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ABSTRACT

This paper presents an approach to the computer aided diagnosis (CAD) of diabetic retinopathy (DR) -- a common and
severe complication of long-term diabetes which damages the retina and cause blindness. Since red lesions are regarded
as the first signs of DR, there has been extensive research on effective detection and localization of these abnormalities
in retinal images. In contrast to existing algorithms, a new approach based on Multiscale Correlation Filtering (MSCF)
and dynamic thresholding is developed. This consists of two levels, Red Lesion Candidate Detection (coarse level) and
True Red Lesion Detection (fine level). The approach was evaluated using data from Retinopathy On-line Challenge
(ROC) competition website and we conclude our method to be effective and efficient.

Keywords: Computer-aided diagnosis (CAD), Diabetic Retinopathy (DR), Multiscale Correlation Filtering, red lesion
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1. INTRODUCTION

Images of the ocular fundus, also known as retina images or retinal (fundus) images, can provide useful information
about retinal [1], ophthalmic, and even systemic diseases such as diabetes [2-14], hypertension [15], glaucoma [16,17],
obesity arteriosclerosis [18] and retinal artery occlusion. One such condition, diabetic retinopathy (DR), is the result of
long-term diabetes and involves the formation on the retina of lesions which can lead to blindness.

In order to prevent the damage of this severe complication to a patient’s vision, it is very important to diagnose diabetic
retinopathy and provide appropriate treatment to minimize further deterioration as early as possible. It is also crucial to
monitor the development of the disease by the detection and classification of changes in retinal images taken at different
medical examinations to evaluate the effectiveness of the medical treatment and observe the evolution of the disease.

(b)

Fig. 1. Most common DR screening techniques (a) FA (Fluorescien Angiograms) and (b) color retinal image.
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In general, DR can be classified into four stages: mild Non-Proliferative Diabetic Retinopathy (NPDR), moderate
NPDR, severe NPDR, and Proliferative Diabetic Retinopathy (PDR). The damage caused by DR can be reduced and
major vision loss [19,20] prevented if it is diagnosed and treated in its early stages. Thus, regular examination of diabetic
patients’ retina is very important. However, it is time consuming and subject to human errors if DR diagnosis is
conducted by medical professionals manually. Therefore, automated or computer-aided analysis of diabetic patients’
retina can help eye care specialist to screen larger populations of patients more accurately. An image processing
approach provides a powerful tool in three aspects: image enhancement and feature extraction (feature based image
registration), mass screening (diagnosis) and change detection, and classification (monitoring).

Fluorescien Angiograms (FA) is a medical estimation tool for screening DR [7-9,14]. FA injects fluorescein into the
body before image capture so vessel features can standout. Although FA produces very clear gray-scale retinal images as
seen in Fig. 1 (a) and is effective for describing hemorrhages and Neovascularization, it is not well-accepted by patients
because of its intrusive nature. In [21], a method of staging DR using Transient Visual Evoked Potential (TVEP) was
introduced. However, the procedure for generating a TVEP signal is complicated and time-consuming. Therefore, it is
essential to develop a safe, easy, and comfortable method for screening DR. The analysis of color retinal images [3-6,13]
displayed in Fig. 1 (b) is viewed as this feasible approach because the acquisition of retinal images is non- intrusive, very
fast and easy. Processing of color retinal images is usually conducted in its green channel since red lesions have the
highest contrast with its background here. This is illustrated in Fig. 2, which represents the image components in three
different color bands -- Fig. 2 (a) is an original color retinal image, Fig. 2 (b), 2 (c) and 2 (d) represent component in red
band (I_red), green band (I_green) and blue band (I_blue) respectively. In the green band objects such as blood vessels,
lesions, the optic disc, etc., are most visible.

(d)

Fig. 2. The corresponding components in different color bands (a) the original color retinal image, (b) red band, (c) green
band, and (d) blue band.

In [11], it was proposed to use artificial neural networks (ANNs) to automatically detect DR. The neural network
consisted of an input pixel layer, hidden layer and output layer and was trained to recognize features such as blood
vessels, exudates and hemorrhages. The images were divided into 30 x 30 and 20 x 20 squares pixels depending on the
feature being detected and a trained observer then classified the squares as normal retina not showing blood vessels
(normal), normal retina showing normal blood vessels (vessel), retina showing exudates (exudates), or retina showing
hemorrhages or microaneurysms (hemorrhage). This method achieved a true positive rate of 88.4% and a true negative
rate of 83.5%. Classification of hemorrhages was the most difficult part as their pixel values were similar to that of blood
vessels. The system for diagnosing DR proposed in [12] detected blood vessels, the optic disk, the fovea (a pit in the
retina that is full of ganglion cells and photoreceptors), and bright and dark lesions (both being abnormalities). Dark
lesions included microaneurysms and hemorrhages while bright lesions included hard exudates and so-called cotton
wool spots. Diagnosis is based on the number, type and location of abnormalities relative to the fovea. Two segments
were partitioned from the original image, the fovea and the remaining portion of the retina. Abnormalities were found in
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both segments by removing normal retinal features, which should leave either abnormalities and/or the background. The
features extracted from the detected objects were then fed into a neural network to be classified as either normal or
abnormal.

Although the above two methods are effective for some cases, they are subject to some limitations which include,
microaneurysms are only classified but not extracted and the use of a neural network is time consuming. Niemeijer et. al.
[13] overcame these problems and devised a way to detect/extract red lesions in fundus images based on candidate
detection and classification. Candidate detection consisted of locating all possible red lesions by combining the
Mathematical Morphology (Math Morph) method from [14] with pixel classification. The pixels were classified using a
k-NN classifier with a reference standard that requires manually marking each image. The procedure then extracts 68
features from the remaining candidates, again using k-NN to classify them. This work reported a 100% true positive rate
with an 87% false positive rate when deciding if an image has a red lesion. These are high true and false positive rates
but this approach does not extract all possible lesions in an image and manual pixel classification in both [11,13] are
laborious tasks that require medical experts, something not feasible when using larger numbers of images.

To avoid these problems, this paper presents a novel approach to the CAD of diabetic retinopathy that applies a
hierarchical approach to the detection of red lesions in retinal images. The approach makes use of multiscale correlation
filtering (MSCF) and dynamic thresholding for intensity-based detection and localization of red lesions in retinal images
and has a two level hierarchical architecture. In the first level (coarse level), we detect candidate lesions using MSCF. In
the second level (fine level), we detect true red lesions by extracting thirty one features from the level one candidates
which are used to classify them. Fig. 3 shows the architecture of the proposed system.

Coarse Level: Red
Lesion Candidate
Detection

Fine Level: True
Lesion Detection

Fig. 3. System architecture of the proposed algorithm.

The remainder of this paper is organized as follows. Sections 2 and 3 describe the two level system architecture in detail.
Section 4 presents and discusses the experimental results. Section 5 offers our conclusion and an outline of future work.

2. COARSE LEVEL: RED LESION CANDIDATE DETECTION

The task for course-level detection is to identify all of the possible red lesion candidates in a retinal image. Fig. 4 (a) and
(b) show two lesions that were found in Fig. 1 (b) (shown in its green channel) and Fig. 4 (c¢) and (d) show their
corresponding grayscale distributions. As can be seen, red lesions exhibit a Gaussian shape. This allows us to use a
Gaussian function to detect lesions according to the similarity between the distributions of its grayscale.

(e) i)

Fig. 4. The detection of red lesions in a color retinal image. (a) and (b) illustrate two red lesions found in a sample image
shown in Fig. 2 (a). The corresponding mesh plots of (a) and (b) are shown in (c) and (d) respectively.

The Gaussian function can be defined as:
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with its distribution shown in Fig. 5.

(@) i)

Fig. 5. The mesh plots of the Gaussian kernel with different scale factors. (a) scale factor O=1.1 and (b) scale factor =1.5.

The correlation coefficient is a good way to measure the resemblance between the Gaussian function and grayscale
distribution of lesions. If the two match, the correlation coefficient will be high and if they don’t, the value will be low.
The range of the coefficient is from 0 to 1.

The correlation function is defined as:
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where 4 and B are the mean.

Since lesions vary in size, different sigma values for the Gaussian kernel are required. For this purpose we include the
selection of multiple scales in order to match various lesion dimensions. Fig. 6 (a, ¢ and b, d) shows the responses and
maximum correlation coefficients to different Gaussian kernels of the same two lesions depicted in Fig. 4. Images (a, c)
on the left show the responses of Fig. 4 (a) to small and large kernels respectively. Images (b, d) on the right show the
same thing but using Fig. 4 (b). From Fig. 6 it can be seen that applying one scale does not guarantee detection of the
maximum coefficient as response Fig. 6 (a) has a greater coefficient using the smaller scale Gaussian kernel while
response Fig. 6 (d) produces a higher coefficient using the larger scale kernel.

0.6871 0.5081
(&) ()
0.4349 0.7458
() (D

Fig. 6. The responses of lesions to different Gaussian kernels. (a) and (b) are responses for lesions in Fig. 4 (a) & (b) ata
small scale, (c) and (d) are responses for lesions in Fig. 4 (a) & (b) at a larger scale respectively, where the maximum
coefficient is placed below each responses.

The first step in coarse level candidate detection involves applying a non-linear filter with multiscale Gaussian kernels to
the fundus image in order to calculate a correlation coefficient for each pixel.

Because red lesions are circular, the Gaussian kernels are also circular as this will ensure that the response (a correlation
coefficient) will be high. Based on extensive experimentation, we chose five scales for the kernel to represent
microaneurysms of different sizes with the sigma of the Gaussian function being 1.1, 1.2, 1.3, 1.4 and 1.5. The
maximum coefficients from each of the five responses were combined to form a final response. Figure 7 depicts the final
response, where Fig. 7 (a) is an input retinal image and Fig. 7 (b) is the output. The brighter spots seen in Fig. 7 (b) have
a higher coefficient and therefore are more likely to be true lesions.
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A threshold is next applied in order to determine the number of lesion candidates. Application of a threshold creates a
binary image as in the example in Fig. 8, where the threshold value was set to 0.4 in order to segment Fig. 7. Since red
lesions cannot occur on blood vessels, an adaptive thresholding technique is used to first locate these vessels and remove
any spots on them, thereby reducing the number of candidates. Figure 9 shows a vascular map, where Fig. 9 (a) is an
original image, Fig. 9 (b) is the output of the corresponding vascular map with all the blood vessels that were detected
after adaptive thresholding. Any candidates on these vessels are removed from Fig. 8 and the result can be seen in Fig.
10.

(b)

Fig. 7. The final response of a testing image (a) the input retinal image (b) the output.

Fig. 8. Result after segmenting Fig. 7 with a threshold of 0.4. The white spots marked are possible red lesions.

(b)

Fig. 9. The vascular map of a retinal image. (a) the sample image given in Fig. 1 (b) and (b) the output of its vascular map.

Fig. 10. The remaining candidates from Fig. 8 after candidates on the blood vessels were removed.

The candidate lesions that remain in Fig. 10 at this point do not represent the true lesion size, so we apply region
growing based on [13]. We first calculate the grayscale intensity pixel value(s) for each candidate (i_green for I green
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and i_bg for I bg). I bg is the background of I green and is computed by applying a median filter of size 25 x 25 to
I green. The lowest intensity ini_green (I_darkest) is also required. These values are used to find a threshold # where:

t=1 _darkest—x(I _darkest—i bg) 3)

In this paper, x is set to 0.5. The value ¢ is then used to segment I green into a binary image where region growing
begins from the pixel having the intensity I darkest and terminates when no more pixels are connected to it. If the
resultant region is greater than 120 pixels it’s discarded as no true lesion can be that large. Fig. 11 shows the result of
region growing for the candidates in Fig. 10.

Fig. 11. Result of region growing for the candidates in Fig. 10.

3. FINE LEVEL: TRUE LESION DETECTION

The task for fine level lesion detection is to detect true red lesions in the candidate set, which can be implemented
through feature extraction. We used a total of 31 features for each candidate, based on shape, grayscale pixel intensity,
color intensity, responses of Gaussian filter-banks, and correlation coefficient values. The following lists the 31 features
used to discriminate red lesions in our proposed approach. Features 27-29 are unique to the proposed method as it is
based on the correlation coefficient of each pixel, calculated beforehand. The last two features, major and minor axis
length are added to diversify the already existing shape features.

1. The area a of the candidate. Lesions have a small area compared to other objects in the retina.
2. The perimeter p of the candidate. Lesions have a small perimeter compared to other objects in the retina.

3. The aspect ratio » = I / w where / and w are the major and minor axis lengths of the candidate. For a true lesion its
major and minor axis should be quite similar.

4. The circularity ¢ = 477 / p 2 True lesions are circular in shape.

5. The total intensity i _green of the candidate in I_green. True lesions have higher intensities.
6. The total intensity i sc of the candidate in I SC.

7. The average intensity of i_green, m_green =i _green/a.

8. The average intensity of i_sc, m_sc =i _sc/a.

9. The normalized intensity in I _green, NI green = (1/0)(i_green — x) where O and x are the standard deviation and

mean pixel value of I bg.

10. The normalized intensity in I_SC, NI SC = (1/0)(i_sc — x).
11. The normalized average intensity in I_green, NM green = (1/0)(m_green —x).

12. The normalized average intensity in I SC, NM_sc = (1/0)(m_sc —x).

13. The intensity of I darkest in I_match.
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14. The compactness v=1[2(di -d )2 /n where d; is the distance of each boundary pixel of the candidate to its

center, d is the mean of all these distances and » is the number of boundary pixels. True lesions are compact.

15. The difference between the average pixel values of the candidate and a circular region centered on it in the red
channel (RGB color space). The circular region is calculated by dilating the candidate with a disk of radius 6. Since
lesions have a Gaussian distribution when examining its grayscale values, the contrast of the lesion with its
background should be high.

16. Repeat feature 15 but in the green channel, blue channel and hue channel from the HSI color space. (3 features)

17. The average Gaussian filter response of I_green with =1, 2, 4 and 8. (4 features)

18. The standard deviation response of I green after Gaussian filtering with =1, 2, 4 and 8. (4 features)

19. The maximum, minimum and average correlation coefficient of the candidate. Candidates with a higher coefficient
are more likely to be true lesions. (3 features)

20. The major axis length of the candidate. Generally, lesions do not have a significant major nor minor axis length.

21. The minor axis length of the candidate.

(b)

Fig. 12. The output of red lesion detection. (a) the original retinal image (b) the output of coarse — level detection (c) the
final output of fine — level detection where the colored spot inside the green squares mark the approximate location of
the detected lesions using the proposed algorithm.

After features are extracted from the candidates, we divide them into two groups: true lesions and false lesions (how we
do this is explained in Section 4). We then obtain the minimum and maximum values of each feature in the true lesion
group and store them in a discrimination table as in Table 1. The 31 features are given a number and the min. and max.
values for that feature can be read off in the columns. This table can be used to eliminate any candidates whose features
are greater than max or less than min. For feature 16 which computes the contrast of the candidates and its surrounding
area in the green channel, the min. value was manually set to 8. By manually setting this value to be higher than the
actual min. of feature 16, some true and many false lesions are removed. This feature was specifically chosen since the
contrast between lesions and its surrounding background are known to be high. The remaining candidates whose feature
values are between min. and max. are the final detected red lesions. We applied this table to the candidates drawn from
Fig. 11 and obtained the result in Fig. 12. The true candidates are then mapped back to the original image to show the
location of true lesions (inside the green squares, shown in Fig. 12 (c)). As can be seen, a significant number of
candidates have been removed (from Fig. 12 (b)). For the final output image given in Fig. 12 (c), all true lesions were
detected with no false positives.
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Table 1. The discrimination table of different retinal features.

Il:]i?rtllér; in. Max. Iljlfl?;l‘tl)reer Min. Max. Il:]z?rtllér; Min. Max.

1 2 109 12 0.164831 5.08576 23 36.00843 182.7637
2 2 113.0122 13 7 255 24 0.003416 3.00799
3 1 5.618986 14 0 3.743681 25  37.95791 183.7483
4 0.090521 6.283185 15 -31.368 2.863946 26  0.009462 1.797795
5 58 10676 16 8 3537533 27 0.106603 0.785072
6 338 19451 17 -27.1471 6.368521 28 0 0.547187
7 25.17241 177.0417 18 -0.01944 0.002723 29  0.053335 0.658546
8 104.8125221.9348 19 27.66061 179.0988 30  2.309401 29.53404
9 -0.31038 203.8908 20 0.01962 8.292589 31  1.154701 14.09998
10 6.138524 448.9355 21  30.81245 180.773

11 -1.15234 0921628 22 0.044188 6.747434

4. EXPERIMENTAL RESULTS AND ANALYSIS

To evaluate our proposed algorithm, we conducted a sequence of experiments on 100 images (split into 50 training and
50 test) in the public retinal image database provided on the ROC competition website [22]. The images were all taken
with Topcon NW 100, NW 200 or Canon CR5-45NM ‘non-mydriatic’ cameras at the default resolution and compression
settings from patients with diabetes without known diabetic retinopathy (at the moment of photography). The images are
a random sample of all patients that were noted to have ‘red lesions’ from a large (> 10,000 patients) diabetic retinopathy
screening program, and each image is from a different patient. All images are in JPEG compressed format with sizes 768
x 576, 1058 x 1061, 1062 x 1061, 1379 x 1383, 1381 x 1385, 1385 x 1382, 1386 x 1384, 1389 x 1383, 1389 x 1391 and
1394 x 1392 pixels. Each image comes with a reference standard that marks every lesion agreed upon by the consensus
of 4 experts. This reference standard helps identify true lesions used in the discrimination table. Some images contained
so-called ‘don’t care’ objects where a consensus could not be reached or where the objects are not microaneurysms (e.g.
hemorrhages, pigment spots, etc.). We applied the proposed algorithm on all images and did not consider or use the
‘don’t care’ objects. To segment the final response after applying the kernel functions we used threshold values ranging
from 0.1 to 1.0, each time building a discrimination table according to the true red lesion feature values and using it to
remove some candidates. We compared our algorithm with Math Morph [14]. This was done by first implementing [14]
and then testing with the same data as the proposed algorithm. We were not able to compare it to [13] since the reference
standard provided did not label each pixel as required by this method.
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Fig. 13. Plot of FROC comparing MSCF (dotted curve) with Math Morph (solid curve) on the training data.
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The performance of our hierarchical approach based on MSCF for red lesion detection is evaluated by plotting
sensitivity against the average number of false positives per image (FROC) using the 50 training images, shown in Fig.
13 as a dotted curve. Sensitivity is the number of true lesions detected while false positive is the number of non lesions
detected as true lesions. Please note that the horizontal axis is in logarithmic scale. The FROC plot also contains a solid
curve, which is our implementation of Math Morph. As can be seen the majority of the dotted curve has a higher
sensitivity compared with the solid curve for the same false positives per image. Table 2 lists the sensitivity of 0.1, 0.2,
0.4, 0.8, 1.6, 3.2 and 6.4 false positives per image of both methods derived from Fig. 13. In this table the proposed
method has a greater sensitivity from 0.4 to 6.4 with the average of all seven points being 0.1856 and 0.1232 for Math
Morph.

Table 2. The average number of false positives per image for training data.

False Positive Rate MSCF Math Morph

0.1 0.0565 0.0744
0.2 0.0685 0.0851
0.4 0.1335 0.1072
0.8 0.1707 0.1072
1.6 0.2536 0.1400
32 0.2917 0.1600
6.4 0.3250 0.1885
Average 0.1856 0.1232

Results based on the 50 test images are displayed in Fig. 14, also in the form of a FROC plot. Again, the dotted line
represents MSCF while the solid line is Math Morph. The same trend found in Fig. 13 applies to Fig. 14 where the
majority of MSCF points are higher than Math Morph. Table 3 which measures the same false positives per image as
Table 2 except for the test data supports this calm, as the sensitivity of MSCF is greater than Math Morph with the
average sensitivity being 0.3739 — MSCF and 0.0876 — Math Morph. This clearly demonstrates that MSCF outperforms
Math Morph. The remaining true lesions not detected were due to the quality of the images, the selection of sigma for
the Gaussian filter, the location of the lesions being too close to blood vessels and little contrast between the lesions and
its surrounding background.
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Fig. 14. Plot of FROC comparing MSCF (dotted curve) with Math Morph (solid curve) on the test data.
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Table 3. The average number of false positives per image for test data.

False Positive Rate MSCF Math Morph

0.1 0.2296 0.0361
0.2 0.2810 0.0556
0.4 0.3361 0.0630
0.8 0.3744 0.0799
1.6 0.4081 0.0919
32 0.4808 0.1182
6.4 0.5071 0.1683
Average 0.3739 0.0876

Fig. 15. True lesion being recognized as part of the blood vessel. (a) A cropped retinal image marked with true lesions. (b)
candidates lesions detected in (a). (¢) Vascular map of (a). The central lesion, enclosed with dashes in (a) and (b) is
detected as part of the blood vessel in (c).

The experiments raise four particular issues which require further consideration. First, there is the quality of the images,
which are JPEG compressed and therefore some of the lesions are too small or too blurred to be seen with the naked eye.
Second there is the choice of scales for the Gaussian kernel. The use of only small scales means that larger lesions will
not be extracted because the smaller kernel cannot cover/match the larger spots and thereby produces a lower correlation
coefficient. The same problem arises when using a larger scale to cover/match a small lesion. If such candidate lesions
are not detected after the coarse level, they will be lost forever. Third, a few lesions located next to or nearby blood
vessels are removed in the coarse level. This is because these lesions are recognized as part of the vascular map and
therefore are removed along with real vessels. Figure 15 illustrates this problem where Fig. 15 (a) is a cropped color
retinal image with marked (green squares) lesions, Fig. 15 (b) are candidates detected from Fig. 15 (a) and Fig. 15 (c) is
the vascular map of Fig. 15 (a). The central lesion (enclosed in dashes) in Fig. 15 (a) is detected as seen in Fig. 15 (b) but
also appears as a vessel in Fig. 15 (c). This subsequently removes it as a candidate from Fig. 15 (b) in the next step of the
coarse level.

A fourth issue for further consideration relates to the effect of contrast on true and false detected lesions. When true
lesions have a low contrast with its background, as can be seen in the examples in Fig. 16, the lesions will not exhibit a
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Gaussian shape and it becomes difficult for the Gaussian kernels to produce a high correlation coefficient (see Table 4
(left)). From our results several of the spots detected as false lesions are circular in shape and have significant contrast
with its background which explains its high correlation coefficient. Of these, some are possibly lesions (where a
consensus was not reached by the 4 experts). Fig. 17 shows four examples of these contentious spots with Table 4 (right)
displaying their correlation coefficients. We deem these objects reasonable to be detected as they resemble true red

lesions.

(a) (b
- N
(c) (D

Fig. 16. True lesions with low contrast.

(@) (b)
(e} ()

Fig. 17. False positive lesion candidates with high contrast.

Table 4. True lesions with low intensity contrast (left) and false positive candidates that resemble true lesions (right).

True Lesion Max. response False Lesion Max. response
Fig. 16 (a) 0.1696 Fig. 17 (a) 0.7527
Fig. 16 (b) 0.1624 Fig. 17 (b) 0.7235
Fig. 16 (¢) 0.1934 Fig. 17 (¢) 0.6564
Fig. 16 (d) 0.1715 Fig. 17 (d) 0.6269

5. CONCLUSION AND FUTURE WORK

In this paper we proposed a hierarchical approach based on multiscale correlation filtering (MSCF) to detect all red
lesions from a color retinal image. This consisted of Coarse Level: Red Lesion Candidate Detection using MSCF and
Fine Level: True Red Lesion Detection. The approach was evaluated using the public retinal image database provided on
the ROC competition website and conclude that the proposed approach is effective and efficient for intensity-based red
lesion detection and localization for DR diagnosis. The selection of scales in the first level is vital to the success of
succeeding steps. Sigma values have to be chosen such that the kernel can match lesions of various sizes always
producing a high correlation coefficient. Currently only five scales are used. If more scales specifically designed to
match small and large lesions are implemented and then combined to form a scale production, this might improve the
existing results. Further improvement of the proposed algorithm is to develop an automatic scale selection scheme which
can determine the best scale for the system based on the training set.
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