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A B S T R A C T

Adopting Artificial Intelligence for optimizing building system controls has gained significant attention due to 
the growing emphasis on building energy efficiency. However, substantial gaps remain between academic 
research and the practical implementation of AI-based algorithms. Key factors hindering implementation include 
computational efficiency requirements and concerns about reliability in online applications. This paper addresses 
these challenges by presenting AI-empowered online control optimization technologies designed for practical 
implementation. A simplified deep learning-enabled Genetic Algorithm is developed to accelerate optimization 
processes, ensuring optimization intervals are short enough for online applications. This algorithm also signifi
cantly reduces CPU and memory usage, enabling deployment on miniaturized control station for field imple
mentation. To enhance stability and reliability, a robust assurance scheme is introduced, which switches to 
expert knowledge-based control under abnormal conditions. Hardware-in-the-loop tests validate the proposed 
strategy’s computation efficiency, control performance and operational robustness using a physical smart station 
controlling a simulated real-time dynamic cooling system. Test results show that the optimal control strategy 
achieves 7.66 % energy savings and exhibits strong operational robustness.

1. Introduction

Global energy consumption has emerged as a pressing concern in 
recent years due to its environmental and economic implications. To 
achieve a sustainable future, innovative solutions must be explored and 
implemented to mitigate the adverse effects of energy consumption. 
Buildings serve residential, commercial and institutional purposes, 
demanding substantial energy usage to facilitate the operation of heat
ing, cooling, lighting and other facilities. According to statistics from the 
International Energy Agency, buildings account for approximately 40 % 
of global energy consumption [1]. In Hong Kong, this percentage ex
ceeds 80 %, with nearly 40 % attributed to air conditioning systems [2]. 
Hence, implementing efficient control optimization in air conditioning 
systems is essential for conserving energy and reducing the environ
mental impacts of excessive energy consumption.

Traditionally, building control methods have relied predominantly 
on simple on/off control and PID control techniques. These methods 
regulate systems by activating/deactivating actuators or minimizing 
tracking errors based on fixed or manually set points [3]. However, these 
methods face limitations due to the continuously changing building 

loads and operating conditions [4]. The lack of online tuning and 
monitoring presents significant challenges in adapting to changing 
operating conditions. Additionally, their simplistic logic is insufficient 
for achieving optimal performance in nonlinear systems [5].

Researchers have developed a range of mathematical optimization 
methods to address control problems, including dynamic programming 
[6], quadratic programming [7], linear programming [8], among others. 
Additionally, specialized optimization methods have been developed to 
address specific challenges, adapt to environmental changes, and meet 
real-time control requirements. Escobar et al. [9] utilized advanced 
fuzzy-logic-based controllers to dynamically adjust HVAC settings in 
buildings, optimizing comfort and efficiency by processing real-time 
contextual data such as occupancy and weather conditions. Baptiste 
et al. [10] proposed a temperature adaptive control strategy (TACS) that 
optimizes the use of natural cooling by adjusting the air temperature 
throughout the year, allowing the system to maximize environmental 
conditions for cooling. Zhang et al. [11] introduced a hybrid algorithm 
to optimize indoor air supply parameters. They employed multivariate 
regression analysis to halve the variable space and used a fuzzy logic 
controller (FLC) to achieve a 35.7 % reduction in computational costs. 
Zhang et al. [12] implemented Model Predictive Control (MPC) in a 
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small commercial building to manage space conditioning, commercial 
refrigeration, and the battery system, resulting in a 12 % annual elec
tricity cost savings.

The advancement of computer science has fostered the integration of 
artificial intelligence (AI) with previously mentioned methods, 
enhancing their performance and adaptability to dynamic operational 
conditions [13]. These AI-enhanced methods utilize machine learning 
approaches [14] and heuristic algorithms [15] to effectively address 
system complexity and dynamics, thereby enhancing overall energy 
efficiency and ensuring operational stability. For example, Ye et al. [16] 
proposed a heuristic algorithm for the evolutionary optimization of 
tribal intelligence, demonstrating its overall superiority in terms of 
optimization accuracy, standard deviation, and calculation time through 
comparative experiments. The algorithm ultimately achieved energy 
savings of up to 19.43 % in a central HVAC system. Miao et al. [17] 
evaluated and compared the performance of ten swarm intelligence 
optimization algorithms by developing a real HVAC system model. Their 
study found that the artificial bee colony algorithm outperformed 
others, achieving an energy saving rate of 24.07 % in the simulation of a 
typical day. Dai et al. [18] proposed an iterative learning control strat
egy to optimize cooling distribution during the morning start-up period 
of an air conditioning system. A reinforcement learning (RL) method 
was employed to adjust the controller parameters, resulting in a 
reduction in daily precooling energy consumption by 5.1 % to 17.8 %. 
Huang et al. [19] optimized the load distribution and operating speeds 
of fans and pumps in a heat pump system, enhancing computational 
efficiency through the use of an artificial neural network (ANN) model 
and achieving an energy savings of 14.8 %. Ma et al. [20] proposed an 
energy efficiency optimization control strategy for a central chiller 
system, utilizing simplified linear self-tuning models and a genetic al
gorithm (GA) to optimize temperature setpoints, achieving a daily en
ergy savings of 2.55 %.

Despite many advanced methods being proposed and demonstrating 
their energy saving potential, the transition from academic research to 
practical applications remains a formidable challenge. The primary 
concern lies in the adaptability and reliability of the optimization 
method’s implementation. Specifically, the performance and efficiency 
of the optimization algorithm must be effectively balanced to ensure 
that the control can be executed in real time [21]. Additionally, plat
forms running AI algorithms must address challenges related to 
computing power and operational robustness [22]. Previous research 
has often relied on cloud or central computers to provide adequate 
computing power [23]. However, these approaches face challenges such 
as bandwidth limitations, network connectivity issues, and latency [24]. 
Unstable connections or insufficient bandwidth can result in delays and 
data loss, ultimately compromising the precise control of building sys
tems. In this scenario, it is crucial to develop a feasible and reliable 

approach for implementing AI-empowered optimal control at the field 
level. This would allow for more stable online monitoring, optimization 
calculations, and decision support [25].

This research, therefore, proposes a comprehensive set of innovative 
AI-empowered online control optimization technologies for central 
cooling systems. The main original contributions of this study include: 

• A deep learning-enabled genetic algorithm is proposed to reduce 
computational complexity, enabling rapid online responses to dy
namic conditions, and facilitating field implementation.

• A robust assurance scheme is designed and adopted to ensure the 
stability and reliability of the AI-empowered control optimization in 
online application.

The developed optimization algorithm is deployed on a physical 
smart station built on an embedded single-board computer, demon
strating its practical applicability and effectiveness in real-world sce
narios. The proposed control optimization technologies are tested and 
validated on a simulated dynamic cooling system through hardware-in- 
the-loop testing.

2. Description of AI-empowered optimization strategy

2.1. Overview of control strategy

Fig. 1 illustrates the generation and control process of the proposed 
AI-empowered optimization strategy, designed to reduce computational 
complexity and enhance application robustness. The core concept in
volves simplifying the AI-based optimization algorithm to enhance its 
suitability for field applications on miniaturized stations, and inte
grating an anomaly detection mechanism to maintain the reliability of 
the optimization process.

The optimization algorithm is a deep learning-enabled genetic al
gorithm, in which the fitness function’s optimization model is trained as 
a hybrid model to achieve a balance between efficiency and reliability. A 
physical model developed in Dymola is utilized for comprehensive 
simulation, generating a complete dataset of system operation. 
Following data processing, sensitivity analysis, and feature selection, the 
hybrid model is established and integrated into the genetic algorithm 
(GA) for optimization calculations. To further enhance system robust
ness, an anomaly detection mechanism based on a dynamic threshold 
detection method is incorporated, forming a robust assurance scheme. 
This mechanism enables automatic switching to an expert knowledge- 
based scheme whenever anomalies are detected, ensuring continuous 
and stable operation.

Under conventional control, the Direct Digital Control (DDC) 
controller follows a fixed setpoint strategy, continuously acquiring 

Nomenclature

ANN Artificial Neural Network
BAS Building Automation System
COP Coefficient of Performance
DDC Direct Digital Control
EER Energy efficiency ratio
FLOPs Floating-point operations per second
GA Genetic Algorithm
HVAC Heating Ventilation Air Conditioning
k Penalty factor
M Volume flow rate, m3h− 1

N Number of operational units
PLR Partial load ratio
Q Heat exchange capacity, kJ

SD Standard deviation
SMA Simple moving average
T Temperature, ◦C
W Power consumption, kWh

Subscripts
chws Supply chilled water
comp Compressor
cw Cooling water
cwr Return cooling water
cws Supply cooling water
db Dry-bulb
sw Seawater
sws Supply seawater
wb Wet-bulb

L. Xie et al.                                                                                                                                                                                                                                       Advances in Applied Energy 18 (2025) 100220 

2 



cooling system parameters and adjusting pump and chiller operations 
via PID feedback control. In the optimal control mode, the AI- 
empowered optimization algorithm is deployed on a control station, 
where it processes real-time operational data to generate optimized 
setpoints and transmits them to the DDC controller. The anomaly 
detection mechanism is embedded within the controller to validate the 
received setpoints. If no anomalies are detected, the controller updates 
the setpoints accordingly; otherwise, it switches to a predefined robust 
assurances scheme to maintain system stability.

The detailed working mechanism of the deep learning-enabled ge
netic algorithm and the robust assurance scheme is elaborated in Section 

2.2.

2.2. Formulation of the AI-empowered optimization strategy

2.2.1. Deep learning-enabled genetic algorithm
One of the main challenges in applying advanced optimization al

gorithms in the field is meeting computational demands. Traditional 
optimization algorithms, such as genetic algorithms, typically find 
optimal results by evaluating the effectiveness of various schemes 
through repeated assessments and selections. This process consumes 
significant computing resources and time, making it less practical for 

Fig. 1. Generation and control process of the AI-empowered optimization strategy.

Fig. 2. Flowchart of the deep learning-enabled genetic algorithm.
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real-time applications.
The deep learning-enabled genetic algorithm proposed in this paper 

is a hybrid model-based approach where key nonlinear models of the 
cooling system are trained as Artificial Neural Network (ANN) models. 
While pure black-box models can significantly enhance computational 
efficiency, their lack of interpretability can limit the reliability of ap
plications. The hybrid model, which retains most physical laws, effec
tively improves adaptability during implementation. The flowchart of 
the deep learning-enabled genetic algorithm for optimal control is 
depicted in Fig. 2. Initially, the control station receives real-time oper
ational parameters from the cooling system and generates an initial 
population, where each individual represents a different setpoint com
bination. These initial solutions are then fed into the hybrid model, 
which evaluates the fitness score for each offspring based on energy 
consumption. The best candidates are selected for evolutionary oper
ations—selection, crossover, and mutation. Finally, the algorithm de
termines the optimal setpoint combination, enabling the cooling system 
to operate efficiently. Additionally, the genetic algorithm used in this 
study combines roulette wheel selection and elitism retention strategies 
to balance exploration and exploitation, ensuring faster convergence 
and stable optimization results. Through extensive testing, the following 
key parameters were selected to ensure efficient convergence of the al
gorithm: (1) The initial population size is 20; (2) The number of gen
erations is 16; (3) The crossover rate is 0.75; (4) The mutation rate is 
0.05.

Through sensitivity analysis, it is found that the power consumption 
of the chiller is highly correlated with the flow rates of seawater and 
cooling water, while the power consumption of the pump is significantly 
influenced by the corresponding control temperature. Based on these 
findings, this study selects the cooling water supply temperature (Tcws) 
and the cooling water return temperature (Tcwr) as the optimization 
target parameters for the genetic algorithm. The fitness calculation 
formula is defined in Eq. (1), where ϵ is a small constant to prevent di
vision by zero. The total system energy consumption, denoted as Wsum, 
primarily consisting of the energy consumption of the seawater pump 
(Wsw), cooling water pump (Wcw), and chiller unit (Wcomp). To drive the 
optimization process toward energy efficiency, the reciprocal of Wsw is 
incorporated into the fitness function, ensuring that higher fitness values 
correspond to lower energy consumption. During the evolution process 
of the genetic algorithm, selection, crossover, and mutation operations 
are iteratively performed, evaluating the fitness of each individual 
(setpoint combination).

Additionally, a penalty function for the chilled water supply tem
perature is introduced into Eq. (2) to ensure that the optimization results 
align with the building’s operational requirements. In this function, k 
indicates the penalty factor, T is the temperature, and the subscripts chw 
and set represent the chilled water and set value. In this study, the 
identification of the penalty factor k is based on repeated tuning through 
simulation tests. The initial range of k was discretized into a grid, and 
tests were conducted under various load and external environmental 
conditions. The effect of different k values on the chilled water supply 
temperature (Tchws) was carefully observed. When the setpoint Tchws,set 
was set to 280.15 K, a value of k = 5 × 10–8 was chosen to ensure the 
chilled water supply temperature does not exceed 281.15 K. 

Wsum = Wsw + Wcw + Wcomp (1) 

Fitness =
1

Wsum + ϵ
− k⋅

⃒
⃒Tchws − Tchws, set

⃒
⃒ (2) 

2.2.2. The robust assurance scheme
The robust assurance scheme is designed between the control station 

and the Direct Digital Control (DDC) controller to enhance system reli
ability. As depicted in Fig. 1, the optimal setpoints generated by the AI- 
empowered algorithm are sent to a detection node at the controller, 
where their validity is assessed. A dynamic threshold detection method, 

based on a simple moving average (SMA), is introduced to evaluate the 
reliability of the control station’s outputs.

As highlighted in formulas (3–6), the detection method involves the 
calculation of the moving average and standard deviation (SD) of a set 
temperature point over a specified historical data window. The system 
identifies abnormal deviations in the optimization setpoints by estab
lishing dynamic thresholds at two SDs above and below the moving 
average. Such deviations may indicate potential algorithmic failures or 
inefficiencies, triggering an automatic switch to a preset scheme based 
on expert knowledge. In addition, if the DDC controller does not receive 
an updated setpoint from the control station within 20 min, a system 
alert is triggered, indicating a possible failure in communication. In such 
cases, the system automatically switches to robust assurance scheme to 
maintain stable operation. Once the controller resumes receiving valid 
setpoints, the system switches back to the optimal control scheme. This 
robust assurance mechanism ensures proper system operation and pre
vents potential operational failures. 

SMAt =
1
N

∑t

i=t− N+1
xi (3) 

Upper Thresholdt = SMAt + k × SDt (4) 

Lower Thresholdt = SMAt − k × SDt (5) 

SDt =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑t

i=t− N+1(xi − x)2

N − 1

√

(6) 

where, SMAt represents the simple moving average at time t, N is the size 
of the moving average window, and xi is the data point at position i. The 
SDt indicates the standard deviation within the window, k is the 
threshold width coefficient, and x is the mean of the data points within 
the window.

In addition, an empirical fitting formula based on expert knowledge 
is introduced to provide set points under abnormal conditions. Ac
cording to theoretical research and experiments conducted by a chiller 
manufacturer, the cooling water temperature optimization set point is 
influenced by several factors, including the outdoor wet-bulb tempera
ture (Twb) and its design value, the partial load ratio of the chiller system 
(PLR), and the flow rate of the cooling water (mcw): 

Tcwr,set = A × Twb + B × PLR − C × Twb,set − D × mcw
/
Load + 37 (7) 

3. Setup of hardware-in-the-loop tests

Hardware-in-the-loop test integrates real-world hardware compo
nents into a virtual simulation environment. It is adopted in this study to 
test the strategy deployed on a physical control station for controlling 
complex systems under comprehensive dynamic conditions. This section 
provides a detailed description of the test platform and the test 
arrangement.

3.1. Description of smart station and test platform

A smart station was constructed using a Raspberry Pi in this study, 
which features a quad-core ARM Cortex-A72 processor, supporting up to 
8GB of LPDDR4 RAM, and is compatible with Linux-based operating 
systems. Fig. 3 presents both the schematic diagram and the imple
mentation diagram of the hardware-in-the-loop test platform. The 
physical smart station, equipped with the deep learning-enabled genetic 
algorithm, controls a simulated, real-time virtual dynamic cooling sys
tem. The cooling system model was developed in Dymola using the 
Modelica language and packaged as a Functional Mock-up Interface 
(FMI) file, serving as a "digital twin in a box" hosted on the computer. 
Within the communication framework, the TCP/IP protocol is employed 
over the local area network, simulating the real-time data transmission 
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process during optimization.
In this study, a Raspberry Pi-based control station is developed to 

implement the optimization strategy in a hardware-in-the-loop test, 
evaluating the hardware requirement and its feasibility in a low-cost and 
easily deployable setup. Considering the Raspberry Pi is primarily 
designed for education and personal projects, it may face processing 
limitations when applied to larger and more complex systems. For 
practical implementation, an NVIDIA Jetson edge AI device is chosen to 
replace the Raspberry Pi, ensuring higher computational efficiency, 
reliability, and real-time processing capabilities.

3.2. The test arrangement

The proposed AI-empowered optimization strategy is deployed on 
the smart station, and evaluated using the hardware-in-the-loop test 
platform. Real-time validation tests are conducted over a day using 
weather data representative of a typical summer day in Hong Kong. The 
analysis begins with an evaluation of computation time per iteration, 
comparing the results before and after integrating the hybrid model to 
quantify improvements in computational efficiency.

Subsequently, comparative studies are conducted to evaluate the 
performance of the proposed AI-empowered optimization strategy 
against the traditional control strategy. 

• Baseline control strategy: This is a commonly used method for chiller 
systems that does not involve optimization. Fixed setpoints for the 
cooling water supply temperature and return water temperature are 
maintained throughout the operation.

• AI-empowered optimization control strategy: A deep learning- 
enabled genetic algorithm is used to optimize the cooling water 
supply and return temperatures at fixed intervals, improving the 
system’s efficiency.

During the tests, an optimization process within each control interval 
(5 min in this study) is divided into four distinct steps: 

• Sampling: collecting real-time system data,
• Calculation: performing the optimization computation,
• Sending: sending optimized setpoints to the system,
• Waiting: waiting until the subsequent optimization interval.

To validate the robustness assurance scheme, three hours during a 
typical day are selected for the validation test. The controller is pro
grammed to send a set of optimal set points every optimization interval, 
allowing for the evaluation of the Direct Digital Control (DDC) in 
responding to normal reception, data anomalies and interruptions.

4. Model development and description

4.1. Reference building and cooling system

A commercial building located in West Kowloon, Hong Kong, is 
selected as the reference building for optimization tests. As shown in 
Fig. 4, the building comprises four tower buildings (1A, 1B, 2A, 2B) and 
a podium, with a total area of 288,010 m2. The total design cooling load 
is 55,331 kW. To satisfy this cooling demand, the building is equipped 
with 21 seawater-cooled chillers, including 15 chillers rated at 3517 kW 
and 6 chillers rated at 1758 kW, as summarized in Table 1.

The central cooling systems described above are simulated in 
Dymola, a software platform based on the Modelica language [26], 
which is capable of simulating and analyzing complex dynamic systems 
with high accuracy and flexibility. As shown in Fig. 5, the system 
structure is organized from left to right, representing the seawater side, 
cooling water circulation, chiller units, and load side, respectively. 
Additionally, from top to bottom, the structure follows the hierarchy of 
Podium, Building 1, and Building 2, as illustrated in Fig. 4. The models 
for components, such as pumps, heat exchangers and chillers, are 
developed using the "Buildings" library. Basic control logic, including 
PID feedback control and device start-stop control, is incorporated into 
the model to simulate fundamental operational behaviors. During the 
simulation, external environmental parameters, including seawater 
temperature and building load variations, are input into the seawater 
side and load side of the Modelica model for dynamic execution. The 
load profiles are collected from a large existing building of the same 
owner nearby. The seawater temperature is based on the Hong Kong 
Environmental Protection Department (EPD) [27].

4.2. Hybrid energy models of cooling systems for online optimization

A hybrid energy model, serving as the fitness function for the genetic 
algorithm (GA) in online optimization, enables efficient computation of 

Fig. 3. Hardware-in-the-loop test platform: schematic and implementation.
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the total power consumption of a central cooling system. Fig. 6 illus
trates the structure of this hybrid model and its function in the optimi
zation process. This model is primarily responsible for fitness evaluation 
in the genetic algorithm optimization, generating fitness scores corre
lated with total system energy consumption to determine the optimal 

offspring. In this hybrid model, Artificial Neural Network (ANN) models 
are used for chillers and heat exchangers due to their significant 
nonlinearity and complex parameter settings. The cooling water pump 
and seawater pump models adopt polynomial fitting derived from their 
design parameters, as described in formulas (8) and (9). Each compo
nent in the models is interconnected according to its physical connection 
and physical laws, ensuring reliability and interpretability during 
application. 

Wsw = π1 + π2

(
Msw

Msw,nom

)

+ π3

(
Msw

Msw,nom

)2

+ π4

(
Msw

Msw,nom

)3

(8) 

Wcw = μ1 + μ2

(
Mcw

Mcw,nom

)

+ μ3

(
Mcw

Mcw,nom

)2

+ μ4

(
Mcw

Mcw,nom

)3

(9) 

where, W and M are the energy consumption and flow rate respectively. 
The subscript nom represents the nominal condition. The parameters 
π1~π4 and μ1~μ4 can be obtained from manufacturers or by curve- 
fitting using operational data.

The details of the ANN models for the heat exchangers and chillers 
are illustrated in Fig. 7. Both models utilize a two-hidden-layer struc
ture, with each hidden layer consisting of ten nodes. For the heat 
exchanger model, there are four input parameters: seawater flowrate 
(Msw), seawater supply temperature (Tsws), cooling water flowrate (Mcw), 
and cooling water return temperature (Tcwr). The output of this model is 

Fig. 4. Overview of the buildings and the central cooling system layout.

Table 1 
Key building parameters and cooling system specifications.

Building 
-

Building 
1A

Building 
1B

Building 
2A

Building 
2B

Podium

Gross Floor 
Area (m2)

58,770 77,000 52,490 43,750 56,000

Air 
Conditioning 
Area (m2)

48,528 60,351 43,751 36,694 13,156 
(Retail) 
11,744 
(F&B) 
13,687 
(Arcade)

Block load 
(kW)

10,544 12,960 9415 7906 4526, 
4846, 
5135

Load ratio 0.19 0.23 0.17 0.14 0.26
Chiller plants 3 ×

3517kW 
+1 ×
1758kW

3 ×
3517kW 
+1 ×
1758kW

2 ×
3517kW 
+2 ×
1758kW

2 ×
3517kW 
+1 ×
1758kW

5 ×
3517kW 
+1 ×
1758kW

Fig. 5. Seawater-cooled central cooling system in Dymola.
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the cooling water supply temperature (Tcws), which is crucial for 
coupling with the chiller unit. The chiller model uses five input pa
rameters: cooling water supply temperature (Tcws), cooling water flow 
(Mcw), chilled water supply temperature (Tchws), chilled water flow 
(Mchw), and the partial load ratio (PLR). The outputs of the chiller model 
include the coefficient of performance (COP) of the unit and the cooling 
capacity (Qe), which can be further used to calculate the chiller’s power 
consumption. The data for building the ANN models comes from 
comprehensive full-operation simulations of the Modelica model, 
covering all possible setpoint combinations and environmental param
eters under various system operating conditions. A total of 60,000 valid 
datapoints are generated for machine learning. This simulation 
approach aims to provide the ANN model with a diverse and represen
tative dataset, enabling it to accurately simulate the behavior of the heat 
exchanger and chiller under various conditions.

For model validation, 4000 sets of data, which are different from the 
data used for model training, were randomly generated by the Modelica 
models (shown in Fig. 7). These validation datasets were used to assess 
the performance of the trained ANN models. The validation results are 
shown in Fig. 8. The output of the heat exchanger model is a temperature 
value, which exhibits a relatively small fluctuation range and a strong 
logical correlation with the input parameters. As a result, the average 
relative error of the Tcws is 0.01 %. For the chiller model, the average 

relative errors of the output values for the COP and Qe are 0.29 % and 
0.18 %, respectively. These results demonstrate that the ANN models 
trained in this study meet the accuracy requirements.

However, in real-world applications, challenges such as sensor er
rors, noise, and other system biases are likely to arise. In such cases, the 
ANN, as a data-driven model, can easily adapt and correct itself through 
online learning and self-updating, thereby enhancing its robustness to 
noise and system deviations. Furthermore, in this study, the combina
tion of physical models and ANN models significantly improves the 
system’s interpretability and reliability. By integrating the physical 
principles of the system with the data-driven learning capabilities of the 
ANN, the hybrid model-based approach offers both efficient computa
tion and stable operation.

5. Results and discussion

5.1. Optimization efficiency

The number of floating-point operations per second (FLOPs), serving 
as a standard measure to evaluate the processing power of a computing 
device, is used to quantify the performance of the physical control sta
tion. The theoretical value of FLOPs can be calculated using: FLOPs ≈
Clock Frequency (GHz) × Floating-point Operations per Cycle.

Fig. 6. Hybrid model structure and its function in optimization process.

Fig. 7. Overview of ANN model configurations, inputs, and outputs.
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The smart station used in the hardware-in-the-loop test is equipped 
with a quad-core ARM Cortex-A72 processor, with each core capable of a 
maximum clock frequency of 1.5 GHz and supporting up to three 
floating-point operations per cycle. Thus, the theoretical value of FLOPs 
can reach 18 GFLOPs (1.5 GHz × 4 cores × 3). An Intel Core i7 920 

processor typically achieves around 63 GFLOPs, suggesting that the 
station is only suitable for lightweight computing tasks.

Fig. 9 shows a comparison between the computation times for 200 
iterations without and with the hybrid model. In the former, the genetic 
algorithm uses a fitness function based on a purely physical model. 

Fig. 8. Comparison between the data and the model prediction.

Fig. 9. Iterative computation time: comparison before (top) and after (bottom) introducing the hybrid model.
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Specifically, the heat exchanger model is established using the loga
rithmic mean temperature difference (LMTD) method, while the chiller 
model consists of the compressor, condenser, expansion valve, and 
evaporator, also modeled using the heat and mass transfer principle. The 
detailed modeling methods have been thoroughly discussed in previous 
research [28]. The results show that the average computation time per 
iteration using the physical model is about 3.22 s, while the hybrid 
model reduces this to 0.27 s. When applied to a genetic algorithm with 
an initial population of 16 and 8 generations, the physical model re
quires approximately 6.9 min to complete a single optimization 
computation. By replacing key models with ANN models, the optimi
zation time is reduced to 0.6 min under the same conditions, enabling 
practical real-time applications of AI-empowered optimization control.

5.2. Control performance

Fig. 10 presents the profiles of major system operation variables 
controlled by the proposed AI-empowered optimization strategy 
compared to those under the control of the baseline strategy with fixed 
setpoints. Fig. 10(a) shows that, compared to the baseline, the optimized 

cooling water return temperature increases by 2.30 K on average, while 
the supply temperature decreases by 1.93 K. These adjustments reduce 
cooling water flow rates but increase seawater flow rates, as illustrated 
in Fig. 10(b).

The operational numbers of chillers and pumps follow a rule-based 
mechanism, ensuring that each unit operates within an acceptable effi
ciency range. As a result, the number of seawater pumps increases to 
handle the higher flow rate, while the total numbers of chillers and 
cooling water pumps remain unchanged, as shown in Fig. 10(c).

Fig. 10(d) demonstrates the impact of this strategy on power con
sumption. While seawater pump power consumption increases, cooling 
water pump power consumption decreases significantly. Furthermore, 
although the higher condenser temperature difference increases 
compressor energy consumption, this effect is mitigated by a rise in 
chilled water temperature, as shown in Fig. 10(e). Optimization con
straints and penalty functions effectively limit the chilled water tem
perature increase, ensuring that comfort requirements are not 
compromised.

Finally, Fig. 10(f) shows the overall reduction in total energy con
sumption. By properly balancing the energy use of seawater pumps, 

Fig. 10. Main operation variables under two control strategies in a typical day.
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cooling water pumps, and chillers, the AI-empowered optimization al
gorithm achieves an energy saving of 7.66 % compared to the baseline 
case.

Fig. 11 illustrates the detailed breakdown of hourly energy con
sumption and the profile in the Energy Efficiency Ratio (EER). The 
hourly energy consumption trends provide a clear representation of the 
instantaneous energy usage fluctuations under different control strate
gies. The EER is defined as the ratio of building load to total system 
energy consumption, serving as an indicator of overall system efficiency. 
In the basic control strategy, both the water pumps and the chillers 
operate based on fixed setpoints, resulting in relatively constant energy 
consumption ratios for each component. In contrast, the optimized 
control scheme utilizes global optimization through a genetic algorithm, 
which leads to a more efficient distribution of energy.

The results show that the energy savings of the cooling pumps and 
chillers significantly outweighed the increased energy consumption of 
the seawater pumps, leading to a higher EER. As a result, the red line 
representing the optimized EER in the figure shows a higher value 
compared to the black line of the basic control strategy.

Detailed energy savings are presented in Table 2. With the global 
optimization control, chiller energy consumption was reduced by 4.45 
%, saving approximately 2605.7 kW. The cooling water pumps achieved 
substantial energy savings of 47.9 % (4340.1 kW), due to the reduced 
cooling water flow rate. Since seawater does not require long-distance 
transport as cooling waters, the seawater pump power consumption is 
about half that of the cooling water pump. As a result, under the global 
optimization, seawater pump energy consumption increased by 38.1 % 
(1469.3 kW). Eventually, the total energy consumption for the basic 
control scheme was 71,496.6 kW, while the optimized control strategy 
achieved a total energy consumption of 66,020.1 kW, and an overall 
energy savings of 7.66 % (5476.5 kW).

Given the increasing importance of the sustainability of HVAC sys
tems, it is essential to analyze the potential reduction in carbon footprint 
associated with energy conservation. In this paper, the average carbon 
emission factor of electricity in Hong Kong (0.529 kg CO₂/kWh) is used 
to calculate the energy savings. The results show that, under typical 
daily summer conditions, the proposed strategy can reduce CO₂ emis
sions by approximately 2.9 tons per day.

5.3. Robust assurance in practical operation

Various abnormal disturbances are also introduced in the optimiza
tion tests. The operation of DDC controller is depicted in Fig. 12. For 

regular optimization control processes, the controller precisely achieves 
the optimal set-point received from the smart station. When the data 
from the optimization algorithm overshoots due to external noise or 
other transmission problems, the controller automatically switches to 
the expert knowledge-based scheme, as illustrated in Fig. 12(b). Fig. 12
(c) shows the control reaction when it is unable to receive information 
from the smart station for an extended period, whether due to a physical 
layer failure (such as disconnection, poor connection, or port damage) or 
a network issue (such as packet loss). The test results demonstrate that 
the robust assurance scheme can mitigate the impact of these abnormal 
situations by generating set-points based on the current operational state 
and previous optimization experience. Although it exhibits some fluc
tuations and cannot achieve global optimization accurately, this scheme 
effectively ensures the stability and reliability of AI-empowered opti
mization in real-time operation.

6. Conclusion

This paper presents an AI-empowered optimization strategy for 
practical implementation at the field level. A hardware-in-the-loop test 
is conducted to validate the computational efficiency, control perfor
mance, and operational robustness of the proposed strategy. The results 
show that the proposed AI-empowered optimization strategy accelerates 
the optimization process by a factor of 6.9 and achieves an energy saving 
of 7.66 %. The robust assurance scheme effectively mitigates the impacts 
of abnormal disturbances through an expert-based switching mecha
nism, ensuring stable and reliable system operation. This research ad
vances the boundaries of AI applications in the building and energy 
system fields, however, there is still much to explore regarding effi
ciency and adaptability under dynamic working conditions in practical 
applications. Future research should further address practical applica
tion issues, such as developing general AI models and transitioning to
ward adaptive control.

Fig. 11. Comparison between hourly energy consumption and Energy Efficiency Ratio under baseline and AI-empowered optimization strategies.

Table 2 
Comparison of energy consumption throughout the day.

Energy consumption 
(kW)

Basic 
operation

Optimized 
operation

Comparison

Compressors 58,572.1 55,966.4 4.45 %
Cooling water pumps 9066.6 4726.5 47.9 %
Seawater pumps 3857.9 5327.2 − 38.1 %
Total 71,496.6 66,020.1 7.66 %
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