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This paper proposes a cross-domain intelligent traffic signal control method based on federated 
Proximal-Policy Optimization (PPO) for distributed joint training of agents across domains for typical 
intersections, aiming at solving the problems of slow learning speed and poor model generalization 
when deep reinforcement learning (RL) is applied to cross-domain multi-intersection traffic signal 
optimization control. The proposed method improves the model generalization ability of different 
local models during global cross-region distributed joint training under the premise of ensuring 
information security and data privacy, solves the problem of non-independent and homogeneous 
distribution of environmental data faced by different agents in real intersection scenarios, and 
significantly accelerates the convergence speed of the model training phase. By reasonably designing 
the state, action and reward functions and determining the optimal values of several key parameters 
in the federated collaboration mechanism, the RL model could ensure high learning efficiency and 
fast convergence in the face of the gradual increase of road network size and the exponential increase 
of state and action space with the number of intersections. In addition, the new state interaction 
method and the reward function allow the agents to collaborate with each other, which greatly 
improves the information interaction efficiency between the federated learning local agents and the 
central coordinator, and improves the access efficiency of the road network and reduces the amount of 
communication data transmitted. Finally, through experimental comparisons, the proposed method 
can significantly reduce the average vehicle waiting time by up to 27.34% compared with the existing 
fixed timing method, and under the same convergence height, the convergence speed is up to 47.69% 
faster compared with the individual PPO trained in a single local environment, and up to 45.35% 
faster than the aggregated PPO trained jointly using all local data. The proposed method effectively 
optimizes intersection access efficiency with excellent robustness under various traffic flow settings.

Keywords  Federated deep reinforcement learning, Optimal control of urban traffic signals, Federated 
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To address the increasing conflict between growing traffic demand and limited transportation resources, 
intelligent traffic signal control is crucial for mitigating congestion in smart transportation systems. Efficiently 
utilizing existing traffic infrastructure through optimized signal control can enhance the capacity of critical 
intersections and reduce congestion on main roads via traffic path guidance and load distribution. Research1 
indicates that delays caused by inefficient traffic signal control at intersections account for 5% to 10% of total 
urban traffic delays. Effective signal control algorithms not only alleviate road congestion and enhance traffic 
flow efficiency but also play a positive role in reducing traffic accidents, mitigating environmental pollution, and 
improving traffic management capabilities2. Therefore, in-depth research on traffic signal control is essential for 
constructing a more comprehensive, scientific, and intelligent system to better address varying traffic demands.

Most current intelligent signal control methods require the establishment of specific mathematical models, 
followed by solving these models using techniques such as dynamic programming, fuzzy control, and cooperative 
game theory3. While these methods improve traffic flow efficiency to some extent, they demand substantial 
computational resources in complex scenarios, making real-world application challenging. The advancement of 
reinforcement learning (RL) and deep reinforcement learning (DRL) aligns well with the complexities of traffic 
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environments, offering model-free approaches that have garnered significant attention in the field of traffic 
signal optimization3–9.

The inherent nature of traffic signal control problems makes them well-suited for RL methods due to their 
dynamic, uncertain, and high-dimensional characteristics. Traffic flow fluctuates over time, influenced by factors 
such as time of day, weather, and incidents. RL methods, particularly DRL, excel at adapting to such dynamic 
environments through iterative interactions with the system. Additionally, traffic signal control aims to optimize 
long-term performance metrics, such as minimizing cumulative vehicle delay and maximizing throughput, 
which aligns with RL’s focus on maximizing cumulative rewards over time. Existing studies10,11 have shown that 
RL can adapt to dynamic traffic environments through interactions, effectively reducing vehicle waiting times. 
Moreover, RL’s ability to handle complex, high-dimensional state spaces, such as multi-intersection coordination 
and multi-agent scenarios, further supports its application in traffic control. For instance, to tackle the curse 
of dimensionality, research12 has proposed Q-Learning method13 utilizing function approximation, yet these 
approaches still face storage limitations. Li et al.14 introduced DQN-based signal control for single intersections, 
employing deep neural networks (DNNs) to learn the Q-function, where the state is defined as queue length and 
the reward function as the difference in maximum queue lengths in both north-south and east-west directions. 
However, this definition yielded limited improvements in vehicle waiting times. To enhance performance, 
Shabestary et al.15 represented intersection states visually, detailing vehicle positions and speeds while using 
convolutional neural networks to extract features. The reward was defined as the change in accumulated 
delay, with actions involving the random selection of one among several signal phases. This approach not only 
complicates the definitions of states and rewards but also considers the free combination of phases16, departing 
from traditional symmetrical signal phases. Such modifications have shown the potential to improve algorithm 
performance, albeit at the cost of increased computational time and resource consumption. In addition, some 
progress has been made on the DRL-based collaborative traffic signal control problem17–20, which contributes to 
high-quality management of urban transportation, reduction of congestion and energy consumption. Du et al.21 
demonstrated that, during periods of relative congestion, optimal control does not necessitate overly complex 
states; rather, focusing on vehicles within a small area near the intersection suffices. RL-based traffic signal 
control methods can effectively learn control experiences from data, yet they typically require training with 
simulated data in software, followed by fine-tuning using real-world data. Due to the inaccuracies of simulated 
data in reflecting real-world conditions, the training process for RL models can be exceedingly time-consuming. 
Despite the remarkable performance of RL and DRL in traffic signal control, their practical applications face 
challenges, including limited data, low learning efficiency, slow convergence, poor model generalization, and 
difficulties in parameter fine-tuning22. Improving the training and convergence speed of RL-based signal control 
optimization algorithms, enhancing model generalization, reducing computational burdens from complex 
choices of state, action, and reward, and simplifying parameter fine-tuning represent significant challenges in the 
field of traffic signal control. These issues warrant further investigation and constitute the primary motivation 
for this study.

On the other hand, the effectiveness of training RL models is closely tied to the quality of the data used for 
training. When the feature space of the state is small and training data is limited, constructing high-quality 
model policies becomes challenging23. A common solution is to employ parallel or distributed training24–27, 
where information exchange and data sharing among agents allow for centralized model updates using data 
from all agents. However, this approach places high demands on the data storage and computational capabilities 
of the central control unit. Furthermore, there has been an increasing focus on user privacy and data security 
in recent years. Centralized model training methods that involve direct sharing of local data do not meet these 
security requirements. Federated Learning (FL) offers a distributed machine learning framework that enhances 
the effectiveness of artificial intelligence models while ensuring data privacy and compliance28. In real world, 
with the rapid development of smart city and smart transportation, cases of cross-domain cooperation based on 
FL have appeared29,30, which effectively addresses the conflict between data privacy and data silos. Integrating 
FL with RL not only facilitates information exchange while avoiding privacy breaches but also enables agents 
to adapt to diverse environments. Inspired by the success of FL in supervised learning tasks, researchers have 
increasingly explored its application to RL, leading to the development of Federated Reinforcement Learning 
(FRL). Combining FL with RL not only enables agents to train in varied environments without sharing their 
locally collected data but also enhances the security and overall performance of RL systems. FRL can be broadly 
categorized into two types: Horizontal Federated Reinforcement Learning (HFRL) and Vertical Federated 
Reinforcement Learning (VFRL), as illustrated in Fig. 1. In HFRL, agents tackle similar decision-making tasks 
in independent environments that do not influence each other. Each participant executes actions based on the 
local environment’s state and receives corresponding rewards. Given that agents operate within limited state 
spaces, sharing experiences among multiple agents interacting with their respective environments can accelerate 
training and improve model performance. Agents in HFRL typically exchange parameters of policy and value 
function models via a client-server architecture or a peer-to-peer network. This approach addresses the sample 
efficiency problem inherent in RL, enabling agents to achieve optimal strategies more rapidly. Additionally, it 
maximizes cumulative expected rewards for specific tasks while safeguarding data privacy and security. FRL has 
demonstrated promising applications across various domains, including the Internet of Things, robotics, and 
autonomous driving, showcasing its potential to drive innovation in these fields.

In the field of robotics, a FRL algorithm based on DQN has been proposed for cloud robot system 
navigation31, enabling robots to efficiently learn in new environments and rapidly adapt to changes using prior 
knowledge. Each robot trains a local model based on its navigation tasks, followed by knowledge fusion on a 
centralized cloud server to update the global model. In the Internet of Things (IoT) domain, to protect privacy, 
a FL architecture has been deployed between edge nodes and IoT devices for computational offloading tasks32. 
IoT devices can download RL models from edge nodes and train local models using their own data. The edge 
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nodes aggregate the local models from various IoT devices to form a global model; however, the communication 
resource costs associated with model exchanges have not been further evaluated in the literature. Lim et al.33 
introduced a FRL method based on Proximal Policy Optimization (PPO)34 for optimizing control of IoT devices, 
enhancing agent learning speed through shared gradient loss functions. In the autonomous driving sector, a FRL 
approach utilizing Deep Deterministic Policy Gradient (DDPG)35 has been proposed36, which aggregates model 
parameters learned by agents across multiple environments to jointly train a global model, thereby improving 
robustness and generality. Research on FRL in traffic signal control is limited. Ye et al.37 introduced a novel FRL 
method called FedLight, where each intersection in a road network employs the Advantage Actor-Critic (A2C) 
algorithm for signal control. Agents engage in joint learning through gradient aggregation and parameter sharing 
without transmitting local data. This study claims that federated multi-agent RL achieves faster convergence 
compared to existing multi-agent methods. However, it primarily addresses the cooperation between multiple 
intersections within a single road network environment and does not consider the data privacy issues that arise 
when different regions utilize their own local data for joint model training. This challenge represents a significant 
hurdle for regional cooperation in real-world applications. Therefore, it is crucial to leverage federated deep 
reinforcement learning (FDRL) to enhance model training convergence and robustness while addressing the 
challenges posed by non-independent and identically distributed (non-IID) data. Establishing specific federated 
collaboration mechanisms and aggregation algorithms that ensure information security and data privacy while 
improving model generalization is of great significance, which serves as the main motivation of this paper.

The objective of this study is to develop a FRL-based cross-domain intelligent traffic signal control architecture, 
establishing an effective and practical adaptive traffic signal optimization control system to enhance intersection 
and network throughput while reducing road congestion. The contributions of this paper are summarized as 
follows:

•	 A FRL-based cross-domain intelligent traffic signal control architecture and collaborative mechanism are 
proposed to address the non-IID environmental data issues faced by different agents in real-world scenari-
os. This framework enhances the generalization capability of various local models during global distributed 
joint training while ensuring information security and data privacy, significantly accelerating the convergence 
speed during the model training phase.

•	 By carefully designing the state, action, and reward functions, as well as determining the optimal values for 
several key parameters in the federated collaboration mechanism, a federated PPO-based traffic signal con-
trol method is introduced. This approach effectively resolves the challenges posed by slow convergence and 
low learning efficiency in RL models as the road network size increases, leading to an exponential growth in 
state and action spaces with the number of intersections. Compared to existing RL-based signal optimization 
methods, the proposed traffic signal control approach demonstrates a faster response speed while maintain-
ing similar convergence levels.

•	 The study introduces a well-designed state interaction method and reward function that facilitate coopera-
tion among agents, significantly improving the information exchange efficiency between local agents and the 
central coordinator in FL. This enhancement not only boosts the efficiency of road network throughput but 
also reduces the volume of data transmitted during communication. Additionally, the specific configurations 
of local environments in FL are optimized, enabling all local agents to adapt to varying conditions and thor-
oughly explore the state space.

Fig. 1.  Schematic comparison of HFRL and VFRL. (a) HFRL. (b) VFRL.
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Intelligent traffic signal control architecture based on FDRL
In the field of intelligent traffic signal control, RL effectively optimizes traffic signals but heavily relies on diverse 
environmental data. The FL framework ensures data security and privacy while addressing the substantial data 
requirements of RL. Therefore, integrating FL with RL architectures to enhance model performance represents a 
viable approach with significant application potential and value. This paper proposes a cross-domain intelligent 
traffic signal control architecture based on FRL to address the challenges associated with data silos and data 
protection. This architecture facilitates collaborative traffic signal optimization across cities and regions while 
enhancing the performance of RL agents.

Federal deep reinforcement learning collaborative
The proposed cross-domain intelligent traffic signal control architecture based on FRL is illustrated in Fig. 2. In 
this paper, the term ’cross-domain’ refers to the ability to perform distributed joint training of traffic signal control 
models across different intersection domains or environments, where each domain may have distinct traffic 
flow characteristics, infrastructure setups, and environmental conditions. The goal is to enable the optimization 
of traffic signal controls by leveraging knowledge shared across these diverse domains while ensuring data 
privacy and security through federated learning mechanisms. Specifically, in each environment, DRL agents 
are deployed to optimize traffic signals. These agents can operate as single or multiple entities, employing either 
centralized or distributed control. Although the environments share the same intersection layout-depicted as a 
“grid” pattern of four-way intersections-they may exhibit subtle differences, such as varying distances between 
intersections. This setup satisfies the requirements for horizontal FDRL: (1) The tasks assigned to agents in each 
environment are similar; (2) Each environment operates independently, without influencing one another; (3) 
Local data obtained by the agents are not transmitted or shared. The primary objective of the local agents in 
each environment is to identify the optimal signal control strategy that minimizes the average travel time of all 
vehicles within the network. The neural network architecture of the agents remains consistent with the global 
model. The detailed collaborative process of FDRL is outlined as follows:

•	 Step 1: The federated central coordinator initializes the global model and broadcasts it to the agents in each 
local environment.

Fig. 2.  FDR based cross-domain intelligent traffic signal control architecture.
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•	 Step 2: Agents independently observe the state of their environment and make decisions based on local states. 
After executing an action, the environment provides feedback in the form of reward values and new states to 
the agents, which then collect data and update their local model parameters.

•	 Step 3: After every K local model updates, agents upload their local model parameters to the federated central 
coordinator. They may apply encryption to these parameters; even without encryption, only the neural net-
work parameters are transmitted, thus preserving sensitive data from the environments.

•	 Step 4: The federated central coordinator processes the uploaded models using a specific aggregation algo-
rithm to generate the global model. The coordinator does not need to wait for all agents to submit their model 
parameters and can aggregate a subset of local model parameters based on the situation.

•	 Step 5: The federated central coordinator distributes the global model to all local agents.
•	 Step 6: Agents update their local models to align with the global model and may also create personalized local 

models to derive new local model parameters.
•	 Step 7: Steps 2 to 6 are repeated until the model converges, the maximum number of iterations is reached, or 

the longest training time is achieved.

Remark 1  It should be noted that the main challenges faced when applying DRL to traffic signal control in 
cross-domain scenarios include: (1) Heterogeneous Data: Each intersection may have its own unique traffic flow 
patterns, road network configurations, and sensor setups, making the data collected from each environment 
non-IID; (2) Generalization: It is difficult for RL models trained in one domain to generalize effectively to oth-
er domains, particularly when data cannot be directly shared; (3) Data Privacy: Ensuring that sensitive traffic 
data (such as vehicle counts and flow rates) is not exchanged during the training process while still allowing for 
effective model learning. It is worth emphasizing that the proposed methodology and framework in this paper 
can effectively address the requirements for an efficient and secure cross-domain learning mechanism that not 
only enables model generalization across heterogeneous traffic environments but also safeguards data privacy 
during the training process.

Federated aggregation algorithm
The core function of the federated central coordinator is to aggregate the uploaded local model parameters. The 
most commonly used aggregation algorithm in FL is the Federated Averaging algorithm proposed by Brendan 
McMahan et al.38 at Google. This algorithm is applicable to non-convex loss functions in deep neural network 
training and is suitable for any finite summation form of the following loss function:

	
min

w∈Rd
f(w) = 1

n

n∑
i=1

fi(w)� (1)

where n represents the number of training data points and w ∈ Rd denotes the parameters of the deep neural 
network in d dimensions. In this study, the Federated Averaging algorithm is selected as the aggregation method 
for the federated central coordinator, as described below.

Assuming there are N agents from different environments participating in the federated model aggregation 
process, the local model parameters of these agents are represented as W (i)

t , i = 1, 2, . . . , N . Each agent in 
the local environment can only access the state of its environment and uses local data for model training. The 
network parameters of the global model maintained by the central coordinator are denoted as W (g)

t . The most 
basic aggregation algorithm can be expressed as:

	
W

(g)
t+1 =

N∑
i=1

pi · W
(i)
t � (2)

This represents the direct weighted average of all local models participating in the current round of federated 
aggregation. Building on this, if the update method for the global model is modified to soft updates, the 
aggregation algorithm can be expressed as: 

	
W

(g)
t+1 =α · W

(g)
t + (1 − α)

N∑
i=1

pi · W
(i)
t � (3a)

	

N∑
i=1

pi =1, pi ⩾ 0 � (3b)

 In this context, α is referred to as the FL rate. When α = 0, Eq. (3a) reduces to Eq. (2); when α = 1, it indicates 
that the local model parameters are not incorporated into the global model, rendering the current round of 
federated aggregation ineffective. Therefore, in general, α should be kept relatively small. The term pi represents 
the federated aggregation weight, indicating the influence of each participant on the global model during the 
aggregation process. Typically, pi is distributed evenly, i.e., pi = 1

N . However, pi can also be flexibly allocated 
based on the performance of the agents during training, with the aim of maximizing the performance of the 
global model and accelerating its convergence.
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Remark 2  Compared to traditional DRL algorithms trained in a single environment, FDRL algorithms lever-
age the FL framework to address the limitations of conventional methods. The primary advantages of FDRL 
includes: (1) Accelerated training speed; (2) Enhanced generalization and stability; (3) Privacy protection and 
data security. Specifically, by enabling multiple agents to interact with multiple environments under similar envi-
ronmental models and target tasks, FDRL facilitates local data storage while sharing experiences to expedite the 
learning process. This approach requires significantly fewer computational resources compared to aggregating 
updates using all local data; As the scale of a road network or environment expands, the state space becomes in-
creasingly challenging to fully explore. Training with a single agent often fails to deliver optimal decisions in rare 
state scenarios. Horizontal FDRL allows agents to collaborate during training, leading to improved performance 
in low-probability states; FDRL eliminates the need for participants to directly share raw local data. Instead, 
encrypted model parameters are exchanged, significantly reducing the risk of reconstructing the original local 
data even in the event of parameter leakage. Compared to other distributed and parallel methods, FDRL ensures 
secure and legally compliant information exchange while maintaining data privacy.

Problem analysis
A single intersection is the smallest control unit within a traffic signal control system and is also the most 
common scenario in practical signal control problems. As road network scales expand, it becomes essential for 
individual intersections to coordinate their signal control with neighboring intersections to effectively improve 
the overall network traffic efficiency. Thus, optimizing signal control at the single intersection level forms the 
foundation of traffic signal optimization for the entire network. The objective of this study is to develop a real-
time adaptive signal control system for a single intersection, utilizing a Federated PPO algorithm. This system 
will make real-time control decisions for traffic signals based on the current state of the intersection.

Description of the environment
The subject of this study is a typical intersection, as shown in Fig. 3. The intersection has four directions: north, 
south, east, and west, with two lanes in each direction. The outer lane is designated for straight-through traffic, 
and the inner lane is for left turns. These eight incoming lanes are labeled as {l1, l2, ..., l8}. The intersection 
operates with four distinct signal phases: north-south through, north-south left-turn, east-west through, and 
east-west left-turn, corresponding to Phases 1 through 4, respectively. The traffic lights have three states: red, 
indicating a stop; green, indicating passage; and yellow, signaling caution. By default, the traffic lights cycle 
through the phases in the order Phase 1 → Phase 2 → Phase 3 → Phase 4 → Phase 1, with a yellow light period 
between phase transitions.

The traffic signal control problem at the intersection can be modeled as a Markov Decision Process (MDP), 
represented by a five-tuple ⟨S, A, P, R, γ⟩, where S  denotes the state space, A the action space, P the state 
transition probabilities, R the reward function, and γ the discount factor. As illustrated in Fig. 4, when using 
DRL algorithms for signal control, it is assumed that each signal phase lasts for ∆T  time steps, with each time 
step corresponding to one second in real time. At the beginning of each phase, the agent receives the current 
state of the intersection and selects an action. At the end of the phase, the agent receives a reward from the 

Fig. 3.  Schematic diagram for a single intersection and its four phases. (a) Typical cross intersection schematic. 
(b) Single intersection four-phase schematic.
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environment and transitions to the next signal phase. The agent can then update its action selection policy based 
on the received reward, which corresponds to adjusting the parameters of the agent’s neural network. After a 
period of continuous learning and network updates, the agent will eventually learn the optimal action policy, 
thereby improving the traffic flow efficiency of the intersection.

Definitions of states, actions, and rewards
This section provides a detailed description of the state and action definitions, as well as the reward function, 
used in the DRL signal control algorithm for a single intersection.

(1) State Space
The state represents the agent’s perception and abstract expression of the environment at a given time step. 

Previous studies commonly used state representations such as queue length, accumulated waiting time, average 
vehicle speed, and vehicle count. More complex representations even involve using the positions of vehicles on 
each lane as matrix inputs39. Although these complex states can be obtained with advancements in sensor and 
vehicular network technologies, they are difficult to collect and require substantial resources. In this study, the state 
at time step t, denoted as st, is defined as a 16-dimensional vector: st = {Queuelengtht[l], Waitingtimet[l]} 
where Queuelengtht[l] refers to the vehicle queue length on lane l at time step t, and Waitingtimet[l] refers to 
the accumulated waiting time of the first vehicle in lane l at time step t, for l = l1, l2, . . . , l8. The queue length 
can be measured using sensors deployed on the lanes, while the waiting time can be gathered through vehicular 
networks. Both types of data are easily accessible and of low complexity, providing a solid foundation for future 
expansion to road networks.

(2) Action Space
An action is the behavior that the agent may take. In traffic signal control, the agent at the intersection must 

make appropriate decisions based on the current state of the environment, such as selecting the appropriate 
signal phase, setting the duration of the current phase, adjusting the green-to-red ratio, or maintaining the 
current phase/transitioning to the next phase, in order to manage vehicle flow. In this study, the action space 
consists of the four phases at the intersection. At the start of each phase, at time step t, the agent selects one of 
the four phases shown in Fig. 3b based on the current state st.

	

at =





North-South straight ahead green, phase = 1
North-South left turn green, phase = 2
East-West straight ahead green, phase = 3
East-West left turn green, phase = 4

� (4)

In this study, the DRL algorithm allows the agent to switch between phases freely, without necessarily adhering 
to traditional cyclic phase control. To ensure safe vehicle passage during phase transitions, when the current 
phase differs from the selected next phase, the system first activates a yellow light for a duration of Ty  seconds 
to signal an impending phase change. Afterward, the signal switches to the selected phase and remains active for 
∆T − Ty  seconds. If the current phase and the selected next phase are the same, the phase remains unchanged, 
and the system continues for the full ∆T  seconds.

(3) Reward Function
The reward represents the feedback received from the environment after the agent performs an action. It 

serves to evaluate the quality of the action. Typically, a positive reward indicates a beneficial outcome, while 
a negative reward signals a detrimental effect. Based on the received rewards, the agent updates its model to 
enhance decision-making and maximize long-term rewards. In traffic signal control, the ultimate goal is to 

Fig. 4.  Schematic of traffic signal control based on DRL.
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minimize vehicle travel time as much as possible. However, vehicle travel time is difficult to use directly as a 
reward in DRL for the following reasons: First, vehicle travel time is influenced not only by traffic signals but also 
by factors such as maximum vehicle speed and route length. Second, in the real world, traffic signal controllers 
cannot predict the vehicle’s final destination in advance, making it challenging to optimize travel time. Existing 
studies often define the reward function as a weighted sum of multiple indicators (e.g., queue length, waiting 
time, vehicle speed, intersection pressure, etc.). However, there is no theoretical method for setting the optimal 
weights for these values to ensure that the reward accurately reflects the quality of the actions. Furthermore, 
traffic evaluation metrics are often interrelated. For example, with the same route length, shorter waiting times 
generally lead to shorter vehicle travel times.

Considering the factors mentioned above, the reward in this study is defined as the change in the average 
vehicle waiting time before and after selecting an action. The reward function at time step t is defined as follows:

	 rt = Wt−∆T − Wt� (5)

where Wt−∆T  represents the average waiting time of all vehicles on the road at time step t, calculated as:

	
Wt = 1

Nt

Nt∑
it=1

wit � (6)

Here, Nt denotes the total number of vehicles in the network at time step t, and wit  represents the accumulated 
waiting time of the i-th vehicle from its entry into the network until time step t.

Federated PPO-based signal control algorithm design for single intersection
The procedure for the single intersection signal control algorithm based on PPO is outlined in Algorithm 1. 
Initially, the agent model and experience buffer are initialized, and the environment is set up at the start of each 
training episode. Every ∆T  seconds, an action is selected, after which the environment provides a reward to 
the agent. The agent then updates its model using the collected tuple. This process is repeated in a loop until 
the final model is trained. After the agent’s training is complete, only the interaction between the Actor and the 
environment is required, where the agent selects actions based on the current state. This corresponds to lines 6 
to 14 in the algorithm.

Algorithm 1.  PPO-based signal control algorithm for single intersection.
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Fig. 5 illustrates the detailed process of single intersection signal control based on the PPO algorithm. In this 
model, both the Actor and Old Actor share an identical neural network architecture, which includes an input 
layer with 16 neurons, two fully connected hidden layers with 64 and 16 neurons, respectively, and a Softmax-
activated output layer that produces a 4-dimensional vector. This output represents the probability values for all 
possible actions, summing to 1. For the Critic, the input and hidden layers are identical to those of the Actor, 
except that its output layer generates a single scalar value, representing the action evaluation score.

A FL framework is then incorporated into the algorithm, where the set of all local environments is denoted 
as Env. The specific process of the federated parameter aggregation method used in this study is shown in 
Algorithm 2. Each local agent within an environment can perform local learning and updates. When the training 
steps reach K or the time steps of the current episode reach the maximum T, agents are, by default, included in 
the federated update (though they may also independently choose whether to participate in the update based on 
the situation). Additionally, this section introduces a DRL method utilizing data from all local environments for 
collaborative training, detailed in Algorithm 3. In this approach, a central agent can access the states, actions, 
and rewards of all local agents, performing centralized aggregation and updates every K training steps.

Remark 3  It is worth pointing out that compared with the industry’s popular centralized training distributed 
execution (CTDE) framework40, which is widely used in distributed RL scenarios, the proposed method in this 
paper is significantly superior in these aspects, including (1) the proposed method leverages FRL, where agents 
collaborate on training across domains without exchanging raw data, thereby avoiding the need for raw data 
exchange and enhancing data privacy and security; (2) the proposed method allows global model aggregation 
by introducing a federated collaboration mechanism, while enabling local models to preserve domain-specific 
nuances. As a result, the approach achieves robust handling of non-IID environment data and ensures better 
generalization across various transportation scenarios; (3) the proposed approach reduces communication over-
head by transmitting only model parameters instead of raw environment data. In addition, the designed efficient 
state interaction mechanism and reward function optimize the communication process and improve the com-
munication efficiency and scalability while ensuring the model performance, making it suitable for large-scale 
traffic signal control systems; (4) Subsequent experimental validation also shows that the proposed method has 
excellent performance in terms of convergence speed, stability and optimization effectiveness.

Fig. 5.  Schematic diagram of PPO-based signal control algorithm for single intersection.
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Algorithm 2.  Federated aggregation algorithm for RL based agent model parameters.

Algorithm 3.  Single intersection signal control algorithm based on aggregated PPO.

Scientific Reports |        (2025) 15:11724 10| https://doi.org/10.1038/s41598-025-91966-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Simulation experiment and result analysis
To validate the effectiveness of the proposed single-intersection signal control method based on federated PPO, 
this section presents a series of training and testing experiments conducted under various traffic flow scenarios. 
The experimental results are analyzed in detail to assess the method’s performance comprehensively.

Experimental design for single intersection simulation
The experimental platform selected for this study is SUMO version 1.7.0, interfaced with the federated PPO-
based traffic signal optimization controller via the TraCI API. The algorithm is implemented in Python 3.6.12, 
using the open-source neural network framework PyTorch 1.7.0. The hardware environment for the experiments 
includes a 3.7 GHz Intel Core i9-10900X CPU, an NVIDIA GeForce RTX 3090 GPU with 24 GB memory, and 
64 GB of RAM.

(1) Single Intersection Setup
A model of a four-way intersection was established on the SUMO platform, with each approach road measuring 

200 meters. To replicate realistic conditions, only the directions for entering and exiting the intersection were 
configured without restricting specific lanes. Vehicle parameters were set as follows: vehicle length of 5 meters, 
maximum speed of 13.9 m/s (equivalent to 50.4 km/h), minimum spacing of 2.5 meters, acceleration rate of 1 
m/s², and deceleration rate of 4.5 m/s².

(2) Traffic Flow Patterns
Vehicle arrivals in each direction followed a Bernoulli process. With the default signal settings, the phase 

cycle time ∆T  was 30 seconds, including a yellow light duration Ty of 3 seconds. Simulations on the SUMO 
platform showed that within a 30-second green light, up to 10 vehicles could pass through each lane. In this 
intersection setting, for all arriving vehicles to clear within the green light duration across four phases (120 
seconds), the vehicle arrival rate per lane must remain below 10 vehicles per 120 seconds, leading to a saturation 
threshold of 0.083 vehicles/second. Arrival rates below this threshold indicate an unsaturated lane, while rates 
above signify saturation.

In this experimental configuration, vehicles were categorized into two types based on entry direction: one 
group entering from the north or south, and the other from the west or east. By adjusting the arrival rates for 
these two groups, distinct traffic flow patterns were defined. Agent training was conducted in environments 
representing four traffic scenarios, as detailed in Table 1. In the Low Saturation scenario, vehicle arrival rates in 
all directions remained below 0.083 vehicles/second. In the Unbalanced 1 and Unbalanced 2 scenarios, arrival 
rates were below 0.083 vehicles/second for north-south lanes and above for east-west lanes. In the Oversaturated 
scenario, arrival rates greatly exceeded 0.083 vehicles/second in all directions. The trained agents under 
these conditions are denoted as “PPO-Low,” “PPO-Un1,” “PPO-Un2,” and “PPO-Over” respectively. Agents 
trained under federated conditions are termed “Federated PPO,” while agents trained with data from all local 
environments collectively are referred to as “Aggregated PPO.”

(3) Training Parameters for federated PPO
Training parameters for single-intersection traffic signal control using federated PPO are specified in Table 2. 

Basic simulation parameters include epoch count, T, and ∆T , while γ, αactor , αcritic, and ϵ are consistent across 
independent PPO, federated PPO, and aggregated PPO models.

(4) Performance Metrics
The following performance metrics were used to evaluate the proposed algorithm: 

	1.	 Reward value: During training, the reward value as defined in (5) was monitored. A positive reward indi-
cates that the average vehicle waiting time decreased compared to the previous phase, suggesting effective 
agent actions; conversely, a negative reward reflects suboptimal performance.

Symbol Definition Value

epoch Training rounds 200

T Simulation step size for each round 3600

∆T Individual phase time 30 s

γ Discount factor 0.9

αactor Actor learning rate 0.0001

αcritic Critic learning rate 0.001

ϵ Clip parameters 0.2

Table 2.  Description of federated PPO training parameters.

 

Low saturation Unbalanced 1 Unbalanced 2 Oversaturated

Vehicle arrival rate in the north-south direction (vehicles/second) 0.05 0.05 0.05 0.15

Vehicle arrival rate in the east-west direction (vehicles/second) 0.05 0.15 0.3 0.3

Table 1.  Traffic flow pattern settings for each environment.
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	2.	 Average vehicle waiting time: The average waiting time of all vehicles in the network, where shorter times 
signify improved traffic conditions.

	3.	 Average vehicle stops: The average number of stops per vehicle across the network, with fewer stops indicat-
ing smoother traffic flow.

	4.	 Average travel time: The mean time for vehicles to traverse the network from entry to exit. Shorter travel 
times suggest higher intersection efficiency.

This setup facilitates a comprehensive evaluation of the federated PPO model under various traffic conditions, 
measuring both the direct and system-wide impacts of the traffic signal control strategy.

Analysis of training results
During the training process, four different traffic flow patterns, as outlined in Table 1, were selected for single-
intersection environments. Both individual PPO and federated PPO training were conducted, with multiple 
experiments performed to determine the optimal federated update settings, focusing on key parameters such as 
update frequency, learning rate, and learning weight. Additionally, to verify whether federated PPO can achieve 
the same performance as aggregated PPO, which theoretically uses all available data for experiential learning, a 
comparative experiment between federated PPO and aggregated PPO was also conducted.

(1) Comparison of model performance under different federated update frequencies (K)
In FL, communication overhead is typically higher than computational costs. To reduce the number of 

communication rounds required during training, multiple local model updates can be performed between 
two communication rounds. This section explores the impact of different federated update frequencies (K) on 
model performance and communication overhead in a federated PPO-based signal control method for single-
intersection environments. Fig. 6 shows the training curves for federated PPO and individual PPO with K values 
of 1, 5, and 10. The training curve represents the cumulative reward racc

t , which is the sum of rewards from 
the start of training to the current moment, i.e., racc

t = r0 + r∆T + · · · + rt. Physically, this value represents 
the inverse of the average vehicle waiting time. When the reward stabilizes around 0, the cumulative reward 
stabilizes, indicating model convergence. From Fig. 6, regardless of the value of K, it is evident that federated 
PPO significantly improves the cumulative reward in the low-saturation traffic flow mode, indicating its ability 
to optimize model control performance in this scenario. In the other three traffic flow modes, federated PPO 
achieves nearly the same convergence height as individual PPO, suggesting that individual PPO also performs 
well in these traffic flow settings.

To quantitatively analyze model convergence speed, a mathematical method was proposed, which uses the 
moving average of the cumulative reward to determine convergence. The specific criteria are as follows:

•	 The percentage change in the average cumulative reward over five consecutive windows should not exceed 
0.02%;

•	 The sum of the percentage changes in the average cumulative reward over five consecutive windows should 
not exceed 0.05%;

•	 The difference between the cumulative reward in the current window and the final window should not exceed 
5%.

The smallest training step count that satisfies these three conditions is considered the point of model convergence. 
A larger value indicates slower convergence, and vice versa. A window size of 120 was chosen, and the impact of 
different federated update frequencies (K) on model convergence speed was analyzed. The results are shown in 
Table 3. It is evident that different values of K accelerate the convergence speed in the Unbalanced 1, Unbalanced 
2, and oversaturated traffic flow modes. The effect is most pronounced when K = 5, which accelerates the 
convergence speed of the DRL agent by 29.57% on average. For K = 1 and K = 10, federated PPO converges 
19.19% and 18.85% faster than individual PPO, respectively.

This section also evaluates the additional communication and computation time incurred by the FL framework, 
with specific data presented in Table 4. In the individual PPO-based signal optimization control method for a 
single intersection, each agent has three neural networks: two Actor networks and one Critic network. The Actor 
network consists of layers with 16, 64, 16, and 4 neurons, while the Critic network has 16, 64, 16, and 1 neuron 
in the respective layers. During each federated aggregation, each Actor network requires the transmission 
of (16 + 1) × 64 + (64 + 1) × 16 + (16 + 1) × 4 = 2196 parameters, and each Critic network requires 
2145 parameters. Each parameter is encoded as a float64 variable, so the total size of the network parameters 
transmitted between the agent and the federated central coordinator is (2196 × 2 + 2145) × 8B = 51.07KB
. Assuming a communication rate of 5 MB/s between the agent and the central coordinator, the communication 
time per transmission is approximately 9.97 ms. Computation time was measured during training. The data in 
Table 4 show that the additional communication and computation time in FL decreases with higher values of K. 
Balancing training performance and resource requirements, K = 10 was selected as the default setting.

(2) Comparison of model effects under different federal learning rates α
This section explores the impact of different values of α in (3) on the training performance of the federated 

PPO model. A larger α value means that the global model from the previous round has a higher weight in 
the federated averaging process, which also implies that the impact of the current update on the global model 
is smaller. The results are shown in Fig. 7. From the figure, it is observed that when α = 0.9, federated PPO 
converges to a lower value than individual PPO, indicating that the inclusion of the FL framework in this case 
worsens the model’s performance. This confirms that the value of α in the federated averaging algorithm should 
not be too large. When α = 0, α = 0.1, and α = 0.5, the model convergence heights are similar, suggesting that 
for α ≤ 0.5, the final convergence performance is almost unaffected.
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Federated PPO (K = 1) Federated PPO (K = 5) Federated PPO (K = 10)

Communication time (s) 478.65 95.72 47.86

Calculation time (s) 121.84 23.97 12.02

Table 4.  Additional communication and computation time required for different federal update frequencies K.

 

Individual PPO Federated PPO (K = 1) Federated PPO (K = 5) Federated PPO (K = 10)

Low saturation 4679 8276 (+76.88%) 8735 (+86.69%) 9211 (+96.86%)

Unbalanced 1 8578 7898 (−7.93%) 6608 (−22.97%) 8346 (−2.70%)

Unbalanced 2 9253 7199 (−22.20%) 7388 (−20.16%) 7729 (−16.47%)

Oversaturated 4655 3073 (−33.98%) 1840 (−60.47%) 2173 (−53.32%)

Table 3.  Comparison of model convergence speeds for various traffic flow patterns with different federal 
update frequencies K. Significant values are in bold.

 

Fig. 6.  Training curves for different federal update frequencies K for each traffic pattern. (a) Low saturation 
traffic flow pattern. (b) Unbalanced traffic flow pattern 1. (c) Unbalanced traffic flow pattern 2. (d) 
Oversaturated traffic pattern.
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Based on the convergence criteria defined earlier, Table 5 provides the convergence speeds for different α 
values. α = 0 indicates that each global model update only uses the current local model parameters, while 
α > 0 retains some parameters from the previous global model. The data show that, compared to the case 
of α > 0, federated PPO with α = 0 results in slower convergence, indicating that using a soft update of the 
global model is an effective way to accelerate training convergence. When α = 0.1, the model requires 40.97% 
fewer training steps to reach convergence in the Unbalanced 1, Unbalanced 2, and oversaturated traffic flow 
modes compared to individual PPO, significantly improving convergence speed. In the low-saturation traffic 

Individual PPO Federated PPO (α = 0) Federated PPO (α = 0.1) Federated PPO (α = 0.5)

Low saturation 4679 9211(+96.86%) 6841(+46.21%) 7613(+62.71%)

Unbalanced 1 8578 8346(−2.70%) 5514(−35.72%) 6360(−25.86%)

Unbalanced 2 9253 7729(−16.47%) 6122(−33.84%) 6928(−25.13%)

Oversaturated 4655 2173(−53.32%) 1637(−64.83%) 2272(−51.19%)

Table 5.  Comparison of model convergence speeds for different federal learning rates α across traffic flow 
patterns. Significant values are in bold.

 

Fig. 7.  Training curves for different federal learning rates α for each traffic flow pattern. (a) Low saturation 
traffic flow pattern. (b) Unbalanced traffic flow pattern 1. (c) Unbalanced traffic flow pattern 2. (d) 
Oversaturated traffic pattern.
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flow mode, federated PPO converges slower than individual PPO, but α = 0.1 produces the fastest convergence 
among all tested α values. Based on these experimental results, α = 0.1 is determined to be the optimal FL rate.

(3) Comparison of model effects with different federal update weights pi

In (3), the default weight pi = 1/N  assumes that each participant has equal influence. This section also 
explores a flexible weight allocation method, where each agent is assigned a different weight pi based on its 
performance during local updates. The ability of an agent is determined by its historical data from local updates, 
as detailed below: during the transition from the previous federated update to the current one, agent i performs 
K local model updates. The number of times the reward is greater than 0 during these updates is counted as the 
agent’s score scorei. A higher scorei indicates that the agent’s local updates have more effectively improved its 
policy towards higher rewards. After scoring all agents involved in the current federated update, the scores are 
normalized to determine the corresponding weights pi, calculated as follows:

	
pi =

{
scorei∑N

i=1
scorei

,
∑N

i=1 scorei ̸= 0
1
N

,
∑N

i=1 scorei = 0.
� (7)

If the reward is less than 0 for all K local updates, the agent’s update is considered ineffective, and its weight in 
the federated aggregation is set to 0, meaning it has no impact on the global model. When all local agents have a 
score of 0, the weights are allocated evenly.

Fig.  8 shows the model training curves for both the equal weight allocation and the flexible allocation 
methods. The final convergence heights are nearly identical, indicating that different weight allocation strategies 
do not significantly affect the model’s convergence height. Table 6 illustrates that when using flexible weight 
allocation, the federated PPO model converges faster than the model using equal weight allocation in the 
Unbalanced 1 and Unbalanced 2 traffic flow modes. Across all four traffic flow modes, federated PPO with 
flexible allocation achieves an average convergence speed improvement of 30.98%, compared to 25.96% for equal 
weight allocation. Therefore, in subsequent experiments, flexible weight allocation will be used for pi.

(4) Comparison of model effects for federated PPO and aggregated PPO
Federated PPO achieves global model updates by aggregating the network parameters of each agent, whereas 

aggregated PPO performs updates based on each agent’s state, action, and reward data. This section compares 
the performance of federated PPO and aggregated PPO at update frequencies of K = 1 and K = 10.

Fig. 9 illustrates the training curves for K = 1 and K = 10. When K = 1, aggregated PPO demonstrates 
higher convergence than federated PPO, especially under low-saturation traffic conditions. With K = 10, 
the convergence levels of federated PPO and aggregated PPO become comparable. As K increases, aggregated 
PPO shows a decline in convergence, whereas federated PPO remains relatively stable, indicating that the 
advantage in convergence for aggregated PPO is most evident at higher update frequencies. Table 7 summarizes 
the convergence speeds for both methods, showing that while federated PPO converges more slowly than 
aggregated PPO at K = 1, it surpasses aggregated PPO in speed at K = 10. This difference arises because, 
despite performing global model updates every 10 training steps, federated PPO still updates local policy models 
at each step, contributing to a faster relative convergence rate.

In addition, each aggregated PPO update requires transferring each agent’s state, action, reward, and next 
state data for K local updates to the aggregator, amounting to (8 + 1 + 1 + 8) × 4 × K  float64 variables per 
update. Following the neural network update, network parameters are distributed, requiring the transmission of 
2196 × 2 + 2145 = 6537 float64 variables, amounting to approximately 11.34 ms per aggregation update when 
K = 10. Over 200 training rounds, aggregated PPO requires about 27.22 seconds of communication time-
shorter than federated PPO’s additional 47.86 seconds-yet it demands substantially higher computation time 
(227.68 s), nearly 19 times that of federated PPO (12.02 s). In summary, federated PPO offers improved model 
convergence in terms of both speed and accuracy with minimal additional communication and computational 
costs while maintaining the privacy and security of local data.

Analysis of test results
This section evaluates the performance of federated PPO agents trained under settings of K = 10, α = 0.1, 
and flexible allocation of pi, aggregated PPO agents trained with K = 10, and individually trained PPO agents 
tailored for specific traffic patterns (Low saturation, Unbalance 1, Unbalance 2, and Oversaturated). Each 
approach is tested on a single intersection control task and benchmarked against a fixed-timing method with a 
default phase duration of 30 seconds. To account for the variability due to PPO agents’ action selection based on 
probabilistic distributions, each scenario was tested 50 times, with average values reported to better reflect each 
agent’s performance.

(1) Comparison of the control effect of each intelligence under four typical traffic flow patterns
As shown in Fig. 10, under low-saturation traffic conditions, the performance of all intelligent control methods 

closely matches that of the fixed-timing approach. Interestingly, the PPO-Low agent, trained specifically for low-
saturation conditions, exhibited increased vehicle waiting times, travel times, and stop counts compared to fixed 
timing. This can be attributed to the low arrival rate (below 0.083 vehicles/second) in each direction, where fixed 
timing ensures all arriving vehicles can pass within the green light phase, minimizing congestion, while the 
inherent randomness in PPO introduces occasional delays.

Under Unbalanced 1, Unbalanced 2, and Oversaturated traffic conditions, intelligent control methods 
demonstrated varying degrees of optimization for vehicle metrics, including average waiting time, travel time, 
and stop count, with PPO-Low performing the least effectively. federated PPO consistently ranked among the 
top performers, reducing average waiting times by 40.80%, 60.48%, and 26.55% compared to fixed timing across 
these scenarios. Average travel times were reduced by 29.78%, 45.88%, and 21.27%, and average stop counts 
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were reduced by 37.37%, 44.49%, and 25.40%. federated PPO’s performance approached that of aggregated PPO 
across these traffic scenarios and even surpassed it under oversaturated conditions.

On average, federated PPO achieved a 28.89% reduction in vehicle waiting time, a 22.90% reduction in travel 
time, and a 26.52% reduction in stop count. Aggregated PPO displayed the best overall performance, reducing 
waiting time, travel time, and stop count by 32.65%, 24.61%, and 24.90%, respectively. Among the individual 
PPO agents, PPO-Over provided the most notable optimizations with reductions of 31.40% in waiting time, 
24.26% in travel time, and 26.00% in stop count, while PPO-Low showed the weakest improvements, at 9.17%, 

Individual PPO Federated PPO (pi  average allocation) Federated PPO (pi  flexible allocation)

Low saturation 4679 6841(+46.21%) 6987(+49.33%)

Unbalanced 1 8578 5514(−35.72%) 4919(−42.66%)

Unbalanced 2 9253 6122(−33.84%) 5163(−44.20%)

Oversaturated 4655 1637(−64.83%) 1681(−63.89%)

Table 6.  Comparison of model convergence speeds for different federal update weight pi assignments for each 
traffic flow pattern. Significant values are in bold.

 

Fig. 8.  Training curves for different federated update weight pi allocation methods for each traffic flow 
pattern. (a) Low saturation traffic flow pattern. (b) Unbalanced traffic flow pattern 1. (c) Unbalanced traffic 
flow pattern 2. (d) Oversaturated traffic pattern.
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12.00%, and 4.67%, respectively. The other two individual PPO agents achieved moderate improvements, yet all 
fell short of federated PPO’s performance.

(2) Control effect comparison of agents in diverse traffic flow patterns
This section further examines agent performance by defining 24 traffic flow patterns through varying arrival 

rates for north-south and east-west traffic, covering nearly all real-world single-intersection scenarios. Federated 
PPO, aggregated PPO, and individual PPO agents are used to control traffic signals, and their performance 
across these 24 patterns is compared. As indicated by Fig. 10, reduced vehicle waiting times correlate closely 

K = 1 K = 10
Federated PPO Aggregated PPO Federated PPO Aggregated PPO

Low saturation 8276 4563 6987 12482

Unbalanced 1 7898 4245 4919 8076

Unbalanced 2 7199 4319 5163 9089

Oversaturated 3073 1560 1681 4665

Table 7.  Model convergence speed comparison between federated PPO and aggregated PPO.

 

Fig. 9.  Training curves for federated PPO and aggregated PPO at K = 1 and K = 10. (a) Low saturation 
traffic flow pattern. (b) Unbalanced traffic flow pattern 1. (c) Unbalanced traffic flow pattern 2. (d) 
Oversaturated traffic pattern.
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with lower travel times and stop counts; thus, only waiting time is used as the performance metric in subsequent 
experiments.

Fig.  11 displays the average vehicle waiting times under different traffic conditions using federated PPO 
and individual PPO agents. When the north-south arrival rate is 0.05 vehicles/second, federated PPO performs 
comparably to individual PPO agents (with the exception of PPO-Low), and fixed-timing control is optimal 
when the east-west arrival rate is below 0.083 vehicles/second. As the east-west rate exceeds 0.083 vehicles/
second, both federated PPO and individual PPO significantly reduce waiting times. At a north-south arrival rate 
of 0.1 vehicles/second, all agents exhibit less effective control when the east-west arrival rates are 0.075 and 0.1 
vehicles/second, with waiting times exceeding those of fixed timing. federated PPO achieves the best control 
performance when the east-west rate is 0.15 or 0.2 vehicles/second, maintaining a close second otherwise. When 
the north-south arrival rate reaches 0.3 vehicles/second and the east-west rate remains below 0.15 vehicles/
second, PPO-Over performs best; as the east-west rate increases beyond 0.15 vehicles/second, PPO-Un1 excels. 
federated PPO consistently ranks in the top two positions, indicating stable performance across various settings.

These findings reveal each algorithm’s optimization capabilities across diverse traffic scenarios. federated PPO 
consistently achieves near-optimal results across all 24 scenarios, avoiding any scenario-specific performance 
“collapse.” It reduces vehicle waiting time by an average of 27.34%, compared to 6.37%, 27.15%, 24.59%, and 
27.24% reductions for the individual PPO agents. The variance in federated PPO’s performance across these 
patterns is 0.0625, lower than the variances for the individual PPO agents (0.1170, 0.0582, 0.0679, and 0.0628), 
highlighting federated PPO’s stability and generalizability. In contrast, PPO agents trained on a single traffic 
pattern exhibit performance volatility; for instance, PPO-Un1 achieves a greater than 10% reduction in waiting 
time when the north-south rate is 0.3 vehicles/second and the east-west rate is over 0.2 vehicles/second but 
ranks lower under different conditions, such as a north-south rate of 0.1 vehicles/second and an east-west rate 
above 0.15 vehicles/second. The results from PPO-Low further indicate that an agent trained solely on low-
saturation data would yield suboptimal control under fluctuating conditions. In contrast, the federated PPO-
based approach for single-intersection signal control, enhanced by the FL framework, achieves improved control 
outcomes without requiring privacy-sensitive data exchange.

Fig. 12 presents average waiting times under federated PPO and aggregated PPO across the 24 patterns. While 
aggregated PPO generally outperforms federated PPO in reducing waiting times, federated PPO demonstrates 
superior control under high-traffic conditions in all directions. Aggregated PPO reduces waiting time by an 
average of 29.97%, yet its performance variance is higher than that of federated PPO, indicating that federated 

Fig. 10.  Comparison of federated PPO, aggregated PPO and individual PPO performance in single 
intersection tasks. (a) Average vehicle waiting time. (b) Average vehicle travel time. (c) Average number of 
vehicle stops.
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PPO not only approaches aggregated PPO’s performance but also provides more stable control across various 
traffic patterns.

Table 8 summarizes the specific optimization effects of the federated PPO agent on average vehicle waiting 
time across various traffic patterns compared to the fixed-timing method. The observations reveal two traffic 
conditions under which DRL does not significantly improve performance:

•	 When vehicle arrival rates in both north-south and east-west directions are below 0.083 vehicles per second, 
all directions remain unsaturated, making the fixed-timing method the optimal control approach.

•	 When arrival rates in the east-west and north-south directions are approximately equal, vehicle volumes in 
each direction are similar, and the agent’s inherently probabilistic action selection strategy tends to increase 
waiting times.

Under all other conditions, federated PPO enhances intersection throughput. However, as the difference 
between east-west and north-south arrival rates narrows, federated PPO’s effectiveness in reducing waiting times 
diminishes. In conditions of extreme unbalanced (e.g., a north-south arrival rate of 0.025 vehicles per second 
versus an east-west rate of 0.3 vehicles per second), federated PPO yields the highest improvement over fixed 
timing, reducing average vehicle waiting time by 68.40%.

(3) Control effectiveness of the algorithms in the three-lane single intersection environment
The previous tests were conducted within a standard four-way intersection, varying only the vehicle arrival 

rates in each direction. In this section, fixed-timing and intelligent signal control methods are extended to a 
single intersection with two straight lanes and one left-turn lane. Using the four traffic flow settings listed in 

Fig. 11.  Comparison of federated PPO and individual PPO performance in single intersection tasks. (a) 
Vehicle arrival rate in the north-south direction 0.05 vehicles/second. (b) Vehicle arrival rate in the north-
south direction 0.1 vehicles/second. (c) Vehicle arrival rate in the north-south direction 0.3 vehicles/second.
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East-west vehicle arrivals

North-South vehicle arrivals

0.05 0.1 0.3

0.025 +11.96% −47.04% −68.40%

0.05 +13.05% −32.04% −60.48%

0.075 +15.23% +3.11% −44.28%

0.1 −32.04% +0.66% −35.07%

0.15 −40.08% −12.76% −26.55%

0.2 −52.03% −21.83% −12.68%

0.25 −58.40% −32.96% −5.60%

0.3 −60.48% −35.07% +0.40%

Table 8.  Optimization effect of federated PPO algorithm on average vehicle waiting time compared to fixed 
timing method. Significant values are in bold.

 

Fig. 12.  Comparison of federated PPO and aggregated PPO performance for more traffic modes in single 
intersection tasks. (a) Vehicle arrival rate in the north-south direction 0.05 vehicles/second. (b) Vehicle arrival 
rate in the north-south direction 0.1 vehicles/second. (c) Vehicle arrival rate in the north-south direction 0.3 
vehicles/second.
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Table 1, new simulation data was generated for this modified three-lane setup. During testing, agents receive the 
queue length and waiting time for each incoming lane. To adapt the state inputs, the two straight lanes are treated 
as a single unit: the queue length is taken as the average queue length across both lanes, while the waiting time 
is the maximum waiting time of the lead vehicle on either lane. Thus, the agent receives a 16-dimensional state 
vector, allowing it to apply previously trained models directly to this intersection setup. Detailed test results are 
shown in Table 9.

In low-saturation traffic flow settings, none of the intelligent algorithms were effective in significantly 
reducing the average vehicle waiting time. However, under other traffic flow patterns, all intelligent methods 
achieved varying degrees of improvement. Notably, unlike the results from the standard four-way intersection, 
the single-agent PPO-Un1 performed poorly in this environment, indicating limited generalization ability. 
Although the single-agent PPO-Low previously performed the worst in the four-way tests, it outperformed 
PPO-Un1 in this three-lane intersection setup. Aggregated PPO showed the highest effectiveness, reducing 
the average waiting time by 40.45%, followed by federated PPO with an average reduction of 21.51%. Among 
the single-agent PPO models, PPO-Over performed best, decreasing waiting times by 20.42%, while PPO-
Un1 performed the worst, increasing average waiting times by 38.05%. These results underscore the robust 
generalization capability of federated PPO and suggest a feasible approach to applying trained agents across 
diverse intersection configurations for signal control, further validating the scalability of the federated PPO 
framework.

Remark 4  It is worth pointing out that despite both using a PPO-based FRL approach, the proposed method in 
this paper still offers significant superiority in terms of cross-domain applicability, improved generalization ca-
pabilities, and increased efficiency in processing non-IID data across distributed traffic intersections compared 
to the works of Lim et al. in33,41. Moreover, in contrast to some recent work on DRL-based collaborative traffic 
signal control17–19, our approach transmits only model parameters, ensuring that private data is neither trans-
mitted nor aggregated. Second , by exploiting federated learning, the proposed method has better adaptability 
to different intersection configurations and traffic conditions, surpassing the generalization ability of traditional 
DRL methods. By optimizing state interactions and reward functions, our approach significantly accelerates 
convergence while minimizing communication overhead compared to centralized or sparse DRL frameworks.

Conclusion
This study introduces a FRL-based approach for cross-domain traffic signal optimization, enabling joint training 
of RL models across multiple environments without the need for private data exchange. This approach enhances 
model learning efficiency and improves stability and generalization. By defining the state as queue length and 
waiting time, the method significantly reduces the dimensionality of the state space, while also ensuring that 
the state information is easily accessible. Extensive experiments were conducted to evaluate the effectiveness of 
individual PPO, federated PPO, and aggregated PPO in controlling traffic flow efficiency at single intersections. 
Overall, the proposed Federated PPO-based traffic signal control algorithm offers three primary advantages: (1) 
Faster Convergence: By integrating the FL framework, Federated PPO achieves an average convergence speed 
47.69% faster than single-agent PPO while maintaining comparable convergence levels. Additionally, Federated 
PPO’s convergence speed is 45.35% faster than that of Aggregated PPO, demonstrating a clear advantage in 
accelerating model convergence; (2) Enhanced Model Stability and Generalization: Federated PPO consistently 
demonstrates near-optimal or optimal control effectiveness across nearly all traffic flow patterns, achieving 
an average reduction of 27.34% in vehicle waiting time, and up to a 68.40% reduction in highly unbalanced 
traffic conditions. Furthermore, Federated PPO is effectively adaptable across different single-intersection 
configurations, showing more stable optimization results and better generalization than single-agent PPO; (3) 
Data Privacy and Security: During model training, Federated PPO only transmits model parameters without 
involving the transfer or computation of private data, thereby safeguarding data privacy and security.

The experimental results validate that the proposed algorithm improves traffic flow efficiency at single 
intersections, demonstrating the effectiveness of the Federated Reinforcement Learning-based framework for 
cross-domain intelligent traffic signal control in single-intersection scenarios.

Low saturation Unbalanced 1 Unbalanced 2 Oversaturated

Fixed-timing method 36.01 164.90 196.72 214.65

Federated PPO 60.95 83.40 61.81 134.58

Aggregated PPO 39.24 76.81 55.57 116.78

Individual PPO-Low 59.03 136.50 86.24 157.08

Individual PPO-Un1 106.55 160.24 124.37 205.91

Individual PPO-Un2 65.15 85.46 63.57 138.75

Individual PPO-Over 54.45 125.72 64.48 124.67

Table 9.  Average vehicle waiting time (s) for a three-lane single intersection under the control of each 
algorithm.
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Data availability
All data used and generated during the current study are included in this paper.
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