Advances in Applied Energy 18 (2025) 100220

ADVANCES IN
AppliedEnergy

Contents lists available at ScienceDirect

Advances in Applied Energy

journal homepage: www.elsevier.com/locate/adapen

ELSEVIER

Check for

Al-empowered online control optimization for enhanced efficiency and
robustness of building central cooling systems

a,* a,b,*

Lingyun Xie?, Kui Shan®", Hong Tang* , Shengwei Wang

2 Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
Y Research Institute of Smart Energy, The Hong Kong Polytechnic University, Kowloon, Hong Kong

ARTICLE INFO ABSTRACT

Keywords:

Optimal control
Artificial intelligence
Air-conditioning
Energy efficiency
Buildings

Adopting Artificial Intelligence for optimizing building system controls has gained significant attention due to
the growing emphasis on building energy efficiency. However, substantial gaps remain between academic
research and the practical implementation of Al-based algorithms. Key factors hindering implementation include
computational efficiency requirements and concerns about reliability in online applications. This paper addresses
these challenges by presenting Al-empowered online control optimization technologies designed for practical
implementation. A simplified deep learning-enabled Genetic Algorithm is developed to accelerate optimization
processes, ensuring optimization intervals are short enough for online applications. This algorithm also signifi-
cantly reduces CPU and memory usage, enabling deployment on miniaturized control station for field imple-
mentation. To enhance stability and reliability, a robust assurance scheme is introduced, which switches to
expert knowledge-based control under abnormal conditions. Hardware-in-the-loop tests validate the proposed
strategy’s computation efficiency, control performance and operational robustness using a physical smart station
controlling a simulated real-time dynamic cooling system. Test results show that the optimal control strategy

achieves 7.66 % energy savings and exhibits strong operational robustness.

1. Introduction

Global energy consumption has emerged as a pressing concern in
recent years due to its environmental and economic implications. To
achieve a sustainable future, innovative solutions must be explored and
implemented to mitigate the adverse effects of energy consumption.
Buildings serve residential, commercial and institutional purposes,
demanding substantial energy usage to facilitate the operation of heat-
ing, cooling, lighting and other facilities. According to statistics from the
International Energy Agency, buildings account for approximately 40 %
of global energy consumption [1]. In Hong Kong, this percentage ex-
ceeds 80 %, with nearly 40 % attributed to air conditioning systems [2].
Hence, implementing efficient control optimization in air conditioning
systems is essential for conserving energy and reducing the environ-
mental impacts of excessive energy consumption.

Traditionally, building control methods have relied predominantly
on simple on/off control and PID control techniques. These methods
regulate systems by activating/deactivating actuators or minimizing
tracking errors based on fixed or manually set points [3]. However, these
methods face limitations due to the continuously changing building

loads and operating conditions [4]. The lack of online tuning and
monitoring presents significant challenges in adapting to changing
operating conditions. Additionally, their simplistic logic is insufficient
for achieving optimal performance in nonlinear systems [5].
Researchers have developed a range of mathematical optimization
methods to address control problems, including dynamic programming
[6], quadratic programming [7], linear programming [8], among others.
Additionally, specialized optimization methods have been developed to
address specific challenges, adapt to environmental changes, and meet
real-time control requirements. Escobar et al. [9] utilized advanced
fuzzy-logic-based controllers to dynamically adjust HVAC settings in
buildings, optimizing comfort and efficiency by processing real-time
contextual data such as occupancy and weather conditions. Baptiste
et al. [10] proposed a temperature adaptive control strategy (TACS) that
optimizes the use of natural cooling by adjusting the air temperature
throughout the year, allowing the system to maximize environmental
conditions for cooling. Zhang et al. [11] introduced a hybrid algorithm
to optimize indoor air supply parameters. They employed multivariate
regression analysis to halve the variable space and used a fuzzy logic
controller (FLC) to achieve a 35.7 % reduction in computational costs.
Zhang et al. [12] implemented Model Predictive Control (MPC) in a
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Nomenclature

ANN Artificial Neural Network

BAS Building Automation System

cop Coefficient of Performance

DDC Direct Digital Control

EER Energy efficiency ratio

FLOPs  Floating-point operations per second
GA Genetic Algorithm

HVAC  Heating Ventilation Air Conditioning
k Penalty factor

M Volume flow rate, m3h~!

N Number of operational units

PLR Partial load ratio

Q Heat exchange capacity, kJ

SD Standard deviation
SMA Simple moving average
T Temperature, °C

w Power consumption, kWh
Subscripts

chws Supply chilled water
comp Compressor

w Cooling water

cwr Return cooling water
cws Supply cooling water
db Dry-bulb

sw Seawater

sws Supply seawater

wb Wet-bulb

small commercial building to manage space conditioning, commercial
refrigeration, and the battery system, resulting in a 12 % annual elec-
tricity cost savings.

The advancement of computer science has fostered the integration of
artificial intelligence (AI) with previously mentioned methods,
enhancing their performance and adaptability to dynamic operational
conditions [13]. These Al-enhanced methods utilize machine learning
approaches [14] and heuristic algorithms [15] to effectively address
system complexity and dynamics, thereby enhancing overall energy
efficiency and ensuring operational stability. For example, Ye et al. [16]
proposed a heuristic algorithm for the evolutionary optimization of
tribal intelligence, demonstrating its overall superiority in terms of
optimization accuracy, standard deviation, and calculation time through
comparative experiments. The algorithm ultimately achieved energy
savings of up to 19.43 % in a central HVAC system. Miao et al. [17]
evaluated and compared the performance of ten swarm intelligence
optimization algorithms by developing a real HVAC system model. Their
study found that the artificial bee colony algorithm outperformed
others, achieving an energy saving rate of 24.07 % in the simulation of a
typical day. Dai et al. [18] proposed an iterative learning control strat-
egy to optimize cooling distribution during the morning start-up period
of an air conditioning system. A reinforcement learning (RL) method
was employed to adjust the controller parameters, resulting in a
reduction in daily precooling energy consumption by 5.1 % to 17.8 %.
Huang et al. [19] optimized the load distribution and operating speeds
of fans and pumps in a heat pump system, enhancing computational
efficiency through the use of an artificial neural network (ANN) model
and achieving an energy savings of 14.8 %. Ma et al. [20] proposed an
energy efficiency optimization control strategy for a central chiller
system, utilizing simplified linear self-tuning models and a genetic al-
gorithm (GA) to optimize temperature setpoints, achieving a daily en-
ergy savings of 2.55 %.

Despite many advanced methods being proposed and demonstrating
their energy saving potential, the transition from academic research to
practical applications remains a formidable challenge. The primary
concern lies in the adaptability and reliability of the optimization
method’s implementation. Specifically, the performance and efficiency
of the optimization algorithm must be effectively balanced to ensure
that the control can be executed in real time [21]. Additionally, plat-
forms running Al algorithms must address challenges related to
computing power and operational robustness [22]. Previous research
has often relied on cloud or central computers to provide adequate
computing power [23]. However, these approaches face challenges such
as bandwidth limitations, network connectivity issues, and latency [24].
Unstable connections or insufficient bandwidth can result in delays and
data loss, ultimately compromising the precise control of building sys-
tems. In this scenario, it is crucial to develop a feasible and reliable

approach for implementing Al-empowered optimal control at the field
level. This would allow for more stable online monitoring, optimization
calculations, and decision support [25].

This research, therefore, proposes a comprehensive set of innovative
Al-empowered online control optimization technologies for central
cooling systems. The main original contributions of this study include:

e A deep learning-enabled genetic algorithm is proposed to reduce
computational complexity, enabling rapid online responses to dy-
namic conditions, and facilitating field implementation.

e A robust assurance scheme is designed and adopted to ensure the
stability and reliability of the Al-empowered control optimization in
online application.

The developed optimization algorithm is deployed on a physical
smart station built on an embedded single-board computer, demon-
strating its practical applicability and effectiveness in real-world sce-
narios. The proposed control optimization technologies are tested and
validated on a simulated dynamic cooling system through hardware-in-
the-loop testing.

2. Description of Al-empowered optimization strategy
2.1. Overview of control strategy

Fig. 1 illustrates the generation and control process of the proposed
Al-empowered optimization strategy, designed to reduce computational
complexity and enhance application robustness. The core concept in-
volves simplifying the Al-based optimization algorithm to enhance its
suitability for field applications on miniaturized stations, and inte-
grating an anomaly detection mechanism to maintain the reliability of
the optimization process.

The optimization algorithm is a deep learning-enabled genetic al-
gorithm, in which the fitness function’s optimization model is trained as
a hybrid model to achieve a balance between efficiency and reliability. A
physical model developed in Dymola is utilized for comprehensive
simulation, generating a complete dataset of system operation.
Following data processing, sensitivity analysis, and feature selection, the
hybrid model is established and integrated into the genetic algorithm
(GA) for optimization calculations. To further enhance system robust-
ness, an anomaly detection mechanism based on a dynamic threshold
detection method is incorporated, forming a robust assurance scheme.
This mechanism enables automatic switching to an expert knowledge-
based scheme whenever anomalies are detected, ensuring continuous
and stable operation.

Under conventional control, the Direct Digital Control (DDC)
controller follows a fixed setpoint strategy, continuously acquiring
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Fig. 1. Generation and control process of the Al-empowered optimization strategy.

cooling system parameters and adjusting pump and chiller operations
via PID feedback control. In the optimal control mode, the AI-
empowered optimization algorithm is deployed on a control station,
where it processes real-time operational data to generate optimized
setpoints and transmits them to the DDC controller. The anomaly
detection mechanism is embedded within the controller to validate the
received setpoints. If no anomalies are detected, the controller updates
the setpoints accordingly; otherwise, it switches to a predefined robust
assurances scheme to maintain system stability.

The detailed working mechanism of the deep learning-enabled ge-
netic algorithm and the robust assurance scheme is elaborated in Section

l Start |

\ 4

2.2.

2.2. Formulation of the Al-empowered optimization strategy

2.2.1. Deep learning-enabled genetic algorithm

One of the main challenges in applying advanced optimization al-
gorithms in the field is meeting computational demands. Traditional
optimization algorithms, such as genetic algorithms, typically find
optimal results by evaluating the effectiveness of various schemes
through repeated assessments and selections. This process consumes
significant computing resources and time, making it less practical for
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Fig. 2. Flowchart of the deep learning-enabled genetic algorithm.
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real-time applications.

The deep learning-enabled genetic algorithm proposed in this paper
is a hybrid model-based approach where key nonlinear models of the
cooling system are trained as Artificial Neural Network (ANN) models.
While pure black-box models can significantly enhance computational
efficiency, their lack of interpretability can limit the reliability of ap-
plications. The hybrid model, which retains most physical laws, effec-
tively improves adaptability during implementation. The flowchart of
the deep learning-enabled genetic algorithm for optimal control is
depicted in Fig. 2. Initially, the control station receives real-time oper-
ational parameters from the cooling system and generates an initial
population, where each individual represents a different setpoint com-
bination. These initial solutions are then fed into the hybrid model,
which evaluates the fitness score for each offspring based on energy
consumption. The best candidates are selected for evolutionary oper-
ations—selection, crossover, and mutation. Finally, the algorithm de-
termines the optimal setpoint combination, enabling the cooling system
to operate efficiently. Additionally, the genetic algorithm used in this
study combines roulette wheel selection and elitism retention strategies
to balance exploration and exploitation, ensuring faster convergence
and stable optimization results. Through extensive testing, the following
key parameters were selected to ensure efficient convergence of the al-
gorithm: (1) The initial population size is 20; (2) The number of gen-
erations is 16; (3) The crossover rate is 0.75; (4) The mutation rate is
0.05.

Through sensitivity analysis, it is found that the power consumption
of the chiller is highly correlated with the flow rates of seawater and
cooling water, while the power consumption of the pump is significantly
influenced by the corresponding control temperature. Based on these
findings, this study selects the cooling water supply temperature (T,s)
and the cooling water return temperature (T.,,) as the optimization
target parameters for the genetic algorithm. The fitness calculation
formula is defined in Eq. (1), where € is a small constant to prevent di-
vision by zero. The total system energy consumption, denoted as Wy,
primarily consisting of the energy consumption of the seawater pump
(Wsy), cooling water pump (W), and chiller unit (Wcopp). To drive the
optimization process toward energy efficiency, the reciprocal of Wy, is
incorporated into the fitness function, ensuring that higher fitness values
correspond to lower energy consumption. During the evolution process
of the genetic algorithm, selection, crossover, and mutation operations
are iteratively performed, evaluating the fitness of each individual
(setpoint combination).

Additionally, a penalty function for the chilled water supply tem-
perature is introduced into Eq. (2) to ensure that the optimization results
align with the building’s operational requirements. In this function, k
indicates the penalty factor, T is the temperature, and the subscripts chw
and set represent the chilled water and set value. In this study, the
identification of the penalty factor k is based on repeated tuning through
simulation tests. The initial range of k was discretized into a grid, and
tests were conducted under various load and external environmental
conditions. The effect of different k values on the chilled water supply
temperature (Tchys) was carefully observed. When the setpoint Tepuys set
was set to 280.15 K, a value of k = 5 x 10~ was chosen to ensure the
chilled water supply temperature does not exceed 281.15 K.

Wsu.m = Wsw + ch + Wcomp (1)

Fitness = — k| Tetws — Tets, ser| 2

Wam + €

2.2.2. The robust assurance scheme

The robust assurance scheme is designed between the control station
and the Direct Digital Control (DDC) controller to enhance system reli-
ability. As depicted in Fig. 1, the optimal setpoints generated by the Al-
empowered algorithm are sent to a detection node at the controller,
where their validity is assessed. A dynamic threshold detection method,
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based on a simple moving average (SMA), is introduced to evaluate the
reliability of the control station’s outputs.

As highlighted in formulas (3-6), the detection method involves the
calculation of the moving average and standard deviation (SD) of a set
temperature point over a specified historical data window. The system
identifies abnormal deviations in the optimization setpoints by estab-
lishing dynamic thresholds at two SDs above and below the moving
average. Such deviations may indicate potential algorithmic failures or
inefficiencies, triggering an automatic switch to a preset scheme based
on expert knowledge. In addition, if the DDC controller does not receive
an updated setpoint from the control station within 20 min, a system
alert is triggered, indicating a possible failure in communication. In such
cases, the system automatically switches to robust assurance scheme to
maintain stable operation. Once the controller resumes receiving valid
setpoints, the system switches back to the optimal control scheme. This
robust assurance mechanism ensures proper system operation and pre-
vents potential operational failures.

1 t
SMA, =+ > x 3)
i=t—N+1
Upper Threshold, = SMA, + k x SD, (€©))
Lower Threshold, = SMA, — k x SD, 5)

Sieni (% — %)
SD, = i=t—N+1 6
: — ®)

where, SMA, represents the simple moving average at time t, N is the size
of the moving average window, and x; is the data point at position i. The
SD, indicates the standard deviation within the window, k is the
threshold width coefficient, and x is the mean of the data points within
the window.

In addition, an empirical fitting formula based on expert knowledge
is introduced to provide set points under abnormal conditions. Ac-
cording to theoretical research and experiments conducted by a chiller
manufacturer, the cooling water temperature optimization set point is
influenced by several factors, including the outdoor wet-bulb tempera-
ture (Typ) and its design value, the partial load ratio of the chiller system
(PLR), and the flow rate of the cooling water (mcy):

Tewrsee =A X Typ +B X PLR — C X Typsee — D x Mgy, /Load + 37 )

3. Setup of hardware-in-the-loop tests

Hardware-in-the-loop test integrates real-world hardware compo-
nents into a virtual simulation environment. It is adopted in this study to
test the strategy deployed on a physical control station for controlling
complex systems under comprehensive dynamic conditions. This section
provides a detailed description of the test platform and the test
arrangement.

3.1. Description of smart station and test platform

A smart station was constructed using a Raspberry Pi in this study,
which features a quad-core ARM Cortex-A72 processor, supporting up to
8GB of LPDDR4 RAM, and is compatible with Linux-based operating
systems. Fig. 3 presents both the schematic diagram and the imple-
mentation diagram of the hardware-in-the-loop test platform. The
physical smart station, equipped with the deep learning-enabled genetic
algorithm, controls a simulated, real-time virtual dynamic cooling sys-
tem. The cooling system model was developed in Dymola using the
Modelica language and packaged as a Functional Mock-up Interface
(FMI) file, serving as a "digital twin in a box" hosted on the computer.
Within the communication framework, the TCP/IP protocol is employed
over the local area network, simulating the real-time data transmission
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Fig. 3. Hardware-in-the-loop test platform: schematic and implementation.

process during optimization.

In this study, a Raspberry Pi-based control station is developed to
implement the optimization strategy in a hardware-in-the-loop test,
evaluating the hardware requirement and its feasibility in a low-cost and
easily deployable setup. Considering the Raspberry Pi is primarily
designed for education and personal projects, it may face processing
limitations when applied to larger and more complex systems. For
practical implementation, an NVIDIA Jetson edge Al device is chosen to
replace the Raspberry Pi, ensuring higher computational efficiency,
reliability, and real-time processing capabilities.

3.2. The test arrangement

The proposed Al-empowered optimization strategy is deployed on
the smart station, and evaluated using the hardware-in-the-loop test
platform. Real-time validation tests are conducted over a day using
weather data representative of a typical summer day in Hong Kong. The
analysis begins with an evaluation of computation time per iteration,
comparing the results before and after integrating the hybrid model to
quantify improvements in computational efficiency.

Subsequently, comparative studies are conducted to evaluate the
performance of the proposed Al-empowered optimization strategy
against the traditional control strategy.

e Baseline control strategy: This is a commonly used method for chiller
systems that does not involve optimization. Fixed setpoints for the
cooling water supply temperature and return water temperature are
maintained throughout the operation.

e Al-empowered optimization control strategy: A deep learning-
enabled genetic algorithm is used to optimize the cooling water
supply and return temperatures at fixed intervals, improving the
system’s efficiency.

During the tests, an optimization process within each control interval
(5 min in this study) is divided into four distinct steps:

e Sampling: collecting real-time system data,

e Calculation: performing the optimization computation,

e Sending: sending optimized setpoints to the system,

e Waiting: waiting until the subsequent optimization interval.

To validate the robustness assurance scheme, three hours during a
typical day are selected for the validation test. The controller is pro-
grammed to send a set of optimal set points every optimization interval,
allowing for the evaluation of the Direct Digital Control (DDC) in
responding to normal reception, data anomalies and interruptions.

4. Model development and description
4.1. Reference building and cooling system

A commercial building located in West Kowloon, Hong Kong, is
selected as the reference building for optimization tests. As shown in
Fig. 4, the building comprises four tower buildings (1A, 1B, 2A, 2B) and
a podium, with a total area of 288,010 m?. The total design cooling load
is 55,331 kW. To satisfy this cooling demand, the building is equipped
with 21 seawater-cooled chillers, including 15 chillers rated at 3517 kW
and 6 chillers rated at 1758 kW, as summarized in Table 1.

The central cooling systems described above are simulated in
Dymola, a software platform based on the Modelica language [26],
which is capable of simulating and analyzing complex dynamic systems
with high accuracy and flexibility. As shown in Fig. 5, the system
structure is organized from left to right, representing the seawater side,
cooling water circulation, chiller units, and load side, respectively.
Additionally, from top to bottom, the structure follows the hierarchy of
Podium, Building 1, and Building 2, as illustrated in Fig. 4. The models
for components, such as pumps, heat exchangers and chillers, are
developed using the "Buildings" library. Basic control logic, including
PID feedback control and device start-stop control, is incorporated into
the model to simulate fundamental operational behaviors. During the
simulation, external environmental parameters, including seawater
temperature and building load variations, are input into the seawater
side and load side of the Modelica model for dynamic execution. The
load profiles are collected from a large existing building of the same
owner nearby. The seawater temperature is based on the Hong Kong
Environmental Protection Department (EPD) [27].

4.2. Hybrid energy models of cooling systems for online optimization

A hybrid energy model, serving as the fitness function for the genetic
algorithm (GA) in online optimization, enables efficient computation of
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Table 1
Key building parameters and cooling system specifications.

Building Building Building Building Building Podium

- 1A 1B 2A 2B

Gross Floor 58,770 77,000 52,490 43,750 56,000
Area (m?)

Air 48,528 60,351 43,751 36,694 13,156
Conditioning (Retail)
Area (m?) 11,744

(F&B)
13,687
(Arcade)
Block load 10,544 12,960 9415 7906 4526,
kW) 4846,
5135
Load ratio 0.19 0.23 0.17 0.14 0.26
Chiller plants 3 x 3 x 2 x 2 % 5 x
3517kW 3517kW 3517kW 3517kW 3517kW
+1 x +1 x +2 x +1 x +1 x
1758kW 1758kW 1758kW 1758kW 1758kW

the total power consumption of a central cooling system. Fig. 6 illus-
trates the structure of this hybrid model and its function in the optimi-
zation process. This model is primarily responsible for fitness evaluation
in the genetic algorithm optimization, generating fitness scores corre-
lated with total system energy consumption to determine the optimal
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offspring. In this hybrid model, Artificial Neural Network (ANN) models
are used for chillers and heat exchangers due to their significant
nonlinearity and complex parameter settings. The cooling water pump
and seawater pump models adopt polynomial fitting derived from their
design parameters, as described in formulas (8) and (9). Each compo-
nent in the models is interconnected according to its physical connection
and physical laws, ensuring reliability and interpretability during
application.

M,, ) ( M,, )2 ( M,, )3
Wy = m + 7 + 7 + 14| — 8
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M., ) ( M., )2 ( M., )3
Wow = iy + + + g | ©)]
o Ml Mz (Mcw.nom ”3 MCW,an ﬂ4 Mzw,nom

where, W and M are the energy consumption and flow rate respectively.
The subscript nom represents the nominal condition. The parameters
n1~n4 and pi~p4 can be obtained from manufacturers or by curve-
fitting using operational data.

The details of the ANN models for the heat exchangers and chillers
are illustrated in Fig. 7. Both models utilize a two-hidden-layer struc-
ture, with each hidden layer consisting of ten nodes. For the heat
exchanger model, there are four input parameters: seawater flowrate
(Msy,), seawater supply temperature (T,s), cooling water flowrate (M),
and cooling water return temperature (T,,). The output of this model is
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the cooling water supply temperature (T.ys), which is crucial for
coupling with the chiller unit. The chiller model uses five input pa-
rameters: cooling water supply temperature (T,ys), cooling water flow
(M), chilled water supply temperature (Tcpys), chilled water flow
(Mchw), and the partial load ratio (PLR). The outputs of the chiller model
include the coefficient of performance (COP) of the unit and the cooling
capacity (Q.), which can be further used to calculate the chiller’s power
consumption. The data for building the ANN models comes from
comprehensive full-operation simulations of the Modelica model,
covering all possible setpoint combinations and environmental param-
eters under various system operating conditions. A total of 60,000 valid
datapoints are generated for machine learning. This simulation
approach aims to provide the ANN model with a diverse and represen-
tative dataset, enabling it to accurately simulate the behavior of the heat
exchanger and chiller under various conditions.

For model validation, 4000 sets of data, which are different from the
data used for model training, were randomly generated by the Modelica
models (shown in Fig. 7). These validation datasets were used to assess
the performance of the trained ANN models. The validation results are
shown in Fig. 8. The output of the heat exchanger model is a temperature
value, which exhibits a relatively small fluctuation range and a strong
logical correlation with the input parameters. As a result, the average
relative error of the T, is 0.01 %. For the chiller model, the average

relative errors of the output values for the COP and Q. are 0.29 % and
0.18 %, respectively. These results demonstrate that the ANN models
trained in this study meet the accuracy requirements.

However, in real-world applications, challenges such as sensor er-
rors, noise, and other system biases are likely to arise. In such cases, the
ANN, as a data-driven model, can easily adapt and correct itself through
online learning and self-updating, thereby enhancing its robustness to
noise and system deviations. Furthermore, in this study, the combina-
tion of physical models and ANN models significantly improves the
system’s interpretability and reliability. By integrating the physical
principles of the system with the data-driven learning capabilities of the
ANN, the hybrid model-based approach offers both efficient computa-
tion and stable operation.

5. Results and discussion
5.1. Optimization efficiency

The number of floating-point operations per second (FLOPs), serving
as a standard measure to evaluate the processing power of a computing
device, is used to quantify the performance of the physical control sta-
tion. The theoretical value of FLOPs can be calculated using: FLOPs =
Clock Frequency (GHz) x Floating-point Operations per Cycle.
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The smart station used in the hardware-in-the-loop test is equipped
with a quad-core ARM Cortex-A72 processor, with each core capable of a
maximum clock frequency of 1.5 GHz and supporting up to three
floating-point operations per cycle. Thus, the theoretical value of FLOPs
can reach 18 GFLOPs (1.5 GHz x 4 cores x 3). An Intel Core i7 920

processor typically achieves around 63 GFLOPs, suggesting that the
station is only suitable for lightweight computing tasks.

Fig. 9 shows a comparison between the computation times for 200
iterations without and with the hybrid model. In the former, the genetic
algorithm uses a fitness function based on a purely physical model.
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Fig. 9. Iterative computation time: comparison before (top) and after (bottom) introducing the hybrid model.
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Specifically, the heat exchanger model is established using the loga-
rithmic mean temperature difference (LMTD) method, while the chiller
model consists of the compressor, condenser, expansion valve, and
evaporator, also modeled using the heat and mass transfer principle. The
detailed modeling methods have been thoroughly discussed in previous
research [28]. The results show that the average computation time per
iteration using the physical model is about 3.22 s, while the hybrid
model reduces this to 0.27 s. When applied to a genetic algorithm with
an initial population of 16 and 8 generations, the physical model re-
quires approximately 6.9 min to complete a single optimization
computation. By replacing key models with ANN models, the optimi-
zation time is reduced to 0.6 min under the same conditions, enabling
practical real-time applications of Al-empowered optimization control.

5.2. Control performance

Fig. 10 presents the profiles of major system operation variables
controlled by the proposed Al-empowered optimization strategy
compared to those under the control of the baseline strategy with fixed
setpoints. Fig. 10(a) shows that, compared to the baseline, the optimized
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cooling water return temperature increases by 2.30 K on average, while
the supply temperature decreases by 1.93 K. These adjustments reduce
cooling water flow rates but increase seawater flow rates, as illustrated
in Fig. 10(b).

The operational numbers of chillers and pumps follow a rule-based
mechanism, ensuring that each unit operates within an acceptable effi-
ciency range. As a result, the number of seawater pumps increases to
handle the higher flow rate, while the total numbers of chillers and
cooling water pumps remain unchanged, as shown in Fig. 10(c).

Fig. 10(d) demonstrates the impact of this strategy on power con-
sumption. While seawater pump power consumption increases, cooling
water pump power consumption decreases significantly. Furthermore,
although the higher condenser temperature difference increases
compressor energy consumption, this effect is mitigated by a rise in
chilled water temperature, as shown in Fig. 10(e). Optimization con-
straints and penalty functions effectively limit the chilled water tem-
perature increase, ensuring that comfort requirements are not
compromised.

Finally, Fig. 10(f) shows the overall reduction in total energy con-
sumption. By properly balancing the energy use of seawater pumps,
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Fig. 10. Main operation variables under two control strategies in a typical day.
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cooling water pumps, and chillers, the Al-empowered optimization al-
gorithm achieves an energy saving of 7.66 % compared to the baseline
case.

Fig. 11 illustrates the detailed breakdown of hourly energy con-
sumption and the profile in the Energy Efficiency Ratio (EER). The
hourly energy consumption trends provide a clear representation of the
instantaneous energy usage fluctuations under different control strate-
gies. The EER is defined as the ratio of building load to total system
energy consumption, serving as an indicator of overall system efficiency.
In the basic control strategy, both the water pumps and the chillers
operate based on fixed setpoints, resulting in relatively constant energy
consumption ratios for each component. In contrast, the optimized
control scheme utilizes global optimization through a genetic algorithm,
which leads to a more efficient distribution of energy.

The results show that the energy savings of the cooling pumps and
chillers significantly outweighed the increased energy consumption of
the seawater pumps, leading to a higher EER. As a result, the red line
representing the optimized EER in the figure shows a higher value
compared to the black line of the basic control strategy.

Detailed energy savings are presented in Table 2. With the global
optimization control, chiller energy consumption was reduced by 4.45
%, saving approximately 2605.7 kW. The cooling water pumps achieved
substantial energy savings of 47.9 % (4340.1 kW), due to the reduced
cooling water flow rate. Since seawater does not require long-distance
transport as cooling waters, the seawater pump power consumption is
about half that of the cooling water pump. As a result, under the global
optimization, seawater pump energy consumption increased by 38.1 %
(1469.3 kW). Eventually, the total energy consumption for the basic
control scheme was 71,496.6 kW, while the optimized control strategy
achieved a total energy consumption of 66,020.1 kW, and an overall
energy savings of 7.66 % (5476.5 kW).

Given the increasing importance of the sustainability of HVAC sys-
tems, it is essential to analyze the potential reduction in carbon footprint
associated with energy conservation. In this paper, the average carbon
emission factor of electricity in Hong Kong (0.529 kg CO2/kWh) is used
to calculate the energy savings. The results show that, under typical
daily summer conditions, the proposed strategy can reduce CO= emis-
sions by approximately 2.9 tons per day.

5.3. Robust assurance in practical operation

Various abnormal disturbances are also introduced in the optimiza-
tion tests. The operation of DDC controller is depicted in Fig. 12. For
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Table 2

Comparison of energy consumption throughout the day.
Energy consumption Basic Optimized Comparison
kW) operation operation
Compressors 58,572.1 55,966.4 4.45 %
Cooling water pumps 9066.6 4726.5 47.9 %
Seawater pumps 3857.9 5327.2 —38.1%
Total 71,496.6 66,020.1 7.66 %

regular optimization control processes, the controller precisely achieves
the optimal set-point received from the smart station. When the data
from the optimization algorithm overshoots due to external noise or
other transmission problems, the controller automatically switches to
the expert knowledge-based scheme, as illustrated in Fig. 12(b). Fig. 12
(c) shows the control reaction when it is unable to receive information
from the smart station for an extended period, whether due to a physical
layer failure (such as disconnection, poor connection, or port damage) or
a network issue (such as packet loss). The test results demonstrate that
the robust assurance scheme can mitigate the impact of these abnormal
situations by generating set-points based on the current operational state
and previous optimization experience. Although it exhibits some fluc-
tuations and cannot achieve global optimization accurately, this scheme
effectively ensures the stability and reliability of Al-empowered opti-
mization in real-time operation.

6. Conclusion

This paper presents an Al-empowered optimization strategy for
practical implementation at the field level. A hardware-in-the-loop test
is conducted to validate the computational efficiency, control perfor-
mance, and operational robustness of the proposed strategy. The results
show that the proposed Al-empowered optimization strategy accelerates
the optimization process by a factor of 6.9 and achieves an energy saving
of 7.66 %. The robust assurance scheme effectively mitigates the impacts
of abnormal disturbances through an expert-based switching mecha-
nism, ensuring stable and reliable system operation. This research ad-
vances the boundaries of AI applications in the building and energy
system fields, however, there is still much to explore regarding effi-
ciency and adaptability under dynamic working conditions in practical
applications. Future research should further address practical applica-
tion issues, such as developing general Al models and transitioning to-
ward adaptive control.
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Fig. 11. Comparison between hourly energy consumption and Energy Efficiency Ratio under baseline and Al-empowered optimization strategies.
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