Improved inclusion matching for animation paint bucket colorization
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ABSTRACT

The celluloid style is usually characterized by clear lines, distinct color blocks, and sharp contrast between light and dark,
etc. When it comes to celluloid-style cartoons, it involves colorizing the line-enclosed segments of line art frame by frame.
In the past decades, with the popularization of computer technology, practitioners commonly utilize paint bucket tools to
perform line art colorization tasks, based on RGB values predetermined by a color designer. Nevertheless, it is still labo-
rious regarding diverse color segments, segment matching and the large number of frames. Concerning that, a number of
automated methodologies have been devised. The methodology named inclusion matching proposed by a group in NTU
is advanced and practical. To a large extent, it can effectively address issues like occlusion or wrinkles that arise among
frames. The inclusion matching pipeline is based on deep neural networks. From coarse to fine, it starts to warp the line
art for extracting features and then performs inclusion matching using the attention mechanism. However, this pipeline
ignores the global information of line art. Inspired by the vision transformer, the present study introduces a new mechanism
to enhance the inclusion matching module. Experiments depict the effectiveness of our techniques.
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1. INTRODUCTION

Celluloid-style works’ characteristics make them visually very impactful and recognizable. Till now, celluloid works still
attract enthusiasts. First, artists produce clear and concise line drawings. This is the basis of the entire coloring process.
Lines mainly serve to define shapes and outlines, and their colors are mostly monochrome or simple strokes. However, in
some cases, in order to enhance the visual effect, lines of different colors or thicknesses may be used to distinguish different
areas or emphasize specific details, such as highlights in the eyes. Based on the line drawing and keyframes, which are
colorized, fill the basic line-enclosed color blocks in the in-between frames with colors. This step is usually performed by
applying paint bucket tools. It is a time-consuming endeavor because of hundreds of manual clicks. Software applications
like Retas Studio Paintman, OpenToonz, and CLIP Studio Paint have been developed to tackle this problem. Many effec-
tive functions are offered for help. Despite these technological advancements, the pursuit of fully automated colorization
is ongoing, with various methods being explored and proposed.

Graph-based methodologies [1-5] view individual segments as graph nodes, interconnecting them through edges based on
their proximity. But they are computationally demanding. To address this, Casey et al. [6] suggested the Animation Trans-
former (AnT) and its application Cadmium. AnT streamlines the segment alignment process by standardizing their sizes
and leveraging Convolutional Neural Networks (CNNs) for extracting salient features. However, in more complex scenar-
ios, particularly those characterized by occlusion or substantial motion, AnT's performance becomes less robust, struggling
to maintain the same level of accuracy. The inclusion matching method raised by Yuekun Dai et al. [7] partially solved the
issue. Their approach computes the likelihood of each segment in a target frame being included within a specific region of
a reference frame rather than direct segment matching. Although the inclusion matching method has excellent results, the
model is still not perfect because of the lack of global information. In this study, we enhanced the inclusion matching
module by concatenating a new token with the segments’ features. The new token represents “class” and will acquire global
information from attention layers.

2. RELATED WORK

2.1 Correspondence matching

To match the correspondence, a number of researchers attempt to match regions of consequent frames or relevant images
in feature space. Taking advantage of deep neural networks, it is common and effective to extract usable high-level feature
maps of original images.
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Tasks like Video tracking [8, 9] and exemplar-based colorization [10, 11] adopt this framework. Despite showing promising
prospects, there exist innate limitations. Pixel-level operations require a large amount of computational resources, espe-
cially referring to high-resolution images. Naturally, region representations via patches [12, 13] or descriptors [14, 15] are
being explored.

2.2 Segment matching

In the celluloid-style cartoon process, shapes are clearly defined because lines surround segments. Segment-wise colori-
zation is another point of view and demonstrates its potential.

Graph-based approaches [1-5] transform the segments into graph nodes, trying to solve the matching problem from the
perspective of graph optimization. These methods have certain functions and effects, but the computational cost is high.

Another proposal [16] is to generate feature maps by computing Hu moments [17] and then feeding the moments to U-Net
[18]. After mapping segments to the feature dimension, calculating distance/loss among segments contributes to matching.

Recently, Transformers [19] are getting more and more popular. Transformer-based architectures are proven to be signifi-
cantly successful in several domains. On this basis, Casey et al. [6] introduce an effective architecture “The Animation
Transformer” (AnT). They leverage CNN for extraction and apply a multiplex transformer architecture for feature aggre-
gation and segment matching.

3. METHOD

3.1 Inclusion matching

Inclusion matching [7] is an advanced methodology suggested by a research group from NTU (Nanyang Technological
University). Its architecture shows excellent performance and can better deal with occlusion, wrinkles, and large move-
ments. Those are the problems that are usually hard to solve. The present study mainly incorporates this approach into our
research.

As shown in Figure 1, the architecture can be decomposed into several modules.
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Figure 1. Paint bucket colorization architecture based on inclusion matching. (from [7]).
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First, in the Color Warping Module, reference line art L; and target line art L; are utilized to estimate the optical flow
through the optical flow estimation model RAFT [20]. Then the segments are recolorized and encoded with index labels,
transforming reference line art L; into a color image C;. Accordingly, a new warped color image C; is produced using the
reference color image C; and the estimated optical flow. Second, the Feature Extraction Module employs deformable con-
volution kernels [21] to align images, a CLIP [22] encoder to obtain textual information, and a lightweight U-Net to encode
and decode features. It outputs new representations which are then fed to the Mask + Position Embedding Module. With
the segment position input, feature maps are tokenized through the Mask + Position Embedding Module. Each token
represents one segment, containing color information, semantic information, textual information, and positional infor-
mation. To be specific, a set of tokens (also called a descriptor) X; € R¥i*C denotes the reference line art and descriptor
X; € RNi*Cdenotes the target line art. K; and N; is the number of tokens/segments. C is the feature dimension. They can be

written as follows:

Xi = (X1 Xiz2 ) Xig;) (D

Proc. of SPIE Vol. 13416 134163L-2



Xj = (Xi.l' Xj20 'Xj.N,-) 2)

At last, a Multiplex Transformer built upon AnT [6] and SuperGlue [14] will process tokens. There are N blocks inside the
Transformer, each of which has a self-attention layer and a cross-attention layer. For each attention layer, the output is
added to the original X; and X; and then sent to an MLP. Repeat N times and the final result is X, € RKi*C and X\] € RN*C,

Based on that, a correlation/similarity matrix S € RN*¥i is calculated:

- ) ©)

Sin -
L m=1€xP (Xim’ Xjn)

Where m is the index of segments in the target frame and n is the index of segments in the reference frame. This matrix
can be regarded as the color probability. Each element is interpreted as the likelihood of the segment tokens matching.
¥m € RXi indicates the matching probability of the segment m in the target frame and one certain segment in a reference
frame. Finally, we choose cross-entropy loss as the loss function to optimize parameters:

K; .

Leg = = XZmo1Ym 10g(Fm) 4)
3.2 Improvement
We notice that the token processing progress only considers relationships among segments. As animation frames are se-

quential and frames look similar somehow, it can be said that the reference line art and target line art should have similar
or even the same global information.

Inspired by ViT (Vision Transformer) [23], in this study, a class token is added to each of the descriptors X; (reference line
art) and X; (target line art) before passing through self-attention layers in the Transformer:

Xi' = (Xi,class'xi,l'xi,z'""Xi,Ki) (%)
Xj’ = (Xj,class'xj,pxj,z:"‘:Xj,Ni) (6)

Xi class aNd X class are randomly initialized C-dimensional vectors which are considered parameters and will be optimized.
After going through self-attention layers, X; cja5s and X; cjass are able to learn global representations of all other tokens of
the respective descriptors. Then, X; 1555 and X; cjass Will be extracted to avoid sending to cross-attention layers because the
only goal of them is to obtain each descriptor’s global information. Since the Multiplex Transformer consists of N blocks,
the process of X; cja5s and X; ciass repeats N times. In the end, only (Xi,o:Xi,p ey Xi'Ki_l) and (ijo,xjyl, ,x]-'N]._l) are lev-
eraged to generate the similarity matrix. As mentioned, X; cjass and Xj c1a5s sShould have the same value because global in-
formation is considered consistent. The last extracted output of X cj5s and Xj 1555 are used to calculated another loss
Lcps(in this study, two kinds of loss function are tested. They are interchangeable):

1. Squared Difference Loss. It calculates the squared differences between X; c1a55 and Xj 1555 after propogation:

2
Lews = (Xi,class - X]’,class) (7

2. Cosine Loss. The dot product of two vectors is divided by the product of their moduli to obtain a value between -1 and
1, which represents the similarity between the two vectors. Larger values indicate higher similarity between the two vec-
tors, and smaller values indicate lower similarity. The purpose of taking the complement of the cosine similarity is usually
to convert the measure of similarity into a loss value, so that minimizing the loss function corresponds to maximizing the
similarity. Specifically::

Xj,class " Xj,class
L =1 - —— 8
CLS ”Xi,clasS””Xj,clasS” ( )

In order to control the proportion of two losses, a multiplication coefficient a is added to L¢pg. o is a hyperparameter.
Therefore, the new loss function is illustrated below:

Liotat = Leg + aleis ©)
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The whole procedure is shown in Figure 2. The class token forms a general expression of the line art during training.
Moreover, while keeping the class token unchanged, the model is forced to learn the capability of avoiding the loss of
global information.
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Figure 2. Improved Transformer architecture and diagram of loss computation.

4. EXPERIMENTS
4.1 Dataset and implementation details

PaintBucket-Character [7] is a dataset used for training and testing, which consists of 11,345 training images and 3,200
test images. This dataset only focuses on characters and is made from 3D character animation rendered in a flat color style.
It has already shown good performance in previous work [7].

For implementation, two NVIDIA GeForce RTX 3080ti GPUs are emploied. The total iterations is 300,000 and each card
carries one batch during training. So, for each iteration. 2 batches are processed.

Basically, to better compare with the inclusion matching model [7], the improved whole structure adopts the same hy-
perparameters, except o which is newly added and is set to 0.1. Concretely, we use the Adam optimizer with a learning
rate of 10-4 and no weight decay. The pre-trained optical flow estimation module and the CLIP encoder are frozen, which
means their parameters will not be updated. The feature dimension C extracted by the U-Net is assigned to 128. As for the
multiplex transformer, the number of blocks (denoted as N) is configured as 9, and the number of heads is defined as 4.

4.2 Comparison

We make a comparison between the original inclusion matching model and ours. In addition, squared difference loss and
cosine loss are both taken into consideration. The comparison relies on the test set of the PaintBucket-Character dataset.

Segment-wise accuracy is indicated by the terms "Acc" and "Acc-Thres," which offer information about possible task
reductions for digital painters. In ‘Acc-Thres’, Segments smaller than 10 pixels are thresholded out. The visualization
performance is represented by the terms "PixAcc," "Pix-F-Acc," and "Pix-B-MIoU," which stand for pixel-wise accuracy,
foreground pixel-wise accuracy, and pixel-wise background MIoU, respectively.

Table 1. Quantitative comparison of our method with original inclusion matching methods.

Method Acc Acc-Thres Pix-Acc Pix-F-Acc Pix-B-MIoU
Inclusion matching (data from [7]) 0.8266 0.8726 0.9905 0.9724 0.9948
Inclusion matching (on our device) 0.8256 0.8642 0.9877 0.9678 0.9913
Ours(with squared difference loss) 0.8350 0.8724 0.9889 0.9739 0.9917
Ours(with cosine loss) 0.8347 0.8720 0.9896 0.9730 0.9934

Referring to the data in Table 1, comparing the results of our method with those in the reference paper, it can be clearly
seen that our improvements are effective in the two indicators of Acc and Pix-F-Acc.

In addition, the first two rows compare the data in the reference paper with the data running on the device used in this
experiment. They are not the same, because, on different devices, even if the same seed is used, the results may be different.
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This is because there may be differences among different devices (hardware differences, software versions, parallel com-
puting).

If the comparison is based on the results on the device used in this experiment (that is, comparing the last three rows), the
improved method has shown enhancements in all indicators. (Besides, due to time and financial reasons, the value of the
a coefficient has not been perfectly adjusted.) It can be reasonably inferred that our improved method is absolutely effec-
tive for inclusion matching.

Besides, the visual comparison shown in Figure 3 confirms our method’s improvement.
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Figure 3. Visual comparison of different methods. From left to right, they are: Inclusion matching (on our device), Ours
(with squared difference loss), and Ours (with cosine loss).

5. CONCLUSION

Automated colorizing celluloid-style cartoons is a promising task that can form a more efficient cartoon production pro-
cess. We propose a new method derived from inclusion matching [7]. In our method, a token (regarded as a class token) is
introduced into the Multiplex Transformer. During training, the class token creates a broad expression of the line art.
Furthermore, the model is compelled to acquire the ability to prevent the loss of global information while maintaining the
class token stable. The outcomes of the experiment prove the success of our technique.

However, our research also has certain limitations. For example, the whole optimization details (such as initialization, loss
function, or hyperparameters) may be carefully revised after the change of the architecture. Besides, when the image char-
acter approaches the boundary or changes its posture, it may result in significant changes in the shape of the segments or
the formation of unexpected segments. There may be errors in the matching during colorizing. In addition, incorrect
matches might also occur in areas with small areas but large quantities. Future studies can further explore this field more
comprehensively.
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