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A B S T R A C T

Flood forecasting is a vital segment of disaster risk management in that it contributes to the prediction of the 
magnitude, occurrence, duration and timing of floods. Owing to the nonlinear nature of atmospheric phenomena, 
however, forecasting becomes a challenging task that requires a multifaceted approach involving various sensors. 
Indeed, there exist compounding evidence that flood processes would benefit from use of various sensors. One 
such sensor is the Gravity Recovery and Climate Experiment (GRACE) and its follow-on (GRACE-FO), which 
provides Total Water Storage (TWS) products that could potentially be useful for flood monitoring and fore
casting. However, GRACE/GRACE-FO’s coarse spatial resolution of 300 km remains a bottleneck to the full 
exploitation of its products for flood studies and management. Herein, a deep learning Long Short-Term Memory 
(LSTM) method with high learning capability that optimizes the hyperparameters is proposed to downscale the 
coarse GRACE/GRACE-FO TWS products (from 300 km to 55 km). Its spatial and temporal learning is subjected 
to three different training scenarios (i.e., 60 %, 70 % and 85 %), where the one with least root-mean-square- 
errors (RMSE) is selected as the best-case scenario. The proposed LSTM deep learning approach is tested 
based on the 2019 Lorestan flood in Iran, where the results show that it successfully models the spatio-temporal 
behavior of TWS changes with its long-term and short-term memory capabilities. In March and April 2019, heavy 
precipitation caused a significant increase in TWS changes, approximately 40 ± 2 cm. This is captured by the 
LSTM-downscaled products but not the coarse GRACE/GRACE-FO TWS changes. Furthermore, the LSTM 
downscaled GRACE-FO TWS for the period after 2018 shows a strong and statistically significant mean corre
lation (above 0.70 at the 95 % confidence level) with both river discharge and precipitation. The original 
GRACE-FO on the other hand shows a correlation of 0.40, indicating the superiority of the LSTM-derived GRACE- 
FO’s TWS changes. The coarse resolution of the GRACE satellite is a major cause of low correlation, which 
improves after downscaling. LSTM thus has the potential of downscaling GRACE products, providing data that 
are useful for flood process, management and studies.

1. Introduction

Flood forecasting is increasingly becoming a vital task in light of 
climate extremes. It is essential for protecting lives as it enables emer
gency alerts to be issued, reducing economic losses through formation of 
better preparation and response strategies, managing water resources 
effectively, and adapting to climate change challenges. Since the at
mospheric phenomena are nonlinear in nature, where very large 
changes may occur within a short period of time, the integration of 
advanced modeling techniques to enhance the effectiveness of miti
gating the impacts of flooding is becoming a necessity. Such integration 
would require use of various sensors to exploit their benefits. Although 
there are various sensors available for flood monitoring, including 

Sentinel-1 radar images, which can penetrate clouds, each sensor has its 
own limitations, such as satellite pass frequency and challenges with 
backscatter in desert areas (Martinis et al., 2018). The Gravity Recovery 
And Climate Experiment (GRACE) satellites launched in 2002 (Tapley 
et al., 2019) and its follow-on (GRACE-FO) launched in 2018 (Pascolini- 
Campbell et al., 2021) have emerged as sensors that could be of potential 
benefit to flood forecasting as they provide a more comprehensive un
derstanding by measuring TWS changes, which can play a strategic role 
in monitoring extreme and large-scale hydrological events. Since its 
launch in 2002, the GRACE satellites have been able to measure total 
water storage changes (TWS; surface, groundwater, soil moisture, 
vegetation water, and ice; see e.g., Awange and Kiema, 2019; Awange, 
2022), which are useful for flood studies (e.g., Reager et al., 2014; 
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Gouweleeuw et al., 2018; Gupta and Dhanya, 2020; Khorrami et al., 
2022, Zhang et al., 2023). That TWS changes is vital for flood moni
toring is demonstrated by the development of its index employed to 
study floods (see, e.g., Reager and Famiglietti, 2009; Idowu and Zhou, 
2019). Examples of the potential use of GRACE in flood detection 
include the works of Gupta and Dhanya (2020) who studied the 
Peninsular Indian River basins and developed flood potential Index that 
achieved 90 % accuracy in mild, moderate, and severe floods, and 
Gouweleeuw et al. (2018) who employed it to track major flood events 
in the Ganges–Brahmaputra Delta. In addition, local flood scale obser
vations have been found to be well consistent with the United States of 
America (USA)’s flood potential index from 2003 to 2012 (Molodtsova 
et al., 2016). Also, USA’s Missouri River discharge has been studied 
using TWS changes, which indicated the flood potential of the river 
basin 5 to 11 months before its occurrence in 2011 (e.g., Reager et al., 
2014). Chinnasamy (2017) studied the TWS changes with discharge for 
Koshi basin, where TWS changes were directly related to the monthly 
discharge. Shah and Mishra (2021) examined changes in TWS as a po
tential for detecting the Indian floods and found that an increase or 
decrease in TWS changes was a sign of potential floods.

Unfortunately, despite the advantages of GRACE satellites and the 
many efforts made over the past two decades in predicting floods using 
TWS changes as shown in the plethora of studies above, there are lim
itations to studying stored water changes (see e.g., Verma and Katpatal, 
2020; Arshad et al., 2022) due to the coarse GRACE/GRACE-FO’s spatial 
resolution (approximately 300 km), which hinders its full exploitation to 
better understand TWS variability at localized levels (Hu et al., 2024; Ma 
et al., 2024; Yu et al., 2021; Xu et al., 2021). Downscaling of GRACE’s 
TWS products, therefore, is a necessity if its potential is to be fully 
exploited. In this regard, Vishwakarma et al. (2021) studied TWS 
downscaling with partial least squares with a RMSE of about 30 mm and 
found that statistical downscaling was successful. Further, machine 
learning methods (MLM) have been more successful in the TWS down
scaling process where they have provided high correlation with inde
pendent sensors (see e.g., Seyoum et al., 2019; Chen et al., 2019; Zhong 
et al., 2021; Khorrami et al, 2023). Compared to classical methods such 
as recurrent neural network (RNN), MLM are designed to predict, and 
are thus more suitable where big data sets are to be used based on their 
input and output adjustment axis (He et al., 2021). MLM trains by 
identifying input features and output changes, and reduce prediction 
errors (Xie et al., 2022a). Deep learning, a subset of ML, has demon
strated considerable success in the fields of object detection and flood 
prediction. For instance, it has recently been used to reconstruct TWS 
changes of the Nile and Yangtze River basins by Wang et al. (2023, 
2025). This powerful method has shown its effectiveness in accurately 
identifying objects and predicting floods, showcasing its potential across 
diverse applications (see e.g., Wu et al., 2018; Wu et al., 2020, 2021).

Even with the power of MLM above, the impact and effectiveness of 
TWS changes for flood monitoring are still controversial, and may have 
many uncertainties (Landerer and Swenson, 2012; Boergens et al., 
2022). This is due to the fact that the chain of the precipitation process 
remains precisely unknown (see e.g., Khain et al., 2020), where mete
orological parameters reduce the probability of flood prediction due to 
their dynamicity and sudden changes. To reduce uncertainty, therefore, 
the long-term and short-term behavior of TWS changes needs to be 
analyzed in such a way that its significant changes reveal its potential for 
flood prediction with appropriate accuracy. Long Short-Term Memory 
(LSTM) is one of the deep learning methods that considers long-term and 
short-term memories in its prediction (Sherstinsky, 2020). Unlike the 
traditional RNN in which content is updated at every step of the way, 
LSTM network decides on the preservation of the current memory 
through the introduction of gateways (Lin et al., 2021). Intuitively, if the 
LSTM unit detects an important feature in the input sequence of the 
initial steps, it easily transmits this information over a long distance, 
thus receiving and maintaining such potential long-term dependencies 
(Wu et al., 2020). Unfortunately, a simple RNN network cannot learn 

such a distance connection, which is a big disadvantage (Su et al., 2020). 
LSTM has been successful in various fields of forecasting, e.g., Le et al. 
(2019) employed it to predict the flooding of the Da River basin 
achieving a flow rate forecasting with a Nash-Sutcliffe Efficiency (NSE) 
of 0.99. Other examples are reported in the works of Widiasari et al., 
(2018), Li et al. (2021), Man et al. (2022), Wang et al. (2021) and Xiong 
et al. (2022).

Although deep learning methods have been presented as a possible 
solution to address the spatial resolution problem of GRACE as discussed 
above, they have limitations in that those based on Long Short Term 
Memory (LSTM) rely on exterior data that at times may not be available 
or have to be modelled. Moreover, employing LSTM to downscale TWS 
using exterior variables such as precipitation comes with unknown un
certainties that limits its operation because the accuracy of the param
eters involved are not known on one hand, while on the other hand, 
some of the parameters have to be extracted from models making the 
true downscaled TWS products unclear (e.g., Yang et al., 2019; Xiong 
et al., 2022). Here, we propose the LSTM method where the novelty lies 
in the fact that it employs optimization of the hyperparameters, thereby 
providing products suitable for flood monitoring unlike previous 
studies. LSTM is programmed to learn the short- and long-term behavior 
of TWS changes, which has more than 20 years of data and subjected to 
the case study of the 2019 Lorestan floods in Iran to assess its func
tionality. The downscaled GRACE-FO spatial resolution TWS products 
are investigated under three different scenarios (60–85 % training sets) 
to assess how they enhance both the spatial and temporal resolution of 
the data, addressing the limitations of previous studies. The study also 
examines how, unlike traditional methods, LSTM effectively localizes 
the signals, reducing spectral leakage and signal attenuation on one 
hand and on the other hand, explores how weak signals are amplified, 
providing more accurate and reliable results compared to prior models.

2. Long-Short term Memory: Optimized Framework

2.1. Algorithm

Long Short-Term Memory (LSTM) network is a special type of 
Recurrent Neural Network (RNN) that solves the long-term memory 
problem experienced by the RNN network. A common LSTM consists of 
three gates (see Fig. 1a): input, forget, and output, which control the 
flow of information and specify the data that is important to retain in the 
sequence, as well as the data that is less important and should be deleted 
(Man et al., 2022). The input gate is in-built to update the values (in
formation) in the cell state while the forget gate is responsible for con
trolling the flow of information from the previous time step, and 
determines whether the memory information is used from the previous 
time step or not, and if something has to be entered from the previous 
time step. The Output gate ultimately decides what the next hidden state 
will be (Li et al., 2021).

In addition to these three gates, there is a memory cell, abbreviated 
as C. One input is hidden memory or (h) and the other input is Xt, which 
produces two outputs; Ct and ht. ht is divided into two parts, i.e., the part 
that is moved to the next time step and that which is used in the current 
time step if it needs to generate output (Song et al., 2019). Fig. 1 b) 
shows the LSTM cell that passes the important information along the 
sequence chain to provide the desired output (Wu et al., 2020).

The basic concept of the LSTM network is the cell state and its 
associated gates; the cell state acts as a freeway that carries information 
along the sequence chain, i.e., the network memory. Gates store infor
mation in a cell state (Kao et al., 2020), and are the various neural 
networks that decide what information enters the cell state, as well as 
learn what information should be stored or forgotten during network 
training (Gohar et al., 2022).

If the network is not able to understand recent history, long-term 
memory plays a stabilizing role and completes the prediction by look
ing back (Pang et al., 2020). One solution proposed for conditional 
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models is to inject noise into the predictions made by the network before 
feeding them to the next time step (Alhussein et al., 2020). This 
strengthens the network against unexpected inputs. Nevertheless, 
effective solutions are less important than better memory. Long-Short 
Term Memory, or LSTM in short, is a RNN architecture designed to 
store and access information better than the traditional RNN version.

2.2. Optimization of hyperparameters

In deep learning, optimizing the network architecture and hyper
parameters is crucial for achieving robust performance. For the LSTM 
model employed in this study, hyperparameters such as the number of 
hidden units, batch size, learning rate, and dropout rate are carefully 
selected based on preliminary experiments and cross-validation. The 
optimization is performed using Adaptive Moment Estimation (ADAM; 
Sakinah et al., 2019), which helps in adjusting the learning rate 
dynamically to ensure efficient convergence.

To determine the most effective (optimum) hyperparameter settings, 
multiple configurations are tested. The learning rate is varied across 
0.001, 0.005, and 0.01 to assess its impact on model convergence and 
accuracy. A dropout rate of 0.3 provides the best balance between 
overfitting prevention and model performance, as lower dropout rates 
(e.g., 0.2) lead to slight overfitting, while higher dropout rates (e.g., 0.5) 

cause underfitting and degraded performance. Additionally, different 
batch sizes (32, 64, and 128) are explored, with a batch size of 64 
yielding the best stability and efficiency in training. The final hyper
parameters are chosen based on the best performance observed during 
validation, ensuring the model achieves both accuracy and 
generalization.

Furthermore, training data proportions ranging from 60 % to 85 %, 
with a 5 % interval, are selected based on empirical trials and previous 
studies that explored the trade-off between model performance and 
generalization. These splits are used to investigate how varying amounts 
of training data impact on the model’s ability to generalize. A higher 
proportion of training data (e.g., 85 %) can improve efficiency but may 
reduce the available validation data, increasing the risk of overfitting. 
Conversely, using a smaller proportion of training data may not allow 
the model to capture all relevant patterns. Thus, striking a balance be
tween training and validation data is essential to optimize model per
formance while ensuring robustness and generalization.

2.3. Downscaling of GRACE/GRACE-FO TWS data

20-year TWS data from GRACE and GRACE-FO have been used for 
monthly downscaling. In the first stage (Fig. 1b), TWS data enters LSTM 
in a time series (with 1-month temporal resolution), where learning is 

Fig. 1. A) LSTM cell featuring three gates: input, output, and forget gates. These gates play a pivotal role in storing information in a cell state, and b), LSTM ar
chitecture used for downscaling TWS changes, which is input into the LSTM at various time intervals. After being flattened, it proceeds to enter the fully con
nected layer.
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done in the temporal and spatial domain. After the flatten layer, which is 
to change the output dimension, they enter the fully connected layer 
that combine LSTM TWS results, and in the last stage, downscaled 
LSTM-TWS products are obtained. The first step shows the TWS calcu
lation. The second step is the scenarios used to learn LSTM and the third 
step is validation with river flow discharge and precipitation. First, the 
C20 coefficient is replaced by that of satellite laser ranging (SLR; Xie 
et al., 2022a,b), followed by TWS calculation to the degree and order of 
60. In the next steps, isostatic correction, and 300 km Gaussian filter 
(Tapley et al., 2019; to reduce stripe errors) are applied. Three training 
scenarios are selected based on empirical trials and previous studies 
approach, i.e., 60 %, 70 % and 85 % training data, and the remaining 
data used for validation (Fig. 2). The input of this model is the monthly 
TWS products of three center means: the Center for Space Research 
(CSR), the Jet Propulsion Laboratory (JPL), and the German Research 
Centre for Geosciences (GFZ) with a spatial resolution of 1◦

× 1◦ degree 
and the output of this model is the 10-day TWS products with a reso
lution of 0.5◦

× 0.5◦ . Fig. 2 summarizes the downscaling workflow.

3. The Lorestan province flood (Iran)

3.1. Flood area

Lorestan Province, located in western Iran, features diverse eleva
tions ranging from 100 to 3,000 m above mean sea level. Poldokhtar, a 
city in the southern part of the province, is one of its notable settlements. 
The areas of the case studies are in the west of Iran, specifically in 
Poldokhtar (Fig. 3 a and b with the associated rivers and topography), 
where the flood intensity was high during the flood period. The average 
annual precipitation is approximately 370 mm, with average tempera
tures reaching around 10 ◦C. The city’s elevation above sea level is 
approximately 713 m.

3.2. Precipitation event

The beginning of the solar new year in Lorestan province (Iran) was 
accompanied by the activities of two strong and extensive precipitation 
systems that affected almost the entire province and led to large and 

devastating floods. From March 24 to April 2, 2019, Lorestan Kashkan 
Basin received 290 mm of precipitation. In Lorestan, the continuation of 
precipitation intensified the destruction caused by the floods. Due to its 
extent and pervasiveness, the damage to economic infrastructure, nat
ural resources, and agriculture was enormous.

In March 2019, two waves of precipitation were experienced in Iran, 
leading to the formation of floods in the northern and western provinces. 
These precipitation waves occurred on (i) March 2nd to March 3rd, 
2019, and in just two days, Iran’s average precipitation increased by 72 
% from its long-term precipitation average, and (ii), on March 17th to 
26th, 2019. For the 10 days duration, the average precipitation of Iran 
increased by 50 mm.

These statistics mean that one-third of Iran’s annual precipitation 
occurred within just two weeks. The average precipitation from 
September 23rd, 2018 to April 8th, 2019 was 310 mm, which is un
precedented in the last 51 years, and shows an increase of 49 % 
compared to the previous years. The average precipitation increases in 
2019 compared to the average of 2018 in the Caspian Sea catchment 
area was 51 %, in the catchment area of the Oman Sea and the Persian 
Gulf was 56 %, and in the catchment area of Lake Urmia was 65 %. In the 
last 11 years, due to both natural factors and anthropogenic intervention 
(e.g., changing the natural balance by building dams and altering land 
use) in Iran, the average precipitation has never reached long-term 
average (approximately 230 mm/year), but the 2019 rains were much 
more than the long-term average.

The other precipitation wave in the Lorestan province was experi
enced from March 31st to April 2nd, 2019. Statistical analysis of the 
recorded precipitation results of this system in Khorramabad, Aleshtar, 
Noorabad, Kuhdasht and Poldokhtar meteorological stations shows 153 
mm of precipitation in the whole Kashkan basin, with the highest 
amount of 172 mm occurring in Noorabad station, while the lowest 
amount of 136 mm occurring in Khorramabad station. On April 1st, 
2019, the average precipitation reached 1058 mm. The annual amount 
of precipitation in the year 2018 was 275 mm and the average long-term 
precipitation in Lorestan was 228 mm. The flow of the Kashkan River 
reached 4,600 m3/s on April 1st, causing the river to overflow in the 
cities of Poldokhtar and Mamulan. On the day of the flood (April 1st, 
2019), the Khorramabad River flow increased to 700 m3, which was 
about 2 times the capacity of the river. With the flood discharge, the 
Karganeh River reached 280 m3/s, which has not been experienced for 
this small river during the last 20 years. The precipitations caused the 
Maruk Doroud Dam with a volume of 105 million m3 to overflow for the 
first time.

The continuation of the rains was much more important than their 
intensity, an issue that played the biggest role in the destructiveness 
caused by the Lorestan flood. Fig. 3c shows the Kashkan Riverbed and 
the flood zone of Poldokhtar from the Sentinel-1 satellite image on 
March 25, 2019. The eastern and southern parts of Poldokhtar, which 
share a border with the river were completely flooded. The flood zone 
expanded about five times more than the riverbed, and the main eastern 
road of Poldokhtar was completely blocked in the first few days of the 
flood.

In this study, six sources of data are used: GRACE, global and land 
data assimilation system (GLDAS), precipitation, Sentinel-1, Sentinel-2, 
and river flow, with details for each described in Table 1.

Based on the 10-day GLDAS temporal data, downscaling of TWS 
changes has been conducted to improve spatial and temporal resolution. 
Inputs to the LSTM include four dimensions: longitude, latitude, time, 
and TWS changes. The LSTM optimizes downscaling by incorporating 
information from both monthly and 10-day GLDAS data. The use of the 
GLDAS model alone often produces unrealistic results, and accuracy 
decreases over extended time periods due to limitations in its model 
assumptions. To address this, monthly GRACE and GRACE Follow-On 
observations have been utilized, ensuring that mass displacements and 
measurement accuracy are maintained. The LSTM model effectively 
integrates location, time, and TWS changes to achieve optimal 

Fig. 2. TWS downscaling workflow comprising three components: GRACE 
satellite data processing, LSTM, and validation, which is conducted using two 
ground sensors measuring precipitation data and river flow.
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downscaling results, bridging the gap between coarse GRACE/GRACE- 
FO data. This approach enables a more reliable representation of TWS 
changes both temporally and spatially.

4. Results of LSTM based on the Lorestan (Iran) example

4.1. Application of LSTM to the 2019 Lorestan flood

As mentioned earlier, three datasets utilized in this research consist 
of GRACE (2002–2017) and GRACE-FO (2018–2021) satellite data, 
along with ground measurements of river flow (2002–2020) and pre
cipitation data (3 months before and after the flood) from meteorolog
ical sensors, for verification purposes. Each data set contain information 
spanning periods before, during, and after the flood events indicated 
above.

Fig. 4 shows the annual TWS trends from the three centers (CSR, GFZ 
and JPL), and GLDAS trend. GLDAS TWS involves the hydrological 

model to increase the spatial resolution so that it is not just a mathe
matical and unrealistic downscaling (see e.g., Rodell et al., 2004). 
GRACE observations are from three centers with a spatial resolution of 1 
degree and GLDAS is 0.5 degree. TWS from the three centers are 
compatible with each other and TWS from GFZ in the northeast shows 
less decrease than CSR and JPL. Although GLDAS TWS has better spatial 
resolution than the three centers’ solutions, it is nonetheless compatible 
with them. The 223-month GRACE and GRACE-FO data, along with the 
daily GLDAS (from which the monthly average is calculated), are 
employed in LSTM learning. The GLDAS TWS model is an integration of 
various hydrological components, including soil moisture, snow water 
equivalent, surface water, groundwater, and atmospheric data (Rodell 
et al., 2004). Before using GLDAS TWS, 100 random points are selected 
in different locations, and its compatibility with GRACE and GRACE-FO 
TWS evaluated, which shows 85 % compatibility. Also, TWS output is 
validated with river flow data in the flood time range. On the other 
hand, due to the validation capability of deep learning, which does not 

Fig. 3. a) Provinces of iran, b) poldokhtar and stream flow station, rivers, and topography in the southwest of Iran, and c), the Kashkan River bed and the flood zone 
of Poldokhtar from the Sentinel-1 satellite image of March 25th, 2019 showing the eastern and southern parts of Poldokhtar, which share a border with the river, 
which was completely flooded.
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use part of the data in training, the reliability of the results increases.
In deep learning, the root mean square error (RMSE) is calculated 

using the validation data as a performance evaluation metric. A per
centage of data, for example, 15 %, is set aside for validation and is not 
used during training. After training, the learned model is tested on TWS 
validation points. TWS is predicted, and RMSE is calculated using the 
following formula (Willmott and Matsuura, 2005): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(xi − x̂i)

2

√

, (1) 

where xi represents the TWS values, x̂i represents the predicted TWS 
values, and n is the number of validation data.

To mitigate overfitting and improve generalization, L2 regulariza
tion is applied to the loss function, which penalizes large weights, 
reducing model complexity and preventing it from fitting noise in the 
data. Additionally, several data augmentation techniques are tested, 
including random noise injection, time-series shifting, and scaling, to 
artificially expand the training dataset and help the model learn more 
robust features. These techniques are chosen because they can simulate 
variability in real-world data and improve the model’s ability to make 
accurate predictions on new, previously unseen data.

After testing these methods, the L2 regularization, along with time- 
series shifting and noise injection, is found to significantly improve 
model generalization and reduced overfitting. These methods are 
selected as the optimal approach to enhance the performance of the 
LSTM model.

Three optimal scenarios are selected for downscaling TWS products 
employing LSTM: the first scenario uses 60 % of the data for training and 
40 % for testing, the second scenario uses 70 % of the data for training 
and 30 % for testing, and the third scenario uses 85 % of the data for 
training and 15 % for testing.

Fig. 4b) shows the output of TWS scenarios based on LSTM. The 
annual TWS trend in Lorestan is negative, and the southwestern and 
northwestern regions have a greater decrease in TWS than the central 
and southeastern regions. As training data increases (in the third sce
nario), the range of TWS decreases. The highest RMSE is seen in Scenario 
3, which has the most data used for training. The best-case scenario is 
given by the second scenario, which makes optimal use of the GRACE 
and GLDAS datasets.

Fig. 5 a) shows the JPL, CSR and GFZ time series for Poldokhtar after 
LSTM downscaling. Due to the high uncertainty, the gap between 
GRACE and GRACE-FO is not considered in the calculations. In general, 
the compatibility in the monthly solutions and seasonal signals from the 

three centers are evident. A drop in the TWS changes signal is observed 
in mid-2007 and mid-2008. The annual range of TWS change from 2002 
to mid-2007 is larger than from 2008 to 2014, and from then on, the 
annual range increases. After 2008, a drop in the TWS time series is 
evident, which is caused by water depletion (Fig. 5). It is also possible to 
calculate changes in groundwater storage with the help of GLDAS and 
GRACE/GRACE-FO (Sorkhabi et al., 2023). In the case of this study, the 
aim is to investigate the stepwise or gradual increase in TWS changes for 
specific locations due to abnormal precipitation during the time period, 
which is evident in the time series and spatial and temporal maps. At the 
end of 2018 and 2019, Iran’s precipitation has been above normal. 
Although this TWS jump is temporary and the value of TWS decreased 
after this event, it cannot compensate for the water depletions of several 
years. For a better analysis of water depletions, GWS changes and in
dexes like the standard precipitation index (SPI) can be analyzed 
together, and linear trends can help.

Changes in the annual amplitude of TWS changes affect the amount 
of precipitation in the area. Torrential rains occurred in late March and 
early April 2019, with a TWS changes leap in all three centers’ TWS 
products during this period, amounting to about 40 ± 2 cm. One of the 
reasons is the extent of precipitation during this period and the 
involvement of several provinces in Iran. The GRACE-FO satellite and 
LSTM has been able to clearly record this amount of leap (i.e., time series 
after 2018), which without employing LSTM is less i.e., 20 cm (see 
Fig. 5b). Furthermore, LSTM has been able to amplify the flood signal as 
shown in Fig. 5a.

One simple and statistical approach to detecting sudden increases in 
TWS changes is to use the mean and standard deviation as confidence 
intervals, where changes close to the confidence interval can be an in
dicator of flooding.

In the next step, the spatial TWS changes based on LSTM are further 
investigated. Fig. 6a shows the TWS changes for the period January to 
August 2019 after downscaling. In January, TWS changes are negative 
in all parts of Iran and the northern and western regions have further 
declines. In February, positive TWS changes are recorded in the western 
regions of Iran by GRACE-FO observations. This is an anomaly that is 
different from the rest of Iran. In March, the amount of TWS observed 
anomaly is tripled compared to February, and its extent covers almost 
the entire west of Iran. In April, the anomaly intensifies, and its 
magnitude is 1.5 times wider, with torrential rains measured in these 
areas on April 25th and 26th 2019. In the following months, it has 
gradually decreased, so that by August, the total TWS changes over Iran 
was negative. An increase in TWS changes is predictable when precipi
tation increases. The important point is the TWS positive anomaly in 
February before the flood in Fig. 6a, which can be a strong indicator of 
the impending floods. In the estimated TWS changes in Fig. 6a where 
LSTM is employed, the onset of floods from February, the period of 
progression in March, and in April, decrease in the following months and 
eventual cessation are observed. In Fig. 6b without employing LSTM 
(mean of the three centers products) months before the flood, an in
crease in TWS is not observed except in April (the month of the flood) 
and May (the month after the flood). The comparison of LSTM and 
original mode shows the superiority of LSTM-derived TWS changes, 
which with LSTM’s long-term and short-term memory increases spatial 
resolution and reveals the pre-flood signals. Fig. 6a indicates a positive 
anomaly on the western side way before the April flood began. This TWS 
anomaly is an indicator/predictor of the April flood. In contrast, this is 
not seen in Fig. 6b where LSTM is not employed. In this study, multi- 
dimensional downscaling has been conducted using LSTM, where its 
advantage lies in its capacity for long- and short-term memory in deep 
learning, setting it apart from other ML methods. This is crucial for 
incorporating ML into downscaling over time.

Fig. 7a shows the time series of the TWS changes and river flow from 
2002 to April 1st, 2019 (flood day). The behavior of the TWS changes is 
highly compatible with the river flow. Only the data of 3 months (mean 
monthly values) before and after the precipitation are available, and the 

Table 1 
Data used in this study.

Data Source Description Provider URL/ 
Source

GRACE (CSR, 
JPL, GFZ)

Gravity Recovery and 
Climate Experiment; 
gravity data

NASA − National 
Aeronautics and Space 
Administration

Jpl.nasa. 
gov

GLDAS Global Land Data 
Assimilation System 
Noah Model (Version 
2.1)

NASA nasa.gov

Precipitation 
Data

Precipitation data with 
regional detail

IRMO − Iran 
Meteorological 
Organization

irmo.com

Sentinel-1 Synthetic Aperture 
Radar (SAR) imagery

ESA − European Space 
Agency, Copernicus 
Program

dataspace 
.cope 
rnicus.eu

Sentinel-2 Multispectral imagery ESA dataspace 
.cope 
rnicus.eu

River Flow River flow data; 
regional hydrological 
records

WRM − Water 
Resources 
Management, Iran

wrm.ir
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correlation between TWS changes and the river discharge reaches its 
maximum on the day of the flood. This shows the LSTM-derived TWS 
product’s capability for flood detection in the area within a month’s 
time lag (Fig. 6). Fig. 7b shows regression between TWS changes and 
river discharge with 95 % and 99 % confidence intervals for statistical 
interpretations. TWS changes and Kashkan River flow have a correlation 
of 0.72 with 99 % confidence level. On flood days, the amount of cor
relation between the TWS changes and river flow is so high that it sta
tistically becomes an outlier in the 99 % confidence interval.

For validation, the precipitation data of 7 meteorological stations in 
Lorestan province (Fig. 8a) have been used, and their precipitation 
correlation with TWS changes calculated. The names of the meteoro
logical stations are Khorramabad (MS1), Rumeshkan (MS2), Nurabad 
(MS3), Dureh (MS4), Borujerd (MS5), Poldokhtar (MS6), and Kuhdasht 
(MS7). The TWS of these areas are also numbered, respectively.

Precipitation data from 3 months before and after the flood have 
been employed, considering GRACE’s monthly temporal resolution. The 
average monthly precipitation has been utilized in the analysis. Fig. 7c 
and d show correlation results between precipitation and TWS changes 

before and after flooding, respectively. The average correlations before 
and after flood flooding are 0.40 and 0.71, respectively. This approxi
mate doubling of correlation between precipitation and TWS changes 
after the flood shows that the changes in both variables are synchro
nized. The reason for the negative correlation before the flood is due to 
the spatial difference between TWS and the precipitation of meteoro
logical station. However, after the flood event, when the landscape is 
saturated and water storage mechanisms shift, the correlation becomes 
positive, indicating that these areas are directly influenced by increased 
surface water and replenished groundwater. Additionally, precipitation 
contributes to TWS through both direct accumulation and runoff. Before 
the flood, other factors such as soil moisture and groundwater storage 
play a more dominant role in TWS variability. In contrast, after the 
flood, the immediate impact of surface water dominates, leading to a 
stronger positive correlation between precipitation and TWS.

The GRACE data suffers from spectral leakage and low spatial reso
lution, which can result in inaccuracies when capturing fine-scale fea
tures. Additionally, the data is noisy, especially at higher degrees and 
orders (above 60), leading to signal attenuation at the maxima (peaks) 

Fig. 4. A) TWS annual trends (cm/yr) of three centers (CSR, GFZ and JPL) and GLDAS, where darker areas show a further decrease, and b), output of TWS (cm) 
scenarios based on LSTM, which is evident in the improvement in spatial resolution and details.
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and minima. This issue requires localization methods and reconstruction 
to enhance the signal. LSTM has been utilized to address these chal
lenges by improving both spatial and temporal resolution, as well as 
amplifying the signal to provide a clearer representation of the under
lying data. To assess the accuracy of the LSTM output, independent data 
sources, such as river flow measurements (Fig. 7a) and weather station 
precipitation data, were used for comparison. The LSTM model showed 
an improvement in correlation with both the river flow and weather 
station data, with a 30 % increase compared to the non-LSTM model. 
This improvement suggests that the LSTM not only localized the signal 
more effectively but also enhanced the temporal resolution, which is 
evident in the more pronounced peak compared to the original GRACE 
data. The LSTM model’s higher temporal resolution allows it to capture 
finer variations in the data, leading to sharper peaks that more accu
rately represent localized events. While the monthly averaged values of 
the LSTM align with GRACE, the enhanced peak in the LSTM output 
reflects its capability to better localize the signal both in time and space.

The Fig. 7c and d indicates that the correlation increased after the 
flood.

Fig. 8a shows the Sentinel-1 radar image of southwestern Iran on 
2019–03-14 before the flood. Fig. 8b presents the Sentinel-1 image on 
2019–03-26 after the flood, with black areas indicating precipitation 
covering an area of more than 100,000 km2. The precipitation, occur
ring as snow in high altitudes and rain in low altitudes, led to floods. The 
expanded size increased the TWS changes in the region, discernible by 
the GRACE satellite. Fig. 8c shows a Sentinel-2 image the city of Pol
dakhtar before the flood on 2019–03-26, while Fig. 8d reveals the 
aftermath of the flood on 2019–04-16. Sentinel-2 true-color imagery is 
created using band 4 (red), band 3 (green), and band 2 (blue). After a 
flood, sediment and turbidity are often visible, with muddy water 
observed in affected areas. Fig. 8e shows the precipitation on 2019–04- 
01, with Poldakhtar city experiencing the highest precipitation at 142 
mm, while the annual average precipitation in the stations of Lorestan 
province is 100 mm, indicating a significant volume of precipitation. 
Stations close to the flood location recorded higher precipitation. The 
results are consistent with Mehrabi (2021) who monitored the Lorestan 

flood using Sentinel-1 products.

4.2. Discussion: Evaluation of the LSTM performance

To evaluate the performance of LSTM in three scenarios, both ac
curacy and number of iterations are investigated up to 250, as this 
threshold ensures a balance between computational efficiency and 
model convergence while preventing overfitting or underfitting. In this 
study, iteration refers to the number of sub-passes of the training data in 
each epoch (period), where the model parameters are updated. An 
epoch is defined as a full pass through the entire dataset. The number of 
iterations per epoch is determined by the batch size and the total number 
of training samples. The training process continues for a set number of 
iterations, or until the accuracy changes remain constant over the last 10 
iterations, signaling that the model has reached the convergence stage. 
Fig. 9 illustrates the LSTM performance, showing that all three scenarios 
exhibit an increase in accuracy as the number of iterations increases. 
Scenario 2 achieves the highest accuracy, with a value of 97 %, while 
Scenario 3 exhibits the lowest accuracy at 71 %. Scenario 2 demon
strates the best fit, while Scenario 3 shows the worst fit. In Scenario 3, 
the accuracy decreases relative to the final iteration, indicating the 
presence of overfitting, after which the training process was terminated. 
Increased data and focus on extracting features from noisy data could be 
the cause (Song et al., 2019). The TWS products of LSTM-derived GRACE 
shows a mean significant correlation above 0.70 at the 95 % confidence 
level with both river discharge and precipitation in Lorestan flood while 
in original mode, after the flood, the correlation between precipitation 
and TWS changes reached 0.4. In time series, LSTM offers a better 
forecast by looking back and using sequences of data, and can learn TWS 
changes’ behavior both long-term and short-term that can be useful for 
downscaling and forecasting, which is confirmed through the Lorestan 
flood case study. The disadvantages of deep learning include the need 
for large datasets to train the models effectively, which can be resource- 
intensive. The larger the training data set, the more accurate it can be. In 
small datasets, deep learning network optimization is required, and 
optimal prediction cannot be expected. Additionally, deep learning 

Fig. 5. JPL, CSR and GFZ time series a) after LSTM downscaling with maximum and minimum bands in red, and b), without employing LSTM. It is evident from 
figure that TWS change leap is more than 20 cm.
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models often suffer from a lack of interpretability, making it difficult to 
understand how they reach their predictions or decisions.

GLDAS alone does not achieve high accuracy in capturing extreme 
hydrological events like floods, as demonstrated in this case study. 
While GLDAS provides reliable general trends, its reliance on modeled 
data often leads to the loss of localized signals, such as those associated 
with flooding (Rodell et al., 2004). This research aims to address this 
limitation by integrating GRACE/GRACE-FO observations with GLDAS 
to improve the accuracy, temporal resolution, and spatial resolution of 
TWS changes.

Several state-of-the-art downscaling approaches were reviewed, 
including statistical methods like partial least squares (Vishwakarma 
et al., 2021) and machine learning techniques such as Random Forest 
and Support Vector Machines (Seyoum et al., 2019; Zhong et al., 2021). 
This research demonstrates that the LSTM-based downscaling approach 

achieves a significantly lower RMSE of ± 15 mm, outperforming other 
state-of-the-art methods. In comparison, the statistical approach by 
Vishwakarma et al. (2021) resulted in an RMSE of approximately ± 30 
mm, while the machine learning method by Seyoum et al. (2019) had a 
much higher RMSE of ± 306 mm. These findings highlight the superior 
accuracy and efficiency of the LSTM model in reducing errors and 
improving correlation with independent sensor data. The results show 
that the LSTM approach consistently outperforms other methods in 
terms of reducing RMSE and improving the correlation with indepen
dent sensors.

One of the parameters that plays a crucial role in causing floods is soil 
moisture and ground water storage, which is a component of TWS. In 
this specific case study, there was no significant background of 
groundwater flooding, which is why groundwater storage was not 
thoroughly analyzed.

Fig. 6. A) TWS changes after LSTM downscaling of GRACE-FO’s TWS from January to August 2019, and b), TWS changes without employing LSTM (mean of the 
three centers’ products), where the brown areas indicate decrease while the blue areas show increase.
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Future studies could focus on integrating additional datasets, such as 
soil moisture data from the soil moisture and ocean salinity (SMOS) 
satellite, alongside GRACE and GRACE-FO data, to further enhance 
flood prediction accuracy. By analyzing soil moisture and groundwater 
storage changes leading up to and during flood events, it will be possible 
to better understand the saturation levels of soil and groundwater, 
which can limit their ability to absorb further precipitation, potentially 
triggering floods. Additionally, hybrid modeling approaches that 
combine multiple datasets, such as TWS, soil moisture, and groundwater 
data, could be explored to reduce uncertainties in TWS estimates. These 
models could more accurately capture the complex interactions within 
the hydrological cycle, especially in the context of climate change, 
which is expected to intensify the frequency and severity of both 

droughts and floods in the future (Yin et al., 2023a; Yin et al., 2023b; Yin 
et al., 2023c). Leveraging GRACE’s long-term observational data, 
coupled with other relevant datasets, could further improve flood pre
diction models and reduce uncertainties in TWS estimates.

In future research, hybrid machine learning approaches, such as 
combining convolutional neural networks (CNNs) with LSTM, could be 
explored to enhance flood prediction capabilities. CNNs are effective at 
capturing spatial patterns, while LSTMs excel at modeling temporal 
dependencies. By integrating these two models, a hybrid approach could 
leverage both spatial and temporal features to more accurately capture 
flood events, providing a more comprehensive solution for flood moni
toring and prediction. This approach holds the potential to improve 
predictive accuracy by utilizing the strengths of both methods.

Fig. 7. A) TWS changes and Kashkan river flow time series, b) regression of TWS changes and river flow with confidence intervals (i.e., a correlation of 0.72 at 99% 
confidence level), c) precipitation correlation of 7 meteorological stations and TWS changes before the occurrence of the flood (i.e., an average correlation of 0.4 at 
99% confidence level), and d), after the occurrence of the flood (i.e., an average correlation of 0.71 at 99% confidence level).
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Fig. 8. (a) Sentinel-1 radar image of southwestern Iran on 2019–03-14 before the flood. (b) Sentinel-1 radar image on 2019–03-26 after the flood, with black areas 
indicating surface water and snow cover due to flooding and heavy precipitation. (c) Sentinel-2 true-color image of Poldokhtar on 2019–03-26 before the flood. (d) 
Sentinel-2 true-color image on 2019–04-16 after the flood, showing sediment and turbidity in flooded areas. (e) Precipitation on 2019–04-01, indicating Poldokhtar 
received 142 mm of rainfall, exceeding the annual average.
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Fig. 9. LSTM performance a) scenario 1, b) scenario 2, and c), scenario 3. The accuracy of LSTM in each scenario increases with the increase in iterations, however 
the second scenario is seen to be the most accurate.
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5. Conclusion

This study evaluated the capability of LSTM to downscale TWS 
changes. With its memory capability, LSTM can capture TWS changes 
based on its history. This allows for a better and more accurate under
standing of the flood process. The proposed method can achieve 
enhanced spatial and temporal resolution by integrating observations 
with other sensors.

Based on the Lorestian flood case study, changes in the annual 
amplitude of TWS after downscaling are affected by the amount of 
precipitation. In February 2019, positive TWS is measured in the west
ern regions of Iran. This is an anomaly that is significantly different from 
the rest of Iran. In April, this anomaly intensifies and its value increases 
1.5 times. In March, the amount of TWS tripled compared to February, 
and its extent covers almost the entire west of Iran. Torrential rains 
occurred in late March and early April 2019, with a TWS leap of about 
40 ± 2 cm. The TWS of GRACE-FO and LSTM has a mean significant 
correlation above 0.70 at the 95 % confidence level with river discharge 
and precipitation. The GRACE-FO and LSTM-derived GRACE have been 
able to clearly detect the amount of TWS leap in the month before the 
flood so that it was statistically identified as outlier. But one of its 
strongest signals was revealed in the western region of Iran in April and 
March 2019. A significant increase in TWS a few months before the 
flood, it indicated the occurrence of flood in the region. LSTM was able 
to model the spatial and temporal behavior of TWS with 97 % accuracy.

Subsequent studies can be useful in identifying TWS behavioral 
patterns to predict floods. The complex formation of the flood phe
nomenon makes it difficult to predict strongly. TWS downscaling can be 
used to predict floods in two aspects. In the first aspect, the incremental 
changes of TWS over several months, such as western Iran and the 
occurrence of floods, can be examined. In the second aspect, by exam
ining the multi-year average of TWS and its sudden increase, the prog
nosis can be examined. What is important is the role of TWS in flood 
prediction and its relationship, showing the roadmap, and tools such as 
deep learning can use TWS LSTM.
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