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Hydration-induced stiffness enabling robust
thermal cycling of high temperature fuel
cells cathode

Hongxin Yang1, Yuan Zhang2,3 , Zhipeng Liu1, Chunfang Hu1, Junbiao Li1,
Hailong Liao1, Minhua Shao 2,4, Meng Ni 5, Bin Chen 1 ,
Zongping Shao 6 & Heping Xie 1

Thermo-mechanics of cathode is closely related to the durability of high-
temperature solid oxide fuel cells (SOFCs), with two main mechanical failures
during thermal cycling: interface delamination and bulk cracking of cathode.
Bulk cracking, caused by insufficient fracture strength/stiffness is a big con-
cern but often overlooked. Here, we introduce chemical hydration to offset
the thermal expansion, enhancing the cathodic mechanical stiffness and
fracture strength, thus promoting the thermo-mechanical durability of cath-
ode in proton ceramic fuel cells (PCFCs). Such chemical-induced expansion
offset is achieved by strengthening intergranular bonding inside the bulk
cathode after the hydration, preventing granule detachment during thermal
shrinkage. As a demonstration, the stiffness-enhanced air electrode
(BaCo0.7Ce0.15Y0.15O3, noted as s-BCC-Y) exhibits 86% enhancement of fracture
strength, thus thermal cycling stability with almost no degradation after 35
harsh thermal cycles between 600 and 300 °C, surpassing pristine
BaCo0.7Ce0.3O3 and many cobalt-free PCFC cathodes. Benefitted from the
improved stiffness of cathode, full cell with the s-BCC-Y electrode demon-
strates enhanced power output. This work highlights the importance of bulk
cathode thermo-mechanics in developing robust SOFCs for high temperature
energy applications.

Solid oxide fuel cells (SOFCs) can directly convert the chemical energy
of fuels into electrical energy. Their high energy conversion efficiency
and environmental friendliness alignwell with current trends in energy
markets for higher sustainability. At high operating temperatures (i.e.,

above 600 °C), their overall efficiency could exceed 80%. Unfortu-
nately, the high-temperature operation brings challenges to the
industrialization of SOFCs, including multiple degradation issues at
levels and scales from particle to system, especially during thermal
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cycling1,2. In particular, the performance degradation of air electrodes
(also called cathodes) is largely attributed to mechanical failures
including interface delamination and bulk cracking3. Early studies have
been aimed at solving the interface delamination issue, through the
reduction of the thermal expansion coefficient (TEC) of cathodes to
match with the rigid electrolyte4. For example, developing low Co or
Co-free cathode5, compositing with the electrolyte powder6–10, or
negative thermal expansive addictive3,11 were all proven to be effective
(description in details in SI-1). However, merely reducing the TEC may
not fulfill all the thermal-mechanical requirements of a robust cathode
since the bulk crack issue of the cathode remains.

Principally, the porous cathode is the most vulnerable layer to
mechanical cracks in the membrane-electrode assembly (MEA) of
SOFC due to its low fracture strength, originating from its high grain
boundary embrittlement. In anode-supported SOFC, the cathode layer
is normally prepared by co-firing with anode substrate at
~900–1200 °C, lower than the sintering temperature of the dense
electrolyte layer alone (>1300 °C). The contact bonding of cathode
grains is therefore substantially lower in strength than that of the
electrolyte layer or the anode later. For example, the classic fracture
strength of 8YSZ12 and BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb) is respec-
tively 145 and 84.43MPa (measured in this work), much higher than
that of bench-marking cathodes, i.e., 34MPa for BSCF13 and 40MPa for
LSCF14. Therefore, during both cathode layer fabrication (i.e., cooling
process after the firing) and operation (i.e., thermal cycling between
room temperature and working temperature), the bulk cracks are
more likely to occur in cathode layer than other layers, when the cell is
subjected to internal thermal stress and external mechanical loading.
Particularly in practical operation of large-size SOFC in stacks, large
compression load is needed to ensure good current collecting, which
could cause cracks in cathode due to the press-in of interconnectors15.
To solve the bulk crack issue, the stiffness of cathode (measuredby the
modulus and hardness) and mechanical strength that are jointly
determined by the grain contacting strength and mechanical expan-
sion behavior, need to be improved16,17. But unfortunately, this has
been long-time overlooked.

Here, we took the state-of-art triple conducting BaCo0.7Ce0.3O3

(BCC)18,19 as a parent perovskite material for the development of
cathode, which was selected because of it high oxygen reduction
reaction (ORR) activity, but it also unfavorably high TEC and low bulk
stiffness and fracture strength (~28MPa). We further proposed a
chemical-induced expansion offset strategy to facilely improving the
stiffness and anti-crack capability of the cathode by doping Y at the B
site of pristine ABO3 structure. Characterizations indicate that the
chemical-induced expansion offset originates from the Y-doping
enhanced hydration of the oxide lattice, thus strengthening the
intergranular bonding inside the bulk cathode by counteracting the
detaching of cathode granules during the thermal shrinkage (from
calcination temperature to room temperature). As a result, the
stiffness-improved BaCo0.7Ce0.15Y0.15O3 (s-BCC-Y) demonstrated bet-
ter material mechanical and electrochemical performance.

Results
Hydration-induced chemical expansion concept
As known, the cathode experiences significant thermal stress due to
the mismatch of the TEC with the electrolyte materials, especially
during temperature cycling. This thermal stress leads to interface
delamination and cathode fracture. Numerical studies (SI-1) have
focused on optimizing interface delamination from the perspective of
TEC, while the issue of cathode fracture has been largely neglected for
a long time. Figure 1a illustrates that at the calcination temperature,
the cathode could be free of thermal stress with all granules well
connected with neighbors. During cooling, the thermal shrinkage
would cause intergranular faults, deteriorating the stiffness and thus
causing cathode fracture. Supposing additional chemical expansion

during this cooling process, the faults would be alleviated and the
stiffness can be restored—denoted as the concept of “hydration-
induced chemical expansion offset”.

To practice this concept, we used Y doping to create the desired
chemical induced expansion and study its effect on the stiffness of
traditional cobalt-containing perovskite since it was reported
that the substitution of trivalent Y3+ in the B site of perovskite gen-
erally introduced significant chemical expansion (i.e., by about
73.7% from 0.019 to 0.033 expansion in BaZr0.95Y0.05O2.975 and
BaZr0.8Y0.2O2.9)

20. Moreover, possibly increasing oxygen vacancy,
which means that oxygen ions have more pathways for transport,
which facilitates the migration of oxygen ions and the reduction
reaction, thereby enhancing the catalytic activity of the SOFC
cathode21–23. The BaCoxCeyO3

18,19 was selected as the parent per-
ovskite as it has promising ORR/(oxygen evolution reaction) OER
activity due to its high triple-conducing properties and stability in
water-containing atmosphere, while its TEC is still too high to
maintain good thermo-mechanical robustness. As schemed in Fig. 1b
at the granule/lattice level, Y3+ doped BCC (s-BCC-Y) perovskite is
expected to generate more oxygen vacancies for enhanced hydra-
tion reactions, which would expand the lattice during cooling since
the hydration is thermodynamically exothermic20,24. This lattice
expansion is induced chemically by Y doping and could counteract
the generation of intergranular faults.

To verify this, we first prepared s-BCC-Y (BaCo0.7Ce0.15Y0.15O3)
and BCC by a facile sol-gel method by calcination at 1000 °C in air.
X-ray diffraction (XRD) patterns of the parent BCC and as-obtained
s-BCC-Y were observed at room temperature, as shown in Fig. 1c, d.
As expected, the s-BCC-Y material was self-assembled into two crys-
talline phases, a major cubic perovskite phase (89.7%, Pm-3m,
BaCo0.74Ce0.094Y0.166O3) and a minor rhombohedral phase (10.3%, R-
3c, BaCo0.11Ce0.86Y0.03O3) based on the Rietveld refinement (details
shown in SI-2). In addition, lattice spacings were measured from this
selected region, BaCoO3 (102) and BaCeO3 (110) in BCC, Pm-3m (100)
and R-3c (110) in s-BCC-Y were clearly observed, in good accordance
with the XRD refinement results, as shown in Fig. 1e, f. These refine-
ment results correspond well with the interplanar spacings calculated
fromSelected area electrondiffraction (SAED)pattern, and the Energy-
dispersive X-ray (EDX) analysis also confirmed the presence of Co-rich
and Ce-rich phases (shown in SI-3). To better present how Y affected
these two phases, we conducted DFT calculations and performed
iterative self-consistent cycles for structural optimization (mainly
focusing on bond strength and angles). All structures were fully
relaxeduntil themaximum force on each atomwas less than0.01 eV/Å,
and the energy convergence criterionwas set to 10–8 eV (as shown inSI-
4). More importantly, it can be observed in the high resolution TEM
images that the introduction of Y elements assuredly reduced the
intergranular fault regions between grains, resulting in a thinner
intergranular amorphous phase at grain boundaries, which was
reported to be not only beneficial for both proton conduction and
phase stability against decomposition at the same time25, but also for
enhancing the material’s stiffness26,27.

Based on the results above, we can confirm the successful sub-
stitution of Y in the positions of Co and Ce in the B-site of BCC. Due to
the larger ion radius of Y3+ than Ce4+ (0.9 Å vs. 0.87Å)28, doping Y into
the lattice of BCC at the synthesis temperature would create lattice
expansion and more lattice oxygen vacancies, if then cooled down to
room temperature, the created lattice oxygen vacancy could bring in
more hydration, forming proton defects and therefore realizing the
mitigation of thermal shrinking due to refill of oxygen vacancies by
hydration as already widely verified in proton conducting
perovskite24,29,30. To further validate the enhanced hydration capacity
introduced by Y doping in BCC, we compared the weight changes of
BCC and s-BCC-Y from 30 to 1000 °C in dry air, as shown in the TG and
DTG analyses in Fig. 1g. Beyond the typical water loss in the
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100–200 °C range, commonly observed in porousmaterials, both BCC
and s-BCC-Y exhibit notable mass losses from 400 to 1000 °C, parti-
cularly around 450 °C and 750 °C. This behavior aligns with that of
many cathode materials31,32. Extensive studies33–35 have attributed this
phenomenon primarily to the loss of lattice oxygen in perovskite
cathodes, which is an indication of hydration. Therefore, the observed
enhanced weight loss at 450 °C could be caused by the enhanced
hydration in Y doped s-BCC-Y. Temperature-programmed desorption
(TPD) tests were also conducted in water and oxygen environments to
confirm the TG results. The results shown in Fig. 1h (H2O-TPD) and SI-5
(O2-TPD), indicate that themass loss in BCC in TG ismainly due to loss
of lattice oxygen, while s-BCC-Y’ mass loss not only contributes to
lattice oxygen but a significant amount of water. This observation
again highlights the superior hydration capability of s-BCC-Y com-
pared to BCC.

Reduction of TEC and interface optimization
The hydration-induced expansion is expected to mitigate the
dilatometric response, as evidenced by the experimental curves
of bar-shaped samples in ambient air with a slight amount of
moisture. As shown in Fig. 2a. Y doping reduced the TEC of BCC
by 34.1% (BCC: 25.89 × 10-6K-1, s-BCC-Y: 17.06 × 10-6K-1, in the range
of 300 to 800 °C). The calculation formula for TEC and the spe-
cific experimental test data are depicted in SI-6, and the atomic
coordinates of the optimized computational models were pro-
vided in our Supplementary Data 1. The ab initio Car-Pareinello
molecular dynamics (AIMD) in the framework of the density
functional theory (DFT)36 was further used to validate the TEC
mitigation, as marked by dotted values in Fig. 2a, where the main
Co-rich phase (BaCo0.74Ce0.094Y0.166O3) of s-BCC-Y composite
was simplified to BaCo0.7Y0.15O3 for a reasonable DFT calculation
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molecules on grain intercontact boundary. b Y-doping impact on hydration
expansion, vacancies, and crystal structure. Co, Ce, Y, and O, are blue, green,
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refinement results. e, f represent TEMobservations of lattice spacingmeasurement
and interface between different phases within BCC and s-BCC-Y particles, respec-
tively. g TG and DTG analysis of hydrated BCC and s-BCC-Y from RT to 1000 °C.
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were provided as a Source Data file.
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time cost. The simulation expansion behavior of lattice after Y
doping shows smaller changes in the lattice constant upon tem-
perature incase (see Table S6). This reduced variation can be
attributed to the influence of Y on the outer electrons of Co
atoms and the strengthening of the Co-O bond energy37,38. Inter-
estingly, the simulated TECs are slightly smaller than experi-
mental values, especially for s-BCC-Y below 600 °C. Considering
the simulation process of TECs by DFT calculation does not
account for the hydration-induced chemical expansion, we attri-
bute this discrepancy to the chemical expansion that offsets the
thermal shrinkage when lowering the temperature. To further
explain the reduction of TEC, the partial density of states (PDOS)
of cubic perovskite BaCoO3 and BaCo0.7Y0.15O3 as model systems
were calculated, which were commonly used to analyze changes
in cathode electrochemical performance39, as shown in Fig. 2b. Co
ions show a considerable density of states around the Fermi level,
indicating Co4+ can easily transform into Co3+ 40. Specifically, a
distinct resonance peak of Co and O elements was observed
above the Fermi level, which means electron clouds of Co and O
further overlap and suggests that the Co-O equilibrium intera-
tomic distance (the bond length)41 turns to be shorter. As is
commonly recognized, a decrease in bond length is accompanied
by an increase in bond energy42–44. The observed increase of Co-O
bond energy after the Y doping indicates an improved resistance
to thermal lattice expansion, thereby reducing the overall TEC.
This trend also conforms with the calculation data obtained from
DFT (SI-6, Table S6). In addition, we also validated these PDOS
results by XPS characterizations. The fitted XPS plots of Co 2p3/2
in the BCC and s-BCC-Y are shown in Fig. 2c. In BCC, the Co3+ and

Co4+ are 46.66% and 53.34%, while they are 67.13% and 32.87% for
s-BCC-Y, respectively. This not only confirms the analysis results
from DFT, which indicates Co4+ can more easily transform into
Co3+ but also indicates that the introduction of Y lowers the
overall valence state of BCC. It is conducive to the formation of
oxygen vacancies to enhance the ORR activity45–48. The Ce-rich
phase was further characterized using PDOS from DFT calcula-
tions and XPS, as shown in SI-7. The PDOS results indicate that
Ce’s electronic states cross the Fermi level, suggesting enhanced
conductivity, consistent with previous reports on the high con-
ductivity of yttrium-doped barium zirconate49. XPS analysis fur-
ther reveals a reduction in Ce’s chemical valence, which
correlates with the observed decrease in Co’s chemical valence.

Although the TEC of this cathode has been significantly
reduced, it still large like many other excellent cathode materials,
such as BSCF50 (19.95 × 10-6K-1, 50–1000 °C) and BCFZY51

(18.38 × 10-6K-1, 400–800 °C), when compared to the electrolyte
material (9–12 × 10-6K-1). In practical engineering, TEC is only one
of the important factors affecting interfacial delamination, and it
is influenced by many other factors such as the thickness, por-
osity, and hydration level of the cathode. To quantify the bene-
ficial effect of hydration-induced TEC mitigation, as well as the
specific interfacial optimization effect brought by this degree of
TEC reduction. Numerical simulations were performed to probe
the interface thermal stress at a typical operating temperature
(600 °C) using the Finite Element Method for a 2D-axisymmetrical
model of the porous cathode coated on a dense proton con-
ducting electrolyte (BZCYYb) based on reconstructed geometries
from cross sectional SEM images. The details of simulation
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parameters were shown in SI-8. The simulated von Mises stress at
the cathode-electrolyte interface revealed a clear decrease due to
the mitigation of TEC. This reduction is particularly pronounced
at the cathode edges, where thermal stress is concentrated, as
shown in Fig. 2d. The 34.1% reduction in TEC leads to a 49.8%
decrease in von Mises stress at the interface edges (from 4.94 to
2.48 GPa). These simulated results suggest that hydration-
induced TEC mitigation can significantly reduce the risk of
interfacial delamination between the cathode and electrolyte.

Hydration-enhanced bulk stiffness at a micro-scale
As already stated in the main, delamination is not the only cause for
mechanical failure of the cathode, and bulk cracking also plays a sig-
nificant role52,53. Particularly at high temperature, the cathode materi-
als are more susceptible to damage and cracking due to the thermal-
reduced stiffness54,55. Herewe compared the bulk stiffness and fracture
strength of the hydration-enhanced cathode after the Y doping. First,
according to the definition of stiffness, Young’smodulus is viewed as a
key parameter to characterize it16,17. Therefore, high-temperature
nanoindentation tests were conducted to measure the Young’s mod-
ulus and hardness of the cathode. A Berkovich indenter was used for
the nanoindentation test at a displacement control mode at varied
temperatures (Fig. 3a), and the load-displacement curves atmaximum
depth to 1500nm are shown in Fig. 3b. s-BCC-Y exhibited better
resistance to the indenter intrusion. Specifically, at 25 °C, s-BCC-Y
showed amaximum loadof 147 µN, while BCC only displayed 98 µN. As
the temperature rises to 600 °C, s-BCC-Y maintained a maximum load
of 80 µN compared to 35 µN for BCC. The most commonly used ana-
lysis method for obtaining hardness and modulus was developed by
Oliver and Pharr56,57. With their method, Young’s modulus and hard-
nesswere calculated, and the results were shown in Fig. 3c and the test

curveswerepresented in SI-9. As expected, similar to themost ceramic
perovskites, both Young’s modulus and hardness decreased with
increasing temperature58,59. As expected, s-BCC-Y always exhibited
superior values, which indicates enhanced stiffness at all temperatures
than BCC.

For a more detailed mechanical assessment, ultra-precision
pressure sensors and Cube corner probe were used in 100 nm inden-
tation, shown in Fig. 3d, e. Different from theBerkovichprobe, which is
often conducted to calculate Young’s modulus and hardness of bulk
samples60,61, this Cube corner probe with a smaller half angle and a
40nm tip curvature radius can be used to assess the stiffness of indi-
vidual grains without the interference of grain boundaries. In this
100 nm indentation test, s-BCC-Y achieved a maximum load of
360.6 µN, higher than BCC (280.1 µN), further indicating that the
Y-doping enhanced the stiffness of individual grain in a lattice-scale
condition.

The modulus of the Co-rich (BaCoO3) and Ce-rich (BaCeO3)
structures, as well as their Y-doped variants were also simulated
by DFT calculations. The modulus calculations were conducted
using VASP, with plane-wave basis sets and projector augmented-
wave (PAW) pseudopotentials. Structural optimizations were
performed until the maximum atomic force was reduced to less
than 0.01 eV/Å, and the energy convergence criterion was set to
10-8eV. Seven different strains were applied, ranging from −0.015
to 0.015 with an increment of 0.005. VASPKIT was utilized for
data extraction and post-processing of the calculated results. All
Voigt62, Reuss63, and Hill64 methods were used, and the compu-
tational results are presented in (SI-10). The Young’s modulus,
bulk modulus, and shear modulus of the Co-rich phase in
BCC and s-BCC-Y are shown in Fig. 3f, which indicates the mod-
ulus increases after the Y doping, consistent with the results of
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Fig. 3 | High-temperature nanoindentation test, stiffness analysis by experi-
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nanoindentation tests. The Pugh’s ratio (k = G/B) is often used
to evaluate the quasi-ductile/brittle nature of ceramics65,66.
When G/B is less than 0.571, it indicates a ductile property of
the ceramic67–69. Both BCC and s-BCC-Y met Pugh’s criterion, and
s-BCC-Y (k = 0.511) had a lower k than BCC (k = 0.565). This sug-
gests that s-BCC-Y has exhibited certain quasi-ductility char-
acteristics, making it resistant to fracture. It is also consistent
with the cathode fracture experiments we conducted next
in Fig. 4.

Hydration-improved fracture stiffness at a macro-scale
To verify the positive effect of bulk stiffness enhancement on
fracture strength, we examined the fracture strength of dense
BCC and s-BCC-Y pellets using a ball-on-ring fixture, a more reli-
able method for testing the strength of flat brittle specimens than
traditional 3-point bending test70, as depicted in Fig. 4a. The
specific calculations for strength were shown in the method
section (details in SI-11). Fracture strength from room tempera-
ture to 700 °C of both BCC and s-BCC-Y are illustrated in Fig. 4b
that the highest value of 52.1 MPa was achieved for s-BCC-Y at
room temperature, over 80% higher than that of pristine BCC
(28MPa). Interestingly, the enhancement in fracture strength was
more pronounced at lower temperatures, while it became negli-
gible at higher temperatures (>600 °C). We attribute this phe-
nomenon to chemical hydration, which occurs predominantly
below the hydration temperature turning point. As is well known,
perovskite-based cathode materials undergo hydration during the
cooling process24, which can optimize grain contact interfaces
and, in turn, increase material stiffness.

This trend coincides well with the discrepancy of TEC curves
below 600 °C in Fig. 2a, implying that the enhanced hydration indeed
altered the thermal mechanical behaviors, in terms of both TEC and
fracture strength. Accordingly in Fig. 4c, the load vs. displacement

curves of BCC and s-BCC-Y specimens till fracture were both further
enhanced if treated with a higher 10vol.%-H2O wetted air at 800 °C for
5 h with subsequent cooling. All these experimental findings indicate
that enhancedhydration resulted in the increase of fracture strength in
s-BCC-Y.

To further elucidate the universality of the strategy of hydration
induced for mechanical enhancement, we also compared the fracture
strength of the classic single cubic phase cathode Ba0.5Sr0.5Co0.8Fe0.2O3

(BSCF) and B-site 10% Y doped Ba0.5Sr0.5(Co0.8Fe0.2)0.9Y0.1O3 (noted as
BSCFY with XRD profile shown in SI-12), before and after the full
hydration (800 °C, 10 vol.%-H2O in air, 5 h), which were shown in Fig. 4d.
As it presented, Y-doping effectively enhanced the fracture strength of
BSCF, both before and after full hydration, whichmeans hydration is not
limited to the composite BCC system but also applies to single-phase
cubic perovskites. However, this improvement is less significant com-
pared to that observed in BCC. There might be two reasons for that.
First, the high fraction of Co and Fe in BSCF already results in high
fracture of oxygen vacancy that the further doping of Y does not show
significant improvement of hydration capacity, Second, the high redu-
cibility of Co3/4+ and Fe3/4+ ions (absent in valence-fixed Y3+) at high
temperature is the origin of its large TEC (>20× 10-6K-1), and thus large
thermal stress between grains. That implies the high fraction of Co/Fe in
BSCF than BCC could dominate the fracture strength, other than the
hydration capacity. Besides, we also doped the Yb element into BCC
(nominally BaCo0.7Ce0.15Yb0.15O3, noted as BCCYb with XRD profile
shown in SI-12), which is also a trivalent dopant, creating oxygen
vacancies for hydration, similar to the Y element. The BCCYb also
showed improved strength than BCC (see Fig. 4d), further confirming
that the enhanced hydration due to trivalent doping can enhance frac-
ture strength.

To get further direct evidence of the improved stiffness for anti-
crack formation, FIB-SEM was used to scrutinize the internal micro-
structures of BCC and s-BCC-Y by ion milling as depicted in Fig. 4e.
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After sintering at 1150 °C for 5 h, the samples were naturally cooled to
room temperature and then carefully transferred to the electron
microscope for observation. Therewas anobvious distinction between
BCC and s-BCC-Y. BCC displayed clear cracks along its phase bound-
aries and showed a tendency to propagate from their boundaries
towards the interior of the grains. However, the s-BCC-Y showcased
intimate intergranular contact, and almost no cracks were observed
between the grain boundaries. Besides, a rapid quenchingmethodwas
conducted to examine their crack resistance. Dense BCC and s-BCC-Y
samples were quenched from high temperature (1150 °C) to RT, by
direct taking the samples from furnace to the water (RT). which sub-
jects the samples to rapid shrinkage and induces possible thermal
cracks. As shown in the following surface (SI-13, Fig. S17), the cracks
formed in the BCC sample were much more severe than the Y-doped
samples, demonstrating the superior thermal shrinkage resistanceof s-
BCC-Y. This also correlates well with the interfacial observations at the
lattice scale by TEM (in Fig. 1e, f). This difference of microstructures is
solid evidence of themechanismof stiffness enhancement as depicted
in Fig. 1a due to the enlargement of the perovskite structure after Y-
doping, leading to grain expansion countering the thermal shrinkage
when cooled, which results in a closer contact between different
grains.

As a short summary of the above mechanical assessment, a
noticeable corelationship between enhancement in stiffness/
fracture strength and hydration successfully demonstrated the
effectiveness of facile Y-doping for developing mechanical robust
cathode of SOFCs.

Electrochemical evaluation of hydrated s-BCC-Y during thermal
cycling
The electrochemical activity and thermal-mechanical durability of s-
BCC-Y as an oxygen-reduction electrode were evaluated. First, elec-
trochemical impendence spectroscopy (EIS) measurements of BCC
and s-BCC-Y symmetrical cells with BZCYYb electrolyte were per-
formed under open-circuit conditions from 500 to 700 °C in ambient
air atmosphere. The Arrhenius plots and Nyquist plots of the area-
specific resistance (ASR, noted as Rp) of BCC and s-BCC-Y were
compared in SI-14, Fig. S18. s-BCC-Y demonstrated consistently lower
polarization resistance at all temperatures than BCC. For example,
the Rp of s-BCC-Y was only 0.23Ω cm2, 28.1% lower than that of BCC
(0.32Ω cm2). The DRT analysis (SI-14, Fig. S18) shows the differences
between BCC and s-BCC-Y are mainly observed at mid- and high-
frequencies, suggesting that s-BCC-Y has a better oxygen ion con-
ductivity and redox catalytic activity. The stability of the Rp of
symmetric cells at OCV was also tested. After 300h, the Rp of BCC
increased from 0.325Ω cm² to 0.71Ω cm², showing a degradation of
1.28mΩ cm²/h, while the decay of s-BCC-Y’s is only 0.58mΩ cm²/h
(SI-14, Fig. S19). More importantly, s-BCC-Y demonstrated a much
improved thermal cyclability of Rp, as shown in Fig. 5a. After 35
cycles (for ~120 h) of rapid temperature cycling between 300-600 °C,
the Rp value of the s-BCC-Y electrode only slightly increased from
0.23 to 0.33Ω cm2, while BCC increased from 0.34 to 0.59Ω cm2 by
almost 2 times (corresponding Nyquist plots and DRT shown in SI-14,
Fig. S20). DRT analysis reveals that the main difference between the
two occurs at low-frequency, indicating that slow processes, such as
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gas diffusion within the BCC cathode, begin to change, likely due to
interfacial delamination or electrode fracture. In contrast, s-BCC-Y
shows smaller changes at low frequencies. Besides, a long-term
stable cathode also needs to have good CO2 resistance

71, and s-BCC-Y
exhibited that better (see SI-15, Fig. S21). DRT results show significant
enlargement of peaks in the low-frequency region of s-BCC-Y and
BCC, which indicates that gas diffusion is suppressed, likely due to
cathode surface carbonization and the coverage of carbonates
impeding oxygen diffusion.

We examined the SEM morphology of BCC and s-BCC-Y before
and post-cycling (Fig. 5b). As anticipated, not only delamination but
also bulk crack (leads to the loss of partial cathode in the bulk) were
observed in the BCC sample post-cycling. As illustrated in the sche-
matic diagram (Fig. 5b), we attribute the extensive cathode loss
observed after long-term cycling to fractures caused by thermal stress
at the interface of a low-stiffness cathode. By contrast, the improved
stiffness and fracture strength enabled s-BCC-Y to retain its intact
porous framework without any delamination and bulk cracks, which is
key to superior durability. In addition, it should be mentioned that no
reactions were observed for both air electrodes and BZCYYb (SI-16,
Fig. S24), Further confirming that the cracking and delamination
observed at the interface were mainly caused by poor stiffness and
thermo-mechanical properties in this work, rather than chemical side
reactions.

To fully demonstrate the concept of chemically induced expan-
sion offset as a general method for thermal-mechanical enhancement,
we further tested s-BCC-Y as the cathode in both oxygen ion and
proton-conducting single cells (SOFC and PCFC), using H2 as the fuel.
In Fig. 5c, d, the s-BCC-Y cathode reaches 1220mWcm–2 at 800 °C,
using NiO-YSZ as anode and YSZ as electrolyte, greatly outperforming
the BCC cathode (only 603mWcm–2 at 800 °C). On the NiO-BZCYYb|
BZCYYb half-cell, s-BCC-Y also showed a better power density than
BCC (504mWcm–2 vs. 258mWcm–2 at 500 °C, This more significant
improvement of performance in PCFC than SOFC can be explained by
the more harsh thermal mechanical environment in PCFC than SOFC,
thatwas resulted by the lower TECof BZCYYb thanYSZ72,73.Meanwhile,
the long-term stability of single cells was also assessed. Both cells were
able to sustain a consistent power output over an extended duration.
In Fig. 5e, the cell output shows a voltage drop from 0.797 V to 0.758 V
after 380 hours, corresponding to a 0.103mV/h degradation. In Fig. 5f,
the voltage decreases from 0.753 V to 0.71 V, representing a 0.153mV/
h degradation. This strongly suggests that the s-BCC-Y composite
cathode, improved by stiffness enhancement, exhibits remarkable
performance in single fuel cells. This also indicates that the cathode,
with enhanced hydration demonstrates good durability in both SOFC
and PCFC configurations.

Finally, we further assessed the performance of s-BCC-Y on large-
scale PSOFC (NiO-BZCYYb|BZCYYb|s-BCC-Y) with an active cathode
area of 9.62 cm2, that is above 35 times higher than button cell testing
(~0.28 cm2) as compared in Fig. 5g. Considering cathode with a larger
area is more vulnerable to cracking and delamination failures caused
by the higher thermal stress in the multi-layered film due to geometry
effect and strong local joule heating effect, the high large single cell
performance of s-BCC-Y (a total power of 3.5W at 650 °C, corre-
sponding to a practical power density of ~0.36W/cm-2) again confirms
its good thermo-mechanical robustness.

Discussions
Thermo-mechanical performance of air electrodes, including interface
delamination and bulk crack are critical limiting factors for the
robustness of SOFCs during thermal cycling. Many efforts have been
made to solve the TEC mismatch problem between cathode and
electrolyte. However, the insufficient fracture strength of bulk air
electrodes, which dictates the bulk crack issues, has been overlooked
for long.

This study indicates thatmaterial engineering techniques, such as
acceptor-doping (with Y being one example, but not the only option),
can enhance the material’s hydration ability. This improved hydration,
along with the associated “chemical expansion”, significantly impacts
the material’s thermal expansion and stiffness under temperature
fluctuations, which are typical in high-temperature fuel cells. Although
the difference in TEC between s-BCC-Y and other materials like
BZCYYb or YSZ remains substantial, even small enhancement of
hydration ability can greatly improve themechanical properties of the
cathode material, especially its resistance to cracking. This improve-
ment in anti-cracking behavior is the main factor contributing to the
observed increase inmechanical robustness, taking slight degradation
and enhanced long-term stability during extended thermal
cycling tests.

This work highlights the critical role of cathode fracture in long-
term cycling stability and proposes a simple, feasible hydration
method to enhance the material’s fracture stiffness. We believe this
approach will not only improve the long-term stability of SOFCs but
also offer an economically viable strategy for developing high-dur-
ability, high-stability, and high-performance cathodes. Furthermore,
the scalability of this method is straightforward, with minimal impact
on manufacturing costs, making it a promising solution for large-scale
industrial applications.

Methods
Powder preparation
All perovskite materials in this paper, including BaCo0.7Ce0.3O3-delta,
BaCo0.7Ce0.15Y0.15O3-delta, BZCYYb, YSZ were prepared via a complexing
sol-gel method. For instance, when preparing BaCo0.7Ce0.15Y0.15O3-delta,
stoichiometric amounts of Ba(NO3)2-99.5%, Co(NO3)2·6H2O-99.9%,
Ce(NO3)3·6H2O-99.95% and Y(NO3)3·6H2O-99.99% according to the
nominal composition, were dissolved into water and heated at 180 °C
under stirring. Ethylenediaminetetraacetic acid (EDTA-99.99%) and citric
acid (CA-99.5%) were added to act as complexing agents at amolar ratio
of 1:1:2 for total metal ions, EDTA and CA. NH3·H2O was used to adjust
the PH value of water in the solution to around 7. A sol-gel precursorwas
obtained after the removal of water in the solution by evaporation,
which was pre-decomposed at 180 °C for 8 h to obtain the precursors.
The as-synthesized precursors were then calcined at 1000 °C for 5 h in
air to obtain the final product. The SEM is shown in SI-17. All materials
mentioned above were procured from Aladdin Scientific Corporation.

Fabrication of symmetric cells and single cells
Symmetrical cells with the configuration of cathode|BZCYYb|cathode
were fabricated for the electrochemical impedance spectroscopy (EIS)
test. First, the as-synthesized BZCYYb powders were drily pressed into
pellets and calcined at 1450 °C to obtain dense pellets, placed in a
normal environment for standby use (~25 °C, 60% relative humidity).
Next, the cathode suspension, consisting of the 1 g as-synthesized
cathode materials, 0.8ml glycerol, 2ml ethylene glycol, and 10ml
isopropyl alcohol, was prepared by ball milling for 40min. The sus-
pension was sprayed onto both sides of BZCYYb disks and calcined at
800 °C for 2 h in air. On both sides of the cathode, silver paste was
applied to create silver grids for the current collection, and silver wires
were used to connect the cell and the electrochemical workstation for
the needed test.

NiO+BZCYYb anode-supported single cells with thin-film elec-
trolytes were prepared by dry-pressing and high-temperature co-sin-
tering. Anode powders consisting of 6 g NiO, 4 g BZCYYb, 1 g starch,
and appropriate ethanol were prepared by ballmilling. Then,manually
mixed and left to dry at room temperature. First, 0.35 g anode powder
was pressed into a pellet with a pressure of 4MPa, and the 0.02 g
BZCYYb electrolyte was evenly spread on the anode surface and co-
pressed under a pressure of 8MPa. Then the bi-layer BZCYYb elec-
trolyte disk was calcined at 1450 °C for 5 h in air. Finally, the cathode
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suspension was sprayed onto the electrolyte surface with an effective
area of 0.27 cm-2 and calcined at 800 °C for 2 h. The final thickness of
the electrolyte layer is about 10μm (See SI-17 for details). Regarding
the large area single cell with a cathode area of 9.62 cm2, the anode is
prepared by casting processing, followed by spin-coating the electro-
lyte on the hot-pressed anode, co-sintering at 1450 °C toobtain the test
half-cell and the cathode is sprayed onto the electrolyte surface too.
The oxygen ion conducting SOFC with NiO-YSZ | YSZ half cells are
purchased from Ningbo SOFCMAN company, with a 400μm NiO-YSZ
anode, 15μm YSZ electrolyte, 3μm GDC barrier layer.

Material characterizations
The crystal structures of BCC and s-BCC-Y were carried out by Rigaku
Miniflex 600 X-ray diffractometer (XRD) with Cu source. The diffraction
patterns were collected in the 2-theta range between 10 and 80° with
intervals of 0.02° at a scanning rate of 2°min-1, Rietveld refinement was
performed using jade and X’Pert HighScore plus software. The mor-
phology of the cathode particles and fuel cell cross-section were
investigated by Thermo Scientific Scios 2 scanning electron microscopy
(SEM). A further micro-structure of s-BCC-Y was investigated using
transmission electron microscopy (TEM, FEI Talos F200x). energy-
dispersive X-ray spectroscopy (EDX) measurements were performed in
the same instrument. XPS measurement were conducted with a spec-
trometer (Thermo Scientific K-Alpha). About 100mg of cathode mate-
rials were pressed into a pellet on a sample holder. The sample was then
introduced into the analysis chamber when the pressure was below
2.0× 10-7mbar. The spot size was set to 400 µm, operating at 12 kV and a
filament current of 6mA. Full-spectrum scans employed pass energy of
150 eV with a 1 eV step size, while narrow-scan spectra used a pass
energy of 50eV with a 0.1 eV step size. The experimental data peak
fitting was performed using the software Avantage.

Electrochemical measurements
The I-V and I-P curves of cells were obtained using a Keithley
2460 source meter with a four-probe configuration. The anode of a
single cell was fed by H2 fuel with a flow rate of 80mlmin-1, while the
cathode was exposed to ambient air. The impedance of single and
symmetrical cells was investigated by the EIS measurement by the
Princeton electrochemical workstation (auto calibration) at open cir-
cuit voltage (OCV) conditions. The frequency of the EIS measurement
ranged from0.01 to 100,000Hz and the single amplitudewas 100mV.
During the testing process, the temperature was first raised to the
maximum operating condition temperature, and then gradually
decreased to conduct the I–V curve tests at subsequent temperatures.
Taking the cell performance test in Fig. 5g as anexample, after securing
the cell in the fixture, H2 fuel with a flow rate of 80mlmin-1 was
introduced to the anode side. The temperature was then increased
from room temperature to 650 °C at a rate of 10 °C/min, held for
10min, and the testing began. Subsequently, the temperature was
naturally decreased in intervals of 50 °C, with holding and testing
conducted at each operating temperature, until the testing concluded
at 450 °C.

Fracture strength testing
The fracture strength tests were conducted using a high-temperature
mechanic testing machine (OTF-1500X-S-CR, Hefei Kejing, China). The
fixture consists of a spherical punch and a circular sample holder with
an internal ring. The sample holder, is made of pressureless sintered
SiC, which is suitable for high-temperature testing, and is placed on a
high-precision pressure sensor for accurate measurements. Several
studies74,75 have used a verified formula method to calculate the frac-
ture strength (σ), the test profile and calculation parameter are shown
in Fig. 4a. The formula (1) is used to calculate the fracture strength of

the material,

σ =
A× F

t2
ð1Þ

where t is the specimen thickness, F is the applied force, and A is a
dimensionless factor that depends on the geometry of the specimen
and loading ball, the ring diameter, and Poisson’s ratio of the loading
ball and testmaterial. The factor A is calculated using Eq. 2 for this test,

A =
3

4×π
2ð1 + υsÞ× ln

a
b

� �
+

1� υs
� �

2a2 � b2
� �

2R2 + ð1 + υsÞ
2
4

3
5 ð2Þ

where υs is the Poisson’s ratio of the test material, a is the radius of the
support ring, R is the radius of the test specimen, and b is the contact
radius of the loading ball. The contact radius of the loading ball b can
be simplified to b = t/3 in this test.

The punch approach speed was 3mm/min, and the approach
threshold (the punch contactwith the sample) was set to 0.05 kg. After
contact, the approach speed was reduced to 0.1mm/min until the
cathode sample fractured. During high-temperature testing, the
chamber’s temperature was increased at a rate of 10 °C /min, in a
vacuum environment and cooled by 25 °C circulating water. To elim-
inate experimental variability, each kind of sample underwent 20 trials
at room temperature and 10 trials at high temperature. Data within the
(μ-σ, μ+σ) confidence interval, about 65% confidence, were considered
valid, and the average of these valid data was accepted in this paper.

Nanoindentation testing
This test was performed using the Bruker Hysitron PI 89 Picoindenter.
High-temperature Berkovich Probe (diamond, Half Angle 65.27°,
Included Angle 142.30°, C0 24.5, Young’s modulus 1140GPa, Poisson’s
ratio 0.07) and Cube Corner probe (diamond, Half Angle 35.26°,
Included Angle 90°, C0 2.598, Young’s modulus 1140GPa, Poisson’s
ratio 0.07) were used to test.

The linear fitting models proposed by Doerner and Nix76 and
exponential fitting models proposed by Oliver and Pharr56,57 are used
to calculate equivalent elastic modulus Er,

Er =
ffiffiffiffi
π

p

2
ffiffiffi
A

p × S ð3Þ

Where S is the initial unloading slope, and A represents the con-
tact area between the probe and the material. The contact area A is
determined using the Oliver-Pharr method by relating it to the contact
depth hC, where A = F(hC), and hC is given by:

hc =hmax � ε
Pmax

S
ð4Þ

Where hmax is the maximum displacement during testing, ε is a geo-
metric parameter depending on the shape of the indenter. Then,
Young’s modulus of materials was obtained by:

1
Er

=
1� υ21
E1

+
1� υ22
E2

ð5Þ

Where E1 and ν1 are the Young’s modulus and Poisson’s ratio of the
tested material, E2 and ν2 are the Young’s modulus and Poisson’s ratio
of the testing probe material. The hardness H was calculated by:

H =
Pmax

A
ð6Þ
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where Pmax is the maximum load applied, and A is the contact area
between the indenter and the tested material.

The probe approach speed was 150 nm/s, and the approach
threshold was 50 µN. Once the probe reached a depth of 1500nm, it
remained at this depth for 10 s, and then theprobewithdrewat a speed
of 150nm/s. During high-temperature testing, the chamber’s tem-
perature was increased at a rate of 30 °C /min in a vacuum environ-
ment and cooled by 25 °C circulating water. To eliminate experimental
variability, each kind of sample underwent 150 trials at room tem-
perature (25 °C) and 100 trials at high temperature (150–700 °C). Data
within the (μ-σ, μ+σ) confidence interval, about 65% confidence, were
considered valid, and the average of these valid data was accepted in
this paper.

Numerical simulations
The interface thermal stress numerical simulation was conducted by
COMSOL Multiphysics 5.5, and the model was built by actual SEM
porous cathode-dense electrolyte interface characteristics. Mesh
independence analysis was conducted for all simulations, and
unstructured grids were employed. The detailed process is presented
in the SI-5.

DFT computations
TheTECwas calculated byAb initio Car-Pareinellomolecular dynamics
(AIMD) within the framework of DFT. The exchange-correlation term
was determined using the generalized gradient approximation (GGA)
within the Beke-Lee-Yang-Parr (BLYP) implementation77,78. Norm-
conserving pseudopotentials were used, with s and p as nonlocal
orbitals and d as local orbitals. The AIMD calculations were performed
using the SIESTA code, which is based on a flexible linear combination
of atomic orbitals (LCAO) basis sets79 and boasts efficient Order-N
scaling80. A cutoff radius of 250Ry was employed to ensure that the
self-consistent procedure converged to less than 1meV/atom. During
atomic relaxation, a maximum of 25 electronic steps were used for
each ionic step. For molecular dynamics, the Parinello-Rahman
method81 with variable shape and volume of the unit cell was applied
(NPT ensemble). A 3 × 3 × 3 supercell was built based on the optimized
unit cell in different temperatures. Monkhorst-Pack (2 × 2 × 2) was set
for Brillouim zone sampling. The temperature range investigated was
T = 600K–1000K, with increments of ΔT = 100K for the SIESTA cal-
culations. Finally, the TEC of the structure was calculated using the
Phonopy software through the quasi-harmonic approximation (QHA)
method.

Themodulus calculationswere conducted using VASP, employing
plane-wave basis sets and the projector augmented-wave method. We
utilized the generalized gradient approximation (GGA) with the
Perdew-Burke-Ernzerhof (PBE) parametrization82 for the exchange
correlation potential. The energy cutoff was set to 500 eV, and the
Brillouin-zone integration was performed using a Γ-centered Mon-
khorst-Pack mesh83 of 3 × 3 × 3 for BaCoO3 and 5 × 5 × 2 for BaCeO3, as
implemented by VASPKIT84. The structural optimizations were carried
out until the maximum force on each atom reached less than 0.01 eV/
Å, and the energy convergence criterion was set to 10−8eV. We set
seven different strainswith a range of −0.015 to0.015 and a step size of
0.005. The elastic tensor matrices for different structures were cal-
culated, and the Young’s modulus (Y), bulk modulus (B), and shear
modulus (G) of the structures were obtained using the Voigt, Reuss,
and Hill methods.

Data availability
The all data in this article can be accessed within the main text, sup-
plementary materials, and responses to reviewers’ comments. All
source data are provided with this paper. Additional data are available
upon request from the first author or the corresponding
author. Source data are provided with this paper.
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