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ARTICLE INFO ABSTRACT

Keywords: Flood forecasting is a vital segment of disaster risk management in that it contributes to the prediction of the

Flood magnitude, occurrence, duration and timing of floods. Owing to the nonlinear nature of atmospheric phenomena,

Satellite Gravimetry however, forecasting becomes a challenging task that requires a multifaceted approach involving various sensors.

geRj)C:ammg Indeed, there exist compounding evidence that flood processes would benefit from use of various sensors. One

Downscaling such sensor is the Gravity Recovery and Climate Experiment (GRACE) and its follow-on (GRACE-FO), which
provides Total Water Storage (TWS) products that could potentially be useful for flood monitoring and fore-
casting. However, GRACE/GRACE-FO’s coarse spatial resolution of 300 km remains a bottleneck to the full
exploitation of its products for flood studies and management. Herein, a deep learning Long Short-Term Memory
(LSTM) method with high learning capability that optimizes the hyperparameters is proposed to downscale the
coarse GRACE/GRACE-FO TWS products (from 300 km to 55 km). Its spatial and temporal learning is subjected
to three different training scenarios (i.e., 60 %, 70 % and 85 %), where the one with least root-mean-square-
errors (RMSE) is selected as the best-case scenario. The proposed LSTM deep learning approach is tested
based on the 2019 Lorestan flood in Iran, where the results show that it successfully models the spatio-temporal
behavior of TWS changes with its long-term and short-term memory capabilities. In March and April 2019, heavy
precipitation caused a significant increase in TWS changes, approximately 40 + 2 cm. This is captured by the
LSTM-downscaled products but not the coarse GRACE/GRACE-FO TWS changes. Furthermore, the LSTM
downscaled GRACE-FO TWS for the period after 2018 shows a strong and statistically significant mean corre-
lation (above 0.70 at the 95 % confidence level) with both river discharge and precipitation. The original
GRACE-FO on the other hand shows a correlation of 0.40, indicating the superiority of the LSTM-derived GRACE-
FO’s TWS changes. The coarse resolution of the GRACE satellite is a major cause of low correlation, which
improves after downscaling. LSTM thus has the potential of downscaling GRACE products, providing data that
are useful for flood process, management and studies.

1. Introduction

Flood forecasting is increasingly becoming a vital task in light of
climate extremes. It is essential for protecting lives as it enables emer-
gency alerts to be issued, reducing economic losses through formation of
better preparation and response strategies, managing water resources
effectively, and adapting to climate change challenges. Since the at-
mospheric phenomena are nonlinear in nature, where very large
changes may occur within a short period of time, the integration of
advanced modeling techniques to enhance the effectiveness of miti-
gating the impacts of flooding is becoming a necessity. Such integration
would require use of various sensors to exploit their benefits. Although
there are various sensors available for flood monitoring, including

* Corresponding author.
E-mail address: joseph.awange@polyu.edu.hk (J. Awange).

https://doi.org/10.1016/j.jag.2025.104562

Sentinel-1 radar images, which can penetrate clouds, each sensor has its
own limitations, such as satellite pass frequency and challenges with
backscatter in desert areas (Martinis et al., 2018). The Gravity Recovery
And Climate Experiment (GRACE) satellites launched in 2002 (Tapley
et al., 2019) and its follow-on (GRACE-FO) launched in 2018 (Pascolini-
Campbell et al., 2021) have emerged as sensors that could be of potential
benefit to flood forecasting as they provide a more comprehensive un-
derstanding by measuring TWS changes, which can play a strategic role
in monitoring extreme and large-scale hydrological events. Since its
launch in 2002, the GRACE satellites have been able to measure total
water storage changes (TWS; surface, groundwater, soil moisture,
vegetation water, and ice; see e.g., Awange and Kiema, 2019; Awange,
2022), which are useful for flood studies (e.g., Reager et al., 2014;
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Gouweleeuw et al., 2018; Gupta and Dhanya, 2020; Khorrami et al.,
2022, Zhang et al., 2023). That TWS changes is vital for flood moni-
toring is demonstrated by the development of its index employed to
study floods (see, e.g., Reager and Famiglietti, 2009; Idowu and Zhou,
2019). Examples of the potential use of GRACE in flood detection
include the works of Gupta and Dhanya (2020) who studied the
Peninsular Indian River basins and developed flood potential Index that
achieved 90 % accuracy in mild, moderate, and severe floods, and
Gouweleeuw et al. (2018) who employed it to track major flood events
in the Ganges-Brahmaputra Delta. In addition, local flood scale obser-
vations have been found to be well consistent with the United States of
America (USA)’s flood potential index from 2003 to 2012 (Molodtsova
et al., 2016). Also, USA’s Missouri River discharge has been studied
using TWS changes, which indicated the flood potential of the river
basin 5 to 11 months before its occurrence in 2011 (e.g., Reager et al.,
2014). Chinnasamy (2017) studied the TWS changes with discharge for
Koshi basin, where TWS changes were directly related to the monthly
discharge. Shah and Mishra (2021) examined changes in TWS as a po-
tential for detecting the Indian floods and found that an increase or
decrease in TWS changes was a sign of potential floods.

Unfortunately, despite the advantages of GRACE satellites and the
many efforts made over the past two decades in predicting floods using
TWS changes as shown in the plethora of studies above, there are lim-
itations to studying stored water changes (see e.g., Verma and Katpatal,
2020; Arshad et al., 2022) due to the coarse GRACE/GRACE-FO’s spatial
resolution (approximately 300 km), which hinders its full exploitation to
better understand TWS variability at localized levels (Hu et al., 2024; Ma
et al., 2024; Yu et al., 2021; Xu et al., 2021). Downscaling of GRACE’s
TWS products, therefore, is a necessity if its potential is to be fully
exploited. In this regard, Vishwakarma et al. (2021) studied TWS
downscaling with partial least squares with a RMSE of about 30 mm and
found that statistical downscaling was successful. Further, machine
learning methods (MLM) have been more successful in the TWS down-
scaling process where they have provided high correlation with inde-
pendent sensors (see e.g., Seyoum et al., 2019; Chen et al., 2019; Zhong
et al., 2021; Khorrami et al, 2023). Compared to classical methods such
as recurrent neural network (RNN), MLM are designed to predict, and
are thus more suitable where big data sets are to be used based on their
input and output adjustment axis (He et al., 2021). MLM trains by
identifying input features and output changes, and reduce prediction
errors (Xie et al., 2022a). Deep learning, a subset of ML, has demon-
strated considerable success in the fields of object detection and flood
prediction. For instance, it has recently been used to reconstruct TWS
changes of the Nile and Yangtze River basins by Wang et al. (2023,
2025). This powerful method has shown its effectiveness in accurately
identifying objects and predicting floods, showcasing its potential across
diverse applications (see e.g., Wu et al., 2018; Wu et al., 2020, 2021).

Even with the power of MLM above, the impact and effectiveness of
TWS changes for flood monitoring are still controversial, and may have
many uncertainties (Landerer and Swenson, 2012; Boergens et al.,
2022). This is due to the fact that the chain of the precipitation process
remains precisely unknown (see e.g., Khain et al., 2020), where mete-
orological parameters reduce the probability of flood prediction due to
their dynamicity and sudden changes. To reduce uncertainty, therefore,
the long-term and short-term behavior of TWS changes needs to be
analyzed in such a way that its significant changes reveal its potential for
flood prediction with appropriate accuracy. Long Short-Term Memory
(LSTM) is one of the deep learning methods that considers long-term and
short-term memories in its prediction (Sherstinsky, 2020). Unlike the
traditional RNN in which content is updated at every step of the way,
LSTM network decides on the preservation of the current memory
through the introduction of gateways (Lin et al., 2021). Intuitively, if the
LSTM unit detects an important feature in the input sequence of the
initial steps, it easily transmits this information over a long distance,
thus receiving and maintaining such potential long-term dependencies
(Wu et al., 2020). Unfortunately, a simple RNN network cannot learn
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such a distance connection, which is a big disadvantage (Su et al., 2020).
LSTM has been successful in various fields of forecasting, e.g., Le et al.
(2019) employed it to predict the flooding of the Da River basin
achieving a flow rate forecasting with a Nash-Sutcliffe Efficiency (NSE)
of 0.99. Other examples are reported in the works of Widiasari et al.,
(2018), Li et al. (2021), Man et al. (2022), Wang et al. (2021) and Xiong
et al. (2022).

Although deep learning methods have been presented as a possible
solution to address the spatial resolution problem of GRACE as discussed
above, they have limitations in that those based on Long Short Term
Memory (LSTM) rely on exterior data that at times may not be available
or have to be modelled. Moreover, employing LSTM to downscale TWS
using exterior variables such as precipitation comes with unknown un-
certainties that limits its operation because the accuracy of the param-
eters involved are not known on one hand, while on the other hand,
some of the parameters have to be extracted from models making the
true downscaled TWS products unclear (e.g., Yang et al., 2019; Xiong
et al., 2022). Here, we propose the LSTM method where the novelty lies
in the fact that it employs optimization of the hyperparameters, thereby
providing products suitable for flood monitoring unlike previous
studies. LSTM is programmed to learn the short- and long-term behavior
of TWS changes, which has more than 20 years of data and subjected to
the case study of the 2019 Lorestan floods in Iran to assess its func-
tionality. The downscaled GRACE-FO spatial resolution TWS products
are investigated under three different scenarios (60-85 % training sets)
to assess how they enhance both the spatial and temporal resolution of
the data, addressing the limitations of previous studies. The study also
examines how, unlike traditional methods, LSTM effectively localizes
the signals, reducing spectral leakage and signal attenuation on one
hand and on the other hand, explores how weak signals are amplified,
providing more accurate and reliable results compared to prior models.

2. Long-Short term Memory: Optimized Framework
2.1. Algorithm

Long Short-Term Memory (LSTM) network is a special type of
Recurrent Neural Network (RNN) that solves the long-term memory
problem experienced by the RNN network. A common LSTM consists of
three gates (see Fig. 1a): input, forget, and output, which control the
flow of information and specify the data that is important to retain in the
sequence, as well as the data that is less important and should be deleted
(Man et al., 2022). The input gate is in-built to update the values (in-
formation) in the cell state while the forget gate is responsible for con-
trolling the flow of information from the previous time step, and
determines whether the memory information is used from the previous
time step or not, and if something has to be entered from the previous
time step. The Output gate ultimately decides what the next hidden state
will be (Li et al., 2021).

In addition to these three gates, there is a memory cell, abbreviated
as C. One input is hidden memory or (h) and the other input is X, which
produces two outputs; C; and hy. h; is divided into two parts, i.e., the part
that is moved to the next time step and that which is used in the current
time step if it needs to generate output (Song et al., 2019). Fig. 1 b)
shows the LSTM cell that passes the important information along the
sequence chain to provide the desired output (Wu et al., 2020).

The basic concept of the LSTM network is the cell state and its
associated gates; the cell state acts as a freeway that carries information
along the sequence chain, i.e., the network memory. Gates store infor-
mation in a cell state (Kao et al., 2020), and are the various neural
networks that decide what information enters the cell state, as well as
learn what information should be stored or forgotten during network
training (Gohar et al., 2022).

If the network is not able to understand recent history, long-term
memory plays a stabilizing role and completes the prediction by look-
ing back (Pang et al., 2020). One solution proposed for conditional
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Fig. 1. A) LSTM cell featuring three gates: input, output, and forget gates. These gates play a pivotal role in storing information in a cell state, and b), LSTM ar-
chitecture used for downscaling TWS changes, which is input into the LSTM at various time intervals. After being flattened, it proceeds to enter the fully con-

nected layer.

models is to inject noise into the predictions made by the network before
feeding them to the next time step (Alhussein et al., 2020). This
strengthens the network against unexpected inputs. Nevertheless,
effective solutions are less important than better memory. Long-Short
Term Memory, or LSTM in short, is a RNN architecture designed to
store and access information better than the traditional RNN version.

2.2. Optimization of hyperparameters

In deep learning, optimizing the network architecture and hyper-
parameters is crucial for achieving robust performance. For the LSTM
model employed in this study, hyperparameters such as the number of
hidden units, batch size, learning rate, and dropout rate are carefully
selected based on preliminary experiments and cross-validation. The
optimization is performed using Adaptive Moment Estimation (ADAM;
Sakinah et al.,, 2019), which helps in adjusting the learning rate
dynamically to ensure efficient convergence.

To determine the most effective (optimum) hyperparameter settings,
multiple configurations are tested. The learning rate is varied across
0.001, 0.005, and 0.01 to assess its impact on model convergence and
accuracy. A dropout rate of 0.3 provides the best balance between
overfitting prevention and model performance, as lower dropout rates
(e.g., 0.2) lead to slight overfitting, while higher dropout rates (e.g., 0.5)

cause underfitting and degraded performance. Additionally, different
batch sizes (32, 64, and 128) are explored, with a batch size of 64
yielding the best stability and efficiency in training. The final hyper-
parameters are chosen based on the best performance observed during
validation, ensuring the model achieves both accuracy and
generalization.

Furthermore, training data proportions ranging from 60 % to 85 %,
with a 5 % interval, are selected based on empirical trials and previous
studies that explored the trade-off between model performance and
generalization. These splits are used to investigate how varying amounts
of training data impact on the model’s ability to generalize. A higher
proportion of training data (e.g., 85 %) can improve efficiency but may
reduce the available validation data, increasing the risk of overfitting.
Conversely, using a smaller proportion of training data may not allow
the model to capture all relevant patterns. Thus, striking a balance be-
tween training and validation data is essential to optimize model per-
formance while ensuring robustness and generalization.

2.3. Downscaling of GRACE/GRACE-FO TWS data

20-year TWS data from GRACE and GRACE-FO have been used for
monthly downscaling. In the first stage (Fig. 1b), TWS data enters LSTM
in a time series (with 1-month temporal resolution), where learning is
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done in the temporal and spatial domain. After the flatten layer, which is
to change the output dimension, they enter the fully connected layer
that combine LSTM TWS results, and in the last stage, downscaled
LSTM-TWS products are obtained. The first step shows the TWS calcu-
lation. The second step is the scenarios used to learn LSTM and the third
step is validation with river flow discharge and precipitation. First, the
Cyp coefficient is replaced by that of satellite laser ranging (SLR; Xie
et al., 2022a,b), followed by TWS calculation to the degree and order of
60. In the next steps, isostatic correction, and 300 km Gaussian filter
(Tapley et al., 2019; to reduce stripe errors) are applied. Three training
scenarios are selected based on empirical trials and previous studies
approach, i.e., 60 %, 70 % and 85 % training data, and the remaining
data used for validation (Fig. 2). The input of this model is the monthly
TWS products of three center means: the Center for Space Research
(CSR), the Jet Propulsion Laboratory (JPL), and the German Research
Centre for Geosciences (GFZ) with a spatial resolution of 1° x 1° degree
and the output of this model is the 10-day TWS products with a reso-
lution of 0.5" x 0.5°. Fig. 2 summarizes the downscaling workflow.

3. The Lorestan province flood (Iran)
3.1. Flood area

Lorestan Province, located in western Iran, features diverse eleva-
tions ranging from 100 to 3,000 m above mean sea level. Poldokhtar, a
city in the southern part of the province, is one of its notable settlements.
The areas of the case studies are in the west of Iran, specifically in
Poldokhtar (Fig. 3 a and b with the associated rivers and topography),
where the flood intensity was high during the flood period. The average
annual precipitation is approximately 370 mm, with average tempera-
tures reaching around 10 °C. The city’s elevation above sea level is
approximately 713 m.

3.2. Precipitation event

The beginning of the solar new year in Lorestan province (Iran) was
accompanied by the activities of two strong and extensive precipitation
systems that affected almost the entire province and led to large and

Level-1 The C20 coefficients The monthly
GRACE TWS [~ are replaced | gravitational
observations with the SLR coefficients are
|:> 300k calculated up to
-Km 60 (degree and
Gaussian filter The ICE6G-D order)
model isostatic
TWS correction GRACE
Scenario 1 Scenario 2 Scenario 3
60% training 70% training 85% training
40% testing 30% testing 15% testing
LSTM < GLDAS
TWS
Evaluation | TWS assessment for
with RMSE flood prediction LSTM
TWS correlation TWS correlation
|:> with river flow with precipitation

Validation

Fig. 2. TWS downscaling workflow comprising three components: GRACE
satellite data processing, LSTM, and validation, which is conducted using two
ground sensors measuring precipitation data and river flow.
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devastating floods. From March 24 to April 2, 2019, Lorestan Kashkan
Basin received 290 mm of precipitation. In Lorestan, the continuation of
precipitation intensified the destruction caused by the floods. Due to its
extent and pervasiveness, the damage to economic infrastructure, nat-
ural resources, and agriculture was enormous.

In March 2019, two waves of precipitation were experienced in Iran,
leading to the formation of floods in the northern and western provinces.
These precipitation waves occurred on (i) March 2nd to March 3rd,
2019, and in just two days, Iran’s average precipitation increased by 72
% from its long-term precipitation average, and (ii), on March 17th to
26th, 2019. For the 10 days duration, the average precipitation of Iran
increased by 50 mm.

These statistics mean that one-third of Iran’s annual precipitation
occurred within just two weeks. The average precipitation from
September 23rd, 2018 to April 8th, 2019 was 310 mm, which is un-
precedented in the last 51 years, and shows an increase of 49 %
compared to the previous years. The average precipitation increases in
2019 compared to the average of 2018 in the Caspian Sea catchment
area was 51 %, in the catchment area of the Oman Sea and the Persian
Gulf was 56 %, and in the catchment area of Lake Urmia was 65 %. In the
last 11 years, due to both natural factors and anthropogenic intervention
(e.g., changing the natural balance by building dams and altering land
use) in Iran, the average precipitation has never reached long-term
average (approximately 230 mm/year), but the 2019 rains were much
more than the long-term average.

The other precipitation wave in the Lorestan province was experi-
enced from March 31st to April 2nd, 2019. Statistical analysis of the
recorded precipitation results of this system in Khorramabad, Aleshtar,
Noorabad, Kuhdasht and Poldokhtar meteorological stations shows 153
mm of precipitation in the whole Kashkan basin, with the highest
amount of 172 mm occurring in Noorabad station, while the lowest
amount of 136 mm occurring in Khorramabad station. On April 1st,
2019, the average precipitation reached 1058 mm. The annual amount
of precipitation in the year 2018 was 275 mm and the average long-term
precipitation in Lorestan was 228 mm. The flow of the Kashkan River
reached 4,600 m®/s on April 1st, causing the river to overflow in the
cities of Poldokhtar and Mamulan. On the day of the flood (April 1st,
2019), the Khorramabad River flow increased to 700 m?, which was
about 2 times the capacity of the river. With the flood discharge, the
Karganeh River reached 280 m®/s, which has not been experienced for
this small river during the last 20 years. The precipitations caused the
Maruk Doroud Dam with a volume of 105 million m® to overflow for the
first time.

The continuation of the rains was much more important than their
intensity, an issue that played the biggest role in the destructiveness
caused by the Lorestan flood. Fig. 3c shows the Kashkan Riverbed and
the flood zone of Poldokhtar from the Sentinel-1 satellite image on
March 25, 2019. The eastern and southern parts of Poldokhtar, which
share a border with the river were completely flooded. The flood zone
expanded about five times more than the riverbed, and the main eastern
road of Poldokhtar was completely blocked in the first few days of the
flood.

In this study, six sources of data are used: GRACE, global and land
data assimilation system (GLDAS), precipitation, Sentinel-1, Sentinel-2,
and river flow, with details for each described in Table 1.

Based on the 10-day GLDAS temporal data, downscaling of TWS
changes has been conducted to improve spatial and temporal resolution.
Inputs to the LSTM include four dimensions: longitude, latitude, time,
and TWS changes. The LSTM optimizes downscaling by incorporating
information from both monthly and 10-day GLDAS data. The use of the
GLDAS model alone often produces unrealistic results, and accuracy
decreases over extended time periods due to limitations in its model
assumptions. To address this, monthly GRACE and GRACE Follow-On
observations have been utilized, ensuring that mass displacements and
measurement accuracy are maintained. The LSTM model effectively
integrates location, time, and TWS changes to achieve optimal
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Fig. 3. a) Provinces of iran, b) poldokhtar and stream flow station, rivers, and topography in the southwest of Iran, and c), the Kashkan River bed and the flood zone
of Poldokhtar from the Sentinel-1 satellite image of March 25th, 2019 showing the eastern and southern parts of Poldokhtar, which share a border with the river,

which was completely flooded.

downscaling results, bridging the gap between coarse GRACE/GRACE-
FO data. This approach enables a more reliable representation of TWS
changes both temporally and spatially.

4. Results of LSTM based on the Lorestan (Iran) example
4.1. Application of LSTM to the 2019 Lorestan flood

As mentioned earlier, three datasets utilized in this research consist
of GRACE (2002-2017) and GRACE-FO (2018-2021) satellite data,
along with ground measurements of river flow (2002-2020) and pre-
cipitation data (3 months before and after the flood) from meteorolog-
ical sensors, for verification purposes. Each data set contain information
spanning periods before, during, and after the flood events indicated
above.

Fig. 4 shows the annual TWS trends from the three centers (CSR, GFZ
and JPL), and GLDAS trend. GLDAS TWS involves the hydrological

model to increase the spatial resolution so that it is not just a mathe-
matical and unrealistic downscaling (see e.g., Rodell et al., 2004).
GRACE observations are from three centers with a spatial resolution of 1
degree and GLDAS is 0.5 degree. TWS from the three centers are
compatible with each other and TWS from GFZ in the northeast shows
less decrease than CSR and JPL. Although GLDAS TWS has better spatial
resolution than the three centers’ solutions, it is nonetheless compatible
with them. The 223-month GRACE and GRACE-FO data, along with the
daily GLDAS (from which the monthly average is calculated), are
employed in LSTM learning. The GLDAS TWS model is an integration of
various hydrological components, including soil moisture, snow water
equivalent, surface water, groundwater, and atmospheric data (Rodell
et al., 2004). Before using GLDAS TWS, 100 random points are selected
in different locations, and its compatibility with GRACE and GRACE-FO
TWS evaluated, which shows 85 % compatibility. Also, TWS output is
validated with river flow data in the flood time range. On the other
hand, due to the validation capability of deep learning, which does not
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Table 1
Data used in this study.
Data Source Description Provider URL/
Source
GRACE (CSR, Gravity Recovery and NASA — National Jpl.nasa.
JPL, GFZ) Climate Experiment; Aeronautics and Space gov
gravity data Administration
GLDAS Global Land Data NASA nasa.gov
Assimilation System
Noah Model (Version
2.1)
Precipitation Precipitation data with IRMO — Iran irmo.com
Data regional detail Meteorological
Organization
Sentinel-1 Synthetic Aperture ESA — European Space dataspace
Radar (SAR) imagery Agency, Copernicus .cope
Program rnicus.eu
Sentinel-2 Multispectral imagery ESA dataspace
.cope
rnicus.eu
River Flow River flow data; WRM — Water wrm.ir
regional hydrological Resources

records Management, Iran

use part of the data in training, the reliability of the results increases.

In deep learning, the root mean square error (RMSE) is calculated
using the validation data as a performance evaluation metric. A per-
centage of data, for example, 15 %, is set aside for validation and is not
used during training. After training, the learned model is tested on TWS
validation points. TWS is predicted, and RMSE is calculated using the
following formula (Willmott and Matsuura, 2005):

_ AN~ 2
RMSE = EZ(X, xi)°, m

i=1

where x; represents the TWS values, X; represents the predicted TWS
values, and n is the number of validation data.

To mitigate overfitting and improve generalization, L2 regulariza-
tion is applied to the loss function, which penalizes large weights,
reducing model complexity and preventing it from fitting noise in the
data. Additionally, several data augmentation techniques are tested,
including random noise injection, time-series shifting, and scaling, to
artificially expand the training dataset and help the model learn more
robust features. These techniques are chosen because they can simulate
variability in real-world data and improve the model’s ability to make
accurate predictions on new, previously unseen data.

After testing these methods, the L2 regularization, along with time-
series shifting and noise injection, is found to significantly improve
model generalization and reduced overfitting. These methods are
selected as the optimal approach to enhance the performance of the
LSTM model.

Three optimal scenarios are selected for downscaling TWS products
employing LSTM: the first scenario uses 60 % of the data for training and
40 % for testing, the second scenario uses 70 % of the data for training
and 30 % for testing, and the third scenario uses 85 % of the data for
training and 15 % for testing.

Fig. 4b) shows the output of TWS scenarios based on LSTM. The
annual TWS trend in Lorestan is negative, and the southwestern and
northwestern regions have a greater decrease in TWS than the central
and southeastern regions. As training data increases (in the third sce-
nario), the range of TWS decreases. The highest RMSE is seen in Scenario
3, which has the most data used for training. The best-case scenario is
given by the second scenario, which makes optimal use of the GRACE
and GLDAS datasets.

Fig. 5 a) shows the JPL, CSR and GFZ time series for Poldokhtar after
LSTM downscaling. Due to the high uncertainty, the gap between
GRACE and GRACE-FO is not considered in the calculations. In general,
the compatibility in the monthly solutions and seasonal signals from the
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three centers are evident. A drop in the TWS changes signal is observed
in mid-2007 and mid-2008. The annual range of TWS change from 2002
to mid-2007 is larger than from 2008 to 2014, and from then on, the
annual range increases. After 2008, a drop in the TWS time series is
evident, which is caused by water depletion (Fig. 5). It is also possible to
calculate changes in groundwater storage with the help of GLDAS and
GRACE/GRACE-FO (Sorkhabi et al., 2023). In the case of this study, the
aim is to investigate the stepwise or gradual increase in TWS changes for
specific locations due to abnormal precipitation during the time period,
which is evident in the time series and spatial and temporal maps. At the
end of 2018 and 2019, Iran’s precipitation has been above normal.
Although this TWS jump is temporary and the value of TWS decreased
after this event, it cannot compensate for the water depletions of several
years. For a better analysis of water depletions, GWS changes and in-
dexes like the standard precipitation index (SPI) can be analyzed
together, and linear trends can help.

Changes in the annual amplitude of TWS changes affect the amount
of precipitation in the area. Torrential rains occurred in late March and
early April 2019, with a TWS changes leap in all three centers’ TWS
products during this period, amounting to about 40 + 2 cm. One of the
reasons is the extent of precipitation during this period and the
involvement of several provinces in Iran. The GRACE-FO satellite and
LSTM has been able to clearly record this amount of leap (i.e., time series
after 2018), which without employing LSTM is less i.e., 20 cm (see
Fig. 5b). Furthermore, LSTM has been able to amplify the flood signal as
shown in Fig. 5a.

One simple and statistical approach to detecting sudden increases in
TWS changes is to use the mean and standard deviation as confidence
intervals, where changes close to the confidence interval can be an in-
dicator of flooding.

In the next step, the spatial TWS changes based on LSTM are further
investigated. Fig. 6a shows the TWS changes for the period January to
August 2019 after downscaling. In January, TWS changes are negative
in all parts of Iran and the northern and western regions have further
declines. In February, positive TWS changes are recorded in the western
regions of Iran by GRACE-FO observations. This is an anomaly that is
different from the rest of Iran. In March, the amount of TWS observed
anomaly is tripled compared to February, and its extent covers almost
the entire west of Iran. In April, the anomaly intensifies, and its
magnitude is 1.5 times wider, with torrential rains measured in these
areas on April 25th and 26th 2019. In the following months, it has
gradually decreased, so that by August, the total TWS changes over Iran
was negative. An increase in TWS changes is predictable when precipi-
tation increases. The important point is the TWS positive anomaly in
February before the flood in Fig. 6a, which can be a strong indicator of
the impending floods. In the estimated TWS changes in Fig. 6a where
LSTM is employed, the onset of floods from February, the period of
progression in March, and in April, decrease in the following months and
eventual cessation are observed. In Fig. 6b without employing LSTM
(mean of the three centers products) months before the flood, an in-
crease in TWS is not observed except in April (the month of the flood)
and May (the month after the flood). The comparison of LSTM and
original mode shows the superiority of LSTM-derived TWS changes,
which with LSTM’s long-term and short-term memory increases spatial
resolution and reveals the pre-flood signals. Fig. 6a indicates a positive
anomaly on the western side way before the April flood began. This TWS
anomaly is an indicator/predictor of the April flood. In contrast, this is
not seen in Fig. 6b where LSTM is not employed. In this study, multi-
dimensional downscaling has been conducted using LSTM, where its
advantage lies in its capacity for long- and short-term memory in deep
learning, setting it apart from other ML methods. This is crucial for
incorporating ML into downscaling over time.

Fig. 7a shows the time series of the TWS changes and river flow from
2002 to April 1st, 2019 (flood day). The behavior of the TWS changes is
highly compatible with the river flow. Only the data of 3 months (mean
monthly values) before and after the precipitation are available, and the
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Fig. 4. A) TWS annual trends (cm/yr) of three centers (CSR, GFZ and JPL) and GLDAS, where darker areas show a further decrease, and b), output of TWS (cm)
scenarios based on LSTM, which is evident in the improvement in spatial resolution and details.

correlation between TWS changes and the river discharge reaches its
maximum on the day of the flood. This shows the LSTM-derived TWS
product’s capability for flood detection in the area within a month’s
time lag (Fig. 6). Fig. 7b shows regression between TWS changes and
river discharge with 95 % and 99 % confidence intervals for statistical
interpretations. TWS changes and Kashkan River flow have a correlation
of 0.72 with 99 % confidence level. On flood days, the amount of cor-
relation between the TWS changes and river flow is so high that it sta-
tistically becomes an outlier in the 99 % confidence interval.

For validation, the precipitation data of 7 meteorological stations in
Lorestan province (Fig. 8a) have been used, and their precipitation
correlation with TWS changes calculated. The names of the meteoro-
logical stations are Khorramabad (MS1), Rumeshkan (MS2), Nurabad
(MS3), Dureh (MS4), Borujerd (MS5), Poldokhtar (MS6), and Kuhdasht
(MS7). The TWS of these areas are also numbered, respectively.

Precipitation data from 3 months before and after the flood have
been employed, considering GRACE’s monthly temporal resolution. The
average monthly precipitation has been utilized in the analysis. Fig. 7c
and d show correlation results between precipitation and TWS changes

before and after flooding, respectively. The average correlations before
and after flood flooding are 0.40 and 0.71, respectively. This approxi-
mate doubling of correlation between precipitation and TWS changes
after the flood shows that the changes in both variables are synchro-
nized. The reason for the negative correlation before the flood is due to
the spatial difference between TWS and the precipitation of meteoro-
logical station. However, after the flood event, when the landscape is
saturated and water storage mechanisms shift, the correlation becomes
positive, indicating that these areas are directly influenced by increased
surface water and replenished groundwater. Additionally, precipitation
contributes to TWS through both direct accumulation and runoff. Before
the flood, other factors such as soil moisture and groundwater storage
play a more dominant role in TWS variability. In contrast, after the
flood, the immediate impact of surface water dominates, leading to a
stronger positive correlation between precipitation and TWS.

The GRACE data suffers from spectral leakage and low spatial reso-
lution, which can result in inaccuracies when capturing fine-scale fea-
tures. Additionally, the data is noisy, especially at higher degrees and
orders (above 60), leading to signal attenuation at the maxima (peaks)
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Fig. 5. JPL, CSR and GFZ time series a) after LSTM downscaling with maximum and minimum bands in red, and b), without employing LSTM. It is evident from

figure that TWS change leap is more than 20 cm.

and minima. This issue requires localization methods and reconstruction
to enhance the signal. LSTM has been utilized to address these chal-
lenges by improving both spatial and temporal resolution, as well as
amplifying the signal to provide a clearer representation of the under-
lying data. To assess the accuracy of the LSTM output, independent data
sources, such as river flow measurements (Fig. 7a) and weather station
precipitation data, were used for comparison. The LSTM model showed
an improvement in correlation with both the river flow and weather
station data, with a 30 % increase compared to the non-LSTM model.
This improvement suggests that the LSTM not only localized the signal
more effectively but also enhanced the temporal resolution, which is
evident in the more pronounced peak compared to the original GRACE
data. The LSTM model’s higher temporal resolution allows it to capture
finer variations in the data, leading to sharper peaks that more accu-
rately represent localized events. While the monthly averaged values of
the LSTM align with GRACE, the enhanced peak in the LSTM output
reflects its capability to better localize the signal both in time and space.

The Fig. 7c and d indicates that the correlation increased after the
flood.

Fig. 8a shows the Sentinel-1 radar image of southwestern Iran on
2019-03-14 before the flood. Fig. 8b presents the Sentinel-1 image on
2019-03-26 after the flood, with black areas indicating precipitation
covering an area of more than 100,000 km?2. The precipitation, occur-
ring as snow in high altitudes and rain in low altitudes, led to floods. The
expanded size increased the TWS changes in the region, discernible by
the GRACE satellite. Fig. 8c shows a Sentinel-2 image the city of Pol-
dakhtar before the flood on 2019-03-26, while Fig. 8d reveals the
aftermath of the flood on 2019-04-16. Sentinel-2 true-color imagery is
created using band 4 (red), band 3 (green), and band 2 (blue). After a
flood, sediment and turbidity are often visible, with muddy water
observed in affected areas. Fig. 8e shows the precipitation on 2019-04-
01, with Poldakhtar city experiencing the highest precipitation at 142
mm, while the annual average precipitation in the stations of Lorestan
province is 100 mm, indicating a significant volume of precipitation.
Stations close to the flood location recorded higher precipitation. The
results are consistent with Mehrabi (2021) who monitored the Lorestan

flood using Sentinel-1 products.

4.2. Discussion: Evaluation of the LSTM performance

To evaluate the performance of LSTM in three scenarios, both ac-
curacy and number of iterations are investigated up to 250, as this
threshold ensures a balance between computational efficiency and
model convergence while preventing overfitting or underfitting. In this
study, iteration refers to the number of sub-passes of the training data in
each epoch (period), where the model parameters are updated. An
epoch is defined as a full pass through the entire dataset. The number of
iterations per epoch is determined by the batch size and the total number
of training samples. The training process continues for a set number of
iterations, or until the accuracy changes remain constant over the last 10
iterations, signaling that the model has reached the convergence stage.
Fig. 9 illustrates the LSTM performance, showing that all three scenarios
exhibit an increase in accuracy as the number of iterations increases.
Scenario 2 achieves the highest accuracy, with a value of 97 %, while
Scenario 3 exhibits the lowest accuracy at 71 %. Scenario 2 demon-
strates the best fit, while Scenario 3 shows the worst fit. In Scenario 3,
the accuracy decreases relative to the final iteration, indicating the
presence of overfitting, after which the training process was terminated.
Increased data and focus on extracting features from noisy data could be
the cause (Song et al., 2019). The TWS products of LSTM-derived GRACE
shows a mean significant correlation above 0.70 at the 95 % confidence
level with both river discharge and precipitation in Lorestan flood while
in original mode, after the flood, the correlation between precipitation
and TWS changes reached 0.4. In time series, LSTM offers a better
forecast by looking back and using sequences of data, and can learn TWS
changes’ behavior both long-term and short-term that can be useful for
downscaling and forecasting, which is confirmed through the Lorestan
flood case study. The disadvantages of deep learning include the need
for large datasets to train the models effectively, which can be resource-
intensive. The larger the training data set, the more accurate it can be. In
small datasets, deep learning network optimization is required, and
optimal prediction cannot be expected. Additionally, deep learning
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Fig. 6. A) TWS changes after LSTM downscaling of GRACE-FO’s TWS from January to August 2019, and b), TWS changes without employing LSTM (mean of the
three centers’ products), where the brown areas indicate decrease while the blue areas show increase.

models often suffer from a lack of interpretability, making it difficult to
understand how they reach their predictions or decisions.

GLDAS alone does not achieve high accuracy in capturing extreme
hydrological events like floods, as demonstrated in this case study.
While GLDAS provides reliable general trends, its reliance on modeled
data often leads to the loss of localized signals, such as those associated
with flooding (Rodell et al., 2004). This research aims to address this
limitation by integrating GRACE/GRACE-FO observations with GLDAS
to improve the accuracy, temporal resolution, and spatial resolution of
TWS changes.

Several state-of-the-art downscaling approaches were reviewed,
including statistical methods like partial least squares (Vishwakarma
et al., 2021) and machine learning techniques such as Random Forest
and Support Vector Machines (Seyoum et al., 2019; Zhong et al., 2021).
This research demonstrates that the LSTM-based downscaling approach

achieves a significantly lower RMSE of + 15 mm, outperforming other
state-of-the-art methods. In comparison, the statistical approach by
Vishwakarma et al. (2021) resulted in an RMSE of approximately + 30
mm, while the machine learning method by Seyoum et al. (2019) had a
much higher RMSE of + 306 mm. These findings highlight the superior
accuracy and efficiency of the LSTM model in reducing errors and
improving correlation with independent sensor data. The results show
that the LSTM approach consistently outperforms other methods in
terms of reducing RMSE and improving the correlation with indepen-
dent sensors.

One of the parameters that plays a crucial role in causing floods is soil
moisture and ground water storage, which is a component of TWS. In
this specific case study, there was no significant background of
groundwater flooding, which is why groundwater storage was not
thoroughly analyzed.
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Fig. 7. A) TWS changes and Kashkan river flow time series, b) regression of TWS changes and river flow with confidence intervals (i.e., a correlation of 0.72 at 99%
confidence level), c) precipitation correlation of 7 meteorological stations and TWS changes before the occurrence of the flood (i.e., an average correlation of 0.4 at
99% confidence level), and d), after the occurrence of the flood (i.e., an average correlation of 0.71 at 99% confidence level).

Future studies could focus on integrating additional datasets, such as
soil moisture data from the soil moisture and ocean salinity (SMOS)
satellite, alongside GRACE and GRACE-FO data, to further enhance
flood prediction accuracy. By analyzing soil moisture and groundwater
storage changes leading up to and during flood events, it will be possible
to better understand the saturation levels of soil and groundwater,
which can limit their ability to absorb further precipitation, potentially
triggering floods. Additionally, hybrid modeling approaches that
combine multiple datasets, such as TWS, soil moisture, and groundwater
data, could be explored to reduce uncertainties in TWS estimates. These
models could more accurately capture the complex interactions within
the hydrological cycle, especially in the context of climate change,
which is expected to intensify the frequency and severity of both

10

droughts and floods in the future (Yin et al., 2023a; Yin et al., 2023b; Yin
et al.,, 2023c). Leveraging GRACE’s long-term observational data,
coupled with other relevant datasets, could further improve flood pre-
diction models and reduce uncertainties in TWS estimates.

In future research, hybrid machine learning approaches, such as
combining convolutional neural networks (CNNs) with LSTM, could be
explored to enhance flood prediction capabilities. CNNs are effective at
capturing spatial patterns, while LSTMs excel at modeling temporal
dependencies. By integrating these two models, a hybrid approach could
leverage both spatial and temporal features to more accurately capture
flood events, providing a more comprehensive solution for flood moni-
toring and prediction. This approach holds the potential to improve
predictive accuracy by utilizing the strengths of both methods.
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5. Conclusion

This study evaluated the capability of LSTM to downscale TWS
changes. With its memory capability, LSTM can capture TWS changes
based on its history. This allows for a better and more accurate under-
standing of the flood process. The proposed method can achieve
enhanced spatial and temporal resolution by integrating observations
with other sensors.

Based on the Lorestian flood case study, changes in the annual
amplitude of TWS after downscaling are affected by the amount of
precipitation. In February 2019, positive TWS is measured in the west-
ern regions of Iran. This is an anomaly that is significantly different from
the rest of Iran. In April, this anomaly intensifies and its value increases
1.5 times. In March, the amount of TWS tripled compared to February,
and its extent covers almost the entire west of Iran. Torrential rains
occurred in late March and early April 2019, with a TWS leap of about
40 £+ 2 cm. The TWS of GRACE-FO and LSTM has a mean significant
correlation above 0.70 at the 95 % confidence level with river discharge
and precipitation. The GRACE-FO and LSTM-derived GRACE have been
able to clearly detect the amount of TWS leap in the month before the
flood so that it was statistically identified as outlier. But one of its
strongest signals was revealed in the western region of Iran in April and
March 2019. A significant increase in TWS a few months before the
flood, it indicated the occurrence of flood in the region. LSTM was able
to model the spatial and temporal behavior of TWS with 97 % accuracy.

Subsequent studies can be useful in identifying TWS behavioral
patterns to predict floods. The complex formation of the flood phe-
nomenon makes it difficult to predict strongly. TWS downscaling can be
used to predict floods in two aspects. In the first aspect, the incremental
changes of TWS over several months, such as western Iran and the
occurrence of floods, can be examined. In the second aspect, by exam-
ining the multi-year average of TWS and its sudden increase, the prog-
nosis can be examined. What is important is the role of TWS in flood
prediction and its relationship, showing the roadmap, and tools such as
deep learning can use TWS LSTM.
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