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ABSTRACT Automatic lymph node segmentation is the cornerstone for advances in computer vision tasks
for early detection and staging of cancer. Traditional segmentation methods are constrained by manual
delineation and variability in operator proficiency, limiting their ability to achieve high accuracy. The
introduction of deep learning technologies offers new possibilities for improving the accuracy of lymph
node image analysis. This study evaluates the application of deep learning in lymph node segmentation and
discusses the methodologies of various deep learning architectures such as convolutional neural networks,
encoder-decoder networks, and transformers in analyzing medical imaging data across different modalities.
Despite the advancements, it still confronts challenges like the shape diversity of lymph nodes, the scarcity
of accurately labeled datasets, and the inadequate development of methods that are robust and generalizable
across different imaging modalities. To the best of our knowledge, this is the first study that provides a
comprehensive overview of the application of deep learning techniques in lymph node segmentation task.
Furthermore, this study also explores potential future research directions, including multimodal fusion
techniques, transfer learning, and the use of large-scale pre-trained models to overcome current limitations
while enhancing cancer diagnosis and treatment planning strategies.

INDEX TERMS Convolutional neural network, deep learning, lymph node segmentation, medical image
processing, transformer.

I. INTRODUCTION ultrasonography (US) are common medical imaging methods

The lymphatic system is a crucial part of the immune system.
It consists of lymph nodes (LNs) which are found in various
parts of the body such as the neck, axillae, chest, abdomen,
and pelvis. These nodes may change in size and appearance in
response to infection and inflammation, as well to metastatic
spread from a primary cancer.

Medical imaging technology is pivotal in clinical diagnos-
tics, with the advantage of non-invasive illustration of the
body parts. Computed tomography (CT), positron emission
tomography (PET), magnetic resonance imaging (MRI), and
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in LN assessment. The determination of abnormal LNs has
always posed a significant challenge in clinical assessment.
While most cases of lymphadenopathy are benign, such as
reactive hyperplasia, a small proportion are malignant [1].
These malignant LNs may indicate lymphoma or metastases
from other primary malignancies. The diagnosis of a malig-
nant node in these modalities relies heavily on size, shape,
necrosis, and extranodal extension. Unfortunately, some of
the malignant features may overlap with both normal nodes
and those involved in inflammation and infection [2], [3].

In cancer patients, the identification of metastatic LNs
requires meticulousness as an inappropriate diagnosis can
be detrimental to the patients. However, the current
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identification process is not only time-consuming and labor-
intensive but also subject to variability in accuracy and
consistency, depending on the experience and expertise of
the physician. Given the aforementioned background, it is
therefore imperative to find alternative ways to automatically
detect metastatic nodes efficiently, and accurately. Advance-
ments in automatic detection require accurate automatic
segmentation of LNs. The automatic segmentation method
extracts the region of interest in medical images without
manual intervention and could help standardize the process,
ensuring uniformity in the evaluation, and significantly
reducing the time and effort required by clinicians.

In recent years, deep learning techniques are widely used
in image processing such as convolutional neural network
(CNN) [4], deep residual network (ResNet) [5], U-Net [6]
and Vision Transformer (ViT) [7]. These architectures of deep
learning are capable of learning the representation of images
and automating the identification process. The significant
development of deep learning techniques has laid a solid
foundation for medical image processing tasks, such as liver
lesion classification [8], liver and vessel segmentation [9],
[10], [11], [12], lung lesion detection [13], low-dose CT
image reconstruction [14], and elastogram generation [15].

Prior studies [16], [17], [18] have provided an overview
of the application of deep learning techniques to medical
image segmentation tasks across various anatomical sites.
Despite the exploration of deep learning techniques for
medical image segmentation in various modalities, tissues,
and organs in the aforementioned studies, a review addressing
LN segmentation tasks remains to be reported. By lever-
aging advancements in deep learning and medical imaging,
automated LN segmentation holds the potential to enhance
diagnostic accuracy, streamline clinical workflows, and
improve patient outcomes. Deep learning methods have been
widely adopted for LN segmentation across different imaging
modalities. To the best of our knowledge, this is the first study
that provides a comprehensive overview of the application
of deep learning techniques in LN segmentation task and
highlights their significance in improving the accuracy of LN
image analysis. The main contributions of this study are as
follows:

o We conduct a systematic review of the application of
deep learning techniques for LN segmentation among
commonly utilized medical imaging modalities.

o We analyze and compare the segmentation performance
reported in included studies in perspectives of imaging
modalities and method architectures.

o« We discuss the current challenges and limitations
appeared in included studies of LN segmentation and
provide potential directions for the future research.

This study is organized as follows: Section II introduces
the method to conduct this systematic review and evaluation
metrics for segmentation performance assessment. Section 11
provides a detailed categorization of different deep learning
approaches for LN segmentation. Section IV concludes
with a summary and discussion of the current state of
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research, identifies the key issues faced, and outlines potential
directions for future investigation. Section V summarizes the
study.

il. METHOD

This review follows the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guide-
lines [19]. Figure 1 illustrates the literature search process.

A. DATA SOURCES AND SEARCH STRATEGY
A systematic search was conducted in PubMed, Scopus,
Embase, Web of Science and IEEE Xplore to identify relevant
studies published from Jan 2014 to Dec 2024. The same
search string was used for all databases, with different
syntaxes to match the search requirements of each database.
The search terms used in titles and abstracts are: (“‘seg-
mentation” OR “segment”) AND (“‘artificial intelligence”
OR “machine learning” OR “deep learning” OR ‘“‘neural
networks” OR “‘reinforcement learning” OR “‘supervised
learning” OR ‘“‘unsupervised learning” OR “CNN” OR
“convolutional” OR “transformer” OR ‘“attention” OR
“autoencoder’’) AND (“‘intersection over union’’ OR ““iou”
OR “f1” OR “fl score” OR “HD” OR ‘“Hausdorff
distance” OR ““dice’” OR “‘dice score’’) and (“‘lymph node’’).
This search ranged from Jan 2014 to Dec 2024 to ensure
the inclusion of the most recent studies and was limited to
English-language articles. The search was conducted on 7th
Dec 2024.

B. STUDY SELECTION

Two reviewers (Qu and Han) independently screened the
titles and abstracts of the articles to determine their eligibility
for full-text review. The selected articles were then reviewed
to determine their eligibility for inclusion in the review.
Disagreements between the two reviewers were resolved
by discussion with a third reviewer. The Cohen’s kappa
coefficient was calculated to assess the inter-rater agreement
between the two reviewers (x = 0.793). The detailed selection
results and calculation of Cohen’s kappa coefficient can be
found in supplementary materials.

Studies met the following criteria were included:

1) The objective of the study was to segment the single
lymph node or the lymph node cluster.

2) The modality of the image data used for the study
belongs to one of the following modalities: com-
puted tomography (CT), positron emission tomography
(PET), magnetic resonance imaging (MRI), and ultra-
sound (US).

3) Articles that described information related to the
dataset, such as the source of the data, the number
of data included, the data pre-processing and post-
processing methods, and the proportion of data used for
model training and testing, etc.

4) Articles that have clearly stated segmentation results
and quantitative assessment indicators are stated such
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FIGURE 1. PRISMA systematic review flowchart.

as dice similarity coefficient (DSC), Hausdorff distance
(HD), intersection over union (IoU), etc.

The exclusion criteria for the article selection were:

1) All review articles, letters, abstracts, and case reports.

2) The objective of the study was not lymph node
segmentation, the methodology used in the study
was not related to machine learning/deep learning,
no new segmentation methods were proposed, or the
segmentation method proposed is not completely
automated.

3) Inadequate information, the detailed information of
machine learning/deep learning model is missing, such
as model structure, hyper-parameters, loss function,
etc.

4) The images used for segmentation in the article are not
in 2D form, or the modality of images mismatches.

5) Non-English papers or full text unavailable.

Based on the above search and selection strategy,
411 publications were identified. After removing duplicates,
198 publications were included. Among the 198 full-text pub-
lications, 175 were removed according to the above exclusion
and inclusion criteria. Finally, 23 full-text publications were
included in this study.

C. DATA EXTRACTION
Key information relevant to the segmentation method was
extracted from the included studies. The extracted informa-
tion included the following:
1) The overview of the study and the backbone architec-
ture of the proposed model.
2) The size, site, modality and source of the image dataset
used in the study.
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3) The data augmentation techniques.
4) The performance evaluation results.

D. EVALUATION METRICS

Image segmentation is the process of classifying all pixels
in an image into multiple classes, and it is known as
binary segmentation when the number of classes equals
two (typically the foreground and background). The LN
segmentation task is a standard binary segmentation task,
where the foreground represents the LNs, and the background
indicates other regions or tissues. For binary segmentation
tasks, let I represent the entire set of image pixels, P denote
the set of pixels predicted as foreground and G indicate the
set of actual foreground pixels based on ground truth. The
detailed definition of regions is shown in Figure 2 and various
evaluation metrics can be defined as follows.

U

(I-P)N(I-G)

FIGURE 2. Definition of regions.

1) GLOBAL PERFORMANCE
Accuracy (Acc) measures the proportion of correctly pre-
dicted pixels (both foreground and background) out of all
pixels in the image.

[PNGI+ [ =P)NU =G)

Accuracy = 7] (1)

VOLUME 13, 2025



J. Qu et al.: Application of Deep Learning for Lymph Node Segmentation: A Systematic Review

IEEE Access

Here, PN G and (I — P) N (I — G) represent the set of
pixels correctly predicted as foreground and background,
respectively.

2) CLASS-SPECIFIC METRICS

For the task of binary segmentation, the term precision
(Prec) is used to quantify the fraction of correctly predicted
foreground pixels out of all the predicted foreground pixels.
This metric is also referred to as the positive predictive value,
or PPV.

PN G|

|P|

While recall (Rec) refers to the proportion of true
foreground pixels that were correctly predicted as foreground.
[P NG|

|G

Precision =

(@)

Recall = Sensitivity =

3

3) SIMILARITY AND OVERLAP

There are two widely used metrics to evaluate the similarity
between the predicted and true foreground regions: Dice
similarity coefficient (DSC) and Intersection over Union
(IoU). DSC, also known as the Sgrensen-Dice coefficient,
Dice score, or F1 score, is defined as the harmonic mean of
precision and recall:

Precision - Recall |P NG|

Precision 4 Recall - |P| + |G|

The DSC ranges from O to 1, with a higher value indicating
greater similarity between the predicted region (P) and the
ground truth (G); a value of 0 indicates no overlap, while
1 represents a perfect overlap.

ToU, also known as the Jaccard index, is defined as:

_IPNG]
T |PUG|

IoU also ranges from O to 1, where a higher value indicates
a greater degree of overlap between P and G. Unlike DSC,
which balances precision and recall, IoU provides a direct
measure of the proportion of the overlapping area relative
to the total area encompassed by both the prediction and
the ground truth. This difference often results in slightly
different values for the same segmentation performance, with
IoU generally being lower than DSC when there is a partial
overlap.

DSC=2.

“

®

4) REGIONAL VARIABILITY

Volumetric overlap error (VOE) is a metric used to quantify
the discrepancy between two volumes, typically the predicted
mask and the ground truth.

[P NG|
|PU G|
As shown above, the value of VOE ranges from 0 to 1.

A lower VOE indicates a higher overlap and thus, a more
accurate segmentation.

VOE=1-IoU=1—

6)
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The Hausdorff distance (HD) is an indicator of the distance
between the farthest points of two sets of points, used to
assess the similarity between two shapes, especially when
considering the match of their boundaries. For the sets of
foreground pixels, P and G, the Hausdorff distance can be
defined as:

HD = max [sup inf d(p, g), sup inf d(g,p)] @)
peP 8€ geGPEP

where sup indicates the supremum operator, inf refers the

infimum operator, and d(p, g) represents the Euclidean

distance between pixels p and g of the set P and G,

respectively.

In order to eliminate the effect of outliers on HD, the 95th
percentile HD is commonly used as an evaluation metric
to enhance the robustness of shape assessment, which is
also known as HD95. The smaller the HD, the smaller the
maximum deviation between P and G.

Relative volume difference (RVD) quantifies the relative
difference in volume (number of pixels) between the
predicted and actual foreground.

_IP| - |G|
|G

A positive RVD value indicates that the predicted volume
is larger than the actual volume, and vice versa. A smaller
absolute RVD value means a smaller difference in volume
between P and G.

Average symmetric surface distance (ASD) measures the
average distance between the boundaries of the predicted and
actual foreground, symmetrically considering the distances in
both directions.

> pesp Minges; d(p, 8) + 2 g5, Minpes, d(g, p)
ISpl + ISGl

RVD (8)

ASD =
)

where Sp and Sg are the sets of boundary pixels for the
predicted and actual foregrounds, respectively.

Similar to HD, the ASD value is greater than or equal to
0, where a smaller ASD value represents a smaller average
distance between P and G.

5) SUMMARY

The detailed calculation process of evaluation metrics used
in the included studies are summarized in Table 1. The value
range, unit, size preference, and expression of each metric are
provided in the table.

IIl. RESULTS

Deep learning techniques have made significant advance-
ments in computer vision tasks. Compared to traditional
digital image processing methods, deep learning provide
higher efficiency, higher accuracy, and more generalizable
solutions. Deep learning models are also able to perform
some difficult work in terms of traditional digital image pro-
cessing, such as image generation, image super-resolution,
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TABLE 1. Summary of evaluation metrics. For unit, / refers to dimensionless. For size preference, 1 indicates the bigger value is better, and vice versa. The
1, P and G represent the base image, predicted and ground truth binary masks, respectively. The Sp and Sg represent the set of boundary pixels in P and
G, respectively, and d(p, g) represents the Euclidean distance between point p and g.

Size

Type Metric  Value Range  Unit p- o~ Formula
Global Ace [0’ 1} / 0 1POGI+[(I=P)NI—=G)|
performance 1]

Prec 0,1 / PO
Class-specific [0,1] T p‘glg

Rec [0, 1] / 1) l 1G] |
Overlapand ~ DSC  [0,1] / T 2 \J’il)z\cél
similarity IoU [0,1] / 1 Iiag}

VOE  [0,1] / 1 1- Iﬁ@g}
Regional HD [07 +OO) mm \L max {supl,ep inngG d(p, g)v SngGG inf[’GP d(g7p)}
variability RVD  (—oo,+o0) / Optimal at 0 %

ZpeSp minges; d(p,g)-Q—deSG minyes, d(g,p)

ASD [0, +00) / 1

[SpI+1SGI

and video frame interpolation. In the following subsections,
the recent applications and developments of deep learning
methods and techniques for LN segmentation, and detailed
information will be discussed.

A. CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks (CNN) have been widely used
in computer vision since the introduction of LeNet [20]
and AlexNet [21]. A CNN model typically consists of an
input layer, multiple hidden layers, and an output layer,
where the hidden layers commonly include convolutional
layers, pooling layers, activation layers, and fully connected
layers (also known as FC layers, or multi-layer perceptron,
MLP). The CNN architecture is called fully convolutional
networks (FCN) [22] if the entire CNN architecture does not
contain any FC layers. Since it is not necessary to specify the
neurons explicitly, FCN can process input images of arbitrary
resolution. The original FCN model proposed in 2015 for
semantic segmentation is shown in Figure 3.

forward / i y &S «
forward / inference R 5
&, <« &

$ backward / learning & S
S ward / learning & %&
S . § E

384 ’384 256 St
256

96

21

FIGURE 3. Overview of FCN for semantic segmentation [22].

Nogues et al. [23] proposed a novel method for automatic
segmentation of axillary LN clusters in CT images, which is
a variation of FCN that combines holistically-nested neural
networks (HNN) [24] and structured optimization. The area
information and boundary discontinuities of the LN clusters
are learned by HNN-A and HNN-C models, respectively. The
experiments were conducted on a public LN dataset which
contains 173 3D CT scans and yields 39,361 images after
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data augmentation. The substantial size of the dataset allowed
for comprehensive training of the HNN, enhancing the ability
of proposed model to generalize across diverse anatomical
variations. Additionally, the high quality of the CT images
(512 x 512x512 voxels) ensured that the edge information
and boundary discontinuities of the LN clusters were
accurately captured, which is critical for the effectiveness
of the boundary neural fields structured optimization. This
combination of a large and high-quality dataset contributed
significantly to the superior accuracy achieved by the HNN
method compared to other optimization techniques in LN
group volume measurements, demonstrating the value of
edge detection methods for LN segmentation tasks.

Another novel deep learning approach based on FCN for
the automatic segmentation of LNs in ultrasound images
named coarse-to-fine stacked fully convolutional nets (CFS-
FCN) was introduced by Zhang et al. [25]. The CFS-FCN
model consists of two parts: (1) using the first FCN model
to generate intermediate coarse masks of LNs, then (2)
combining coarse masks with original input for the second
FCN model to generate the final fine mask of LNs. The
overview architecture of CFS-FCN is illustrated in Figure 4.
The dataset used in this study consists of 80 images, and
the results show that the CFS-FCN model with boundary
refinement technology significantly outperforms existing
deep learning approaches, even with a small amount of
data.

Zhang et al. [26] presented a new generalizable strategy
for medical image segmentation, named decompose-and-
integrate learning. It divides the segmentation task into
sub-problems (decomposition phase) solved by deep learning
modules, each with unique feature transformations. These
solutions are then combined (integration phase) to solve the
original segmentation problem. This method was evaluated
on model DenseVoxNet [27] and CUMedNet [28] in 3D and
2D images, respectively. The ablation experiments conducted
on multiple datasets (including an in-house ultrasound
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FIGURE 4. Overview of CFS-FCN [25].
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FIGURE 5. Overview of NPCNet [29].

dataset of LN) demonstrate the robustness and generalization
capability of different data of the proposed strategy.

In addition to being used in CT and ultrasound image
segmentation tasks, FCN has also been used in MRI image
segmentation tasks. Li et al. [29] introduced NPCNet for the
precise segmentation of primary nasopharyngeal carcinoma
(NPC) tumors and metastatic LNs (MLNs) in MRI images.
The NPCNet model incorporates three key modules: position
enhancement module (PEM), scale enhancement module
(SEM), and boundary enhancement module (BEM), which
is similar to Zhang et al. [25], and aimed to address the
challenges related to variable localization, variable size, and
irregular boundaries of MLNs. The structure of NPCNet is
illustrated in Figure 5. Notably, NPCNet adopted the pre-
trained (on ImageNet [30]) ResNet-101 as the backbone.
Through extensive experimentation on a dataset comprising
9,124 samples from 754 patients, the model demonstrated
state-of-the-art performance in segmenting NPC tumors and
MLNS, outperforming other popular segmentation models.

In summary, considerable research has been dedicated to
the application of CNN and FCN models in the segmentation
of LNs in CT, PET/CT, ultrasound, and MRI images. The
FCN model has also been extensively utilized in LN segmen-
tation tasks due to its capacity to process images of arbitrary
resolution and its ability to effectively capture spatial
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information. Although CNN models demonstrate efficient
local feature extraction capabilities and a well-established
technological foundation in LN segmentation tasks, they are
deficient in multi-scale feature extraction and global context
modeling. Consequently, there has been an increased focus on
enhancing CNN model performance by incorporating addi-
tional modules and structures, including the encoder-decoder
structure with skip connections, Transformer architecture
based on the attention mechanism, and advanced loss
function design.

B. ENCODER-DECODER NETWORKS

Since the introduction of U-Net [6], the encoder-decoder
structure has quickly become the standard choice for medical
image segmentation. This is due to the advantages it offers
over other approaches, including a lightweight network
structure, multi-scale feature extraction mechanism, and
the preservation of spatial information through the skip
connection design. As shown in Figure 6, U-Net gets its
name because of a unique U-shaped structure. It consists
of two parts: a contraction path on the left side (encoder)
and a symmetric expansion path on the right side (decoder).
The encoder part extracts image features and reduces their
dimensionality through successive convolution and pooling
operations, while the decoder part gradually recovers the
spatial resolution and detailed information of the image using
up-sampling. The key feature of the U-Net is the introduction
of skip connections between the encoder and decoder at
corresponding levels, effectively preserving rich contextual
information and significantly enhancing the accuracy of
image segmentation.

164 64 12864 64 1

Input Output
e (29 > I -
mage Segmentation
Tile © Conv 3x3, ReLU Map
£ Copy and Crop
O Max Pool 2x2
Fizs 128 O Up-Conv 2x2 236128
© Conv I1x1
ol il
T 256256 512 25 O
o E>‘ > } oD
512 512 1024 512 T
(el (ol

O o
Dot

FIGURE 6. Overview of U-Net [6].

The encoder-decoder structure has been widely used
in the segmentation of LNs in CT and PET/CT images.
Men et al. [31] proposed an end-to-end deep deconvolutional
neural network (DDNN) based on the encoder-decoder
structure, and aimed at accelerating the segmentation process
of NPC target areas in CT scan images for radiotherapy.
Utilizing data from 230 patients for the training and testing
process, the study demonstrated that the DDNN outperforms
the VGG-16 [32] model across all segmentation tasks.
However, the segmentation accuracy of DDNN for LN gross
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tumor volume was relatively lower due to variations in shape,
volume, and location among patients.

Similarly, Li et al. [33] have also investigated the seg-
mentation of NPC LNs in CT scan images. They proposed a
modified U-Net model to improve the segmentation accuracy
of NPC LNs, which generates segmentation results with the
same resolution as the input image. This study mainly focuses
on the diagnosis of different stages of NPC primary tumors
and metastatic LNs based on the same deep learning model.
The experimental results showed that the proposed model
achieves a slightly higher segmentation accuracy for LNs
at stage N1 (0.691) than stages N2 (0.653) and N3 (0.640),
while N2 and N3 represent more advanced stages of cancer
with more complex anatomical changes, leading to lower
segmentation accuracy.

Ariji et al. [34] utilized U-Net to automatically segment
multiple classes of cervical LNs from enhanced CT images
of patients with oral cancer and classify metastatic or non-
metastatic LNs. Nayan et al. [35] proposed an enhanced
UNet++ [36] model to achieve high-precision automatic
detection and segmentation of mediastinal LNs from CT
images. It is worth noting that in this study, bilinear
interpolation was used instead of transposed convolution
for upsampling operations in the decoder path of UNet++.
This approach was used to reduce computational intensity
and avoid the introduction of checkerboard artifacts that
are commonly associated with transposed convolution. The
complete dataset used for experiments consisted of three
separate datasets, including 54,330 images after data aug-
mentation. The results showed that the enhanced UNet++
model achieved superior performance in mediastinal LN
detection and segmentation tasks, outperforming the original
UNet++ model and other advanced methods.

Some researchers have also attempted to combine PET
images with CT images to perform LN segmentation tasks.
Xu et al. [37] proposed DiSegNet for LN segmentation in
PET/CT images. This study included a new cosine-sine (CS)
loss function to address the class imbalance problem for
different networks during training and the incorporation of
a multi-stage atrous spatial pyramid pooling (MS-ASPP)
submodule to leverage multi-scale information for enhanced
segmentation performance of LN boundaries. The overview
structure of DiSegNet is shown in Figure 7. The DiSegNet
architecture enhances the SegNet [38] framework with the
MS-ASPP module to achieve superior semantic accuracy and
detail preservation in segmentation, and the encoder module
of DiSegNet can be replaced with other pre-trained models
such as ResNet to improve the segmentation performance.

Ahamed et al. [39] developed an automated segmentation
approach based on the U-Net architecture with a ResNet50
encoder pre-trained on ImageNet, aimed at segmenting
primary tumors and metastatic LNs from PET/CT images of
head and neck cancer patients. Similar to Xu et al. [37], this
study proposed a multiclass Dice loss function combining
primary tumor and LN segmentation loss to optimize model
training. The encoder-decoder structure is asymmetrical,
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FIGURE 7. Overview of DiSegNet [37].

with the decoder path being shallower than the encoder
(approximately 4:1 ratio). Results demonstrate the potential
of this asymmetric structure in improving the efficiency and
accuracy of medical image analysis.

The encoder-decoder structure has also been applied to
LNs segmentation in ultrasound images. Fu et al. [40]
presented a multimodal fusion method for the cervical
LNs segmentation from fused features of grayscale and
Doppler ultrasound images. The core design is the feature
attention mechanism that utilizes the information of higher
dimensions provided by both imaging modalities. Unlike the
attention mechanism in the Transformer [41], this feature
attention mechanism is designed to exchange and fuse
the modality-wise and spatial-wise features. The proposed
feature-sharing module (FSM) suppresses the irrelevant
features while highlighting the key features required to
differentiate the LNs from the surrounding tissues. The
FSM, modality-wise attention, and spatial-wise attention
are illustrated in Figure 8. This study also adopted several
pre-processing techniques to enhance the quality of ultra-
sound images, such as auto cropping based on single shot
multibox detector (SSD) [42], noise reduction, and modalities
registration. This multimodal fusion method significantly
improved LN segmentation accuracy, outperformed the
coarse-to-fine method proposed by Zhang et al. [25] and
U-Net, and also marked an important advancement in the
application of multimodal data fusion for medical image
processing.

Zhang et al. [43] introduced MA-Net, a multi-attention and
atrous convolution network designed to enhance semantic
information extraction through an end-to-end approach.
As shown in Figure 9, the network is based on an
encoder-decoder architecture that combines multiple-channel
convolution blocks, atrous convolution modules, pyramid
pooling modules, residual skip connections, and a multi-task
loss function (composed of cross-entropy loss L. and Dice
loss Ls in a certain ratio). Segmentation experiments were
conducted on multiple datasets including ultrasound images
of the brachial plexus, fetal head, and LN. The results
showed that MA-Net achieves significant improvements
in mainstream performance evaluation metrics compared
to U-Net and UNet++ [36]. It it highly generalizable
and practical for accurate ultrasound, MRI and CT image
segmentation.
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Zhang et al. [44] introduced a multi-scale U-Net
(MUNet) for ultrasound image segmentation, combining
FCN, encoder-decoder architecture with a feature pyramid.
The overview structure of MUNet is shown in Figure 10.
Similar to YOLOv3 [45], this model is also composed
of a replaceable backbone and multi-scale segmentation
branches, but with an additional branch for cervical LN
classification, and it is capable of processing images at
arbitrary sizes thanks to the FCN structure. The experiments
were based on a dataset consists of 4,000 benign and 1,000
malignant LN images before augmentation, with a resolution
of 700 x 800, and yielded a high Dice score and AUC value.
The special design of MUNet allows the backbone network
to be replaced accommodating different needs for efficiency,
accuracy, and different scenarios.

In addition to focusing on new methods, some researchers
have also explored different ultrasound image preprocessing
techniques. To overcome the challenges of speckle noise
and echogenic hila that existed in ultrasound LN images,
Chen et al. [46] proposed a method that integrates anisotropic
diffusion denoising based on Gabor-based anisotropic dif-
fusion, a modified U-Net, and morphological operations.
It reveals the potential of combining traditional image
processing techniques with deep learning methods to improve
segmentation accuracy.
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Xu et al. [47] proposed a difficulty-aware dual network
structure for axillary LN segmentation in ultrasound images,
combined with a spatial attention-constrained graph model.
First, the difficulty level of the input image is evaluated by a
grading module, and then different network branches are used
for adaptive segmentation according to the difficulty level.
The overview structure is shown in Figure 11.

The complex LN images refer to images with unclear
LN boundaries, low contrast, and complicated intensity
distribution. For dealing with those images, this study intro-
duced the spatial attention module and a graph-based energy
model that considers the constraints of spatial attention
and intends to provide additional discriminative information
and enhance segmentation performance by capturing inter-
pixel relationships. However, the experimental results were
evaluated quantitatively based on a combination of complex
and simple LN images, and it lacks performance analysis
specifically for complex or simple LN images. Nevertheless,
the overall results show that the method outperforms other
state-of-the-art deep learning methods in segmenting axillary
LNs, such as U-Net, FCN-8s [22], DeepLabv3+ [48], SegNet,
and Frrn [49].

Wen et al. [50] concentrated on the segmentation of
six LN regions (LNRs) in CT images of patients with
rectal, prostate, and cervical cancer, including abdominal
presacral, pelvic presacral, internal iliac nodes, external iliac
nodes, obturator nodes, and inguinal nodes. A cascaded
multi-heads U-net (CMU-net) was proposed to classify and
segment the six LNRs simultaneously. The classification
model was constructed using the ResNet-50 [5], while and
the segmentation model was based on the UNet++ [36]. Six
distinct heads were employed to predict the six LNRs, and
the final segmentation results were obtained by combining

97215



IEEE Access

J. Qu et al.: Application of Deep Learning for Lymph Node Segmentation: A Systematic Review

Classification Results
Classifier #1 — 0 -
Classifier#2 — 1 -+
> ResNet
Classifier #5 — 0 - ’*%j
Classifier #6 — 0 -4+~ % :
Segmentation Decoder #1 ‘ ‘ .
Decoder #2 —>®l |
UNet++ o
I Encoder v
nco '
Decoder #5 ———Q) !
V
Input Decoder #6 X E
FIGURE 12. Overview of CMU-Net [50].
Input . N Output
Image d i ! Il Segmentation
Tile ) Conv 3x3, ReLU Map
) Copy and Crop
o O Max Pool 2x2 o
A Up-Conv 2x2
& Conv 1x1
oD | ]
‘0‘ f‘)‘ s ‘ ‘W f?‘
o
Eele] o[
o o
o ol
o
DD
o
ol NO«
Benignancy
e l:>Mdll;>n‘m(.y

FIGURE 13. Overview of Y-Net [51].

the six segmentation results correspondingly. The overview
structure of CMU-Net is shown in Figure 12.

The classification and segmentation model were trained
and validated on 120 cases, another 40 cases were used
for testing. All images were resized to 512 x 512 pixels
without augmentation. With the prior knowledge from the
classification model, the performance of segmentation model
achieved an average Dice score of 0.895.

Additionally, Zhao et al. [51] also addressed the classifi-
cation and segmentation of LNs in a simultaneous manner.
A novel Y-Net architectural modification was derived from
the U-Net, incorporating a classification branch into the
original U-Net structure. This was devised to predict the
LN status (benignancy or malignancy). The overall structure
of Y-Net is shown in Figure 13. The dataset for model
training contains 2,512 images for training and testing, and
547 images for validation. The results show that two parallel
branches reached 72.03% accuracy, which outperformed the
original ultrasonic report by 7.37%. The segmentation branch
obtained a median Dice score of 0.832, which is comparable
to the state-of-the-art methods.

In addition to the residual connections that are commonly
used in encoder-decoder architectures, researchers have also
considered the potential benefits of introducing attention
mechanisms into UNets. Hasan et al. [52] proposed an
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attentional U-Net with spatial context network and reverse
axial attention for 2D LN segmentation. The spatial context
network is designed to capture the spatial context information
of input 2D CT slices, while the reverse axial attention
mechanism can enhance the feature representation of the
decoder layers. The overview of the proposed attentional
U-Net is shown in Figure 14.

Interestingly, Hasan et al. [52] focused on the segmentation
of normal, small LNs in the neck of healthy individuals,
which presents more challenges compared to abnormal LN
segmentation tasks due to the smaller size and less distinct
boundaries. They collected 221 contrast-enhanced CT scans
consisting of 25,119 CT slices of the neck, with 18,054 slices
used for training, 4,463 slices for validation, and 2,602 slices
for testing. It achieved promising segmentation results with
a 0.808 Dice score. This study designed advanced reverse
axial attention (RAA) module (composed by two 1D self-
attention along height and width) and an improvement of
IoU metric by 0.06 was found (from 0.774 to 0.780). The
RAA module helps the model focus on relevant regions by
filtering out noise and enhancing the salient features of small
LNs. This mechanism is particularly effective in capturing the
multi-scale context of lymph nodes, which vary in size and
have irregular boundaries.

To summarize, the encoder-decoder structure has been
extensively employed in the segmentation of LNs in CT,
PET/CT, and ultrasound images. The U-Net [6] and its
variants have been the most frequently utilized models by
researchers in the domain of medical image segmentation.
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The U-Net [6] architecture has been modified and enhanced
in various ways to improve the accuracy and efficiency
of LN segmentation tasks. The introduction of attention
mechanisms, feature-sharing modules, and multi-scale seg-
mentation branches has demonstrated significant potential
in enhancing the performance of deep learning models for
LN segmentation. The combination of traditional image
processing techniques and deep learning methods has also
been investigated to improve the quality of ultrasound images
and enhance the segmentation accuracy of LNs.

C. TRANSFORMER

In recent years, the Transformer [7], [41], [53] architecture
has been introduced into the field of image processing.
By efficiently extracting complex spatial structural infor-
mation and capturing global contextual relationships, the
Transformer offers new possibilities for improving the
accuracy and efficiency of medical image segmentation. This
is particularly beneficial when dealing with high-resolution
medical image data, as the Transformer can understand the
overall structure of the image while preserving detailed
information. As a result, it has shown great potential in tasks
such as tumor identification and organ delimitation, leading
to more accurate segmentation results.

Shi et al. [54] proposed an innovative dual-encoder hybrid
model called DE-Net, which is designed to automatically
segment multiple structures for whole bone marrow and
lymphatic irradiation in bone marrow transplantation. The
architecture of DE-Net is shown in Figure 15. The structure
is still U-shaped but with two encoders and one decoder,
where the first encoder is comprised of ResNet blocks and
the second encoder is based on Swin Transformer blocks. DE-
Net fully exploits both local detailed spatial information and
global contextual knowledge in parallel to improve the quality
of learned features.

Experiments were conducted on a dataset comprising
seven target structures, including skulls, ribs, and LNs. The
results demonstrate that DE-Net exhibits slightly enhanced
performance compared to existing methods in the context
of segmentation. It attained marginal improvements of
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0.01 and 0.004 in the Dice score for LNs and on average,
respectively, when benchmarked against another CNN and
Transformer hybrid model, UTNet [55]. However, while
DE-Net leverages a hybrid architecture, the broader adoption
of transformer-based models in LN segmentation remains
limited. This is not only due to the computational cost of
transformers, but also due to other critical factors, such as
the scarcity of large-scale, high quality annotated LN datasets
required for effective pre-training and the inherent anatomical
complexity of LNs.

Moreover, recent developments in lightweight transformer
variants, including MedViT [56], EfficientViT [57], and
MobileViT [58], offer computationally efficient alternatives
with comparable performance. These architectures leverage
optimized attention mechanisms and parameter-efficient
designs, making them more suitable for medical image
segmentation, including LN segmentation. However, such
lightweight models still require large-scale datasets for
training and have not been extensively explored in the context
of LN segmentation, highlighting an area for future research.

D. OBJECT DETECTION ASSISTED SEGMENTATION

Object detection is a computer vision technology used to
identify and locate specific targets within an image. In medi-
cal image segmentation, it is applied to automatically identify
structures such as lesions, tumors, and organs, thereby
assisting clinicians in diagnosis and treatment planning.
Despite its widespread use in the literature, applications of
object detection-assisted segmentation in LN segmentation
remain relatively limited.

Existing studies, such as those by Bouget et al. [59]
and Zhao et al. [60], have utilized Mask R-CNN [61]
to simultaneously perform detection and segmentation.
Mask R-CNN has proven effective in generating precise
pixel-level segmentation masks. However, its performance
is often constrained by the need for large-scale annotated
datasets. Recent advances in detection-based segmentation
have introduced models such as YOLOv8 [62], Faster R-
CNN [63], and DETR [64], which have shown promising
improvements in object detection and segmentation tasks in
various domains.

For instance, YOLOVS, with its single-stage architecture,
offers faster inference speeds and can potentially streamline
real-time LN detection. Faster R-CNN continues to demon-
strate strong performance in two-stage detection frameworks,
while DETR’s transformer-based approach allows for effec-
tive global context modeling, which may improve detection
accuracy in complex anatomical structures. Integrating these
modern techniques either as independent models or within
hybrid architectures could address some of the limitations
inherent in traditional methods and enhance overall perfor-
mance in LN segmentation.

Future research should concentrate on comparing these
approaches with established methods, investigating their
adaptability to limited annotated data, as well as testing
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the performance of pre-trained models fine-tuned on small
medical datasets and exploring how hybrid architectures can
take advantage of detection and segmentation networks to
improve clinical outcomes.

E. LOSS FUNCTION OF SEGMENTATION

In addition to the development of more accurate and
innovative LN segmentation deep learning models, previous
studies have also addressed the construction of loss functions.
In the context of LN segmentation, the construction of
loss functions is important in optimizing the accuracy and
performance during LN delineation. The incorporation of
advanced loss functions, including focal loss, Dice loss, and
cross-entropy loss, has the potential to markedly enhance
segmentation outcomes. This is due to their effectiveness
in handling pixel-level classification, optimizing the overlap
between predicted and true masks, addressing class imbal-
ance and consequently improving segmentation accuracy and
model robustness.

In recent advancements, Xu et al. [65], [66] introduced
innovative approaches to enhance the segmentation of patho-
logical LNs in PET/CT images through the development
of specialized loss functions. Initially, they proposed a
boundary-attention cross-entropy (BCE) loss function that
focuses on increasing the weight of LN boundary voxels
to address the challenge of accurately delineating LN
boundaries in complex anatomical structures. Furthermore,
they explored the integration of multiple loss functions,
including BCE with generalized Dice loss, to effectively
handle class imbalance and small-size issues associated
with pathological LNs. This multifaceted approach was
tested on architectures such as SegNet and DeepLabv3+,
showing significant improvements in segmentation accuracy,
as evidenced by high sensitivity and Dice scores, highlighting
the potential of tailored loss functions in medical image
segmentation tasks.

IV. DISCUSSION

From the above overview of the different studies, the
key contributions of these different approaches and the
corresponding experimental quantitative assessment results
are summarized in Table 2. Due to the variability of evaluation
metrics, we only present the common metric among all
included studies, the Dice similarity coefficient (DSC, F1
score), as the primary metric for comparison. The overview
of Dice scores of included studies is shown in Figure 16.
As observed in Figure 16, certain methods [26], [35], [44]
consistently outperform others, achieving higher Dice scores.
These high-performing methods typically employ robust data
augmentation techniques and utilize larger, more diverse
datasets tend to demonstrate better generalization, resulting
in higher Dice scores.

A. PERFORMANCE BETWEEN TECHNIQUES
As Table 2 and Figure 16 indicate, the encoder-decoder
architecture is currently widely applied to LN segmentation.
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It has been shown to be more scalable and efficient
because of its straightforward design and comparative lower
computational needs, making it particularly well-suited for
real-time clinical applications. Furthermore, FCN enables the
model to process images with arbitrary resolution, thereby
enhancing its adaptability to medical data. In contrast,
Transformer-based methods have seen limited adoption due
to their substantial computational demands. The mean and
standard deviation of Dice scores of different techniques are
categorized and shown in Figure 17. The results indicate that
the performance of different techniques varies significantly,
with the best-performing methods achieving Dice scores that
are more than twice as high as the worst-performing methods.

Notably, Nayan et al. [35] achieved the best segmentation
results on three public datasets for LN segmentation by using
a modified UNet++, scoring 0.935 for DSC and 0.919 for
IoU. The dataset used in Nayan et al. [35] is the largest
dataset among the studies included in this review, with 54,330
images among three public datasets, and with a relatively
high resolution of 512 x 512. The extensive size of dataset
likely contributed to the robustness and generalizability of the
model. Additionally, the augmentation techniques employed,
such as random cropping, flipping and contrast and brightness
controlling, enhanced the diversity of the training data,
further improving the capacity of model to generalize to
unseen data. These factors collectively contributed to the
superior performance of the model.

In contrast, the method proposed by Bouget et al. [59]
achieved the lowest Dice score of 0.409 among the studies
included. This result may be attributed to several factors.
Firstly, the study used an original U-Net and Mask R-CNN
without proper modification, and the U-Net was trained
from scratch while the Mask R-CNN was pre-trained on the
ImageNet dataset. This may lack the generalization ability
of the model. Secondly, the objective of this study is not
only focused on LN segmentation but also includes the
segmentation of 14 other tissues and organs. This broader
scope may have resulted in a relatively limited emphasis
on the specific task of LN segmentation. Lastly, the input
images generated from CT slices were resized to 256 x
256, which may have led to the detailed information loss
of LN structures, thereby affecting the LN segmentation
performance.

As shown in Figure 17, the highest Dice score was achieved
by CNN-based methods (0.836), followed by encoder-
decoder-based methods (0.802), and Transformer-based
methods (0.736). This indicates that CNN-based methods
are currently the most accurate for LN segmentation tasks.
Meanwhile, although the Transformer architecture is widely
used in the domain of natural image processing, it has
not been extensively adopted for LN segmentation tasks.
Preliminary research on Transformer-based DE-Net [54],
utilizing Swin Transformer, achieved a Dice score of 0.736 on
a private dataset. This indicates there is still significant room
for improvement compared to the CNN and encoder-decoder
architecture. Furthermore, it underscores the substantial
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potential for further development of Transformer technology
in this task.

The results also show that the object detection-assisted
segmentation methods have the lowest mean Dice score
(0.612), which is significantly lower than the other meth-
ods. This may be because the object detection-assisted
segmentation methods are not specifically designed for LN
segmentation tasks, and the model may not be well-suited
for the segmentation of small and irregularly shaped LN
structures. Additionally, the object detection models that are
used in these methods are pre-trained on the object detection
natural image datasets and did not fine-tune using LN data,
this may lead to less effectiveness in capturing the detailed
information of complex structures, which could result in
performance degradation. Furthermore, the limited number
of studies employing object detection-assisted segmentation
methods constrains the representativeness of the mean and
standard deviation of Dice scores.

The studies that focused on improving the loss function
of LN segmentation achieved a mean Dice score (0.760).
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FIGURE 18. Mean and standard deviation of Dice scores for different
modalities.

These studies utilized older backbones such as SegNet and
DeepLabv3+, in contrast to the popular U-Net, UNet++-, and
other encoder-decoder architectures. Additionally, the dataset
used in these studies was relatively small, with an average
of 63 images, which limited the model generalizability.
Consequently, they exhibited lower performance compared
to CNN and encoder-decoder-based methods.

B. PERFORMANCE BETWEEN MODALITIES

Figure 18 shows the mean and standard deviation of
Dice scores between different modalities. The results vary
significantly, the performance of CT and PET/CT are
relatively close, scoring a mean 0.750 and 0.716 Dice score,
respectively. In contrast, the group of ultrasound modality
achieved the highest mean Dice score of 0.857.

This phenomenon may be attributed to the image charac-
teristics of different modalities and data processing methods.
Due to the principles of CT and PET imaging, a LN occupies
only a small area in CT and PET images, making it difficult
to be delineated, detected, and segmented. Meanwhile, the
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TABLE 2. Summary of deep learning methods for LN segmentation.

Preprocessing (P) &

Technique  Study Brief Overview Backbone Dataset Dataset Size Modality LN Site Image Size Augmentations (.A) Performance
Combined holistically-nested neural network (HNN) and ~ HNN [24] pre-trained DSC: 0821
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boundary neural fields (BNF) together. on ImageNet [30]
mRVD: 0.137
(1) Proposed coarse-to-fine stacked fully convolutional nets; DSC: 0.858
CFS-FCN [25] (2) Developed boundary refinement method as FCN [22] Private Total: 80 us Uns. 388388 Uns. IoU: 0 éﬁ()
post-processing. T
CNN T
The original segmentation task was decomposed by classes or Train: 137 4+ random croppine. rotation and Eic_'ooéﬁ%s
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- Test: 100 flipping. Prec: 0.901
model training. Rec: 0.889

Proposed position enhancement module (PEM), scale P resizing 0 512 X 512 pixels  DSC: 0.770

NPCNet [29] enhancement module (SEM), and boundary enhancement —p  \ioi 10 (5] Private Train: 7,300 MRI  H&N 512512 and min-max normalization. Prec: 0.800
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. \A: random rotation and flipping. Rec: 0.780
and irregular boundary challenge.
Proposed U-shape model to segment nasopharynx gross
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Metastatic and non-metastatic cervical LNs from Train: 834 DSC: 0.860
Ariji eral. [34]  contrast-enhanced CT images are segmented by U-Net, and  U-Net [6] Private Validation: 77 cT Neck  512x512 Uns. Prec: 0.975
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artifacts) and total generalized variation (TGV, to denoising). Test: 25,500 blur reduction, contrast and
ELCAP [71] brightn ntrollin Prec: 0.931
ghiness controtiing. Rec: 0.941
(1) Proposed a new loss function called cosine-sine loss; (2) Train: 3.710 \A: random translation in
DiSegNet [37] Combined multi-stage and multi-scale atrous spatial pyramid SegNet [38] Private i PET/CT Thorax 256 X256 horizontal and vertical directions DSC: 0.770
. Test: 700
pooling sub-module (MS-ASPP). (410 voxels).
.. . . . . . U-Net [6] with
Slicing 3D images into multiple 2D images, segmenting the g i B . .
Ahamed et al. [39] primary tumors (GTVp) and metastatic LNs (GTVn) by 2D ReSNet-30 3] HECKTOR [72] 1rain: 324 PET/CT H&N 128128 1. >X3 X3 medianfiltering, o ) o
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mechanism to the input feature map.
“P: cropping to 512 X 512 pixels. DSC: 0.858
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MA-Net [43] atrous convolution network, including pyramid pooling and ~ U-Net [6] Private Test: 50 Us Uns.  320%256 flipping, random scaling (£10%), Rec: 0.885
residual connections. Dilated CNN [73] : random rotation (0 to 10°) and ~ HD: 19.245 mm
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“P: resizing to the combination of
Train: 4.000 {256,384,512,640}.
Proposed a fully convolutional network with a replaceable ~ U-Net [6] . I R . \A: random rotation (35°), DSC: 0.924
MUNet [44] backbone that accepts input images of arbitrary size. ResNet-50/152 (5] Private ¥:1‘[d‘?“(‘)’(;‘0 1000 US Neck  Multiple 4,0 e and adding Gaussian ~ Acc: 0.932
Inception v3/v4 [74] st 1 white noise (variances of 0.0001
t0 0.01).
(1) Adopted Gabor-based anisotropic diffusion (GAD) to Train: 390 A: random flipping, shifting,  DoC: 050
Chen et al. [46] redu}cc s}pcckle noise in ullmmuud. images; (2‘) Fx.l]e:i the hila U-Net [6] Private Validation: 51 Us Uns. 240 % 240 rotation, sheanng‘. brightness and
portion in results using Test: 90 contrast and elastic
operations. transformation. SPC: 0.937
(1) A difficulty-aware module is proposed to distinguish the
difficulty grade of LN images and apply corresponding L . L DSC: 0.834
Xuetral.[47]  scgmentation branches according to the difficulties; 2) A ResNet [3] Private z::f“éé'm us Armpit Uns, {:n;f;?;'," rotation and ToU: 0.744
spatial attention module is adopted to the complex ASPP [75] o . VOE: 0.120
segmentation branch.
(1) Proposed cascaded multi-heads UNet (CMU-net); (2) The Train: 120 cases DSCayg: 0.895
CMU-Net [50] classification results were multiplied with the corresponding UNet++ [36] Private ) CT Pelvic 512X 512 Uns. ASDgyg: 0.647 mm
R B ° Test: 40 cases 8
network as a p method. HD954y¢: 2.811 mm

(1) Validated the effectiveness of Y-Net model in lymph node
segmentation and classification; (2) The four-level pyramid
Y-Net [51] pooling module and pyramid spatial pooling blocks were U-Net [6] Private
proposed to achieve segmentation and classification
simultaneously.
(1) Proposed an attention block for traditional U-Net to

Train & Test: 2,512

Validation: 547 us Cervical Uns. Uns. DSC: 0.832

\A: random rotation (£10°),

reduce loss of crucial information during down sampling in Train: 18,054 random vertical flip, random
Hasan et al. [52]  decoder; (2) Proposed S-Net for small lymph node U-Net (6] Private Validation: 4463 CT Cervical Uns. briahmewmmm"éh‘“ o4 DSC:0808
segmentation; (3) Combined the Tversky loss, BCE, and IoU S-Net [76] Test: 2,602 818 st change &
5 PR random gamma transformation.
loss to learn the characteristics of small lymph nodes.
) A: random erasure, scaling,
1 Proposed a dual-encoder U-shape model named DE-Net ResNet [5] . Train: 30 scans . . N - . DSC: 0.736
Transformer DE-Net [54] (composed of parallel CNN and Swin Transformer). Swin Transformer [53] Private Test: 10 scans cT All S1zx512 f:(:onr:it: rotation, vertical flip HD: 21.500 mm
(1) Proposed a three-step 2D pipeline to perform both ;‘l r::?d:r?ﬁ:‘ocu::_ﬁ:f(ijzil}l
Bouget ef al. [59]  semantic segmentation and instance detection; (2) Used Mask U-Net [6] 17-Patients [77] Total: 17 scans ~ CT Lung 256 X256 m[‘:"sif‘ tans cliomine and | DSC: 0.409
Object R-CNN to detect various target structures in different sizes. Mask R-CNN[61] Y range clipping
Detection rescaling.
Assisted P: cropping to 256 X 256 pixels.
(1) Combined T2WI and DWI together to generate Train: 5,694 \A: random cropping, affine DSC;,: 0.820
auto-LNDS [60]  three-channel images; (2) Used Mask R-CNN to detect and  ResNet-101 [5] Private Test;,: 1,192 MRI Pelvic 256256 transformation, flipping, adding ~ DSCey: 0.810
segment LNs simultaneously. Mask R-CNN [61] Testey: 2,572 noise, blurring, contrast and DSCayg: 0.815
brightness enhancement.
SegNet [38], DeepLab L
N . . \A: Random translation in .
Xu et al. [65] Proposed [.he focal loss from object detection task to the v3+ 48], ResNel- 18 Private Total: 63 scans PET/CT Thorax Uns. horizontal and vertical directions DSC_' 0.750
Loss segmentation task. [5]. all pre-trained on (010 10 pixels) Sen: 0.870
Function ImageNet [30] -
Combined the voxel-level loss function like Kgf;:e[:f:i)i‘;iNCl \A: Random translation in DSC: 0.770
Xu et al. [66] boundary-attenti tropy loss into level loss el P - Private Total: 63 scans PET/CT Thorax Uns. horizontal and vertical directions T e
[48], all pre-trained on Sen: 0.880

function (generalized dice loss). (0 to 10 pixels).

ImageNet [30]

Backbone CNN: convolutional neural network, FCN: fully convolutional network, ResNet: residual network, VGG: visual geometry group, ASPP: atrous spatial pyramid pooling,
DeConv: deconvolutional network. Modality CT: computed tomography, MRI: magnetic resonance imaging, PET: positron emission tomography, US: ultrasound; LN Site H&N: head
and neck, TA: thoracoabdominal, Uns: unspecified; Performance DSC: dice similarity coefficient, IoU: intersection over union, Prec: precision, Rec: recall, Acc: accuracy, Sen:
sensitivity, Spc: specificity, HD: Hausdorff distance, ASD: average surface distance, in: internal dataset, ex: external dataset, and avg: on average for multi-center study metrics.
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resolution and contrast of raw images generated by CT and
PET are various, and preprocessing techniques including
resizing, histogram equalization, and others are essential to
ensure the consistency of the input data. This may result in
the loss of detailed information on LN structures, thereby
affecting the LN segmentation performance.

Although the signal-to-noise ratio (SNR) of ultrasound
images is lower compared to CT and PET images, ultrasound
imaging is highly effective in displaying LN during real-
time examinations. The ability to zooming in, zooming
out, and manipulating the probe to observe the LN from
different angles, providing a comprehensive view of the entire
LN structure. Additionally, ultrasound images captured by
radiologists often have a higher proportion of LN compared
to CT and PET images, further aiding in segmentation.
Furthermore, high-frequency ultrasound is commonly used
in LN imaging. The relatively high image resolution of
high-frequency ultrasound allows preprocessing operations
and enhances the potential for high-accuracy segmentation.

The performance of the MRI modality achieved a balance
between CT/PET and ultrasound, with a mean Dice score
of 0.792. MRI is widely used in clinical practice due to
its excellent soft tissue contrast and multiplanar imaging
capabilities. The high resolution and contrast of MRI images
enable the capture of detailed information on LN structures.
However, the MRI modality is least utilized in the studies
included in this study, possibly due to the high cost of
MRI imaging and the complexity of MRI image processing.
Further exploration is needed to fully understand the potential
performance of MRI in LN segmentation tasks.

C. BEST METHOD FOR DIFFERENT MODALITIES
According to the previous literature, the best method for
different modalities in LN segmentation are shown in Table 3.
The results indicate that the best methods for CT, PET/CT,
and ultrasound are encoder-decoder-based methods, while the
best method for the MRI modality is an object detection-
assisted method.

Interestingly, the majority of studies included in this
study have utilized U-Net, variants of U-Net such as
UNet++, and ResNet, as the backbone architectures. These
backbones have established themselves as highly effective
in medical image segmentation tasks. The fact that the best
methods for different modalities also rely on these backbones
further highlights their robustness and generalizability in LN
segmentation tasks.

Analysis of Table 3 and the model architectures of these
methods ( [35], [37], [44], [60]) reveals three common
characteristics that significantly contribute to their superior
performance across different modalities: (1) implementation
of encoder-decoder architectures with skip connections,
enabling effective capture of both local details and global
contextual features; (2) training on relatively large and
diverse datasets, enhancing model generalization; and (3)
extensive use of data augmentation techniques to artificially
expand the training data variability. These complementary
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strategies collectively facilitate robust feature extraction
and accurate segmentation performance, regardless of the
underlying imaging modality.

D. OVERALL OBSERVATIONS

1) ADVANTAGES

The application of deep learning techniques in LN seg-
mentation tasks offers three principal advantages. Firstly,
it has the potential to considerably reduce the time and
effort required by radiologists for diagnosis. It facilitates
the optimization of the clinical workflow by automating
the identification of metastatic nodes, thereby enhances the
efficiency of LN image analysis. Secondly, deep learning
methodologies can assist in standardizing the process, and
ensure consistency in the evaluation and reduce the variability
in accuracy that may arise from the differences in experience
and expertise amongst radiologists. The automation of
the segmentation process allows models to achieve more
reliable and reproducible results, and provides real-time
support for diagnostic and therapeutic decisions. Third, the
continuous learning and transfer learning capabilities enable
the integration of new data and knowledge, facilitates the
development of more accurate and robust models [78].
By leveraging the vast amount of data and information
available, deep learning models can enhance the performance
and generalizability of LN segmentation tasks.

2) LIMITATIONS

At present, the most frequently utilized deep learning archi-
tectures for LN segmentation are encoder-decoder-based
methods, particularly U-Net and its variants. Although these
methods have demonstrated high performance in various
medical image segmentation tasks, they may not be the most
suitable methods due to the bias attributed to the different
private datasets used in the studies. The insufficiency of
publicly accessible datasets and the scarcity of diversity in
the data utilized for training may have resulted in inequitable
comparisons between disparate methodologies.

Additionally, the limited diversity of datasets in terms
of patient demographics, imaging protocols, and anatomical
variations poses challenges for models to generalize well
across different clinical settings. The quality of annotations
exhibits variability across studies, with some relying on
less detailed or inconsistent labeling, which can adversely
affect the training and evaluation of segmentation models.
These issues underscore the need for more standardized
and diverse datasets, as well as higher annotation quality,
to advance the field and enable fairer comparisons of different
methodologies.

Moreover, the performance of Transformer-based tech-
niques and object detection-assisted segmentation methods
in LN segmentation tasks is comparatively inferior to that
of CNN-based methods. This may hamper the widespread
application of these techniques in LN segmentation tasks and
hinder the full realization of their potential.
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TABLE 3. Best methods for different modalities in LN segmentation. The subscript in, and ex indicate the internal dataset and external dataset.

Modality ~ Study Technique Backbone Dataset Dataset Size LN Site  Performance
DSC: 0.935
TCIA [69] Train: 28,830 ToU: 0.919
CT Nayan et al. [35] Encoder-Decoder  UNet++ [36] 5-Patients [70] Test: 25.500 Lung Acc: 0.948
ELCAP [71] ch e Prec: 0.931
Rec: 0.941
. X Train: 3,710
PET/CT DiSegNet [37] Encoder-Decoder ~ SegNet [38] Private Test: 700 Thorax DSC: 0.770
. . Train: 5,694 DSC;,,: 0.820
MRI aulo-LNDS [60]  Qelect Detection &e;sﬁe];_lgﬁg][ 6 Privae Testiy: 1,192 Pelvic  DSCe: 0.810
’ Testey: 2,572 DSCayg: 0.815
U-Net [6] Train: 4,000 DSC: 0.924
usS MUNet [44] Encoder-Decoder ~ ResNet 50/152 [5] Private Validation: 1,000  Neck ACC'.O 932
Inception v3/v4 [74] Test: 1,000 T

Modality CT: computed tomography, MRI: magnetic resonance imaging, PET: positron emission tomography, US: ultrasound; Backbone ResNet: residual network; Performance
DSC: dice similarity coefficient, IoU: intersection over union, Prec: precision, Rec: recall, Acc: accuracy, in: internal dataset, ex: external dataset, and avg: on average for multi-center

study metrics.

3) CHALLENGES

a: DATA SCARCITY AND ANNOTATION COMPLEXITY

It is worth noting that out of the 23 studies included in this
study, only four studies [23], [35], [39], [59] utilized public
datasets [67], [69], [70], [71], [72], [77], while the remaining
studies relied on private datasets. The number of images used
in each study also varied. The use of different datasets makes
it challenging to directly compare the experimental results
of various studies and ascertain the superiority of methods,
and this situation hampers the innovative development of LN
segmentation tasks.

In recent years, with the availability of numerous publicly
accessible datasets such as ImageNet [30], COCO [79],
and Cityscapes [80], natural vision tasks have experienced
significant advancements. However, medical imaging tasks,
including those related to LN image processing, have faced
persistent challenges in data availability. Difficulties in data
collection, high acquisition costs, and the labor-intensive
nature of data annotation have hindered the formation of large
datasets in this domain.

Acquiring and annotating medical imaging data is com-
plex. Devices from different manufacturers or time periods
vary in resolution, contrast, noise, and artifacts due to
technological advancements and different settings. These
variations affect image quality and the amount of usable
information, making it difficult to build deep learning
datasets. Inconsistent data from different devices complicates
preprocessing and standardization, reducing model general-
ization and accuracy. In addition, device incompatibilities
limit data integration from multiple sources, resulting in small
and heterogeneous datasets that weaken the performance
and reliability of deep learning models in clinical settings.
Therefore, effective calibration and standardization measures
should be implemented to ensure data consistency and quality
during data acquisition, thereby improving the diagnostic
accuracy and clinical utility of deep learning models.

Unlike the annotating process of natural images, the
delineation process of LN structures highly depends on
the expertise of radiologists. It takes several minutes to
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annotate a single LN image for professional radiologists,
making the collection and annotation of a large dataset of LN
images time-consuming and costly. Due to these challenges,
researchers often rely on limited self-collected data, which
is constrained by ethical and copyright restrictions imposed
on hospital data. Consequently, the scarcity of data hampers
research efficiency and imposes limitations on the perfor-
mance of models in LN segmentation tasks.

Moreover, LNs exhibit considerable variability in mor-
phology and location across different patients and imaging
modalities. This diversity increases the difficulty of automatic
segmentation, requiring models to have strong generalization
capabilities to perform reliably in various clinical environ-
ments. Additionally, consistency in annotation is also an
issue, as different annotators might have varying delineations
for the same LN, introducing noise into the dataset.

b: INSUFFICIENT APPLICATION OF NEW TECHNIQUES
Another challenge is the insufficient application of new
techniques such as object detection-assisted methods, Trans-
former models, and large-scale pre-trained models. The
object detection-assisted methods included in this study only
adopted the Mask R-CNN model which is pre-trained on
the ImageNet dataset. The lack of fine-tuning on medical
images may have limited the performance of these methods.
In addition, while transformers and large-scale pre-trained
models are widely used in natural language and image
processing tasks, their application in LN segmentation tasks
is still scarce. Integrating these models has the potential to
improve the performance and generalization of models in LN
segmentation tasks.

c: CLINICAL INTEGRATION CHALLENGES

The integration of deep learning-based segmentation models
into clinical workflows presents several challenges. A pri-
mary concern is the seamless integration with existing clinical
systems, such as Picture Archiving and Communication
Systems (PACS). The successful incorporation of these tools
requires interoperability that ensures the outputs are directly
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accessible and interpretable within the established clinical
infrastructure without disrupting the standard radiological
workflow. In addition to the integration of technology,
the regulatory environment presents challenges. Regulatory
agencies such as the U.S. Food and Drug Administration
(FDA) and the European Conformity Assessment (CE)
bodies require rigorous evidence of safety, efficacy, and
reproducibility prior to approval.

Moreover, the implementation of these models in actual
settings is hindered by the inherent variations among health-
care institutions, such as imaging protocols, hardware config-
urations, and data management practices. Consequently, deep
learning models must possess a high degree of adaptability
and be thoroughly validated in diverse clinical environments.
The effective integration of such protocols necessitates
robust multidisciplinary collaboration. The convergence of
expertise from clinicians, biomedical engineers, information
technology specialists, and regulatory experts is imperative
for the development of standardized protocols that adhere
to technical and regulatory requirements, and ensure the
seamless integration of the tools into routine clinical practice.

d: UNCERTAINTY QUANTIFICATION

An important aspect not previously addressed is the quan-
tification of uncertainty in deep learning-based segmentation.
In clinical applications, it is crucial that segmentation models
provide predictions and confidence estimates. Techniques
such as Monte Carlo dropout, which involves performing
multiple stochastic forward passes during inference, and
Bayesian approximation approaches that model parame-
ter uncertainty, can be employed to quantify uncertainty.
In addition, depth ensembles quantify uncertainty through the
variance of the prediction results, offering another avenue to
assess prediction variability.In the context of LN segmenta-
tion, providing uncertainty estimates may enable clinicians
to identify regions with lower confidence, prompting further
review or alternative diagnostic measures.

E. FUTURE PERSPECTIVES

In response to the current challenges faced by LN segmen-
tation tasks, we propose several potential research directions
for future development.

1) WORKAROUND FOR INSUFFICIENT DATA

To address the issue of limited data availability, researchers
can adopt several strategies. Firstly, while conducting exper-
iments on private datasets, it is also important to evaluate
model performance on publicly available datasets, such as
the Sa-med2d-20m dataset [81]. This allows for broader
participation and facilitates the improvement of methods.
Secondly, researchers should actively explore new techniques
that are less reliant on large volumes of data. Approaches
such as transfer learning [60], semi-supervised learning [82],
weakly supervised learning [83], contrastive learning [84]
and unsupervised learning [85] can enable the construction of
models with minimal data. These methods leverage existing
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prior knowledge and can effectively enhance the performance
of models in LN segmentation tasks.

The application of diverse data transformations, including
rotation, flipping, scaling, and contrast adjustment, to existing
images facilitates the augmentation of training data, thereby
enhancing the diversity of the training data set and simulating
the variations in images that arise from different devices
and imaging conditions. Furthermore, data augmentation can
emulate the anatomical and pathological variations observed
in real-world scenarios, thereby increasing the robustness of
deep learning models when processing images from diverse
sources and of varying quality. Consequently, data augmen-
tation techniques are pivotal in improving the accuracy and
reliability of models and in promoting the effectiveness of
deep learning algorithms in clinical applications.

2) MODEL HYBRIDIZATION

The combination of multiple models has been proven an
effective approach to image segmentation, such as CNNs
and transformers. As demonstrated by the DETR [64],
this integration capitalizes on the respective strengths of
these architectures. CNNs are capable at capturing local
features, whereas transformers excel at learning global
representations. The synergy between these models enhances
segmentation accuracy, improves generalization, optimizes
computational efficiency by reducing the workload on
transformers, and increases model robustness against noise
and variability. Despite the greater computational demands of
Transformer models, strategies such as quantization, parame-
ter pruning, and lightweight Transformer (e.g., Tiny ViT [86])
can be employed to alleviate the burden and enhance the
feasibility of model hybridization. This integration of diverse
models may has the potential to the development of more
precise and reliable LN segmentation methods.

3) MULTIMODAL FUSION TECHNIQUES

To advance LN segmentation, it is essential to expand
the application of multimodal fusion technologies, such as
combining grayscale ultrasound images with color Doppler
images [40], integrating CT and PET images [87], and
merging multiple imaging modalities like CT and MRI with
patient clinical information. This integration provides richer
blood flow data, detailed tissue structures, and comprehensive
patient backgrounds, enabling deep learning models to
achieve more accurate and robust segmentation. By lever-
aging multiple data sources, models can better generalize
across diverse clinical scenarios, reducing the likelihood of
missed or incorrect detections. Additionally, incorporating
clinical information enhances the clinical relevance and
practicality of segmentation results, supports personalized
treatment plans, and improves diagnostic confidence.

4) INTEGRATION WITH LARGE-SCALE PRE-TRAINED
MODELS

Exploring the integration with large-scale pre-trained models,
such as GPT [88] and the Segment Anything Model
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(SAM) [89], [90], which are trained on vast datasets,
has become increasingly relevant in the medical diagnosis
field [91]. This is important for researchers lacking sufficient
data or computational resources. Utilizing large models for
fine-tuning in specific domains has emerged as a new trend
and direction. By leveraging the knowledge learned from
these pre-trained models, researchers can potentially improve
the performance and generalizability of LN segmentation
models, even with limited data. Furthermore, the integration
of pre-trained models can also facilitate the transfer of learned
features and representations, enabling the development of
more robust and accurate LN segmentation methods.

F. LIMITATIONS
This systematic review is subject to four limitations.

1) Commonly used evaluation metrics across the included
studies are limited and compromise the comparability
of their results; while DSC is the most commonly
reported metric, it primarily reflects the overlap
between predicted and ground truth regions but pro-
vides limited insight into boundary accuracy. This
reliance on DSC may overlook important aspects of
segmentation performance, particularly in clinical con-
texts where accurate boundary delineation is critical.
Metrics such as HD (sensitive to outlier boundary
points), ASD (captures the overall contour alignment),
and VOE (quantifies volumetric discrepancies), offer
a more comprehensive understanding of segmentation
performance. However, these metrics were not con-
sistently reported across the included studies, limiting
their use in our analysis. Future studies should report a
wider range of performance metrics to enable a more
holistic comparison.

2) The exclusion criteria, which omitted studies lacking
detailed information on deep learning techniques and
quantitative results, may have limited the comprehen-
siveness of the review.

3) The utilization of datasets with considerable variations
in quantity and quality may introduce biases in method
comparisons.

4) Few studies included in Transformer and object
detection-assisted group, may result in an incomplete
representation of the field.

These limitations may affect the generalizability of the
conclusions, restricting their applicability to studies that meet
these specific criteria and reducing the broader transferability
of the review findings.

V. CONCLUSION

This study offers a comprehensive overview of deep learning
techniques applied to LN segmentation tasks. It analyzes the
performance of various techniques in multiple LN imaging
modalities, identifying optimal methods for each modality.
Analyses from different perspectives show that deep learning
methods provide comparable results to manual segmentation,
especially in large datasets. Deep learning methods also
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enable efficient full automation process, helping to streamline
the clinical diagnostic workflows. The challenges and
limitations currently hindering progress in this research area
are thoroughly discussed. Additionally, potential directions
for future research are proposed. By summarizing the current
state of research, this study provides valuable insights for
LN segmentation researchers and contributes to advancing
medical image processing.

CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interest.

REFERENCES

[1] A. Bazemore and D. R. Smucker, ‘“Lymphadenopathy and malignancy,”
Am Fam Physician, vol. 66, no. 11, Dec. 2002, Art. no. 2103.

[2] A. T. Ahuja, “Ultrasound of malignant cervical lymph
nodes,” Cancer Imag., vol. 8, mno. 1, pp.48-56, 2008.
[Online]. Available: https://www.ncbi.nlm.nih.gov/pu
bmed/18390388

[3] A. T. Ahuja and M. Ying, “Sonographic evaluation of cervical
lymph nodes,” Amer. J. Roentgenol., vol. 184, no. 5, pp. 1691-1699,
May 2005. [Online]. Available: https://www.ajronline.org/doi/abs/10.2
214/ajr.184.5.01841691

[4] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, ‘“Backpropagation applied to handwritten
zip code recognition,” Neural Comput., vol. 1, no. 4, pp. 541-551,
Dec. 1989.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770-778.

[6] O.Ronneberger, P. Fischer, and T. Brox, ‘““U-Net: Convolutional networks
for biomedical image segmentation,” in Proc. 18th Int. Conf. Med.
Image Comput. Comput.-Assist. Intervent., Munich, Germany. Cham,
Switzerland: Springer, Jan. 2015, pp. 234-241.

[7]1 A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,

T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,

J. Uszkoreit, and N. Houlsby, “An Image is Worth 16x16 Words:

Transformers for image recognition at scale,” ArXiv, vol. abs/2010.11929,

2020

M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, and

H. Greenspan, “GAN-based synthetic medical image augmentation for

increased CNN performance in liver lesion classification,” Neurocomput-

ing, vol. 321, pp. 321-331, Dec. 2018.

[9] Q. Jin, Z. Meng, T. D. Pham, Q. Chen, L. Wei, and R. Su, “DUNet:
A deformable network for retinal vessel segmentation,” Knowl.-Based
Syst., vol. 178, pp. 149-162, Aug. 2019.

[10] M. Y. Ansari, A. Abdalla, M. Y. Ansari, M. 1. Ansari, B. Malluhi,
S. Mohanty, S. Mishra, S. S. Singh, J. Abinahed, A. Al-Ansari,
S. Balakrishnan, and S. P. Dakua, “Practical utility of liver segmentation
methods in clinical surgeries and interventions,” BMC Med. Imag., vol. 22,
no. 1, p. 97, May 2022, doi: 10.1186/s12880-022-00825-2.

[11] M. Y. Ansari, I. A. C. Mangalote, D. Masri, and S. P. Dakua,
“Neural network-based fast liver ultrasound image segmentation,” in
Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jun. 2023, pp. 1-8.

[12] M. Y. Ansari, S. Mohanty, S. J. Mathew, S. Mishra, S. S. Singh,
J. Abinahed, A. Al-Ansari, and S. P. Dakua, “Towards developing a
lightweight neural network for liver CT segmentation,” in Medical
Imaging and Computer-Aided Diagnosis, R. Su, Y. Zhang, H. Liu, and
A. F Frangi, Eds., Singapore: Springer, 2023, pp. 27-35.

[13] P. F. Jaeger, S. A. A. Kohl, S. Bickelhaupt, F. Isensee, T. A. Kuder,
H.-P. Schlemmer, and K. H. Maier-Hein, “Retina U-Net: Embarrassingly
simple exploitation of segmentation supervision for medical object
detection,” in Proc. Mach. Learn. Health NeurlPS Workshop, vol. 116,
Dec. 2020, pp. 171-183.

[14] H. Shan, A. Padole, F. Homayounieh, U. Kruger, R. D. Khera,
C. Nitiwarangkul, M. K. Kalra, and G. Wang, “Competitive performance
of a modularized deep neural network compared to commercial algorithms
for low-dose CT image reconstruction,” Nature Mach. Intell., vol. 1, no. 6,
pp. 269-276, Jun. 2019.

[8

—

VOLUME 13, 2025


http://dx.doi.org/10.1186/s12880-022-00825-2

J. Qu et al.: Application of Deep Learning for Lymph Node Segmentation: A Systematic Review

IEEE Access

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

M. Y. Ansari, M. Qarage, R. Righetti, E. Serpedin, and K. Qaraqe,
“Unveiling the future of breast cancer assessment: A critical review on
generative adversarial networks in elastography ultrasound,” Frontiers
Oncol., vol. 13, pp. 12-19, Dec. 2023.

M. Y. Ansari, I. A. C. Mangalote, P. K. Meher, O. Aboumarzouk,
A. Al-Ansari, O. Halabi, and S. P. Dakua, ““Advancements in deep learning
for B-mode ultrasound segmentation: A comprehensive review,” IEEE
Trans. Emerg. Topics Comput. Intell., vol. 8, no. 3, pp.2126-2149,
Jun. 2024.

M. E. Rayed, S. M. S. Islam, S. I. Niha, J. R. Jim, M. M. Kabir, and
M. F. Mridha, “Deep learning for medical image segmentation: State-of-
the-art advancements and challenges,” Informat. Med. Unlocked, vol. 47,
May 2024, Art. no. 101504.

M. Aljabri and M. AlGhamdi, “A review on the use of deep learning for
medical images segmentation,” Neurocomputing, vol. 506, pp. 311-335,
Sep. 2022.

M. J. Page et al, “The PRISMA 2020 statement: An updated
guideline for reporting systematic reviews,” Int. J. Surg., vol. 88,
Mar. 2021, Art. no. 105906. [Online]. Available: https://www.sciencedir
ect.com/science/article/pii/S1743919121000406

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278-2324, Nov. 1998.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp- 84-90, May 2017.

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 3431-3440.

I. Nogues, L. Lu, X. Wang, H. Roth, G. Bertasius, N. Lay, J. Shi, Y. Tsehay,
and R. M. Summers, “Automatic lymph node cluster segmentation
using holistically-nested neural networks and structured optimization
in CT images,” in Proc. Int. Conf. Med. Image Comput. Comput.-
Assist. Intervent., vol. 9901. Cham, Switzerland: Springer, 2016,
pp. 388-397.

S. Xie and Z. Tu, “Holistically-nested edge detection,” in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 1395-1403.

Y. Zhang, M. T. C. Ying, L. Yang, A. T. Ahuja, and D. Z. Chen, “Coarse-
to-fine stacked fully convolutional nets for lymph node segmentation in
ultrasound images,” in Proc. IEEE Int. Conf. Bioinf. Biomed. (BIBM),
Dec. 2016, pp. 443—448.

Y. Zhang, M. T. C. Ying, and D. Z. Chen, ‘“Decompose-and-
integrate learning for multi-class segmentation in medical images,”
in Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent.,
vol. 11765, D. Shen, P. T. Yap, T. Liu, T. M. Peters, A. Khan,
L. H. Staib, C. Essert, and S. Zhou, Eds. Cham, Switzerland: Springer,
2019, pp. 641-650.

L. Yu, J.-Z. Cheng, Q. Dou, X. Yang, H. Chen, J. Qin, and
P-A. Heng, ‘“Automatic 3D cardiovascular MR segmentation
with densely-connected volumetric ConvNets,” in Proc. 20th
Int. Conf. Med. Image Comput. Comput.-Assist. Intervent., Quebec
City, QC, Canada. Cham, Switzerland: Springer, 2017, pp. 287-295.

H. Chen, Q. Xiao, J. Cheng, and P. Heng, “Deep contextual networks for
neuronal structure segmentation,” in Proc. 13th AAAI Conf. Artif. Intell.,
vol. 30, Feb. 2016, pp. 1167-1173.

Y. Li, T. Dan, H. Li, J. Chen, H. Peng, L. Liu, and H. Cai, “NPCNet:
Jointly segment primary nasopharyngeal carcinoma tumors and metastatic
lymph nodes in MR images,” IEEE Trans. Med. Imag., vol. 41, no. 7,
pp. 1639-1650, Jul. 2022.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei, “ImageNet: A large-scale hierarchical image database,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2009,
pp. 248-255.

K. Men, X. Chen, Y. Zhang, T. Zhang, J. Dai, J. Yi, and Y. Li, “Deep
deconvolutional neural network for target segmentation of nasopharyngeal
cancer in planning computed tomography images,” Frontiers Oncol.,
vol. 7, p. 315, Dec. 2017.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

S. Li, J. Xiao, L. He, X. Peng, and X. Yuan, “The tumor target
segmentation of nasopharyngeal cancer in CT images based on deep
learning methods,” Technol. Cancer Res. Treatment, vol. 18, Jan. 2019,
Art. no. 1533033819884561.

VOLUME 13, 2025

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

(43]

(44]

(45]

(46]

[47]

(48]

(49]

[50]

(51]

[52]

Y. Ariji, Y. Kise, M. Fukuda, C. Kuwada, and E. Ariji, “Segmentation of
metastatic cervical lymph nodes from CT images of oral cancers using
deep-learning technology,” Dentomaxillofacial Radiol., vol. 51, no. 4,
May 2022, Art. no. 20210515.

A.-A. Nayan, B. Kijsirikul, and Y. Iwahori, “Mediastinal lymph node
detection and segmentation using deep learning,” IEEE Access, vol. 10,
pp. 89289-89307, 2022.

Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “UNet++: A
nested U-Net architecture for medical image segmentation,” in Proc. 4th
Int. Workshop Deep Learn. Med. Image Anal. Multimodal Learn. Clin.
Decis. Support, Granada, Spain, Sep. 2023, pp. 3-11.

G. Xu, H. Cao, J. K. Udupa, Y. Tong, and D. A. Torigian, “DiSegNet: A
deep dilated convolutional encoder—decoder architecture for lymph node
segmentation on PET/CT images,” Computerized Med. Imag. Graph.,
vol. 88, Mar. 2021, Art. no. 101851.

V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep
convolutional encoder—decoder architecture for image segmentation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481-2495,
Dec. 2017.

S. Ahamed, L. Polson, and A. Rahmim, “A U-Net convolutional neural
network with multiclass Dice loss for automated segmentation of tumors
and lymph nodes from head and neck cancer PET/CT images,” in Head and
Neck Tumor Segmentation and Outcome Prediction. Cham, Switzerland:
Springer, 2023, pp. 94-106.

X. Fu, T. Gao, Y. Liu, M. Zhang, C. Guo, J. Wu, and Z. Wang, “Multi-
modal feature attention for cervical lymph node segmentation in ultrasound
and Doppler images,” in Communications in Computer and Information
Science, H. Yang, K. Pasupa, A. C. Leung, J. T. Kwok, J. H. Chan, and
I. King, Eds., Cham, Switzerland: Springer, 2020, pp. 479-487.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ““Attention is all you need,” in Proc. Adv. Neu-
ral Inf. Process. Syst., vol. 30, 2017, pp. 5998-6008.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “SSD: Single shot multibox detector,” in Proc. 14th
Eur. Conf. Comput. Vis. (ECCV), Amsterdam, The Netherlands, Jan. 2016,
pp. 21-37.

L. Zhang, J. Zhang, Z. Li, and Y. Song, “A multiple-channel and Atrous
convolution network for ultrasound image segmentation,” Med. Phys.,
vol. 47, no. 12, pp. 6270-6285, Dec. 2020.

W. Zhang, H. Cheng, and J. Gan, “MUNet: A multi-scale U-Net frame-
work for medical image segmentation,” in Proc. Int. Joint Conf. Neural
Netw. (IJCNN), Jul. 2020, pp. 1-7.

J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
2018, arXiv:1804.02767.

H. Chen, Y. Wang, J. Shi, J. Xiong, J. Jiang, W. Chang, M. Chen,
and Q. Zhang, ‘“Segmentation of lymph nodes in ultrasound images
using U-Net convolutional neural networks and Gabor-based anisotropic
diffusion,” J. Med. Biol. Eng., vol. 41, no. 6, pp. 942-952, Dec. 2021.

Q. Xu, X. Xi, X. Meng, Z. Qin, X. Nie, Y. Wu, D. Zhou, Y. Qu, C. Li,
and Y. Yin, “Difficulty-aware bi-network with spatial attention constrained
graph for axillary lymph node segmentation,” Sci. China Inf. Sci., vol. 65,
no. 9, pp. 11-19, Sep. 2022.

L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder—decoder with Atrous separable convolution for semantic image
segmentation,” in Proc. Eur. Conf. Comput. Vis. (ECCV), Jan. 2018,
pp. 833-851.

T. Pohlen, A. Hermans, M. Mathias, and B. Leibe, ‘Full-resolution
residual networks for semantic segmentation in street scenes,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 3309-3318.

F. Wen, J. Zhou, Z. Chen, M. Dou, Y. Yao, X. Wang, F. Xu, and
Y. Shen, “Efficient application of deep learning-based elective lymph node
regions delineation for pelvic malignancies,” Med. Phys., vol. 51, no. 10,
pp. 7057-7066, Oct. 2024.

H. N. Zhao, H. Yin, J. Y. Liu, L. L. Song, Y. L. Peng, and B. Y. Ma, “Deep
learning-assisted ultrasonic diagnosis of cervical lymph node metastasis of
thyroid cancer: A retrospective study of 3059 patients,” Frontiers Oncol.,
vol. 14, Feb. 2024, Art. no. 1204987.

M. M. A. Hasan, S. Ghazimoghadam, P. Tunlayadechanont,
M. T. Mostafiz, M. Gupta, A. Roy, K. Peters, B. Hochhegger, A. Mancuso,
N. Asadizanjani, and R. Forghani, “Automated segmentation of lymph
nodes on neck CT scans using deep learning,” J. Imag. Informat. Med.,
vol. 37, no. 6, pp. 2955-2966, Jun. 2024.

97225



IEEE Access

J. Qu et al.: Application of Deep Learning for Lymph Node Segmentation: A Systematic Review

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]
[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]
[73]

[74]

Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021,
pp. 9992-10002.

J. Shi, Z. Wang, H. Kan, M. Zhao, X. Xue, B. Yan, H. An,
J. Shen, J. Bartlett, W. Lu, and J. Duan, “Automatic segmentation
of target structures for total marrow and lymphoid irradiation in
bone marrow transplantation,” in Proc. 44th Annu. Int. Conf. IEEE
Eng. Med. Biol. Soc. (EMBC), Jul. 2022, pp. 5025-5029.

Y. Gao, M. Zhou, and D. Metaxas, “UTNet: A hybrid transformer architec-
ture for medical image segmentation,” in Proc. 24th Int. Conf. Med. Image
Comput. Comput. Assist. Intervent., Strasbourg, France, Jan. 2021,
pp. 61-71.

O. N. Manzari, H. Ahmadabadi, H. Kashiani, S. B. Shokouhi, and
A. Ayatollahi, “MedViT: A robust vision transformer for generalized
medical image classification,” Comput. Biol. Med., vol. 157, May 2023,
Art. no. 106791.

H. Cai, J. Li, M. Hu, C. Gan, and S. Han, “EfficientViT: Lightweight multi-
scale attention for high-resolution dense prediction,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2023, pp. 17256-17267.

S. Mehta and M. Rastegari, “MobileViT: Light-weight, general-purpose,
and mobile-friendly vision transformer,” in Proc. Int. Conf. Learn. Repre-
sent., Jan. 2021, pp. 1-13.

D. Bouget, A. Jgrgensen, G. Kiss, H. O. Leira, and T. Langg,
“Semantic segmentation and detection of mediastinal lymph nodes and
anatomical structures in CT data for lung cancer staging,” Int. J.
Comput. Assist. Radiol. Surg., vol. 14, no. 6, pp. 977-986, Jun. 2019.

X. Zhao, P. Xie, M. Wang, W. Li, P. J. Pickhardt, W. Xia, F. Xiong,
R. Zhang, Y. Xie, J. Jian, H. Bai, C. Nj, J. Gu, T. Yu, Y. Tang, X. Gao,
and X. Meng, “Deep learning-based fully automated detection and
segmentation of lymph nodes on multiparametric-mri for rectal cancer: A
multicentre study,” EBioMedicine, vol. 56, Jun. 2020, Art. no. 102780.
K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” in
Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2980-2988.
D. Reis, J. Kupec, J. Hong, and A. Daoudi, “Real-time flying object
detection with YOLOVS,” 2023, arXiv:2305.09972.

S. Ren, K. He, R. Girshick, and J. Sun, ‘“Faster R-CNN: Towards real-
time object detection with region proposal networks,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1137-1149, Jun. 2017.

N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
Proc. Eur. Conf. Comput. Vis., Jan. 2020, pp. 213-229.

G. Xu, H. Cao, Y. Dong, C. Yue, K. Li, and Y. Tong, “Focal loss
function based DeepLabv3+ for pathological lymph node segmentation on
PET/CT,” in Proc. 2nd Int. Conf. Intell. Med. Image Process., Apr. 2020,
pp. 24-28.

G. Xu, H. Cao, and G. Jiang, “‘Boundary-attention loss function in neural
network for pathological lymph nodes segmentation based on PET/CT
images,” in Proc. 9th Int. Conf. Bioinf. Biomed. Sci., Oct. 2020, pp. 90-94.
R. H. Roth, L. Le, S. Ari, M. K. Cherry, J. Hoffman, S. Wang, J. Liu,
E. Turkbey, and M. R. Summers, “A new 2.5 D representation for lymph
node detection using random sets of deep convolutional neural network
observations,” in Proc. 17th Int. Conf. Med. Image Comput. Comput.-
Assist.  Intervent.—MICCAI. Boston, MA, USA: Springer, 2014,
pp. 520-527.

H. Noh, S. Hong, and B. Han, “Learning deconvolution network for
semantic segmentation,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 1520-1528.

P. Li, S. Wang, T. Li, J. Lu, Y. HuangFu, and D. Wang, “A large-scale
CT and PET/CT dataset for lung cancer diagnosis (Lung-PET-CT-Dx),”
Cancer Imag. Arch., 2020, doi: 10.7937/TCIA.2020.NNC2-0461.

C. Laboratory. (2022). Atlas of  Mediastinal Lymph
Stations. [Online]. Available: https://www.creatis.insa-lyon.fr/lymph-
stations-atlas/data/14a2770a2e.php

S. Armato, “Public lung image databases,” in Computer-Aided Detection
and Diagnosis in Medical Imaging. Boca Raton, FL, USA: CRC Press,
2015, pp. 218-229.

T. M. Soc. (2022). Hecktor 2022—Grand Challenge. [Online]. Available:
https://hecktor.grand-challenge.org/Data/

F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” 2015, arXiv:1511.07122.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “‘Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2818-2826.

97226

[75]

[76]

(77

(78]

(79]

(80]

(81]

(82]

(83]

(84]

(85]

(86]

(87]

(88]

(89]

(90]

(911

L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “‘Rethinking Atrous
convolution for semantic image segmentation,” 2017, arXiv:1706.05587.
Y. Gao, R. Huang, M. Chen, Z. Wang, J. Deng, Y. Chen, Y. Yang,
J. Zhang, C. Tao, and H. Li, “FocusNet: Imbalanced large and small
organ segmentation with an end-to-end deep neural network for head and
neck CT images,” in Proc. Med. Image Comput. Comput. Assist. Inter-
vent. (MICCAI), D. Shen, T. Liu, T. M. Peters, L. H. Staib, C. Essert,
S. Zhou, P-T. Yap, and A. Khan, Eds. Cham, Switzerland: Springer,
Jan. 2019, pp. 829-838.

P. J. Reynisson, M. Scali, E. Smistad, E. F. Hofstad, H. O. Leira,
F. Lindseth, T. A. N. Hernes, T. Amundsen, H. Sorger, and T. Langg,
“Airway segmentation and centerline extraction from thoracic CT
Comparison of a new method to state of the art commercialized methods,”
PLoS ONE, vol. 10, no. 12, Dec. 2015, Art. no. e0144282.

L. Wang, X. Zhang, H. Su, and J. Zhu, “A comprehensive survey of
continual learning: Theory, method and application,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 46, no. 8, pp. 5362-5383, Aug. 2024.

T.-Y.Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dolldr,
and C. L. Zitnick, “Microsoft COCO: Common objects in context,”
in Proc. 13th Eur. Conf. Comput. Vis. (ECCV), Zurich, Switzerland,
Jan. 2014, pp. 740-755.

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic
urban scene understanding,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2016, pp. 3213-3223.

J. Ye,J. Cheng, J. Chen, Z. Deng, T. Li, H. Wang, Y. Su, Z. Huang, J. Chen,
L. Jiang, H. Sun, M. Zhu, S. Zhang, J. He, and Y. Qiao, “SA-Med2D-20M
dataset: Segment anything in 2D medical imaging with 20 million masks,”
2023, arXiv:2311.11969.

Y. Bai, D. Chen, Q. Li, W. Shen, and Y. Wang, ‘“Bidirectional
copy-paste for semi-supervised medical image segmentation,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2023,
pp. 11514-11524.

Z. Chen, Z. Tian, J. Zhu, C. Li, and S. Du, “C-CAM: Causal CAM
for weakly supervised semantic segmentation on medical image,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022,
pp. 11666-11675.

J.-B. Grill, E. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya,
C. Doersch, B. A. Pires, Z. Guo, M. G. Azar, and B. Piot, “Bootstrap
your own latent-a new approach to self-supervised learning,” in Proc. 34th
Int. Conf. Neural Inf. Process. Syst., 2020, pp. 21271-21284.

C. Chen, Q. Dou, H. Chen, J. Qin, and P. A. Heng, “Unsupervised
bidirectional cross-modality adaptation via deeply synergistic image and
feature alignment for medical image segmentation,” IEEE Trans. Med.
Imag., vol. 39, no. 7, pp. 2494-2505, Jul. 2020.

K. Wu, J. Zhang, H. Peng, M. Liu, B. Xiao, J. Fu, and L. Yuan,
“TinyViT: Fast pretraining distillation for small vision transformers,” in
Proc. Eur. Conf. Comput. Vis. (ECCV), Jan. 2022, pp. 68-85.

M. A. Mahdi, S. Ahamad, S. A. Saad, A. Dafhalla, R. Qureshi,
and A. Alqushaibi, “Weighted fusion transformer for dual PET/CT
head and neck tumor segmentation,” [EEE Access, vol. 12,
pp. 110905-110919, 2024.

T. B. Brown et al., “Language models are few-shot learners,” in
Proc. Adv. Neural Inf. Process. Syst., Jan. 2020, pp. 1877-1901.

A. M. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W. Lo, P. Dollér, and R. Girshick,
“Segment anything,” in Proc. IEEE/CVF Int. Conf. Comput. Vis.,
Oct. 2023, pp. 4015-4026.

J. Cheng, J. Ye, Z. Deng, J. Chen, T. Li, H. Wang, Y. Su, Z. Huang, J. Chen,
L. Jiang, H. Sun, J. He, S. Zhang, M. Zhu, and Y. Qiao, “SAM-Med2D,”
2023, arXiv:2308.16184.

S.-H. Wu, W.-J. Tong, M.-D. Li, H.-T. Hu, X.-Z. Lu, Z.-R. Huang,
X.-X. Lin, R.-F. Lu, M.-D. Lu, L.-D. Chen, and W. Wang, ““Collaborative
enhancement of consistency and accuracy in US diagnosis of thyroid
nodules using large language models,” Radiology, vol. 310, no. 3,
Mar. 2024, Art. no. e232255.

JINGGUO QU received the bachelor’s (B.Eng.) and master’s (M.Eng.)
degrees in civil engineering and computer science, in 2018 and 2023,
respectively. He is currently pursuing the Ph.D. degree with the Department
of Health Technology and Informatics, The Hong Kong Polytechnic
University. His research interests include medical image processing, deep
learning, and computer-aided diagnosis.

VOLUME 13, 2025


http://dx.doi.org/10.7937/TCIA.2020.NNC2-0461

J. Qu et al.: Application of Deep Learning for Lymph Node Segmentation: A Systematic Review

IEEE Access

XINYANG HAN received the bachelor’s (B.Sc.) degree in medical imaging
technology from West China Medical School, Sichuan University, in 2021.
She is currently pursuing the Ph.D. degree in medical science with The Hong
Kong Polytechnic University. Her research focuses on the application of Al
in medical imaging and ultrasound-based computer-aided diagnosis.

MAN-LIK CHUI is currently pursuing the bachelor’s degree in radiology
with the Department of Health Technology and Informatics, The Hong
Kong Polytechnic University. His research interest focus on medical image
processing and radiation therapy.

YAO PU received the B.Eng. degree in information engineering from South
China University of Technology, in 2020, and the M.Eng. degree in computer
technology from the University of Chinese Academy of Sciences, in 2023.
He is currently pursuing the Ph.D. degree in medical image processing
with The Hong Kong Polytechnic University. His research interests include
deep learning and large language models for medical image processing
and diagnosis text generation. He focuses on medical image synthesis and
diagnosis report generation.

SIMON TAKADIYlI GUNDA received the bachelor’s degree (Hons.) in
radiography, in 2006, the first master’s degree in radiography, in 2013,
and the second master’s degree in medical ultrasonography from NUST-
Zimbabwe, in 2021. Currently, he is pursuing the Ph.D. degree with The
Hong Kong Polytechnic University, SAR, China. He is a Registered Diag-
nostic Radiographer and a Sonographer, and an Educator in the radiography
discipline with the National University of Science and Technology (NUST)
of Zimbabwe. His research interests include ultrasonography assessment of
haemodynamic and morphological features in post stroke patients, utilizing
recent advances in ultrasound imaging techniques.

ZIMAN CHEN received the Doctor of Medicine degree from Sun Yat-sen
University, China. He is currently a Postdoctoral Fellow with The Hong Kong
Polytechnic University, focusing on the intersection of ultrasound technology
and machine learning for clinical management. His research interests
include ultrasound-based diagnostics and machine learning applications in
medical imaging. He has contributed to the development of computer-aided
diagnostic models and is actively involved in ultrasound-based Al diagnostic
software.

JING QIN (Senior Member, IEEE) is currently a
Professor with the School of Nursing, The Hong
Kong Polytechnic University, Hong Kong, where
he is a Key Member with the Centre for Smart
Health. His research interests include creatively
leveraging advanced virtual reality (VR) and artifi-
cial intelligence (AI) techniques in healthcare and
medicine applications. He received Hong Kong
Medical and Health Device Industries Association
Student Research Award for his Ph.D. study on
VR-based simulation systems for surgical training and planning. He received
three best paper awards for his research on Al-driven medical image analysis
and computer-assisted surgery, including one of the most prestigious awards
in this field: MIA-MICCALI Best Paper Award, in 2017.

VOLUME 13, 2025

ANN DOROTHY KING received the M.B.Ch.B.
degree from The University of Sheffield, in 1984,
and the M.D. degree from The Chinese University
of Hong Kong (CUHK), in 2008. She has been
a fellow of both the Royal College of Physicians
and the Royal College of Radiologists, with full
accreditation in radiology, since 1993. She has
held various academic positions, including her
current role as a Professor with the Department
of Imaging and Interventional Radiology, CUHK,
since 2009. Her research focuses on MRI-based detection and treatment
monitoring of head and neck cancers, particularly nasopharyngeal carci-
noma. She has published widely and is recognized for her contributions to
advanced MRI techniques in oncology.

WINNIE CHIU-WING CHU received the
M.B.Ch.B. degree from The Chinese University
of Hong Kong (CUHK), in 1993, and the M.D.
degree, in 2007. She is currently a Professor with
the Department of Imaging and Interventional
Radiology, CUHK, and leads the CUHK MRI
Core Facility. She focuses on neuroimaging,
statistical image analysis, and AI, with over
400 publications. She has secured more than
60 competitive research grants and is recognized
for her contributions to liver imaging and nonalcoholic fatty liver disease.
She also serves on the editorial boards of multiple radiology journals and is
a founding member of the Asian Oceanean Society of Paediatric Radiology.

JING CAl (Member, IEEE) received the Ph.D.
degree in engineering physics from the University
of Virginia, USA, in 2006. He entered the ranks
academia as an Assistant Professor with Duke
University, USA, in 2009, and was promoted to an
Associate Professor, in 2014. He joined The Hong
Kong Polytechnic University, China, in 2017,
where he is currently a Full Professor and the
Funding Programmer Leader of medical physics
with the Department of Health Technology and
Informatics. His main research interests contain medical image processing,
pattern recognition, and Al

MICHAEL TIN-CHEUNG YING was born in
Hong Kong, in 1971. He received the Professional
Diploma, M.Phil., and Ph.D. degrees from The
Hong Kong Polytechnic University, in 1993,
1996, and 2002, respectively. After working as a
Diagnostic Radiographer, he joined the university
as an Assistant Professor, in 1997, becoming a Full
Professor, in 2020 and is currently the Associate
Head of the Department of Health Technology
and Informatics. He has authored over 160 journal
papers, focusing on advanced ultrasound imaging and Al technologies. He is
a Founding Fellow of the HKCRRT and was listed among the world’s top
2% most-cited scientists in 2021, and received the gold medal in the 49th
International Exhibition of Inventions of Geneva 2024.

97227



