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A B S T R A C T

Debris flow is one of the most devastating natural hazards. Identifying the dynamic changes and driving factors 
of debris flow risk can enhance hazard mitigation and prevention. It is not clear what factors can mostly lead to 
debris flow risk change in mountainous areas, particularly some of these areas in the context of intense earth
quakes, rapid urbanization, and climate change. To address these questions, an ensemble learning model was 
constructed to estimate the debris flow risk of the baseline period (2000) and the current period (2020) in the 
upper reach of the Min River. The study found that the areas with extremely high debris flow risk decreased by 
18.57%, while the areas with moderate and high risk levels increased by 8% and 14% respectively. With this 
trend of overall risk increasing, the population and buildings affected by extremely high debris flow risk have 
increased by 20% and 30% respectively. Based on the interpretable learning model of SHAP (The Shapley Ad
ditive Explanations value), the mechanisms by driven factors that lead to changes in risk were explored. Pop
ulation, elevation and NDVI are the most influential factors leading to changes in risk. Specifically, the increase 
in risk in the low elevation area is due to the rapid urbanization caused by the increase of population and GDP. 
While the risk change in higher elevation areas contributes to the variation of vegetation and precipitation. These 
findings have implications for debris flow mitigation and contribute to the understanding of the multiple factors 
that impact debris flow risk.

1. Introduction

Debris flow is one of the most destructive types of mass movement 
(Guo et al., 2024). In the mountainous areas of China, debris flows cause 
widespread life and economic losses every year (Ding et al., 2016). To 
decrease the losses caused by debris flows, a wide range of engineering 
and non-engineering measures were adopted for risk mitigation and 
prevention. However, in areas with frequent and intense earthquakes 
like the upper reach of the Min River, earthquake-triggered landslides 
can provide sufficient loose material for the formation of subsequent 
debris flow events (Jin et al., 2023). With the rapid urbanization pro
cess, debris flows are becoming more frequent in these areas and there is 
a risk of control and prevention projections failure due to siltation 
(Huang et al., 2021). Thus, debris flow risk assessment is an important 
project which can identify the high risk areas and disaster objects of 

debris flows (Chen et al., 2021). Based on the risk assessment, identi
fying the risk dynamic changes can deepen the understanding of the 
consequences of changes in the human-terrestrial environment. 
Furthermore, a series of mitigation schedules like urbanization plan
ning, local people migration, dredging of prevention, and control pro
jections can be proposed (Elshorbagy et al., 2017).

To estimate the debris flow risk, there are mainly three methods: 
numerical simulation methods (Cheng et al., 2022), multi-criteria de
cision analysis (MCDA)(Chen et al., 2021), and machine learning 
method (MLM) (Qiu et al., 2024). Up to now, the numerical simulation 
models for debris flow formation, evolution, and accumulation have 
been well developed and utilized (Bout et al., 2018; Liu et al., 2021). 
With the input parameters of sources, channels, and precipitation sce
narios, the numerical simulation models can analyze the physical pro
cess, hazard area, and other crucial features of debris flows (Cheng et al., 
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2022). However, numerical simulation modeling typically necessitates 
precise geographical and hydrological data, in addition to a substantial 
computational burden. It is therefore impractical to undertake numeri
cal modeling efforts at the regional study for all debris flow gullies 
(Jialei Chen et al., 2021; (Lyu et al., 2019). With this shortage, The 
MCDA method and machine learning method are widely employed in 
the regional debris flow risk assessment. The establishment of index 
system and the weight assignment of indexes are the critical steps of 
MCDA (Chen et al., 2021). In the earlier studies, methods such as the 
analytic hierarchy process (AHP), expert scoring method, and fuzzy 
comprehensive evaluation method are usually used to determine the 
index weights (Lin et al., 2020). Most of these methods are based on 
expert experience and knowledge and are highly subjective, which are 
considered as the limitation of MCDA. (Danumah et al., 2016).

In recent years, the rapid developments of MLMs provide new insight 
to enhance the efficiency and accuracy of prediction, which have been 
widely used in risk assessment (Gao et al., 2022). Studies show that 
Random Forest (RF), Decision Tree (DT), Artificial neural network 
(ANN), and Support Vector Machine (SVM) are the most widely used 
algorithms. These algorithms are often applied in an ensemble or hy
bridized way to analyze most of the flood and landslide events (Zennaro 
et al., 2021). However, the MLMs usually be seen as a “black box”, which 
cannot describe how parameters and indexes affect the risk (Wang et al., 
2024). Thus, the explainable/interpretable models of Shapley additive 
explanation (SHAP), were proposed to introduce how indicators influ
ence the dependent variable (Bacanin et al., 2024). The SHAP model has 
been widely used in research, such as the driven factors of runoff and 
sediment (Bai et al., 2024), the tropical cyclone (Qin et al., 2024), and 
debris flows (Wang et al., 2024).

In the background of urbanization and climate change, the disaster 
risk can significantly change in the future (Jiang et al., 2023; Lin et al., 
2022). Within the process of urbanization, the debris flow resources can 
accumulate rapidly due to the slope instability caused by engineering 
measures (Johnston et al., 2021); (Rohan et al., 2023) . In addition, the 
increase in population and economy can increase the exposure and 
vulnerability of debris flows (Cui et al., 2019). Climate change can lead 
to the variation of hydrothermal conditions and precipitation patterns, 
which can change the debris flow risk by altering the susceptibility and 
hazards (Jiang et al., 2023); (Sangelantoni et al., 2018) . Most of these 
researches are focused on regional study, using the global climate 
models (GCMs) to evaluate the risk in the future. However, it is still of 
consideration how the risk changes between the baseline periods and the 
current periods, due to urbanization and climate change. Accurate 
identification of current risk variation trends and influencing factors can 
provide a more accurate projection for the future. Approximately 70 % 
of China’s territory is comprised of mountainous regions, which are 
home to nearly one-third of the total population (Cui et al., 2022). The 
southwestern region of China has experienced a number of intense 
earthquake events, frequent precipitation, extensive human engineering 
activities, and a significant increase in urbanization (Li et al., 2021; Lin 
et al., 2022). This provides an ideal setting for the study of the dynamic 
risk changes and factors driving mechanisms of debris flows.

The primary objectives of this study are: (1) To develop an integrated 
learning model to assess the debris flow risk in the upper reach of the 
Min River during the baseline period of 2000 and the current period of 
2020; (2) To investigate the dynamic characteristics of risks and 
compare the changes of disaster bearing body affected by risks; and (3) 
To analyze the mechanism of indicators of the debris flow risk dynamic 
changes based on interpretable learning model. This study highlights the 
changes in the debris flow risk and its influence on the local population 
and buildings. It also emphasizes the need to consider the impacts of 
driving differences and changes in factors for regions with different el
evations. These efforts can contribute to growing the knowledge of 
changes in debris flow risk and better local planning and construction.

2. Study area and material

2.1. Study area

The upper reach of the Min River is located in southwestern China, in 
the transition area between the Tibetan Plateau and the Sichuan Basin 
(Fig. 1a). The district encompasses an area of 473.76 km2, comprising 6 
counties and 84 townships. The study area has an azonal arid valley 
climate, which the mean temperature of the area is 5.7–13.5 ◦C, and 
annual precipitation is 400–800 mm of which 80 % is concentrated in 
the period from May to October (He et al., 2022). The distribution of 
vegetation cover has clear vertical zonation, which mainly consists of 
small-leaf, arid shrubs (1300–2200 m), mixed broadleaf–conifer forests, 
evergreen and deciduous broad-leaved mixed forests (2200–2800 m), 
Picea and Abies forests (2800–3600 m), and alpine shrubs and meadows 
(>3600 m) (Shi et al., 2022). A number of strong earthquakes have 
occurred in the study area, such as the 1933 Diexi Ms 7.5 earthquake, the 
1976 Songpan Ms 7.2 earthquake, the 2008 Wenchuan Ms 8.0 earth
quake, and the 2017 Jiuzhaigou MS 7.0 earthquake. The active 
geological activity has resulted in widespread geomorphic landscape 
and vegetation degradation, and a large number of local accumulations. 
The climate, vegetation, and geological conditions led to high debris 
flow activity. Since 2000, there have been 817 debris flow events in the 
region, with the majority of events occurring in river valleys, as shown 
in Fig. 1b. Of the 817 documented instances of debris flows, 175 resulted 
in casualties and economic damage. These events resulted in 35,911 
individuals being affected and economic losses amounting to nearly 
RMB 4 billion. The study area is characterized by extreme differences in 
altitude, with the lowest point at 727 m elevation and the highest at 
5914 m elevation. The debris flow disasters in the study area are 
distributed over the elevation zone from 800 m to 3600 m, and the 
distribution statistic is shown in Fig. 1 c. In addition, the population 
distribution of the study area is also closely related to elevation. Fig. 1 c 
shows that most of the population is distributed below 2800 m elevation. 
In addition, between 2000 and 2020, there is a significant increase in the 
number of people living between 1000––1600 m elevation.

2.2. Data Resource

2.2.1. Debris flow disasters inventory
In this study, the debris flow inventory is collected from the Chengdu 

Regional Meteorological Center Geological Hazard Forecasting System 
(CRMCGHFS) (Gao et al., 2022). Under the initiation of CRMCGHFS, we 
participated in the project of Detailed Risk Investigation of Geological 
Hazards on Slopes in Sichuan Province. The project identified the cur
rent status of geologic hazards (including landslides, mudslides, ava
lanches, etc.) in each county of Sichuan Province. All the debris flow 
events in the database were obtained from remote sensing interpretation 
combined with field investigations. The Investigation process is, firstly, 
visual interpretation identifies geologic hazards based on remote 
sensing images (the spatial resolution of remote sensing images is less 
than 0.5 m). Then, field survey work that includes questionnaires, 
drones, and other means is conducted to identify the location, the 
occurrence date, and other attributions of geologic hazards. Finally, the 
collected data are archived to form a geohazard database. This survey 
ensured that every debris flow event actually occurred and was recorded 
at the correct coordinates. The dataset is highly accurate in populated 
areas; however, it may lack details in areas with minimal human ac
tivity. This has minimal impact on the findings presented in this paper.

2.2.2. Debris flows risk conditioning factors
According to the previous study, a total of thirteen factors were 

selected for the debris flow risk assessment. In order to facilitate dif
ferentiation between the aforementioned factors, they have been clas
sified into three distinct categories: trigger factors, subsurface factors, 
and disaster-bearing factors (Jialei Chen et al., 2021). The trigger factors 
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include maximum three-day precipitation (M3DP) and annual precipi
tation (AP). The subsurface factors include elevation (ELE), slope (SLO), 
topographic relief (TR), plain curvature (PLC), profile curvature (PRC), 
melton ratio (MR), the distance to fault (DTF), normalized difference 
vegetation index (NDVI), and elevation difference (ED). The disaster- 
bearing factors include population counts (POP) and real gross na
tional product (GDP). The spatial distribution of factors is shown in 
Fig. 2. The MR can be calculated by the formula (Melton, 1966): 

Rm =
dH̅̅̅

̅
A

√ (1) 

Where Rm represents the MR value, dH represents the maximum 
elevation difference (m) within the watershed, A represents the area 
(m2) of the watershed.

M3DP represents the maximum value of precipitation over a three- 
day period in a year. It can be used to reflect short periods of heavy 
precipitation over several days, which can have a significant impact on 
the triggering of geological disasters (Wu and Chen, 2009). AP is a 
measure of the overall precipitation conditions and wetness of a given 
area (Liu et al., 2024). ELE, SLO, TR, PLC, PRC, MR, and ED factors are 
used to reflect key factors such as debris flow potential, flow direction, 
and velocity, and are widely employed in the assessment of debris flow 
hazards (Broeckx et al., 2019; Wang et al., 2024). The presence of active 
faults can serve as an indicator of the degree of local tectonic activity, 
thereby providing a potential material source for debris flows. Accord
ingly, the distance to the fault represents a significant determinant in the 
assessment of debris flows (Li et al., 2024). NDVI (Chen et al., 2024) has 
the potential to indicate the growth of local vegetation. This study used 
the annual average NDVI to measure the overall vegetation for the year. 
Furthermore, to a certain extent, it can also reflect the activity of 
landslide material sources (Zhang et al., 2024).

The distributions of five dynamic factors (Fig. 2 i to r) changed 
significantly between the baseline period and the current periods. The 
regional average of AP, M3DP, POP, and GDP increased, while NDVI 
showed a small decrease. The standard deviation (STDev) of AP, NDVI, 

POP, and GDP increased, indicating that the dispersion of these factors is 
increasing. The above changes are in line with what has been found in 
several literatures that precipitation is increasing, vegetation is 
declining and population is growing economically in the study area. In 
addition, the magnitude of the change in NDVI is small, however, in fact, 
the study area experienced a Ms 8.0 magnitude earthquake in 2008 and 
Ms 7.2 magnitude earthquake in 2017, which resulted in significant 
vegetation attenuation. 2020 When the NDVI of the current period, has 
been a long-term result of vegetation recovery (See Table 1).

The M3DP and AP were calculated from daily Global Precipitation 
Measurement database (Huffman et al., 2019), which be validated as 
accurate for the Sichuan region (Tang et al., 2021). The ELE, SLO, TR, 
PLC, PRC, RA, and ED were extracted and calculated from the digital 
elevation model (DEM), which was collected from the Geospatial Data 
Cloud site, Computer Network Information Center, Chinese Academy of 
Sciences (GDC, https://www.gscloud.cn/), with a spatial resolution of 
90 m × 90 m. The NDVI data is also obtained from GDC, with a spatial 
resolution of 1 km × 1 km. The distribution of fault was obtained from 
Geocloud, China Geological Survey (geocloud.cgs.gov.cn). Population 
data was collected from Worldpop. The GDP data is produced by Chen et 
al (Chen et al., 2021), the detailed information can be found in the study 
of Chen et al (Jiandong (Chen, 2022). In order to ensure the spatial 
consistency of the data, a multitude resampling method is used to 
determine the value of each raster (1 km x 1 km) based on the most 
frequent value in the raster unit. In addition, the settlement buildings 
data were collected using Python crawling from Gaode maps, then 
supplemented and corrected with remote sensing interpretation. The 
landuse data is produced by Yang and Huang, which can be available for 
retrieval and querying on Zenedo (Yang and Huang, 2023).

To calculate the risk dynamic change of the study area, we collected 
the POP, GDP, AP, M3DP, NDVI, and buildings for two periods, 2000 
and 2020. The risk in 2000 is used as the baseline period and in 2020 is 
used as the current period to explore the change in risk.

Fig. 1. The basic information about the study area. a is the location of area in China. b is the elevation and distribution of debris flows in the study area. c denotes the 
distribution of the number of debris flows and the population in each elevation band.
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3. Methodology

3.1. Debris flow risk estimation modeling

Machine learning models have shown good performance in disaster 
risk assessment. To estimate the debris flow risk, four learning models 
were trained and integrated: random forest (RF) (Kim et al., 2018); 
(Tsagkrasoulis and Montana, 2018) , logistic regression (LR) (Ayalew 

and Yamagishi, 2005); (Rai et al., 2022) ; support vector machine (SVM) 
(Qin et al., 2022; Xiong et al., 2019), and multi-layer perceptron (MLP) 
(Moayedi et al., 2023; Wang et al., 2021). These models have been 
widely used in disaster risk assessment and have been shown to have 
good performance. When performing the modeling, we referenced 
several other studies to determine the parameters of the model (Wei 
et al., 2024; Yu et al., 2024). For example, the number of trees for the RF 
model is n = 100, and the maximum depth was set to 10; For MLP, the 

Fig. 2. The spatial pattern and distribution of debris flow risk conditioning factors. (a) elevation, (b) slope, (c) topographic relief, (d) plain curvature, (e) profile 
curvature, (f) melton ratio, (g) elevation difference, (h) distance to fault, (i) annual precipitation of the baseline period, (j) annual precipitation of the current period, 
(k) maximum three-day precipitation of the baseline period, (l) maximum three-day precipitation of the current period, (m) normalized difference vegetation index of 
the baseline period, (n) normalized difference vegetation index of the current period, (o) GDP of the baseline period, (p) GDP of the current period, (q) population of 
the baseline period, and (r) population of the current period.
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default architecture consists of one hidden layer with 100 neurons, and 
the activation function used is ’relu’. The kernel function for SVM is 
’rbf’, and max_iter for LR model is set to 100. In general, integrated 
models demonstrate superior evaluation accuracy compared to indi
vidual learning models (Lin et al., 2017; Yu, Guo, Jiang, Shao, & Zhou, 
2024). In this study, the bagging method was used to integrate four 
models (Wu et al., 2020). The use of bagging helps to increase model 
robustness and prevent overfitting by averaging out individual model 
biases and variances. For modelling training, we generated the same 
number of non-debris flow points as debris flow events in watersheds 
without debris flow occurrences (specifically, 177 points). This process 
was conducted for an equivalent number of non-debris flow events to 
ensure a balanced and representative sample. Then, 70 % of the 354 
events (177 debris flow points and 177 non-debris flow points) were 
randomly selected as training data, while the remaining 30 % were used 
as validation data. Based on the training dataset, four models RF, SVM, 
MLP and LR are trained separately and then they are integrated using 
bagging. It is important to note that this quantity is based on the period 
of 2020. Our goal is to develop the most suitable debris flow risk esti
mation model for 2020, and then retrospectively estimate the risk for 
2000. Afterward, based on the established ensemble learning model, the 
debris flow risks for the two periods in the 1304 catchment units were 
calculated and validated. In this study, the modeling task is formulated 
as a regression problem, and the output debris flow risk has a value of [0, 
1], with closer to 1 indicating higher risk, means a greater likelihood of 
debris flow damage occurrence. During the modeling process, hyper
parametric optimization is employed to guarantee impartial compari
sons between the models. Ultimately, the assessment result is validated 
through the utilization of debris flow incidents that have resulted in 
human economic casualties (Jialei Chen et al., 2021). The learning 
model was constructed in the Python 3.12.2 environment. All subse
quent analyses are based on the debris flow risk maps generated by the 
ensembled model.

3.2. The Shapley Additive Explanations value evaluation

The Shapley Additive Explanation (SHAP) was used to quantify the 
feature importance to risk (Bai et al., 2024; Qin et al., 2024). SHAP is an 
emerging technique that has been employed in recent years to gain 
insight into the modeling process of machine learning and deep learning 
models (Bacanin et al., 2024). The SHAP is often used in the field of 
Explainable Artificial Intelligence (XAI) to provide interpretability and 
transparency in complex model. Furthermore, SHAP is capable of 
computing interactions between factors by promoting Shapley values, 
thereby enabling the interpretation of global performance while main
taining local fidelity (Lundberg et al., 2020); (Stojić et al., 2019) . The 
Shapley value ϕj(ν) can be mathematically represented by: 

ϕj(ν) =
∑

S⊆{1,...,p}{j}

|S|!(p − |S| − 1 )!

p!
(νx(S ∪ {j} ) − νx(S) ) (2) 

Where S is a subset of the p features the model utilizes, and x is the 
feature value vector of the instance under study. νx(S) is the forecast for 
feature values in set S. The calculation of SHAP value be computed and 

visualized in the Python 3.12.6, harnessed by the package “shap”. The 
details of SHAP are provided by Wang et al (Wang et al., 2024).

3.3. Assessment units

The formation of debris flows is most commonly observed in small 
catchments (Qiao et al., 2021; Qin et al., 2019). Therefore, catchment 
units are employed as the fundamental unit of assessment for debris 
flows. Based on DEM and GIS, the study area was divided into 1304 
micro catchment units, with the minimum unit is 1.04 km2, the 
maximum unit is 90.70 km2. All small catchments are delineated based 
on ridgelines and valley lines to ensure accuracy. The spatial resolution 
of the small catchment is consistent with the DEM at 90 m x 90 m, which 
is a feasible accuracy at the scale of the study area. A total of 68 % of 
catchment units are less than 20 km2 in size, with over 90 % of these 
units being less than 40 km2 in size, and the average area is 17.66 km2.

3.4. Accuracy assessment

The receiver operating characteristic (ROC) curve, confusion matrix 
parameters, overall accuracy, and Kappa coefficient were used to eval
uate the performance of the model simulation (Costache and Tien Bui, 
2020); (Wei et al., 2024) . The area under the curve (AUC) can reflect the 
accuracy of a model. The value of AUC is between [0,1], with higher 
values indicating higher model accuracy (Gao and Ding, 2022). ROC is a 
widely used method to evaluate the performance is disaster assessment. 
The confusion matrix contains four parameters, true positive (TP), false 
positive (FP), false negative (FN), and true negative (TN), which were 
used to characterize the accuracy of the model predictions. Based on 
these four parameters, accuracy, precision, recall, F1-score, and Kappa 
coefficient can be calculated. Several metrics are calculated as follows: 

Accuracy =
TP + TN

TP + TN + FP + FN
(3) 

Precision =
TP

TP + FP
(4) 

Recall =
TP

TP + FN
(5) 

F1 − Score =
2 × Precision × Recall

Precision + Recall
(6) 

k =
Po − Pe

1 − Pe
(7) 

The Accuracy is the proportion of all samples that the model 
correctly. The Precision refers to the proportion of samples correctly 
predicted as debris flows out of all the samples predicted to be debris 
flows by the model. The Recall is a metric measuring the model’s ability 
to capture debris flows occurrences. F1-score is the harmonic mean of 
precision and recall, providing a balanced consideration of the model’s 
accuracy and comprehensiveness (Lv et al., 2024). While k is the kappa 
coefficient, Po is the observed agreement, and the Pe is the expected 
agreement.

3.5. Process

Based on ArcGIS, all data underwent pre-processing steps. The values 
of the indicators were extracted into the watershed units (Xiong et al., 
2019). Each indicator was extracted into the watershed units. Specif
ically, GDP and population were extracted by summing the values of all 
raster cells within each watershed, while other factors were extracted by 
calculating the average value of the raster cells within each watershed. 
The data processing and result analyzing method is shown in Fig. 3. 
Firstly, the indicator system was divided into two categories: normal and 
dynamic indexes. The dynamic factors were selected for the periods of 

Table 1 
The overview of five dynamic factors.

Indicators name 2000 2020 variation
average STDev average STDev average STDev

AP (mm) 497.99 54.48 551.25 86.78 53.26 32.3
M3DP (mm) 47.3 11.95 51.84 9.79 4.54 − 2.16
NDVI 0.81 0.14 0.79 0.16 − 0.02 0.02
POP (person/ 

km2)
0.11 0.48 0.13 0.86 0.02 0.38

GDP (10,000 
dollars/ km2)

0.163 0.26 0.43 1.16 0.267 0.9
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2000 and 2020, respectively, resulting in the generation of two datasets. 
Then, based on the micro catchment units, an ensemble learning model 
composed of RF, SVM, LR, and MLP was developed for the risk esti
mation. In this section, the risk maps were output by the ensemble 
learning model and the accuracy was validated. Finally, the risk spa
tial–temporal change was analyzed and the vertical characteristics were 
recognized. The driven factors of the vertical differentiation in risk were 
identified through the use of SHAP value.

4. Result

4.1. The validation of ROC

The ROC and AUC values of learning models are shown in Fig. 4, 
where the horizontal coordinate represents the false positive rate, and 

the vertical coordinate indicates the true positive rate. The ensemble 
model shows the highest AUC among the models. Higher AUC value 
indicates better model performance. According to previous study, >0.8 
means excellent model performance. Therefore, the AUC value of the 
ensemble model is 0.983 (in 2020) and 0.976 (in 2000), which means 
the model has robust fitting and prediction ability (Dodangeh et al., 
2020).

Table 2 presents the evaluation metrics for the predicting dataset. 
From Table 2, it is shown that the ensemble model slightly outperforms 
other individual models, indicating that the integration of models in this 
study is effective. Although the ensemble model does not show a clear 
advantage in some individual metrics, such as the highest Precision 
(0.89) achieved by the MLP in 2000, it remains the best-performing 
model overall, consistently maintaining the highest classification accu
racy across different scenarios.

Fig. 3. The process of this study.

Fig. 4. The ROC of the model. (a) is the validation of 2000. (b) is the validation of 2020.

Y. He et al.                                                                                                                                                                                                                                       Ecological Indicators 173 (2025) 113400 

6 



4.2. The Spatial-Temporal pattern and change of risk

The equal spacing method was employed to categorize the risk into 
five classes, namely extremely low (0–0.2), low (0.2–0.4), moderate 
(0.4–0.6), high (0.6–0.8), and extremely high (0.8–1). Fig. 5 shows the 
result of debris flow risk assessment. As shown in Fig. 5 (a) and (b), the 
area with extremely high and high risk is mainly distributed in the 
southeast and middle regions of the study area. Globally, in 2020 current 
period, areas with high and extremely high risk encompassed approxi
mately 5000 km2, representing 20 percent of the total area. The majority 
of these regions are situated within river valleys, as well as in the 
transitional zone between river valleys and high mountainous ranges. 
The areas with the low and extremely low risk are predominantly situ
ated in the less frequented alpine and sub-alpine regions in the western 
and northern sections of the study area, taking over an area of 15000 
km2. (See Table 3).

Fig. 5 (c) reveals the dynamic pattern of debris flow risk, fluctuations 
of risk less than 5 % are defined as minor changes. The area with 
extremely high and extremely low risk is decreased, with the area of 385 
km2 and 847 km2 respectively. The southeastern region of the study area 

Table 2 
Evaluation of assessment models in two periods.

models Period Parameters
TP FP FN TN Accuracy Precision Recall F1-score Kappa

RF 2000 0.83 0.16 0.17 0.85 0.84 0.83 0.85 0.84 0.68
2020 0.79 0.21 0.17 0.83 0.81 0.79 0.82 0.81 0.62

LR 2000 0.77 0.23 0.25 0.75 0.76 0.77 0.76 0.77 0.53
2020 0.81 0.19 0.3 0.7 0.75 0.81 0.73 0.77 0.51

MLP 2000 0.89 0.11 0.23 0.77 0.83 0.89 0.80 0.84 0.66
2020 0.74 0.26 0.13 0.87 0.80 0.74 0.85 0.79 0.6

SVM 2000 0.74 0.26 0.19 0.81 0.77 0.74 0.80 0.76 0.55
2020 0.79 0.21 0.23 0.77 0.78 0.79 0.78 0.79 0.57

ensemble model 2000 0.83 0.17 0.11 0.89 0.86 0.83 0.88 0.85 0.72
2020 0.87 0.13 0.15 0.85 0.86 0.87 0.85 0.86 0.72

Fig. 5. The debris flow risk result. a is the debris flow risk in 2000, b is the debris flow risk in 2020, c is the risk change between the two periods. d is the trend in the 
proportion of risk, which is graded at 0.02. e is the proportion of risk in each risk level.

Table 3 
The debris risk distribution and change in baseline period and current period.

Risk level Area(km2) Risk changes 
(km2)

Risk change ratio 
(relative)2000 2020

Extremely 
low

11787.80 10940.49 − 847.32 − 7.19 %

Low 3504.27 4102.43 598.16 17.07 %
Moderate 2652.97 2867.81 214.84 8.1 %
High 2963.30 3383.29 419.99 14.17 %
Extremely 

high
2124.35 1738.68 − 385.67 − 18.15 %
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is the primary area exhibiting a decline in risk. The majority of towns in 
this region has undergone a transition from an extremely high risk grade 
to a high risk grade. The west-central region of the study area is iden
tified as the area of primary elevated risk. The risk in these areas have 
undergone a transition, with a shift from moderate-high to high −
extremely high risk. Additionally, some low risk areas have been 
upgraded to moderate. Fig. 5(d) and (e) overview the risk distribution 
and changes in 2000 and 2020. In the global respective, the risk shows a 
trend of increase. Locally, extremely high and extremely low risk is 
decreased, while the other grades are increased. The most significant 
alterations are occurring in regions with extremely low risk, which are 
now exhibiting an uptick in risk. In comparison to the baseline period, 
the extremely high risk area exhibited an 18 % reduction, while the 
moderate and high risk areas demonstrated an 8 % and 14 % increase, 
respectively.

4.3. The distribution of risk in vertical zone

The population, economy, and settlements in the upper reach of the 
Min River have very typical characteristics of vertical zone. Further
more, according to our assessment result, the debris flow risk distribu
tion exhibits variation across the different vertical zones. According to 
local government statistics and field surveys, the regions is divided into 
5 vertical zones for their different ethnic groups and lifestyles. The 
vertical zone 1 (VZ1) crosses the elevation of 800–1200 m. The vertical 
zone 2 (VZ2) crosses the elevation of 1200–2200 m. The vertical zone 3 
(VZ3) crosses the elevation of 2200–2800 m. The vertical zone 4 (VZ4) 
crosses the elevation of 2800–3600 m. The vertical zone 5 (VZ5) has an 
elevation of over 3600 m. The location of vertical zones, and the over
views of risk in each vertical zone are shown in Fig. 6 and the overviews 
of risk changes are shown in Table 4.

Fig. 6. The overviews of vertical zones and distribution of risk in the study area. (a) is the location of vertical zones. (b) is the area under the risk grades on the 
vertical zone. (c) is the population affected by the risk. (d) is the buildings affected by the risk.
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Table 4 
The overviews of risk changes in each vertical zone.

Regions Category Extremely low low moderate high Extremely high

Relative change rate (%, compared with the baseline period)

VZ1 Area 0 0 0 20.8 % − 20.8
Population 0 0 0 0 14.40
buildings 0 0 0 1.94 19.07

VZ2 Area 0 2.5 1.5 5.5 − 9.5
Population 0 0.61 0.77 3.81 10.16
buildings 0 − 0.4 0.5 2.81 17.9

VZ3 Area − 0.63 2.75 − 2.26 2.24 − 2.22
Population − 0.17 0.66 − 0.44 4.27 0.91
buildings − 0.39 − 0.57 5.22 24.61 − 0.77

VZ4 Area − 4.38 1.80 1.49 2.32 − 1.23
Population − 1.03 − 0.42 3.72 13.25 − 4.31
buildings − 1.94 2.64 8.11 24.56 − 0.12

VZ5 Area − 4.56 3.19 1.23 0.41 − 0.27
Population − 12.43 − 0.59 1.18 − 1.18 0
buildings 0 0.784 3.92 0 0

Fig. 7. The SHAP value of driving factors. (a) is the abstract plot of SHAP value. (b) is the SHAP summary plot, where x represents the mean SHAP value of factors, y 
is the risk conditioning factors. (c) is the dependence plot of the six most important factors.
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The extremely high risk area mainly distributed in the VZ1 and VZ2, 
shows a trend of decrease. Nevertheless, the incidence of high risk area 
demonstrated an upward trend in all study regions with the exception of 
VZ5. Low and extremely low risk areas are distributed in VZ4 and VZ5, 
with a paucity of such areas in other regions. Fig. 6 (c) and (d) shows the 
number of buildings and populations at risk in each vertical zone. In VZ1 
and VZ2, there is a slight increase in the number of people and buildings 
affected by high and extremely high debris flow risk. The VZ3 and VZ4 
regions exhibit the highest diversity of risk grade distribution and the 
most shifts in risk levels.

4.4. The driven factors and the mechanism of debris flow risk

According to the SHAP-based interpretable machine learning 
method, the contribution of debris flow risk conditioning factors in each 
micro catchment to the final risk estimate was analyzed (Fig. 7). Fig. 7
(a) summarizes the contribution of each factor to the debris flows risk in 
the upper reach of the Min River. Fig. 7 (b) demonstrates that the six 
factors with the largest SHAP values for debris flow risk are POP, ELE, 
NDVI, GDP, SLO, and DTF. POP is the most influential factor, with 
higher POP exerting a positive impact on risk increasing, whereas lower 
POP exerts a suppressive effect on risk increasing. ELE is the second 
important factor, with its driving mechanism being the opposite of that 
of POP. The lower value of ELE has a positive effect on high risk, while 
an increase in ELE leads to a reduction in risk.

Fig. 7(c) shows the relationship between the six most important 
factors and debris flow risk SHAP value, with distributions of each fac
tor. As the disaster bearing body, the POP has the most important pos
itive impact on risk increasing. While the NDVI is lower than 0.75, the 
impact of POP can be transformed more positively. In the areas with low 
elevation, the increase of TR can lead to the rise of debris flow risk. 
Whereas at higher elevations, increased TR does not significantly in
crease risk. In areas of higher elevation, NDVI shows a reducing effect on 
risk. In areas with elevations of 800–1200, an increase in NDVI leads to 
an increase in risk. The increase in risk driven by GDP is contingent upon 
the conjunction of heightened population densities. For SLO and DTF, 
the effect of them was both significantly affected by the NDVI index.

5. Discussion

5.1. The debris flows risk in the upper reach of the Min River

The upper reach of the Min River is prone to a multitude of geological 
hazards, particularly in the wake of the Wenchuan 8.0 magnitude 
earthquake in 2008 (Cui et al., 2011); (Jin et al., 2023) . This event has 
resulted in a proliferation of aftershocks, which have in turn triggered a 
considerable number of landslides. This has provided a lot of sources for 
the occurrence of debris flows (Hu et al., 2024). Recent studies have 
demonstrated that extreme climatic conditions and human engineering 
activities have served to increase the frequency and severity of debris 
flow hazards (Deng et al., 2024). From the view of debris flow mitiga
tion, the present study is a necessary contribution. In comparison with 
other studies, the majority of our high risk areas are situated in locations 
that exhibit high hazards and vulnerability (Ding et al., 2016; Xiong 
et al., 2020). With the model’s accuracy is 0.976 (2000 baseline period) 
and 0.983 (2020 current period), we conclude that the evaluation results 
are reasonable. Along with the aforementioned catastrophe status, the 
upper reach of the Min River is undergoing a significant process of ur
banization, accompanied by an increase in both population and built-up 
area (Guo et al., 2015). Our assessment results show an upward trajec
tory in the number of populations and buildings affected by high debris 
flow risk since the baseline period. In fact, a series of mitigation mea
sures have been carried out by the local government such as construc
tion planning, debris flow control and prevention projections, and 
population migration policies (Deng et al., 2024). A study demonstrates 
that local governments in the upper reaches of the Min River have 

implemented a multitude of engineering and management measures to 
mitigate the risk of debris flows, which have been acknowledged by 
local residents (Deng et al., 2024). The fact that the extremely high risk 
of debris flows is decreasing is also consistent with our study. In light of 
the aforementioned changes (Fig. 6 and Tab 3) in population and 
buildings, which are influenced by debris flow risk, differences in ur
banization can be seen in different vertical zones.

Compared to the baseline period, the increase of the buildings in 
extremely high risk areas are more than the increase in population in the 
VZ1 and VZ2, suggesting that limited land use is constraining urban 
expansion. In the areas of VZ3 and VZ4, rapid population and building 
growth in areas of moderate risk, indicated that it is the area exists a 
rapid urbanization process. Urbanization can cause an increase in 
disaster susceptibility and exposure (He et al., 2024; (Strader et al., 
2024). Thus, debris flow control and prevention projections are impor
tant for risk reduction (Zheng et al., 2022). According to field surveys 
and previous studies, most debris flow control and prevention pro
jections were precedency constructed in the VZ1 and VZ2, which caused 
the extremely high risk area to decrease (Deng et al., 2024); (Huang 
et al., 2021) ; (Zheng et al., 2022) . Whereas the VZ3, VZ4, and VZ5 lack 
debris flow control, which has increased the risk in these areas. In the 
future study, we may aim to collect debris flow control and prevention 
projections data in the area with a view to formulating a comprehensive 
disaster control strategy. Anyway, based on these findings, the spatial 
and temporal distribution and variability of debris flow risk were 
elucidated. Furthermore, the potential influence of population increases 
and urbanization processes on debris flow risk were indicated.

5.2. Differences in risk change

The upper reach of the Min River can be divided into five distinct 
vertical zones, each exhibiting a unique risk distribution and change 
trend. Our results show a decreasing trend in extremely high risk areas 
but an increase in high risk areas. Nevertheless, in the area between 800 
m and 2,200 m, the population and buildings facing exceedingly 
extremely high risks are on the rise. In the area between 2200 m and 
3600 m, with little change in the size of the risk area, the population and 
buildings impacted by extremely high risk are decrease and the them at 
medium, and high risk of is increase significantly. This phenomenon can 
be attributed to the combined effects of climate change, population 
migration, vegetation evolution, and debris flow prevention and control 
measures (Deng et al., 2024; Guo et al., 2017). Urbanization has an 
increasing impact on landslides and other geohazards (Dille et al., 
2022). For example, extensive human engineering activities and vege
tation degradation can exacerbate geohazard susceptibility and risk (Lin 
et al., 2022; Zhang et al., 2018).

The combination of the factor’s dynamics and the SHAP values 
provides interesting insights. Fig. 8 shows the summary of five dynamic 
factors in the baseline period and current period and their SHAP values. 
Studies have shown that rising population and GDP can lead to increased 
exposure, in which directly increases risk (Cui et al., 2019); (Rohan 
et al., 2023) . In the vertical zone II region, due to the process of rapid 
urbanization, both population and GDP show an increasing trend. In this 
area, the SHAP values for the POP and GDP factors are the highest here, 
which indicates that urbanization in this region drastically increases the 
risk (Johnston et al., 2021). Fig. 8(c) indicates the relationship between 
NDVI with ELE, which the SHAP values increase and then decrease 
below 0 as elevation increases, and then continue to increase. Some 
evidence has indicated that the reduction of vegetation can change the 
alterations in surface and subsurface flow patterns, then increase the 
geological disaster susceptibility (Yu and Liu, 2015; Zhang et al., 2018). 
The vegetation of the upper reach of the Min River has been in a 
degradation trend due to strong earthquakes and urbanization (Guo 
et al., 2015). From Fig. 7(c) and Fig. 8(c), our findings indicate that the 
expansion of vegetation in vertical zone IV is increasing the debris flow 
risk, whereas the heightened risk observed in other vertical zones is 
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attributed to the degradation of vegetation. We postulate that this 
phenomenon results from changes in susceptibility due to vegetation 
degradation. The change in precipitation indicates an overall increase in 
the precipitation and wetness of the upper reach of the Min River, and 
the short-term heavy precipitation is decreasing (Fig. 8 e and f). John
ston et al validated that urbanized areas are more sensitive to changes in 
precipitation than rural areas (Johnston et al., 2021). In our results, the 
SHAP values of M3DP differ between urbanized and rural areas. In the 
more urbanized vertical zones I and II, the SHAP values of M3DP are 
greater than 0, which means the decrease of M3DP contributes to an 
increased risk. In vertical zones III, IV, and V, which are predominantly 
mountainous, the reduction in M3DP still gives rise to debris flow risk. 
This may be attributed to the increase in overall soil moisture due to the 
up rise of annual precipitation, which has led to a reduction in the 
precipitation threshold required for debris flow initiation (Cui et al., 
2019; He et al., 2024). In such a scenario, the rainfall threshold for 
debris flow initiation is reached despite a slight decline in the value of 
M3DP. As can be seen from Fig. 8 e and f, M3DP and AP have a strong 
impact on debris flow in vertical zones III and IV. These areas are 
characterized by a considerable number of sources of shattered hills and 
loose accumulations, which are likely to precipitate the occurrence of 
debris flow under conditions of uprising humidity (Liu et al., 2017).

5.3. Implications and Limitations

According to our research, the debris flows dynamic risk of the upper 
reach of the Min River was revealed, and the driven factors of risk in 
different vertical regions were indicated by using SHAP. Our result 
shows that the debris flow risk in the upper reach of the Min River is 
clearly characterized in the vertical zone. The urbanization of vertical 
zones II and III has exacerbated the local debris flow risk and should 
focus on risk management. However, the upper reach of Min river is 
dotted with a larger variety of ethnic groups who have different living 
customs. For example, ethnic groups in region IV are predominantly 
agrarian and those in region V are predominantly pastoralist, and in
formation about the impact of their livelihoods and settlements on 
debris flow risk has not been considered in this paper. In addition, debris 

flow basins can be divided into formation, circulation, and accumulation 
areas, etc. Circulation and accumulation areas are more likely damaged 
by debris flows. However, this paper does not consider the effect of 
debris flow disasters in detail. In addition, studies have shown show that 
cross-validation improves the stability of the model. This study 
employed a train-test split approach, which lack of cross-validation in 
model evaluation. In subsequent studies, we expect to develop a 
physically-based learning model that insightfully discusses the risks and 
effects of debris flow formation in different regions, while also incor
porating cross-validation techniques to enhance model robustness and 
reliability. Additionally, from a methodological perspective, higher- 
precision DEMs can provide more accurate indicators and delineate 
catchment units with greater precision. Therefore, it is recommended to 
use the highest-possible precision DEM data to minimize errors.

6. Conclusion

In this study, an ensemble learning model composed of random 
forest, logistic regression, support vector machine, and multi-layer 
perceptron was constructed to estimate the debris flow risk in the 
upper reach of the Min River. Then, selecting 5 dynamic factors in the 
baseline period and the current period, and 9 normal factors, the debris 
flow risk spatial–temporal patterns over the 20 years were explored. The 
using of the Shapley Additive Explanations (SHAP) method identified 
the key factors that lead to the debris flows risk change. Specifically, our 
findings are:

(1) The debris flow risk in the upper reach of the Min River is in a 
trend of increase. The pattern of increased risk is a shift from extremely 
high risk to high risk in some areas and an overall increase in low and 
moderate risk.

(2) Due to the urbanization, despite the area with extremely high risk 
is decreasing, the population and buildings affected by extremely high 
risk have still increased. The population and buildings in moderate and 
low risk areas has increased by 20 % and 30 % respectively.

(3) The result of SHAP indicates that population, elevation, NDVI, 
slope, and distance to faults is the most significant factors that 
contribute to debris flow risk. The relationship between population and 

Fig. 8. The temporal change of 5 dynamic factors and their SHAP value in five vertical zones. a is the SHAP of ELE, and b, d, e, f is the POP, NDVI, GDP, M3DP, 
and AP.
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elevation and risk is linear, with population exhibiting a positive cor
relation with risk and elevation displaying a negative correlation.

(4) The distribution and driven factors of risk vary with elevation. It 
is imperative to direct particular attention to the processes of urbani
zation and the debris flow risk management in the vertical zone II and 
III, in the area with an elevation of 1200–2800 m.

These findings indicate the variability of debris flow risk in the upper 
reach of the Min River, and can contribute to disaster risk management 
and urban planning.
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Zivkovic, M., Stojic, A., 2024. The explainable potential of coupling hybridized 
metaheuristics, XGBoost, and SHAP in revealing toluene behavior in the atmosphere. 
Sci. Total Environ. 929, 172195. https://doi.org/10.1016/j.scitotenv.2024.172195.

Bai, G., Deng, Y., Chen, M., Zhu, L., Tuo, Y., Nie, M., Zhu, J., Wang, X., 2024. 
Spatiotemporal evolution of runoff and sediment and their dominant driving factors 
in the Lower Jinsha River basin. Sci. Total Environ. 951, 175484. https://doi.org/ 
10.1016/j.scitotenv.2024.175484.

Bout, B. v. d. B., Lombardo, L., van Westen, C. J., & Jetten, V. (2018). Integration of two- 
phase solid fluid equations in a catchment model for flashfloods, debris flows and 
shallow slope failures. Environmental Modelling & Software, 105, 1-16. doi: 
10.1016/j.envsoft.2018.03.017.

Broeckx, J., Maertens, M., Isabirye, M., Vanmaercke, M., Namazzi, B., Deckers, J., 
Tamale, J., Jacobs, L., Thiery, W., Kervyn, M., Vranken, L., Poesen, J., 2019. 
Landslide susceptibility and mobilization rates in the Mount Elgon region. Uganda. 
Landslides 16 (3), 571–584. https://doi.org/10.1007/s10346-018-1085-y.

Chen, J., Gao, m., Cheng, S., Hou, W., Song, M., Liu, X., & Liu, Y. (2022). Global 
1 km × 1 km gridded revised real gross domestic product and electricity 
consumption during 1992–2019 based on calibrated nighttime light data. Scientific 
Data, 9(1), 202. doi:10.1038/s41597-022-01322-5.

Chen, J., Gao, m., Cheng, S., Song, M., Liu, X., & liu, Y. (2021). Global 1 km × 1 km 
gridded revised real gross domestic product and electricity consumption during 
1992-2019 based on calibrated nighttime light data.

Chen, J., Huang, G., Chen, W., 2021. Towards better flood risk management: Assessing 
flood risk and investigating the potential mechanism based on machine learning 
models. J. Environ. Manage. 293, 112810. https://doi.org/10.1016/j. 
jenvman.2021.112810.

Chen, X., Zhang, H., Chen, W., Huang, G., 2021. Urbanization and climate change 
impacts on future flood risk in the Pearl River Delta under shared socioeconomic 
pathways. Sci. Total Environ. 762, 143144. https://doi.org/10.1016/j. 
scitotenv.2020.143144.

Chen, Z., Quan, H., Jin, R., Lin, Z., Jin, G., 2024. Debris flow susceptibility assessment 
based on boosting ensemble learning techniques: a case study in the Tumen River 
basin, China. Stoch. Env. Res. Risk A. 38 (6), 2359–2382. https://doi.org/10.1007/ 
s00477-024-02683-6.

Cheng, H., Huang, Y., Zhang, W., Xu, Q., 2022. Physical process-based runout modeling 
and hazard assessment of catastrophic debris flow using SPH incorporated with 
ArcGIS: A case study of the Hongchun gully. Catena 212, 106052. https://doi.org/ 
10.1016/j.catena.2022.106052.

Costache, R., Tien Bui, D., 2020. Identification of areas prone to flash-flood phenomena 
using multiple-criteria decision-making, bivariate statistics, machine learning and 
their ensembles. Science of the Total Environment 712, 136492. https://doi.org/ 
10.1016/j.scitotenv.2019.136492.

Cui, P., 2022. The Landslide/Debris Flow and Control Technology in China. In: Li, R., 
Napier, T.L., El-Swaify, S.A., Sabir, M., Rienzi, E. (Eds.), Global Degradation of Soil 
and Water Resources: Regional Assessment and Strategies. Springer Nature 
Singapore, Singapore, pp. 221–242.

Cui, P., Chen, X., Zhu, Y., Su, F., Wei, F., Han, Y., Liu, H., Zhuang, J., 2011. The 
Wenchuan Earthquake (May 12, 2008), Sichuan Province, China, and resulting 
geohazards. Nat. Hazards 56 (1), 19–36. https://doi.org/10.1007/s11069-009- 
9392-1.

Cui, Y., Cheng, D., Choi, C.E., Jin, W., Lei, Y., Kargel, J.S., 2019. The cost of rapid and 
haphazard urbanization: lessons learned from the Freetown landslide disaster. 
Landslides 16 (6), 1167–1176. https://doi.org/10.1007/s10346-019-01167-x.

Danumah, J.H., Odai, S.N., Saley, B.M., Szarzynski, J., Thiel, M., Kwaku, A., Kouame, F., 
Akpa, L.Y., 2016. Flood risk assessment and mapping in Abidjan district using multi- 
criteria analysis (AHP) model and geoinformation techniques, (cote d’ivoire). 
Geoenviron. Disasters 3 (1), 10. https://doi.org/10.1186/s40677-016-0044-y.

Deng, T., Xu, P., Li, M., Lu, Y., Wang, Y., Li, Z., Shravan, K.G., 2024. Socio-scientific 
quantification of the comprehensive benefits of debris flow mitigation measures for 
villages in western Sichuan. China. Journal of Mountain Science 21 (5), 1598–1612. 
https://doi.org/10.1007/s11629-023-8397-7.

Dille, A., Dewitte, O., Handwerger, A.L., d’Oreye, N., Derauw, D., Ganza Bamulezi, G., 
Ilombe Mawe, G., Michellier, C., Moeyersons, J., Monsieurs, E., Mugaruka 
Bibentyo, T., Samsonov, S., Smets, B., Kervyn, M., Kervyn, F., 2022. Acceleration of a 
large deep-seated tropical landslide due to urbanization feedbacks. Nat. Geosci. 15 
(12), 1048–1055. https://doi.org/10.1038/s41561-022-01073-3.

Ding, M., Heiser, M., Hübl, J., Fuchs, S., 2016. Regional vulnerability assessment for 
debris flows in China—a CWS approach. Landslides 13 (3), 537–550. https://doi. 
org/10.1007/s10346-015-0578-1.

Dodangeh, E., Choubin, B., Eigdir, A.N., Nabipour, N., Panahi, M., Shamshirband, S., 
Mosavi, A., 2020. Integrated machine learning methods with resampling algorithms 
for flood susceptibility prediction. Sci. Total Environ. 705, 135983. https://doi.org/ 
10.1016/j.scitotenv.2019.135983.

Elshorbagy, A., Bharath, R., Lakhanpal, A., Ceola, S., Montanari, A., Lindenschmidt, K.E., 
2017. Topography- and nightlight-based national flood risk assessment in Canada. 
Hydrol. Earth Syst. Sci., 21 (4), 2219–2232. https://doi.org/10.5194/hess-21-2219- 
2017.

Gao, Z., Ding, M., 2022. Application of convolutional neural network fused with machine 
learning modeling framework for geospatial comparative analysis of landslide 
susceptibility. Nat. Hazards 113 (2), 833–858. https://doi.org/10.1007/s11069- 
022-05326-7.

Gao, Z., Ding, M., Huang, T., Liu, X., Hao, Z., Hu, X., Chuanjie, X., 2022. Landslide risk 
assessment of high-mountain settlements using Gaussian process classification 
combined with improved weight-based generalized objective function. Int. J. 
Disaster Risk Reduct. 67, 102662. https://doi.org/10.1016/j.ijdrr.2021.102662.

Guo, X., Hürlimann, M., Cui, P., Chen, X., Li, Y., 2024. Monitoring cases of rainfall- 
induced debris flows in China. Landslides 21 (10), 2447–2466. https://doi.org/ 
10.1007/s10346-024-02316-7.

Guo, Y.-L., Wang, Q., Yan, W.-P., Zhou, Q., Shi, M.-Q., 2015. Assessment of habitat 
suitability in the Upper Reaches of the Min River in China. J. Mt. Sci. 12 (3), 
737–746. https://doi.org/10.1007/s11629-013-2662-0.

Guo, Y., Wang, Q., Fan, M., 2017. Exploring the Relationship between the Arid Valley 
Boundary’s Displacement and Climate Change during 1999–2013 in the Upper 
Reaches of the Min River. China. ISPRS International Journal of Geo-Information 6 
(5), 146.

He, K., Chen, X., Yu, X., Dong, C., Zhao, D., 2024. Evaluation and prediction of 
compound geohazards in highly urbanized regions across China’s Greater Bay Area. 
J. Clean. Prod. 449, 141641. https://doi.org/10.1016/j.jclepro.2024.141641.

He, K., Chen, X., Zhao, D., Yu, X., Jin, Y., Liang, Y., 2024. Precipitation-induced landslide 
risk escalation in China’s urbanization with high-resolution soil moisture and multi- 
source precipitation product. J. Hydrol. 638, 131536. https://doi.org/10.1016/j. 
jhydrol.2024.131536.

He, Y., Ding, M., Liu, K., Lei, M., 2022. The Impact of Geohazards on Sustainable 
Development of Rural Mountain Areas in the Upper Reaches of the Min River. Front. 
Earth Sci. 10, 1–11. https://doi.org/10.3389/feart.2022.862544.

Y. He et al.                                                                                                                                                                                                                                       Ecological Indicators 173 (2025) 113400 

12 

https://doi.org/10.1016/j.geomorph.2004.06.010
https://doi.org/10.1016/j.geomorph.2004.06.010
https://doi.org/10.1016/j.scitotenv.2024.172195
https://doi.org/10.1016/j.scitotenv.2024.175484
https://doi.org/10.1016/j.scitotenv.2024.175484
https://doi.org/10.1007/s10346-018-1085-y
https://doi.org/10.1016/j.jenvman.2021.112810
https://doi.org/10.1016/j.jenvman.2021.112810
https://doi.org/10.1016/j.scitotenv.2020.143144
https://doi.org/10.1016/j.scitotenv.2020.143144
https://doi.org/10.1007/s00477-024-02683-6
https://doi.org/10.1007/s00477-024-02683-6
https://doi.org/10.1016/j.catena.2022.106052
https://doi.org/10.1016/j.catena.2022.106052
https://doi.org/10.1016/j.scitotenv.2019.136492
https://doi.org/10.1016/j.scitotenv.2019.136492
http://refhub.elsevier.com/S1470-160X(25)00330-9/h0065
http://refhub.elsevier.com/S1470-160X(25)00330-9/h0065
http://refhub.elsevier.com/S1470-160X(25)00330-9/h0065
http://refhub.elsevier.com/S1470-160X(25)00330-9/h0065
https://doi.org/10.1007/s11069-009-9392-1
https://doi.org/10.1007/s11069-009-9392-1
https://doi.org/10.1007/s10346-019-01167-x
https://doi.org/10.1186/s40677-016-0044-y
https://doi.org/10.1007/s11629-023-8397-7
https://doi.org/10.1038/s41561-022-01073-3
https://doi.org/10.1007/s10346-015-0578-1
https://doi.org/10.1007/s10346-015-0578-1
https://doi.org/10.1016/j.scitotenv.2019.135983
https://doi.org/10.1016/j.scitotenv.2019.135983
https://doi.org/10.5194/hess-21-2219-2017
https://doi.org/10.5194/hess-21-2219-2017
https://doi.org/10.1007/s11069-022-05326-7
https://doi.org/10.1007/s11069-022-05326-7
https://doi.org/10.1016/j.ijdrr.2021.102662
https://doi.org/10.1007/s10346-024-02316-7
https://doi.org/10.1007/s10346-024-02316-7
https://doi.org/10.1007/s11629-013-2662-0
http://refhub.elsevier.com/S1470-160X(25)00330-9/h0130
http://refhub.elsevier.com/S1470-160X(25)00330-9/h0130
http://refhub.elsevier.com/S1470-160X(25)00330-9/h0130
http://refhub.elsevier.com/S1470-160X(25)00330-9/h0130
https://doi.org/10.1016/j.jclepro.2024.141641
https://doi.org/10.1016/j.jhydrol.2024.131536
https://doi.org/10.1016/j.jhydrol.2024.131536
https://doi.org/10.3389/feart.2022.862544


Hu, X., Wang, J., Hu, J., Hu, K., Zhou, L., Liu, W., 2024. Probabilistic identification of 
debris flow source areas in the Wenchuan earthquake-affected region of China based 
on Bayesian geomorphology. Environ. Earth Sci. 83 (18), 528. https://doi.org/ 
10.1007/s12665-024-11833-6.

Huang, T., Ding, M., Gao, Z., Téllez, R.D., 2021. Check dam storage capacity calculation 
based on high-resolution topogrammetry: Case study of the Cutou Gully, Wenchuan 
County. China. Science of the Total Environment 790, 148083. https://doi.org/ 
10.1016/j.scitotenv.2021.148083.

Huffman, G., Stocker, E., Bolvin, D., Nelkin, E., & Jackson, T. (2019). GPM IMERG Early 
Precipitation L3 1 day 0.1 degree x 0.1 degree V06.

Jiang, R., Lu, H., Yang, K., Chen, D., Zhou, J., Yamazaki, D., Pan, M., Li, W., Xu, N., 
Yang, Y., Guan, D., Tian, F., 2023. Substantial increase in future fluvial flood risk 
projected in China’s major urban agglomerations. Commun. Earth Environ. 4 (1), 
389. https://doi.org/10.1038/s43247-023-01049-0.

Jin, W., Cui, P., Zhang, G., Wang, J., Zhang, Y., Zhang, P., 2023. Evaluating the post- 
earthquake landslides sediment supply capacity for debris flows. Catena 220 (PartA), 
106649. https://doi.org/10.1016/j.catena.2022.106649.

Johnston, E.C., Davenport, F.V., Wang, L., Caers, J.K., Muthukrishnan, S., Burke, M., 
Diffenbaugh, N.S., 2021. Quantifying the Effect of Precipitation on Landslide Hazard 
in Urbanized and Non-Urbanized Areas. Geophys. Res. Lett. 48 (16), 
e2021GL094038. https://doi.org/10.1029/2021GL094038.

Kim, J.-C., Lee, S., Jung, H.-S., Lee, S., 2018. Landslide susceptibility mapping using 
random forest and boosted tree models in Pyeong-Chang. Korea. Geocarto 
International 33 (9), 1000–1015. https://doi.org/10.1080/ 
10106049.2017.1323964.

Li, G., Cao, H., 2021. Urbanization in China. In: Li, G., Cao, H. (Eds.), Understanding 
Spatial-Temporal Patterns of the Ethnic Minority Mobility in China’s Urbanization. 
Springer Singapore, Singapore, pp. 5–27.

Li, Y., Jiang, W., Feng, X., Lv, S., Yu, W., Ma, E., 2024. Debris flow susceptibility mapping 
in alpine canyon region: a case study of Nujiang Prefecture. Bulletin of Engineering 
Geology and the Environment 83 (5), 169. https://doi.org/10.1007/s10064-024- 
03657-2.

Lin, G.-F., Chang, M.-J., Huang, Y.-C., Ho, J.-Y., 2017. Assessment of susceptibility to 
rainfall-induced landslides using improved self-organizing linear output map, 
support vector machine, and logistic regression. Eng. Geol. 224, 62–74. https://doi. 
org/10.1016/j.enggeo.2017.05.009.

Lin, K., Chen, H., Xu, C.-Y., Yan, P., Lan, T., Liu, Z., Dong, C., 2020. Assessment of flash 
flood risk based on improved analytic hierarchy process method and integrated 
maximum likelihood clustering algorithm. J. Hydrol. 584, 124696. https://doi.org/ 
10.1016/j.jhydrol.2020.124696.

Lin, Q., Steger, S., Pittore, M., Zhang, J., Wang, L., Jiang, T., Wang, Y., 2022. Evaluation 
of potential changes in landslide susceptibility and landslide occurrence frequency in 
China under climate change. Science of the Total Environment 850, 158049. https:// 
doi.org/10.1016/j.scitotenv.2022.158049.

Liu, Q., Cheng, W., Sun, D., Wang, N., Fang, Y., 2017. Distribution Characteristics of 
Historical Mountain Flood in China. Journal of Geo-Information Science 19 (12), 
1557–1566. In Chineses. 

Liu, S., Liu, S., Lv, D., Wei, L., Ao, M., Pan, X., Li, B., Cui, Y., Wang, L., He, X., 2024. 
Debris flow susceptibility and hazard assessment in Fushun based on hydrological 
response units. Nat. Hazards 120 (9), 8667–8693. https://doi.org/10.1007/s11069- 
024-06544-x.

Liu, W., Yang, Z., He, S., 2021. Modeling the landslide-generated debris flow from 
formation to propagation and run-out by considering the effect of vegetation. 
Landslides 18 (1), 43–58. https://doi.org/10.1007/s10346-020-01478-4.

Lundberg, S.M., Erion, G., Chen, H., DeGrave, A., Prutkin, J.M., Nair, B., Katz, R., 
Himmelfarb, J., Bansal, N., Lee, S.-I., 2020. From local explanations to global 
understanding with explainable AI for trees. Nat. Mach. Intell. 2 (1), 56–67. https:// 
doi.org/10.1038/s42256-019-0138-9.

Lv, J., Zhang, R., Shama, A., Hong, R., He, X., Wu, R., Bao, X., Liu, G., 2024. Exploring 
the spatial patterns of landslide susceptibility assessment using interpretable Shapley 
method: Mechanisms of landslide formation in the Sichuan-Tibet region. J. Environ. 
Manage. 366, 121921. https://doi.org/10.1016/j.jenvman.2024.121921.

Lyu, H.M., Shen, S.L., Yang, J., Yin, Z.Y., 2019. Inundation analysis of metro systems 
with the storm water management model incorporated into a geographical 
information system: a case study in Shanghai. Hydrol. Earth Syst. Sci., 23 (10), 
4293–4307. https://doi.org/10.5194/hess-23-4293-2019.

Melton, M.A., 1966. The Geomorphic and Paleoclimatic Significance of Alluvial Deposits 
in Southern Arizona: A Reply. J. Geol. 74 (1), 102–106. https://doi.org/10.1086/ 
627147.

Moayedi, H., Canatalay, P.J., Ahmadi Dehrashid, A., Cifci, M.A., Salari, M., Le, B.N., 
2023. Multilayer Perceptron and Their Comparison with Two Nature-Inspired 
Hybrid Techniques of Biogeography-Based Optimization (BBO) and Backtracking 
Search Algorithm (BSA) for Assessment of Landslide Susceptibility. Land 12 (1), 242.

Qiao, S., Qin, S., Sun, J., Che, W., Yao, J., Su, G., Chen, Y., Nnanwuba, U., 2021. 
Development of a region-partitioning method for debris flow susceptibility mapping. 
J. Mt. Sci. 18 (5), 1177–1191. https://doi.org/10.1007/s11629-020-6497-1.

Qin, L., Zhu, L., Liu, B., Li, Z., Tian, Y., Mitchell, G., Shen, S., Xu, W., Chen, J., 2024. 
Global expansion of tropical cyclone precipitation footprint. Nat. Commun. 15 (1), 
4824. https://doi.org/10.1038/s41467-024-49115-1.

Qin, S., Lv, J., Cao, C., Ma, Z., Hu, X., Liu, F., Qiao, S., Dou, Q., 2019. Mapping debris 
flow susceptibility based on watershed unit and grid cell unit: a comparison study. 
Geomat. Nat. Haz. Risk 10 (1), 1648–1666. https://doi.org/10.1080/ 
19475705.2019.1604572.

Qin, S., Qiao, S., Yao, J., Zhang, L., Liu, X., Guo, X., Chen, Y., Sun, J., 2022. Establishing a 
GIS-based evaluation method considering spatial heterogeneity for debris flow 

susceptibility mapping at the regional scale. Nat. Hazards 114 (3), 2709–2738. 
https://doi.org/10.1007/s11069-022-05487-5.

Qiu, C., Su, L., Pasuto, A., Bossi, G., Geng, X., 2024. Economic Risk Assessment of Future 
Debris Flows by Machine Learning Method. International Journal of Disaster Risk 
Science 15 (1), 149–164. https://doi.org/10.1007/s13753-024-00545-x.

Rai, D.K., Xiong, D., Zhao, W., Zhao, D., Zhang, B., Dahal, N.M., Wu, Y., Baig, M., 2022. 
An Investigation of Landslide Susceptibility Using Logistic Regression and Statistical 
Index Methods in Dailekh District. Nepal. Chinese Geographical Science 32 (5), 
834–851. https://doi.org/10.1007/s11769-022-1304-2.

Rohan, T., Shelef, E., Mirus, B., Coleman, T., 2023. Prolonged influence of urbanization 
on landslide susceptibility. Landslides 20 (7), 1433–1447. https://doi.org/10.1007/ 
s10346-023-02050-6.

Sangelantoni, L., Gioia, E., Marincioni, F., 2018. Impact of climate change on landslides 
frequency: the Esino river basin case study (Central Italy). Nat. Hazards 93 (2), 
849–884. https://doi.org/10.1007/s11069-018-3328-6.

Shi, W., Jiang, H., Xu, H., Ma, S., Fan, J., Zhang, S., Guo, Q., Wei, X., 2022. Response of 
modern fluvial sediments to regional tectonic activity along the upper Min River, 
eastern Tibet. Earth Surf. Dynam., 10 (6), 1195–1209. https://doi.org/10.5194/ 
esurf-10-1195-2022.
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