

25 UperNet VMamba (base) 77.92 64.38 79.61
26 UperNet VMamba (tiny) 78.17 65.31 80.06
27 UperNet VMamba 

(small)
77.53 64.33 79.47

Ensemble Model
8 + 19 + 23 (ours) 81.82 70.29 83.13

Table 3  Segmentation perfor-
mance of various models

Bold values indicate the best 
results
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strated strong segmentation capabilities, achieving mIoU values of 81.54 and 80.64, respec-
tively. ResNeXt101_32 × 8 d excelled in handling background complexity, outperforming 
other models in background classification accuracy.

In the Transformer-based experiments, DPT and its variants using the DINOv2 model 
family (DINOv2(vit_1), DINOv2(vit_b), DINOv2(vit_s)) achieved impressive results. 
DINOv2(vit_1), in particular, achieved the highest accuracy for ripe and unripe fruit classifi-
cation tasks, with an mIoU of 81.87, surpassing other models in detailed fruit segmentation.

Additionally, the Mamba-based Encoder demonstrated strong performance, with all six 
tested models showing high robustness, maintaining mIoU values around 80. This con-
sistent performance not only highlights the adaptability of the Mamba architecture across 
different semantic segmentation tasks but also suggests its significant potential for further 
optimization and extension.

By analyzing these models in detail, this study finds that networks based on different 
Encoders each have unique strengths in addressing the semantic segmentation of blueberry 
fruits. While CNN, Transformer, and Mamba architectures differ in their segmentation per-
formance across various categories, overall, Transformer and Mamba architectures exhibit 
greater potential in handling high-complexity image details, whereas the CNN architecture 
excels in computational efficiency and background processing.

Based on the Precision, Recall, F1-score, mIoU, and Mature IoU metrics discussed 
in Sect. 2.5.3, this study compares the segmentation performance of the best-performing 
Ensembled fusion methods across different test sets. These include the HR test set, the test 
set generated using the Bicubic method, and the SR test sets produced by six other SRR 
models. As shown in Table 4, SRCNN delivers the highest Precision at 89.64%, while the 
HR test set achieves the best results in Recall, F1-score, mIoU, and Mature IoU, with val-
ues of 91.97%, 90.39%, 83.13%, and 81.82%, respectively. In contrast, the Bicubic test set 
exhibits the poorest performance across all evaluation metrics. Among the SRR methods, 
the five SR test sets show similar results, with MambaIR leading the group, delivering the 
best performance across the SR test sets, second only to the HR test set. The other SRR 
methods display comparable outcomes, further highlighting MambaIR’s edge in segmenta-
tion accuracy.

Figure 5 visually compares the segmentation results for partially mature and immature 
blueberries, with the second column providing ground truth labels for reference. The HR 
test set demonstrates the most accurate segmentation, closely matching the ground truth, 
while the Bicubic method shows significant errors and omissions. SRR-based test sets 
markedly improved segmentation accuracy, with MambaIR performing particularly well. 
Figure 6 further highlights that all SRR-based test sets significantly outperform the Bicubic 

Table 4  Segmentation results of the testsets reconstructed by different SRR models using ensemble segmen-
tation model
Metrics (%) HR Bicubic Real-ESRGAN SRCNN EDSR SwinIR RCAN MambaIR
Precision 88.90 86.98 88.02 89.64 87.88 88.12 87.92 88.93
Recall 91.97 85.19 87.76 88.14 89.08 91.31 91.55 91.64
F1-score 90.39 87.45 87.88 88.85 89.00 89.66 89.66 89.67
mIoU 83.13 78.84 79.36 80.86 81.06 82.01 82.01 82.04
Mature IoU 81.82 78.22 77.09 80.27 80.30 80.76 80.78 80.90
Bold values indicate the best results

1 3

56  Page 18 of 31



Precision Agriculture (2025) 26:56

Fig. 6  Comparative results of different semantic segmentation models applied to HR, Bicubic, and Mam-
baIR-enhanced datasets. (Each block shows the segmentation results of a specific segmentation model 
(e.g., DeepLabV3+, UNet++, MANet) under three different input conditions. The red masks correspond 
to mature blueberries, and the green masks indicate immature ones. This figure demonstrates how model 
performance varies with input image quality and highlights the advantage of using SRR-enhanced im-
agery, particularly with the MambaIR method. The results indicate that MambaIR consistently improves 
segmentation accuracy across all models. Ensemble results are shown at the bottom-right as a baseline 
for optimal performance.)

 

Fig. 5  Qualitative comparison of segmentation results across different SRR methods on sample test im-
ages.(Each column presents the segmentation output of a specific SRR method (e.g., SRCNN, Real-
ESRGAN, MambaIR) followed by semantic segmentation using the same model. The first two columns 
show the original UAV image and its corresponding ground truth mask. The red regions represent mature 
blueberries, while green regions represent immature ones. Yellow circles highlight key regions of interest 
where differences in segmentation performance are most apparent—such as missed detections or over-
segmentation. Models like MambaIR and SwinIR generally provide clearer and more accurate segmenta-
tion in these challenging areas.)
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method, underscoring the efficacy of SRR models in enhancing segmentation accuracy for 
blueberry maturity assessment.

Ensemble learning approach

This study enhanced the accuracy and robustness of blueberry maturity segmentation by 
employing an ensemble learning approach. This method combines 27 segmentation mod-
els based on CNN, Transformer, and Mamba architectures. By leveraging the strengths of 
multiple models, ensemble learning typically achieves superior prediction performance in 
complex tasks, particularly in high-complexity scenarios like image segmentation (Dong et 
al., 2020).

To construct the final integration model, we first evaluated the segmentation performance 
of all 27 models and selected the top-performing ones with mIoU values exceeding 81. 
Specifically, three representative models were chosen: ResNeXt101_32 × 8 d in UNet++ 
(CNN-based), DINOv2(vit_1) in DPT (Transformer-based), and ChangeMamba (VMamba-
tiny) (Mamba-based). These models were selected for their complementary strengths: 
ResNeXt101_32 × 8 d excels in detailed segmentation of complex backgrounds, DINOv2 
captures fine texture and edge information, and ChangeMamba demonstrates superior light-
weight performance and temporal modeling capabilities. By integrating these models, this 
study effectively merged their strengths to enhance overall segmentation performance. The 
ensemble was implemented by averaging the softmax outputs (pixel-wise probability maps) 
of the three models. This late fusion strategy was chosen to maintain the diversity of feature 
representations while reducing variance.

The ensemble model, which combined these top models, achieved superior performance, 
with an mIoU of 83.05 in the first ensemble and 83.13 in a more diverse version. These 
results significantly surpassed the individual models’ performance, showcasing the effec-
tiveness of ensemble learning in improving segmentation accuracy, particularly for blue-
berry fruits with irregular textures and edges.

Discussion

Finally, this study tested the robustness of our method on degraded input data, focusing on 
three aspects: (1) the effect of different scaling ratios on model performance; (2) the impact 
of varying degrees of Gaussian blur on the input data; and (3) the effect of different intensi-
ties of Gaussian noise on the input data.

The influence of magnification factor

The effectiveness of SRR is profoundly influenced by the magnification factor, which gov-
erns the enlargement ratio from LR to HR. Variations in magnification significantly affect 
the model’s ability to recover intricate image details, a critical aspect in tasks such as blue-
berry maturity segmentation. Lin et al. (2024) demonstrated that the magnification factor 
not only substantially affects visual quality but also impacts performance metrics like Peak 
Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM). Moreover, 
multiscale approaches have enhanced SRR models’ adaptability to different magnification 
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factors by optimizing network architectures, thereby improving both reconstruction quality 
and model robustness, as highlighted by Cheng et al. (2022). In light of these findings, this 
study examines the effects of varying magnification factors on the performance of SRR, 
specifically in the context of blueberry maturity segmentation.

The experimental procedure was structured as follows: A high-resolution blueberry 
image dataset was first generated with a resolution of 512 × 512. To simulate realistic image 
degradation, this HR dataset was downsampled to a LR dataset (x1-LR) with a resolution of 
128 × 128, using the degradation model detailed in Eq. 13. Subsequently, SRR was applied 
to the x1-LR dataset at magnification factors of 2, 3, 4, and 5, resulting in datasets labeled 
as x2-SR, x3-SR, x4-SR, and x5-SR, respectively.

During the training phase, the training and validation subsets of the HR blueberry data-
set were used to train an ensemble model, from which the optimal segmentation model 
was selected. This model was then utilized to evaluate segmentation performance on the 
SRR datasets reconstructed at different magnification levels. The mean Intersection over 
Union (mIoU) was employed to quantify segmentation performance across scales. Figure 7 
presents the segmentation results for each SRR test set, labeled as x(m)-SR to represent 
the results at magnification level m, alongside x1-LR for the segmentation results on the 
original LR dataset.

Figure 7 also illustrates the robustness of different training models under the same and 
varying magnification factors. The results indicate that as the magnification factor increases, 
the mIoU of all reconstructed images progressively improves, stabilizing after 3x magnifi-
cation. These findings suggest that higher magnification ratios can enhance the segmenta-
tion accuracy of SRR models, reducing the disparity between reconstructed images and 
ground truth labels. Notably, the proposed ensemble method consistently outperforms other 
models across magnification levels, with MambaDense and DPT following closely. At 2x 
magnification, DPT surpasses MambaDense by 0.87% and maintains slightly higher mIoU 

Fig. 7  Segmentation results of images from SR test sets obtained with different magnification factors
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values in subsequent magnifications. DeepLab V3 + performs comparatively worse, lag-
ging behind other algorithms by approximately 10%. However, computational cost rises 
significantly with increasing magnification factors. For blueberry image segmentation, a 4x 
magnification offers the optimal balance between segmentation accuracy and computational 
efficiency, although the exact computational time data require further validation. Figure 8 
presents a comparative visualization of segmentation accuracy across different magnifica-
tion levels, complementing the numerical results shown in Fig. 7. It provides an intuitive 
illustration of how increased magnification enhances segmentation accuracy, highlighting 
the consistent performance gains achieved by the proposed ensemble model compared to 
other architectures. This figure further supports the conclusion that 4× magnification offers 
the best trade-off between accuracy and computational efficiency for practical deployment 
in blueberry maturity monitoring.

Effect of the Gaussian blur

The size of the Gaussian blur kernel is a key determinant in the performance of SRR, as 
it influences the level of detail degradation in low-resolution images. In this study, Gauss-
ian blur was applied during the image degradation process before SRR training and infer-
ence, simulating the defocus and motion-induced blur commonly observed in UAV imagery. 
Specifically, the original high-resolution images were convolved with Gaussian kernels of 
different sizes—11 (Blur_lv1), 15 (Blur_lv2), 21 (Blur_lv3), and 25 (Blur_lv4)—to gener-
ate corresponding blurred low-resolution inputs. These degraded images were then used 
as input to the SRR models to evaluate their impact on subsequent segmentation accuracy.

In terms of precision, the study observed a gradual increase as the Gaussian blur kernel 
size expanded from 11 to 25, with the precision rate rising from 90.07 to 90.82%. This pat-
tern suggests that greater blurring suppresses noise, enabling the model to more effectively 
distinguish the boundaries of blueberry fruits, thereby enhancing segmentation accuracy in 

Fig. 8  Evaluating the accuracy of blueberry maturity segmentation across different magnifications
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certain cases. This observation is consistent with the well-established advantages of Gauss-
ian blur in image processing, which include noise reduction and improved local contrast by 
smoothing out unnecessary details(Aakerberg et al., 2022).

Despite the improvement in precision, Fig. 9 shows a decline in the mean Intersection 
over Union (mIoU) with increasing Gaussian blur kernel sizes. Among the models tested, 
the Ensemble model, MambaDense, and UperNet demonstrated relative resilience, with 
performance drops of 17.54%, 14.98%, and 14.94%, respectively, as blur increased. Never-
theless, the Ensemble model consistently outperformed the others. Although Gaussian blur 
can improve detection accuracy for certain blueberry fruits by reducing noise, it generally 
hampers overall segmentation performance as the kernel size increases. This is primarily 
due to the loss of critical edge information and fine textures, especially in blueberries with 
complex surfaces and irregular boundaries(Wang et al., 2019, 2022a, b). Consequently, the 
model’s capacity to accurately segment such features diminishes, resulting in lower seg-
mentation performance overall.

Effect of different intensities of Gaussian noise

In this experiment, varying levels of noise variance were introduced to evaluate their impact 
on the segmentation performance of hyperspectral SRR-reconstructed blueberry images. 
Gaussian noise was applied during the image degradation process prior to SRR reconstruc-
tion, simulating real-world UAV imaging conditions where sensor noise or environmental 
disturbances can degrade image quality. Specifically, zero-mean Gaussian white noise with 
different variances was added directly to the low-resolution input images used to train and 
evaluate the SRR models. The noise added to each pixel follows a normal distribution:

	 η (x, y) ∼ N (0, σ 2)� (14)

Fig. 9  Evaluation of blueberry maturity segmentation accuracy under different Gaussian blur levels
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where η(x, y) is the noise added at pixel (x, y), and σ2 is the variance controlling noise 
intensity.

Noise variance represents the intensity of noise added to each image, influencing both 
image quality and segmentation accuracy. As shown in Fig. 10, when σ = 1 (Noise_lv0), the 
noise variance is 0, meaning no noise was added. At σ = 2 (Noise_lv1), corresponding to 
a variance of 0.01, only minimal noise was present, causing negligible interference in the 
image. However, as σ increased, noise levels escalated: Noise_lv2 (σ = 3, variance = 0.05), 
Noise_lv3 (σ = 4, variance = 0.1), and Noise_lv4 (σ = 5, variance = 0.2). With higher noise 
levels, interference in the images became more pronounced, leading to noticeable degrada-
tion in segmentation quality.

The overall performance metrics, as depicted in Fig. 10 through mIoU values, show that 
when σ = 0, the proposed Ensemble model achieved the highest mIoU score of 83.13%. 
As σ increased to 2, a slight decline in performance was observed for the Ensemble, DPT, 
MambaDense, and UperNet models, while other algorithms exhibited a more significant 
drop, with mIoU reductions ranging from 24.2 to 41.5%. At σ = 3, all models experienced 
a sharp decline in performance. These findings indicate that higher noise levels not only 
degrade model accuracy but also significantly impair segmentation performance in spatial 
tasks. As noise variance increases, critical edges and details in the blueberry images become 
obscured, making accurate segmentation more challenging. While minor noise leads to only 
slight reductions in accuracy, excessive noise invariably causes substantial performance 
deterioration, undermining the model’s ability to produce reliable segmentation outcomes.

Distribution map of blueberry maturity with segmentation results

Figure 11 provides a comprehensive visual representation of blueberry growth and ripe-
ness distribution, which can be instrumental in advancing precision agriculture practices. 
The UAV imagery used in this figure was captured under controlled greenhouse conditions, 

Fig. 10  Evaluation of segmentation performance under varying levels of Gaussian noise
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which ensured stable lighting and minimized environmental interference. Figure  11(a) 
overlays segmentation results in location data, offering an intuitive understanding of the 
overall field conditions. By spatially mapping blueberry maturity across the plantation, 
this visualization supports critical agricultural decisions, such as targeted harvesting, dis-
ease prevention, and controlled application of fertilizers and pesticides. The integration of 
location-specific maturity data not only facilitates more efficient resource allocation but 
also enhances the accuracy of yield estimates, ultimately contributing to increased crop 
productivity.

The mask representation (Fig. 11b) delivers additional insights by categorizing pixels 
based on maturity levels. This pixel-level segmentation enables precise quantification of 
the proportion of ripe versus unripe blueberries, with mature fruits comprising 31% of all 
fruits in Fig. 11b. Such detailed information allows growers to pinpoint optimal harvesting 
periods, reducing the risk of underripe or overripe yields. By timing harvests to the specific 
maturity needs of different areas, farmers can better align with market demand, minimize 
waste, and increase the overall quality of produce.

In regions where agriculture remains predominantly labor-intensive, including devel-
oping countries like China, the strategic timing of harvests enabled by these segmenta-
tion maps holds significant potential. By optimizing harvest schedules, growers can avoid 
labor shortages during peak seasons, lower associated costs, and manage workflows more 
efficiently. These visualizations thus support both the financial and operational aspects of 
precision agriculture, helping farmers make timely, data-informed decisions that increase 
profitability.

The mapping of maturity across large plantations further underscores the potential of 
UAV-based imagery for scalable, cost-effective agricultural management. By combin-
ing UAV-captured imagery with SRR and semantic segmentation, growers gain access 

Fig. 11  Spatial Distribution and Segmentation Results of Blueberries. (a) Distribution map with location 
information captured under greenhouse conditions using UAV imagery. (b) Pixel-level mask visualization 
of blueberry maturity segmentation results, generated using the proposed ensemble segmentation model. 
Red indicates mature fruits and green indicates immature fruits
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to high-resolution, actionable insights without the need for high-cost camera equipment. 
This approach broadens the accessibility of advanced monitoring techniques, especially for 
small- to medium-scale farmers, highlighting the feasibility and impact of computer vision 
technologies in supporting sustainable agriculture.

Ultimately, these mapping visualizations contribute to a more robust and scalable system 
for real-time monitoring, empowering farmers to adapt to dynamic field conditions and pro-
actively manage resources to achieve optimal crop health and yield. The practical utility of 
these visualized outputs, as shown in Fig. 11, lies in their ability to transform raw image data 
into precise, easy-to-interpret information that drives informed decision-making, solidify-
ing the role of UAV and SRR technologies as pivotal tools in modern agricultural practices.

Conclusion

This study presents a novel approach that combines deep learning-based SRR with semantic 
segmentation to assess blueberry maturity, addressing challenges posed by low-resolution 
UAV imagery and the need for efficient ripeness detection in cultivation settings. Initially, 
SRR techniques enhance the resolution of low-quality images, after which 27 semantic 
segmentation models, spanning CNN, Transformer-based architectures, and the Mamba 
network, are evaluated. By integrating the top-performing models from each category 
into an ensemble, the method achieves significant improvements in segmentation accu-
racy by leveraging the distinct advantages of each model type. The ensemble demonstrates 
superior stability and precision in determining blueberry ripeness, validating its practical 
applicability.

The Mamba-based network, in particular, excels in both SRR and segmentation tasks. 
Its architecture effectively preserves image details while minimizing blurring, resulting in 
high-resolution images with superior reconstruction fidelity compared to other networks. 
Additionally, its lightweight design and cross-scale feature extraction capabilities enable 
reliable detection of blueberries in complex environments, underscoring its potential to 
enhance both segmentation performance and model robustness.

This study also assessed the robustness of the proposed method under various data deg-
radation scenarios, including different scaling ratios, Gaussian blur, and noise intensities. 
The results indicate that segmentation accuracy improves with increasing magnification 
up to 4x, beyond which further magnification yields diminishing returns while substan-
tially increasing computational costs. Furthermore, while larger Gaussian blur kernels may 
improve recognition in certain cases, overall segmentation performance deteriorates with 
excessive blurring. Similarly, moderate noise levels may cause slight improvements, but 
higher noise intensities severely degrade segmentation accuracy. These findings highlight 
the importance of controlling data degradation in practical applications to maintain model 
effectiveness.

Future research will focus on refining the Mamba architecture by integrating SRR and 
semantic segmentation across diverse environmental conditions and data modalities. A par-
ticular emphasis will be placed on monitoring the detailed maturity stages of blueberry 
crops, allowing for more granular assessments of growth progression. Additionally, future 
efforts will include pixel-based analysis of sample plots for yield prediction, expanding the 
application from ripeness evaluation to direct estimation of crop yields. These advance-
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ments are expected to significantly contribute to smart agricultural management, enhancing 
precision farming techniques for optimized resource use and increased productivity.
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