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Abstract

The accurate categorization of compounds within the anatomical therapeutic chemical (ATC) system is fundamental for drug
development and fundamental research. Although this area has garnered significant research focus for over a decade, the majority
of prior studies have concentrated solely on the Level 1 labels defined by the World Health Organization (WHO), neglecting the labels
of the remaining four levels. This narrow focus fails to address the true nature of the task as a multilevel, multi-label classification
challenge. Moreover, existing benchmarks like Chen-2012 and ATC-SMILES have become outdated, lacking the incorporation of new
drugs or updated properties of existing ones that have emerged in recent years and have been integrated into the WHO ATC system.
To tackle these shortcomings, we present a comprehensive approach in this paper. Firstly, we systematically cleanse and enhance the
drug dataset, expanding it to encompass all five levels through a rigorous cross-resource validation process involving KEGG, PubChem,
ChEMBL, ChemSpider, and ChemicalBook. This effort culminates in the creation of a novel benchmark termed ATC-GRAPH. Secondly,
we extend the classification task to encompass Level 2 and introduce graph-based learning techniques to provide more accurate
representations of drug molecular structures. This approach not only facilitates the modeling of Polymers, Macromolecules, and Multi-
Component drugs more precisely but also enhances the overall fidelity of the classification process. The efficacy of our proposed
framework is validated through extensive experiments, establishing a new state-of-the-art methodology. To facilitate the replication of
this study, we have made the benchmark dataset, source code, and web server openly accessible.
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Introduction a substantial challenge to conventional supervised learning

Identification of compounds into the anatomical therapeutic
chemical (ATC) system is crucial for drug development and basic
research. It has been researched for over a decade since its initial
proposal by Dunkel et al. [1] in 2008. For a given compound,
the task is to identify its ATC codes that are associated with
its therapeutic, pharmacological, and chemical properties. One
of the most significant advantages of ATC identification is that
the properties of a new drug can be pre-assessed before actual
development, which can save resources that would otherwise be
spent on drugs without the desired properties. The ATC system
developed by the World Health Organization (WHO) is commonly
adopted for this purpose (https://www.whocc.no/atc/structure_
and_principles/). It is a hierarchical system consisting of five
levels: L1 for main anatomical/pharmacological groups, L2 for
pharmacological or therapeutic groups, L3 and L4 for chemical,
pharmacological or therapeutic subgroups, and LS for chemical
substances. At every level, medications exhibit numerous labels,
transforming this into a multilevel, multi-label task that poses

algorithms.

The complexity emerges from the hierarchical nature of the
classification system, which expands into a greater number of
categories at the L2, L3, L4, and L5 levels, while the count of drugs
diminishes accordingly. This results in a scarcity of samples avail-
able for supervised learning. Therefore, most current research
endeavors opt for a simplified scheme, focusing solely on the first
level (i.e. L1) of ATC codes [1-20]. Certain studies have explored
a compromised approach that converts the challenge of predict-
ing ATC codes into predicting drug-code relationships [21-29].
Within these methodologies, a drug is paired with a chosen ATC
code and inputted into the model to predict the presence of a con-
nection between the drug and a designated label [23-25, 27-29].
In technical terms, this compromised approach works by enhanc-
ing the training dataset with “negative” pairs, comprising a drug
paired with any code that it does not possess. Nevertheless, mod-
els trained on such imbalanced datasets are inclined to prioritize
predicting “non-relationships” rather than accurately pinpointing
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Figure 1. Overall framework of the proposed GraphATC.

the ATC properties associated with a specific drug. Consequently,
this method falls short of tackling the multilevel, multi-label
challenge effectively.

The effectiveness of ATC classification is typically determined
by the model employed and the drug representations utilized.
In recent years, ATC models have transitioned from traditional
machine learning algorithms such as ML-GKR [5, 6], LIFT [7, 8],
SVM [13, 14], logistic regression [25], naive Bayes [26], and random
forests [26] toward more sophisticated deep learning techniques
like DNN [12], LSTM [11, 19], CNN [8, 11, 16, 27], and Text-CNN [20].
The prevailing consensus suggests that deep models are notably
more effective. Regarding representations, substantial effort
has been dedicated to enhancing them by incorporating extra
physicochemical properties alongside molecular fingerprints.
These additions encompass chemical-chemical interactions [2,
5-8, 10-13, 16, 19], compound descriptions from Wikipedia [16],
structural similarities [2, 5-8, 10-13, 16, 19, 20], and chemical
ontology [6, 11, 12, 19]. However, incorporating these elements
necessitates additional resources like STITCH [30] and tools such
as RDKit [31], SIMCOMP [32], and SUBCOMP [32]. Moreover, the
accessibility of these supplementary properties relies on clinical
or laboratory experiments, making it less feasible for newly
developed drugs.

To address this challenge, a recent study by Wei et al. [20]
demonstrated that the state-of-the-art (SOTA) performance levels
can be achieved solely by utilizing compound structure infor-
mation as input, effectively reducing the dependency on addi-
tional resources. Nevertheless, this underscores the necessity for
more elaborate representations of compound structures beyond
basic fingerprints [1] and Simplified Molecular Input Line Entry
System (SMILES)-based [33] sequential embeddings [34]. Graph-
based techniques like graph convolutional network (GCN) natu-
rally align with this requirement since molecular structures inher-
ently form graphs, a dimension that has been underexplored in
ATC endeavors (Previous works [16, 17, 35, 36] have utilized graph
neural networks, but they constructed graphs at the drug level
for modeling the inter-drug relationship rather than at the atom
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level for modeling the molecular structure of drugs.). In this study,
we propose the GraphATC framework as an initial effort to bridge
this gap by customizing atom-level graph construction and mes-
sage passing. We illustrate that these enhanced representations
can be applied to L2 ATC tasks, offering advantages in handling
polymers, macromolecules, and multicomponent drugs that have
not been extensively investigated before. The framework of the
proposed approach is shown in Fig. 1. Our contributions include
the following:

e We have constructed the most extensive ATC dataset to
date. We have expanded the preexisting ATC datasets from
an initial scale of 3883 [2] to 5311 entries. All compounds
have undergone cleaning of their mol files [37] by cross-
validating with multiple resources such as KEGG [38], Pub-
Chem [39], and ChEMBL [40]. This results in a dataset that
encompasses greater diversity, including a broader range of
polymers, macromolecules, and multicomponent drugs that
have not been extensively explored before (see statistics in
Table 1 and Fig. 2).

¢ We implement the multilevel, multi-label study by extend-
ing the task to Level-2 (i.e. L2). Prior research has predom-
inantly concentrated on the 14 primary groups (classes)
of L1 within the WHO ATC system. Expanding the focus
beyond these L1 classes to L2 would escalate the scale of the
challenge from tens to potentially hundreds or even
thousands. The subdivision of classes into finer categories
results in limited data availability for certain minor classes,
intensifying the learning difficulty. For instance, widely
utilized benchmarks like Chen-2012 [2] and ATC-SMILES [20]
encompass thousands of samples, but transitioning to L2,
which comprises 94 classes, reduces the number of training
samples to only a few dozen (Fig. 2c). In this study, we intro-
duce a molecular graph-based approach designed to enhance
representation learning and tackle the few-shot learning
issue, marking an initial step toward extending the ATC task
to L2.
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Table 1. Comparison of ATC Benchmark Datasets: Chen-2012, ATC-SMILES, and ATC-GRAPH (Ours)

Dataset Chen-2012 ATC-SMILES ATC-GRAPH
Group by Year 2012 2022 2024
Polymer Non-Poly 3852 4545 5259
Polymer 23 0 52
Mass Small 3715 4353 4822
Macro 160 192 489
#Comp Single 2275 2685 2931
Multiple 1600 1860 2380
Total 3883 4545 5311
Coverage 67.84% 79.40% 92.78%
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(d) Distribution of drug masses
across the three datasets (Outer radial histogram)
and Categorization of drugs by mass into small (0-500),
medium (500-1000), and large (>1000) groups (Inner pie chart)

(e) Distribution of the number of components
across the three datasets (Outer radial histogram)
and Categorization based on single
and multiple components (Inner pie chart)

Figure 2. Comparative statistics of ATC-GRAPH versus Chen-2012 and ATC-SMILES, where ATC-GRAPH exhibits the most extensive coverage across
levels, mass, and component quantities.

e We build more accurate representations for polymers. Pre-

and bonds between the connecting points of the member

vious studies have often neglected polymers, represented
them as zero vectors, or treated them as their monomer
forms [14, 20], due to the lack of SMILES data. The use of
graphs as representations in this study is more intuitive
and informative for non-Euclidean geometries like molecu-
lar structures (compared with the commonly used sequen-
tial SMILES), and enables ATC classification for all types of
compounds. In addition, we have introduced virtual atoms

monomers to stimulate the inter-monomer communications
(Fig. 1C).

We optimize the representation learning for macromolec-
ular drugs. Previous study [20] based on sequence models
involved truncation during the processing of input sequences,
necessitating a balance between small and macromolecules.
By representing macromolecules using graphs, we have elim-
inated the need for truncation and thus preserve structural
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information. Additionally, we found the propagation distance
of node information could be enhanced by increasing the
number of layers in the message passing mechanism, thereby
improving the representational quality of macromolecular
drugs.

e We build a more effective framework for aggregating com-
ponent representations of multicomponent drugs. Based on
our data analysis, multicomponent medications represent
44.8% of the compounds in ATC benchmarks, underscor-
ing their significance in this context. Each component of a
drug plays a distinct role in shaping the drug’s properties,
adding layers of complexity to representation learning for
multicomponent drugs. However, prior research has often
oversimplified this by assuming equal contributions from
all components. In sequential models utilizing SMILES, com-
ponent sub-sequences are segmented with a [dot] notation
[33]. In GCN-based models, graph representation is achieved
through flat pooling, averaging node features rather than
component features. Both approaches treat components as
equal contributors, which may not accurately reflect their
individual impacts. To tackle this challenge, we introduce an
aggregative inference framework that integrates component
representations regarding their interactions. As shown in
Fig. 1D, we employ a bidirectional recurrent neural network
(Bi-RNN) to blend component representations successively,
dynamically assessing each component’s contribution based
on the evolving “context” established by earlier fused compo-
nents. This method aligns more closely with our understand-
ing of chemical interactions among components.

The organization of this paper follows a widely adopted five-
step guideline in ATC studies [2, 4, 5, 7, 12, 20], as outlined in
[41]. The guideline consists of five steps: (1) selecting a benchmark
dataset, (2) formulating the samples, (3) designing the operation
algorithm, (4) anticipating accuracy, and (5) creating a web-server.

Materials and methods
Benchmark dataset construction

To kick off the study, we have established ATC-GRAPH as the
most extensive ATC benchmark dataset to date. The construction
process commenced with a review of two existing benchmarks:
Chen-2012 [2], widely adopted in prior studies, and ATC-SMILES
[20], the most comprehensive and current benchmark before this
research. A detailed comparison of the three datasets is presented
in Table 1 and Fig. 2. A key characteristic of ATC-GRAPH is that all
drugs in the benchmarks are linked to their Mol files instead of
the SMILES sequences utilized in earlier benchmarks. This shift
allows for more precise and detailed modeling and learning. In
terms of scale, ATC-GRAPH surpasses Chen-2012 and ATC-SMILES
by 36.78% and 16.85%, respectively. Significantly, ATC-GRAPH was
curated through a cross-validation process involving multiple
resources such as KEGG, PubChem, ChEMBL, ChemSpider, and
ChemicalBook. This results in ATC-GRAPH being distinguished by
its timeliness and comprehensive coverage across all five levels
and drug genres.

Improvement on timeliness: over a decade of development,
the Chen-2012 dataset no longer accurately reflects the current
drug landscape, yet it continues to be used as an important
performance evaluation dataset to align with previous research.
After verifying drug IDs, we discovered that some drug codes had
been updated or some drugs were no longer in use, with no records
in various databases. Examples include D02859, D06425, D06488,

D06526, D06527, D06535, D06536, and D06537. Additionally, ATC
labels of some drugs are missing, which we obtained by consult-
ing pharmacological experts or by searching historical pages via
the Internet Archive’s Wayback Machine [42]. For example, the
drug D07536, named Boldenone undecylenate, is currently used
primarily to enhance the physical condition and performance of
horses. In human medicine, due to significant side effects, its
use has been discontinued in current medical practice, thus it
lacks an ATC code. Pharmacological experts suggest that it likely
falls under “Anabolic agents for systemic use,” specifically within
the category of androgenic drugs, based on its pharmacological
effects and its biological targets in the body (androgen receptors),
typically starting with the code “A14A.” Another example is the
drug D00728, named Bismuth subsalicylate, whose therapeutic
effects include Antacid, Antidiarrheal, Anti-ulcerative, and which
has had its ATC code removed. Using the Wayback Machine, we
found that in 2012 this drug’s code was “D01AE12” and “S01BC08.”

Better coverage over five levels: Chen-2012 and ATC-SMILES
datasets exclusively utilized Level 1 labels, while ATC-GRAPH
has compiled all ATC codes spanning the first through the fifth
level, enabling support for multilevel, multi-label studies. The
comparison of coverage across these five levels is depicted in
Fig. 2(a). It is worth mentioning that the coverages of Chen-2012
and ATC-SMILES across Level 2 to Level 5 are indeed zeros in
the original datasets. To enhance visualization, we have supple-
mented the missing level labels in these two datasets with our
labels. The detailed distributions of drugs at Level 1 and Level
2 for the three datasets are presented in Fig. 2(b) and Fig. 2(c),
respectively. It is evident from the figures that ATC-GRAPH stands
out for its superior comprehensiveness compared with the other
benchmarks.

Better coverage over drug genres: compared with the Chen-
2012 and ATC-SMILES datasets, ATC-GRAPH explicitly includes
polymeric, macro, and multicomponent drugs.

According to the drug mass distribution in Fig. 2(d), it is evident
that the relative mass of the drugs exhibits a long-tail distribu-
tion. Most drugs have a relative mass within the 0-1000 range,
belonging to small molecule drugs. Drugs with a relative mass of
1000 or greater are considered macromolecular drugs, accounting
for ~9.2% of the dataset. Drugs within the 0-499 range account
for 68.8%, and those in the 500-999 range make up 22.0%. In
Fig. 2(e), the drug distribution across the number of components
also shows a significant long-tail distribution. The vast majority of
drugs contain only one component, with these single-component
drugs accounting for 55.2%. However, drugs containing two or
more components, the multicomponent drugs, make up a signif-
icant 44.8%, a substantial proportion that cannot be overlooked.

Graphic representations: in ATC-GRAPH, the drug molecules
are graphically represented with atoms as nodes and chemical
bonds as edges. The atomic numbers start with hydrogen (symbol
H), coded as 0, up to the largest element on the periodic table,
oganesson (symbol Uuo), coded as 117. To facilitate network pro-
cessing of aggregate drugs and drugs with other functional groups
or pharmacophores, the symbol "R” is added as the functional
groups or pharmacophores. Node attributes consider atom type
and chirality, while edge attributes consider the type of chemical
bond and the direction of the bond, which are formally defined in
the subsequent sections.

Problem formulation

We formulate the graph-based ATC as a learning problem for
a function f : G — {0, 1}, which takes features encapsulated
on a molecular graph G of a compound x and predict its ATC
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Figure 3. [llustration of the incorporation of virtual atoms and bonds to stimulate inter-monomer communication in elongated chain structures.

label as

¥ =1(G;9), 1)

where ¥ € {0, 1)¢ is a multi-hot binary vector with the ith element
being 1/0 indicating the membership of x to the ith ATC class, the ¢
is the number of classes, and 6 is a set of parameters to learn. The
molecular graph G = (V, ) consists of a set V = {v;} of vertices
and a set £ = {e;;} of edges, which represent the atoms and bonds
of x, respectively.

The learning goal is to find an optimal set of parameters
0 that minimizes the lose L(y,y) between the perdition § and
the ground-truth y, which indicates the real ATC class labels
of x as

0 = argmin, £(§,y)
= argmin, L(f(G; ), ). )

In the following subsections, we will introduce our implemen-
tation of representation learning on G, the prediction function f,
and the loss function £. To ease the elaboration, the framework of
our implementation is shown in Fig. 1. The prediction process (e.g.
f) can be further decomposed into three sub-processes of Molec-
ular Graph Construction, Representation Learning, and Aggrega-
tive Inference. The advantage of the proposed framework over
previous work mainly lies in its capacity to deal with polymeric,
macromolecular, and multicomponent drugs. We will give more
details.

Construction and featurization of molecular
graph G

While converting from a structural formula to its molecular graph
is straightforward, several strategies have been introduced in our
conversion scheme. Firstly, as shown in Fig. 3, a virtual self-loop
bond has been included for each vertex (atom) to enhance the
model’s ability to capture local structural information and to
ensure that the intrinsic features of each vertex are not over-
looked during the feature update process. This has been validated
in many papers [43-45]. The symbol “*”is added to the molecular
graph to represent virtual atoms. Secondly, for each polymer, we
include an additional virtual bond by connecting the covalent
bonds of the corresponding monomer to encourage the interac-
tion, as shown in Fig. 3. In previous ATC studies, the prediction of
polymers has simply been skipped [16, 19, 20]. In other tasks, a
popular way to simplify the problem is to ignore the repeating
structure and keep the corresponding monomer [46-48]. It will
make no difference between the polymers and monomers. The
interactions (message passing) between monomers are neglected

in the model. The virtual bond we included is thus designed to
encourage the interactions, which is more faithful to the chem-
ical model. As the example shown in Fig. 1B, the carbon atom
in the middle is able to receive messages from the three adja-
cent atoms through the virtual bond. To featurize the graph,
we reserve four types of embedding matrices including those
for atom IDs, chirality tags, bond types, and bond directions. All
embeddings share the same dimensionality of m, which is the
same as that of the hidden vectors. More specifically, the matrices
are

Atom IDs: AeR"™™ aeNNJ0,118]
Chirality Tags: Ce R*™,ce NN|[0,2]
Bond Types: BeR™™ beNNJ0,4]

Bond Directions: D € R™*™ d e NN|0,4], 3)

where rows in A are ordered with the Oth row for non-registered
atoms and the rest of 118 for known atoms, C are ordered with
chirality tags of Unspecified, Tetrahedral CW, and Tetrahedral
CCW, B are ordered with bond types of Single, Double, Triple,
Aromatic, and Self-Loop, and D are ordered with bond directions of
Linear, End_Up_Right, and End_Down_Right. With the embedding
matrices, we can assign for each atom vertex a hidden vector by
fusing its ID and chirality embeddings as

h; = (AI(A » +Cic, 1)) (4)

1
2
where I(-) is an indexing function that returns the index of a
given atom (or bond) in a specified embedding matrix. Similarly, a
hidden vector for each bond edge can be calculated with its type
and direction embeddings as

1
e =75 (Biw.j + Diwi)- (5)

Representation learning on the molecular

graph G

We adopt GCNs from DeeperGCN [49] to implement the represen-
tation learning on G = (V, £). It can be considered as an iterative
process to simulate the interactions among atoms through bonds.
More specifically, at a step (or layer) t, each atom vertex v; holds a
d-dimensional hidden state vector h}t) € R™ and accumulates the
messages passed from all its adjacent vertices v;’s through the
corresponding bond edges e;’s on the basis of which the feature
h" will be updated to its state at step (or layer) t + 1 as h*". The
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process can be formulated as

Message: m{ =h" +e”,
exp (8m()
Softmax: aj = o
ZkeN(I) exp(ﬂmm )
Aggregation: m’ = > aym{,
JENG)
Updating: h(*? = MLP (h(“ + 40 |||"<“|:| ) 053), (6)

where e) € R™ is the strength vector on the edge ey, N(i) is a set
of v;’s adjacent vertices, and MLP(-|0()) is a multilayer perception
based on the parameter ) € R™. The 8® € R and A € R are the
temperature and scalar, respectively. 80, A®, and 8() are all layer-
dependent and learnable weights at step (layer) t. The process will
be repeated T steps, resulting in the feature th) on each atom v;.
An average pooling can be used to get the final representation of
the molecular graph G as

1
O =3 h". 7
7= &N v)
=%

Aggregative inference

We made a single graph assumption in the preceding subsections.
However, for multicomponent drugs, there are multiple subgraphs
(denoted as Gi's hereafter), each requiring graph construction and
representation learning. This generates a set of molecular graph
representations {gm} We further arrange the representations in
descending order by subgraph size and convert the set into a
sequence. To streamline the discussion, we will hide the layer
indicator (T). The sequence is then written

(8¢ | k€ Noo, Gkl = Gl ife > 1), (8)

To implement the aggregative inference, the goal is to fuse this
sequence into a single representation g* on the basis of which the
inference is conducted.

We propose to adapt RNN for this purpose, as shown in Fig. 1D.
The process starts by accumulating the representations using
average pooling as

1 l{ge)l

g=—— . 9
9= g =% ®)

Although the average pooling is popularly adopted for multiple
graph aggregation, it fuses representations in a coarse level, in
the sense that the inter-dependency among subgraphs is crudely
modeled during the pooling. However, the result g is still a fair
base for the aggregation.

To learn the inter-dependency, RNN is a more sophisticated
model. With the ordered representation sequence (g,) as the
input, our RNN fuses the representations in an iterative way from
those of large subgraphs to small ones. The design is based on the
intuition that large compounds often play the primary role during
chemical interactions. In addition, RNNs are known to be capable
of modeling the inter-item dependency of a sequence by using
early inputs to learn a “context” for further aggregation, which

thus serves as a more sophisticated way of aggregating subgraph
representations. Our RNN-based aggregation is formulated as

Sp = tanh(ngér + s, AW +Dby) (10)

gy, = softmax(seWj +by), (11)

where s, denotes the hidden state of the RNN at the kth iter-
ation (i.e. the kth subgraph representation g, has been fused).
W,, Ws, and b are the learnable weights and bias for the state,
respectively. g, is the intermediate output at the kth iteration (i.e.
an RNN-fused representation of the first k subgraph representa-
tions). Wy and by are learnable weights and bias for the output,
respectively. Eventually, the intermediate outputs g, 's are fused to
refine the coarse-level result g, which results in g* for prediction
as

IKge) 1
g+ > G (12)
k=1

The prediction can then be made with FC layer. We can simply
use a linear layer for this purpose as

y= g*WyT + Dby, (13)
where Wy and by are learnable weights and bias of the layer.

Ground truth y and loss function L(y,y)
We evaluate the prediction y by comparing it with the corre-
sponding ground truth label y. As our goal is to extend the ATC
task to level-2, the number of potential labels has increased to
C = 102, resulting from the iteration of 14 level-1 labels up to
their respective children (e.g. A0O4, BO5...). A ground truth label y is
then a multi-hot vector by setting the bits of its classes to 1’s and
leaving others to 0’s.

We implement the loss function using a multi-label one-
versus-all loss based on max-entropy as

ey
1+e¥ ))' 14

o — E T 1 _ T _
LG,y = C(y 10g(1 =)+ A=y log(1

Results and discussion
Metrics

We evaluate the results using the five metrics that have been
established in [50] and widely adopted in literature as follows:

IL; N L)
Aiming = (15)
NE( IIL: )
1 I N L)
Coverage = — » (——— 16
J Né( ) e
IL; N Lyl
Accurac 17
= NZ(IIL o0 )
1< ~
Absolute True = NZ(A(LU Ll)) (18)
i=1
AL 1, I'fLiZfAiA
Al L) = [O, otherwise. 19
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Table 2. Performance comparison with SOTA methods on ATC Level 1. The best results are in bold font

GraphATC

Method Year Dataset #Drugs Rep. Model Aiming Coverage Accuracy Abs. True Abs. False
t t t t U
Chen et al. [2] 2012 Chen-2012 3883 I S Similarity Search 50.76% 75.79% 49.38% 13.83% 8.83%
iATC-mISF [5] 2017 Chen-2012 3883 I S F ML-GKR 67.83% 67.10% 66.41% 60.98% 5.85%
1IATC-mHyb [6] 2017 Chen-2012 3883 I S F O ML-GKR 71.91% 71.46% 71.32% 66.75% 2.43%
EnsLIFT [7] 2017 Chen-2012 3883 I S F LIFT 78.18% 75.77% 71.21% 63.30% 2.85%
EnsANet_LR [8] 2018 Chen-2012 3883 I S F CNN,LIFT,RR 75.40% 82.49% 75.12% 66.68% 2.62%
EnsANet_LR®DO [8] 2018 Chen-2012 3883 I S F O CNN,LIFT,RR 79.57% 83.35% 77.78% 70.90% 2.40%
ATC-NLSP [10] 2019 Chen-2012 3883 I S F NLSP 81.35% 79.50% 78.28% 74.97% 3.43%
iATC-NRAKEL [13] 2020 Chen-2012 3883 I S RAKEL,SVM 78.88% 79.36% 77.86% 75.93% 3.63%
iATC-FRAKEL [14] 2020 Chen-2012 3883 F RAKEL,SVM 78.51% 78.40% 77.21% 75.11% 3.70%
FUS3 [11] 2020 Chen-2012 3883 I S F CNN,LSTM,LIFT,RR  87.55% 69.73% 73.46% 68.71% 2.38%
FUS3®DO [11] 2020 Chen-2012 3883 I S F O CNN,LSTM,LIFT,RR  79.79% 84.22% 79.64% 73.04% 2.09%
iATC_Deep-miISF [12] 2020 Chen-2012 3883 I S F O DNN 7470%  73.91%  7157%  67.01%  0.00%
CGATCPred [16] 2021 Chen-2012 3883 I S E A CNN,GCN 81.94% 82.88% 80.81% 76.58% 2.75%
EnsATC [19] 2022 Chen-2012 3883 I S F hMuLab,LSTM 91.39% 84.32% 83.38% 80.09% 1.31%
ATC-CNN [20] 2022 Chen-2012 3883 S CNN 93.01% 90.72% 90.53% 87.77% 1.53%
ATC-CNN [20] 2022 ATC-SMILES 4545 S CNN 95.83% 94.14% 93.99% 91.77% 0.94%
ATC-CNN [20] 2022 ATC-GRAPH 5311 S CNN 77.34% 76.42% 75.63% 73.11% 3.55%
GraphATC (Ours) 2024 Chen-2012 3883 S GCN,BiRNN 95.73% 95.64% 94.68% 92.56% 0.83%
GraphATC (Ours) 2024 ATC-SMILES 4545 S GCN,BiRNN 96.08% 96.09% 95.42% 93.97% 0.68%
GraphATC (Ours) 2024 ATC-GRAPH 5311 S GCN,BiRNN 96.94% 96.88% 96.14% 94.56% 0.57%

Representation (Rep.) abbreviations: I—chemical interactions, S—chemical structural features, F—molecular fingerprint features, O—drug ontology
information, E—pretrained word embedding, and A—ATC codes association information.

IL; UL — ILi N Lln)

1o
Absolute False = NZ( i

i=1

(20)

where M is the number of labels and N is the total number of
all samples. y; and §y; are the ground truth and predicted labels
of the ith drug, respectively. U and N denote the union and inter-
section operations, and || || is an operator to count the number of
elements in a set. In the remainder of this section, we will use the
symbol 1 to indicate positive indices (i.e. Aiming, Coverage, Accu-
racy, and Absolute True) and | for negative indices (e.g. Absolute
False).

Cross validation

Cross-validation has been conducted using the Jackknife test,
which hasbeen considered as a standard and adopted in nearly all
previous ATC studies [2, 5-8, 10, 14, 16, 20]. Methodologically, the
Jackknife test is a “leave-one-out” test or a special case of k-fold
cross-validation where k equals the total number of data samples.
By employing the Jackknife test, the consistency in data splits and
alignment in experiment results across different studies is thus
ensured.

Comparison with SOTA methods

In this study, we evaluate the performance of the proposed
GraphATC method against 15 SOTA methods that use various
representations and models. We have included the results on
Chen-2012 benchmark to be consistent with previous studies. In
addition, we have conducted experiments on ATC-SMILES and
ATC-GRAPH. This is the most comprehensive comparison found
in the literature. The results on ATC Level 1, shown in Table 2,
reveal that GraphATC outperforms the SOTA methods in all five
metrics, with improvements of 2.72%, 4.92%, 4.15%, 4.79%, and
0.7% in Aiming, Coverage, Accuracy, Absolute True, and Absolute
False, respectively. In terms of the ATC-CNN dataset, GraphATC
outperforms the SOTA methods with gains of 0.25%, 1.95%, 1.43%,
2.2%, and 0.26% across the five metrics. Regarding the proposed

ATC-GRAPH dataset, GraphATC outperforms the SOTA methods
with gains of 19.60%, 20.46%, 20.51%, 21.45%, and 2.98% across
the five metrics.

As discussed earlier, the ATC experiments on Level 2 in a multi-
label classification setting are under-explored in the literature.
We have addressed this issue in this paper. Note that, due to the
availability of source code on Level 2 experiments, we can only
compare with the SOTA method ATC-CNN, which introduces the
ATC benchmark with Level 2 drugs and has the best performance
reported in the literature. The comparison of L2 drugs has been
conducted extensively on three datasets, including Chen-2012,
ATC-SMILES, and ATC-GRAPH. The results are shown in Table 3.
Our method outperforms ATC-CNN over all three datasets by
24.79%, 26.43%, 26.16%, 27.7%, and 1.32% in Aiming, Coverage,
Accuracy, Absolute True, and Absolute False, respectively. In com-
parison with Level 1, there was a slight degradation in the per-
formance of all models at Level 2. This deterioration can be
attributed to the reduced training samples available for each class
atLevel 2, particularly as the class definitions become more finely
grained. The performance gap observed serves as an indicator of
potential areas for enhancement in future research endeavors.

Ablation study

In order to ascertain the superiority of the proposed method,
we conduct an ablation study to assess the significance of each
component. However, given the extensive set of experiments to
be carried out, we substituted the costly jackknife validation with
100-fold cross-validation. For the same reason, our attention will
be directed toward Level 1. The outcomes are detailed in Fig. 4 and
Fig. 6.

The importance of virtual atoms and bonds

As shown in Fig. 4, the incorporation of virtual atoms and bonds
has clearly enhanced performance. Particularly on Polymers, this
enhancement has led to 8.33%, 14.74%, 12.18%, 11.54%, and 2.06%
gain in Aiming, Coverage, Accuracy, Absolute True, and Absolute
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Table 3. Performance comparison with SOTA methods on ATC Level 2. The best results are in bold font

Method Dataset Aiming Coverage Accuracy Abs. True Abs. False
t t 1 t !
ATC-CNN Chen-2012 79.39 78.42 77.20 73.78 0.53
ATC-CNN ATC-SMILES 82.95 82.29 81.13 78.32 0.63
ATC-CNN ATC-GRAPH 67.93 66.40 65.73 62.62 1.50
GraphATC (Ours) Chen-2012 86.97 86.65 85.52 83.05 0.29
GraphATC (Ours) ATC-SMILES 91.75 92.22 90.74 88.43 0.22
GraphATC (Ours) ATC-GRAPH 92.72 92.83 91.89 90.32 0.19
Aiming Aiming

Virtual Node v
Virtual Edge x

Virtual Node x
Virtual Edge x

Virtual Node x
Virtual Edge x

Virtual Node x

. Virtual Node v
Virtual Edge v

. Virtual Node x
Virtual Edge v/

. Virtual Edge v/

(a) Polymer

. Virtual Edge v/

(b) Non-Polymer

g%ﬂ’gr\oo

Virtual Node v
Virtual Edge x

Virtual Node v
Virtual Edge x

Virtual Node x
Virtual Edge x

Virtual Node v Virtual Node v

Virtual Node x .
Virtual Edge v/

. Virtual Edge v/

(c) All Types

Figure 4. Performance comparison of different polymer modeling methods on (a) Polymer, (b) Non-Polymer, and (c) All Types.

False metrics, respectively, compared with the baseline run with-
out virtual entities.

This outcome is unsurprising as, according to the design,
the inclusion of virtual entities promotes interactions among
monomer atoms within a Polymer, aligning the message passing
in the GCN more effectively with real-world scenarios. As shown
in Fig. 5, this effect becomes apparent when visualizing the neural
network attention through class activation mapping (CAM). In
Fig. 5(d), the reinforcement of attention on the connecting atoms
and bonds within Polymers is evident following the addition of
virtual atoms and bonds. By contrast, without the help of the
virtual atoms and bonds, Fig. 5(a) shows less focus on connections
when a polymer has been treated as its monomer form.

The importance of aggregative inference

As shown in Fig. 6, by enabling the aggregative inference using
subgraph fusion, the performance has been boosted on all types.
The largest gain over the run without aggregative inference has
been observed on the multicomponent compound with 13.43%,
14.46%, 12.71%, 10.59%, and 0.41% in Aiming, Coverage, Accuracy,
Absolute True, and Absolute False, respectively.

In Fig. 7, the CAM attentions without and with the aggregative
inference have been visualized. It is evident in Fig.7(a) that
the attention has been dominated by the subgraphs with
large scales and the contribution of small subgraphs has been
ignored. By contrast, in Fig. 7(b), the attentions are fairly paid
on those small subgraphs when aggregative inference has been
integrated.

Comparison of GraphATC using different backbone models

We compare the GraphATC with different graph-based models as
its backbone on the ATC-GRAPH dataset on Level 1 ATC labels,
including GCN [43], GAT [51], GIN [52] implemented in DGL [53],
and DeeperGCN [49] implemented by following the corresponding
paper. The results are presented in Table 4. Our method surpasses
the baseline models, achieving maximum performance improve-
ments of 10.16%, 10.52%, 9.76%, 8.59%, and 0.38% across five met-
rics. The result primarily demonstrates the effectiveness of the
proposed GraphATC framework across various graph backbone
models, highlighting its extensibility.

Comparison of GraphATC with various graph-based
models

We compare our method with the latest graph-based approaches
specifically designed for this task, including SAN [54], GraphGPS
[55], Exphormer [56], and Graph-Mamba [57]. The results of these
comparisons are shown in Table 5. Our method demonstrates
superior performance over these approaches across nearly all five
metrics, with maximum gains of 37.15%, 38.83%, 37.84%, 36.76%,
and 3.38% across five metrics.

Web server

Alongside releasing the source code of GraphATC on Github.com,
we have created a web server accessible at https://github.com/
lookwei/GraphATC to enhance the accessibility of both the
method and dataset. This web server accepts a drug/compound
ID as input and provides predictions for labels and the top five
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(c) (d)
Virtual Node X Virtual Node v/
Virtual Edge v/ Virtual Edge v/

Figure 5. Attention maps exemplifying drugs with a varied range of scales and shapes. (a) When polymer drugs have been treated as their monomer
forms, the attention is concentrated around the central parts (e.g. the carbonyl (C=0) group and nitrogen atoms (N) in the central ring of D07067), ignoring
the contributions of the connecting parts; (b) by adding the virtual nodes, the attention expands and helps the model capture end-group interactions (e.g.
two terminal hydroxyl (OH) groups and two nitrogen atoms (N) are emphasized in D07067); (c) by adding virtual edges, attention extends along bonds,
especially toward the connected atoms (e.g. the N-N bond within the central ring of D07067). However, without virtual nodes, attention remains limited
to bond pathways. (d) By adding both virtual nodes and edges, more uniform attention distributions are observed across the entire molecules, with a
strong focus not only on the central parts and terminal groups (e.g. the C=0, N-N bonds and the OH of D07067) but also on virtual atoms particularly.
The refined attention maps reflect inter-monomer interactions within polymers in a better way.

Aiming

56.29
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Figure 6. Performance comparison of different subgraph feature fusion networks in handling (a) multicomponent drugs, (b) single-component drugs,

and (c) all types of drugs.

related drugs/compounds. It is important to note that the ID does
not have to be from ATC-GRAPH,; the server can predict labels for
any drugs or compounds with valid IDs or sequences.

Conclusion

This research has adopted a holistic strategy to propel the
multilevel and multi-label ATC classification through graph

learning techniques. By methodically enriching the drug dataset
to encompass all five levels and employing a cross-resource
validation process involving key databases like KEGG, PubChem,
ChEMBL, ChemSpider, and ChemicalBook, we have introduced
a fresh benchmark known as ATC-GRAPH. Moreover, we have
expanded the classification task to Level 2, introducing graph-
based learning strategies to create more precise representations
of drug molecular structures and improving the modeling of
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D06050 D04467

OH

w/0 aggregative inference

with aggregative inference with aggregative inference

Figure 7. Attention maps exemplifying drugs consisting of components with a varied range of scales and shapes. (a) Without using the aggregative
inference, most of the attention has been dominated by the subgraphs with large scales (e.g. long chain of D04467, two large rings of D04598, NH; in
D05141), while the contribution of small subgraphs has been ignored (e.g. long chains in D06050, H,0 in D04467, short chain in D04598, long chain in
D05141); (b) when integrating aggregative inference, attentions are fairly paid to those small subgraphs. The refined attention maps indicate subgraph

interactions within multicomponent molecular in a better way.

D04598 D05141

with aggregative inference with aggregative inference

Table 4. Performance (%) comparison of GraphATC using different graph-based backbone models on the ATC-GRAPH dataset (Level 1).
100-fold cross-validation was applied, and the best results are highlighted in bold

Backbone Method Aiming Coverage Accuracy Abs. True Abs. False
t t t t {
GCN [43] Base 40.31 39.58 37.43 32.85 6.81
Ours 50.47 50.10 47.19 41.44 6.43
GAT [51] Base 40.62 39.59 37.77 33.51 6.71
Ours 49.89 49.49 46.61 40.86 6.40
GIN [52] Base 40.55 39.85 37.76 33.39 6.74
Ours 50.20 49.58 46.83 41.10 6.42
DeeperGCN [49] Base 70.72 73.96 68.06 59.59 4.67
Ours 77.98 78.90 75.79 70.63 3.52

Table 5. Performance (%) comparison of GraphATC with various ad hoc graph-based models on the ATC-GRAPH dataset (Level 1).
100-fold cross-validation was performed, and the best results are highlighted in bold

Method Aiming Coverage Accuracy Abs. True Abs. False
t t t t !

SAN [54] 40.83 40.07 37.95 33.87 6.90

GraphGPS [55] 65.83 65.91 62.91 57.14 4.61

Exphormer [56] 64.69 64.14 61.86 56.87 4.43

Graph-Mamba [57] 75.17 75.85 73.17 68.67 3.36

GraphATC (Ours) 77.98 78.90 75.79 70.63 3.52

intricate drug categories. Following rigorous experimentation,
our proposed framework has emerged as a SOTA methodology
in the field. In a bid to enhance study reproducibility, we have
made the benchmark dataset, source code, and web server openly
accessible, emphasizing our dedication to advancing the realm of
multilevel and multi-label ATC classification through innovative
graph-based learning approaches.

We implement the multilevel, multi-label study by
extending the task to Level-2 (i.e. L2).

We build more accurate representations for polymers.
We optimize the representation learning for macro-
molecular drugs.

We build a more effective framework for aggregating
component representations of multicomponent drugs.

Key Points
y , Supplementary data
e We have constructed the most extensive ATC dataset
to date. Supplementary data is available at Briefings in Bioinformatics

online.
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Code and data availability

The dataset, source code, and web server are open to public
at https://github.com/lookwei/GraphATC for easier production of
this study.
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