Boost the Adversarial Learning with Fourier Regulator:
Bias-field Correction on MRI

Tong Li™®, Anran Liu™, David Kiigler®, and Martin Reuter®d°

2Division of Computational Data Sciences, Washington University in St. Louis, St. Louis,
USA
bDepartment of Health Technology and Informatics, The Hong Kong Polytechnic University,
Hong Kong, Hong Kong SAR, China
°ATl in Medical Imaging, German Center for Neurodegenerative Diseases (DZNE), Bonn,
Germany
dA.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, USA
“Department of Radiology, Harvard Medical School, Boston, USA

ABSTRACT

In magnetic resonance imaging, signal intensity inhomogeneities due to intrinsic bias field pose a significant
challenge for automated medical image analysis. Conventional methods to mitigate these effects, such as N4ITK,
are time-consuming and unstable. The exploration of deep learning alternative approaches is still at an unknown
stage. Previous studies have obtained preliminary results in GAN-based models, but we found the difficulty
in aligning bias-corrected image domains with clean image domains during adversarial learning may affect the
retention of normal organizational structures. Therefore, we propose a novel Fourier regulator structure that can
be integrated into the general adversarial learning framework. It explicitly decouples different levels of semantic
features based on the Fourier field and utilizes explicit feature learning to enhance intrinsic coherence and promote
more organized domain alignment. By separating amplitude and phase features as well as splitting low and
high-frequency information, our model preserves organizational details more efficiently and explicitly separates
intensities across organizational boundaries. During the training process of adversarial learning, the generator
generates the target domain while the regulator and discriminator are fixed; the regulator and discriminator
are updated in parallel while the generator is fixed. Such a learning approach extends the original min-max
optimization problem of adversarial learning to a multi-player mix-max optimization problem. The discriminator
can quickly draw the generative domain closer to the target domain, while the regulator aligns the distance to
the target domain in a more explicit feature-learning manner. Evaluated on the OASIS and BrainWeb datasets,
our model outperforms traditional and deep learning methods to enhance homogeneity. It also shows consistent
performance in other image reconstruction tasks, demonstrating its generalization capabilities.

1. INTRODUCTION

MRI usually has the problem of inherent intensity non-uniformity (INU), which can introduce variances within
the measured signal intensity from homogeneous tissue. Conventional methods face challenges such as long
computational times,' especially for SPM, and diminished efficacy in correcting strong bias fields when operating
the N4/N3 method.? Recent developments have introduced deep neural networks for bias field correction, such
as cascaded convolutional networks or generative models, including GANs,>* to address bias fields from a
domain transformation perspective. However, our experimental analyses of certain GAN-based models reveal
challenges in aligning the corrected Intensity Non-Uniformity (INU) domain which is built from a generator and
Bias Field Uniform (BNU) target domain. This can impact the effectiveness of bias field correction and the
ability to maintain tissue consistency. In this paper, we propose a regularization scheme in the Fourier field for
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Figure 1: The overall architecture of CycleGAN with Fourier regulation scheme. The Regulator Rp operates
in parallel with Dp, employs decoupled feature learning from predictions By and coordinates with the joint
loss with Fourier and Frequency losses, enabling domain alignment and optimizing the transformation process
between the INU and BFU domains.

explicit feature learning and domain alignments at different spatial levels in the GAN-structure model. This
regularization runs in parallel with the discriminator, so we refer to it as the regulator below. It first decouples
and processes the amplitude and phase information of the Fourier field, leveraging the correlation between spatial
features and Fourier components. The separate learning of Fourier components and the designed respective loss
functions aid in decoupling different levels of information (high-level semantic information and low-level stylistic
information) and guide a more explicit and structured feature learning and domain alignment, also facilitating
the generators to have more objective updates. We conducted experiments on bias field correction tasks to
demonstrate that our proposed method outperforms other methods while maintaining high model efficiency.

2. METHOD

Building on the GAN approach, our model interleaves two generator-discriminator pairs for image-image trans-
formation and incorporates an additional parallel regulator to assist discriminators in maintaining intrinsic
consistency in domain transformation, shown in Fig. 1. We denote the two image domains by A and B which
represent the INU (Intensity Non-Uniformity) and BFU (Bias Field Uniform) domains, respectively. A basic
CycleGAN model uses a generator G4_,p to transform images from A to B, generating the synthetic bias-field
corrected image By from A and reconstructed bias-field corrected image Bye. from Ay, as well as an inverse
generator Gp_, 4. In regulator Rp, the input By is first decoupled into phase and amplitude components. Sub-
sequently, a series of convolution operations and a learnable matrix M perform feature learning on the Fourier
domain. Then, the Fourier information, enriched by explicit feature learning, is transformed back into the image
domain and aligned with paired images of the dataset (here B) using a custom-tailored combination of Fourier
loss and frequency loss. The same corresponding operations are also implemented in R 4. This enhances the
CycleGAN network with explicit feature learning and regularization using Fourier information.

2.1 Regularization via Fourier Space

Inspired by some other work on natural images,®® we found that the phase component of the Fourier spectrum
tends to preserve the high-level semantic structure, and the amplitude component contains the style information.
Therefore, motivated by the perspective in Fourier space, we try to decouple amplitude and phase components and
conduct separate feature mining in both domains to alter the style changes the bias field brings while mitigating
the loss of the high-level semantics in MRI. Therefore, we propose that the Fourier Regulator be used to give
explicit feature regularization on domains and the network. Given an image with bias field z € A (A € REXWx3)/
the generator G4, p transforms x to a fake field By. For each channel, we conduct the Fourier transform F(z) and
obtain the two components in the frequency domain, amplitude A(z) and phaseP(z). To capture different levels
of features of MRI as discussed before, we respectively apply convolutional operations and residual connections
on phase and amplitude components. After the separate feature learning on amplitude and phase, we can obtain
the updated Fourier representation. The learned F(z) can be calculated by the updated A and P.

Further, we perform feature learning at the global Fourier information level. Inspired by,” we apply a learnable
kernel matrix M point-wise on the Fourier features F(z), instead of convolutions, to obtain feature information
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Table 1: Evaluations on BrainWeb with low and high bias field strength.

BF-strength N4? U-Net'®  Pix2pix''! CycleGAN® Diffusion'? ScrNet!'?  ABCNet? Ours Ta‘ble 2: Evaluatlons on Oa‘SIS
SSIM 09821 09795  0.8535 0.9829 09723 09788 09901  0.9940 Method SSIM _ PSNR
Low o a2 o ) . 27 00 a4 27 0092 27 of N4 0.9422 32.9966
PSNR  37.6654 37.2301  30.0753 37.9950 374385 37.0923  37.2650  39.0848 10
T1 : - - U-Net 0.9173 32.6853
High SSIM  0.9366  0.9640  0.9021 0.9560 0.9671 0.9701 0.9743  0.9935 Piaoicl] 08115 316418
Py . . . ix2pix . .
PSN 2.3682 972 2. 4.2631 . 7824 3201 40.2531
I 09T 0 0s 0o 09w oo 0o ooy CYCCGAN® 0.0202 332741
Low S 0900 o ey : hoie Diffusion'® 0.8960 33.9893
- PSNR  34.0923  32.0057  30.0729 32.0219 34.4080  35.0097 37.0601  36.0590 SerNot!3 0.8897 34.8525
Hign  SSIM 09081 0.9534  0.8900 0.9302 0.9739 0.9811 0.9728  0.9843 Ours 0.9650 34.2646
% PSNR  20.5742 304502  30.7826 32.0247 334421 33.8660  32.8652  34.4720

globally over the Fourier field. The Fourier feature F(x) performs a complex multiplication for each channel
with the kernel matrix M € CH*W of the same size as the input . Hence, for example, given F(z) = A + Bj
and M = C + Dj (F(z) € C,M € C), the feature learning developed by the matrix kernel and point-wise
multiplication in Fourier space can be expressed as

F(z) x M = (AC — BD) + (AD + BC)j. (1)

Finally, through the iFFT and a series of residual and convolution operations, we obtain features based on Fourier
information after amplitude and phase decoupled learning and convolution learning in different dimensions of
the Fourier and spatial fields.

2.2 Loss Functions

Consistent with the loss function of the CycleGAN structure, we utilize the same loss functions in discriminator
and combine our designed loss in the generator, which can be formulated as:

ﬁgen,A%B = EGAN,A + )\Regulator»CRegulator,A + )\cyc»Ccyc,A + )\idtﬁidt,Aa (2)

where Lgan, Leye, Liar are consistent with CycleGAN model,® ARegulators Aeye and Ajg¢ are combination coeffi-
cients. €Rregulator is the loss function in the Fourier regulator. And Lgen, a— p utilizes the same loss functions. In
the Regulator loss function, in order to facilitate the explicit feature alignment and reduce the distance between
the fake (A;/B/) images generated by the generator and the corresponding reference (4/B) domain images, we
use a hybrid loss based on L1 regression loss L,.4, frequency information Lg,., and Fourier field information
Ly to enhance the learning progress as much as possible.

‘CRegulator,A/B = AI‘C'r‘eg,A/B + )‘Q‘CFreq,A/B + A?)‘cfftA/B (3)

where A1, A2 and A3 are adjustable parameters. The frequency loss function is calculated based on separated
low-frequency and high-frequency information of the images. In the Fourier loss function, for the output of the
regulator, the current amplitude and phase information are first obtained after FFT and then paired with the
corresponding real value of the domain for the calculation of the loss calculation

ﬁfft,B :EwNA (ereg (Amp(Bref)7 Amp(RB (gA—>B (l‘)))) (4)
+Zreg(Pha(Bref)7Pha(RB(gAﬁB(m))>))7 (5)

where B,y is the reference images. And L 4 can be obtained in a similar way.

3. EXPERIMENTS

In the evaluation of our proposed method, we utilized two significant datasets: the BrainWeb Dataset * and raw
data in the Qasisl Data.'* In the BrainWeb dataset, we specifically chose T1 and T2 sequences with Imm slice
thickness and 0% noise, targeting both low (20%-40%) and high (40%-68%) intensity non-uniformity levels. The
BrainWeb data with 0% intensity non-uniformity was used as the ground truth for bias-field correction. In the
Oasis dataset, we utilized the SPM bias-corrected images as the reference standard.

*http://www.bic.mni.mcgill.ca/brainweb/.
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Figure 2: Visual comparison of the results

ScrNet Ours

GT BF

Table 3: Organization Comparison Results

Pix2Pix  CycleGan Diffusion ScrNet Ours

SPM(GT)

) Visual comparison on Oasis.

GM-SSIM___ WM-SSIM___ CSF-SSIM Table 4: Fundus Image Enhancement
Original  1.00040.000  1.000+0.000 _1.000-0.000 Niothod SN PSNE
w/ Bias Field 0.931£0.025 0.9110.064 0.92740.046 e 8136501504
N4 0.965+0.031 0.961+0.032 0.941+0.023 CreloGAN® 0.8370 20,0022
U-Net!©  0.95440.030  0.92640.027  0.923+0.028 SyN 5 0.0110 27 4997
Diffusion!2  0.962+0.011  0.95040.015  0.945--0.017 Ocr © 08835 95 1740
SerNet'  0.97540.014  0.963+0.019 0.97140.027 urs : :
Ours  0.98940.008 0.98140.010 0.969-+0.022

In the experiments, we compared our method to the popular N4 method® and the following deep learning-
based models: U-Net,'? Pix2pix,'! CycleGAN,® ScrNet,'? Diffusion model'? and ABCNet.? ScrNet is designed
to enhance the image of the cataract fundus. In the Diffusion model, we continuously perturb the image by
adding Gaussian noises. Besides, we didn’t compare ABCNet in Oasis because it requires the ground truth of
the bias field. Table 1 presents a comparison of bias-field correction results on the BrainWeb dataset. The results
indicate that corrected MRI scans show better intensity uniformity across tissue classes. And we can see that
the N4 method effectively handles low-bias fields but struggles with higher intensities. U-Net and CycleGAN
had good results but also slightly varied with bias-field intensity. In contrast, the Diffusion model, ScrNet, and
ABCNet demonstrated stable performance. Our model achieved the best and most stable results in nearly all
experiments. In the Oasis results, shown in Table 2, we observed that N4’s effectiveness was reduced compared
to its performance on the BrainWeb data. While all models have some degree of performance degradation,
ScrNet has a more obvious drop. The evaluation result of our model on SSIM is still competitive. Fig. 2a and
Fig. 2b show exemplary results on BrainWeb and Oasis datasets, respectively, along with close-up details. These
figures show that the real bias fields in Oasis are less prominent than the simulated ones in BrainWeb. However,
both datasets exhibit significantly improved intensity uniformity and enhanced contrast between different tissue
classes after correction. Additionally, the close-up views highlight that our method best preserves structural
details in both datasets. Additionally, we conduct downstream tasks on the segmentation of Gray matter (GM),
White matter (WM), and Cerebrospinal fluid (CSF), and compare the similarity of correction results in the
Brainweb dataset and clean image for different organizations respectively. We conduct extra experiments on
fundus image enhancement to test the generalizability of our model. Shown in Table 3 and Table 4, the highest
organizational similarity reinforces the validity of our model and generalization experiments on fundus image
enhancement demonstrate that our model retains strong performance across different imaging modalities.

4. CONCLUSION

We propose a generic enhancement network based on the GAN structure to robustly correct bias fields in MRI.
Our model, featuring a Fourier regulator architecture that collaborates with a GAN discriminator, explicitly
decouples different levels of semantic features based on the Fourier field. This addresses the learning limitations
of deep neural networks and domain alignment difficulties. Comprehensive experiments on synthetic and real
imaging data demonstrate the effectiveness and generalizability of our model. Additionally, we demonstrate the
generalization of our approach to fundus image intensity correction.
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