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ABSTRACT  

Medical image segmentation is essential for accurately extracting tissue structures or pathological regions from medical 

images. However, medical image segmentation methods are often influenced by factors such as image noise and irregular 

shapes, making precise segmentation challenging. To tackle these challenges, this paper proposes a triple-branch medical 

image segmentation network (TB-Net) that incorporates implicit boundary priors. The boundary map, acquired through a 

boundary detection algorithm, is used to restrict the results of the boundary branch. Extensive experiments indicate that 

TB-Net achieves state-of-the-art performance on publicly available polyp datasets. 
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1. INTRODUCTION  

Medical image segmentation is a critical step in medical imaging analysis, enabling the accurate extraction of tissue 

structures and pathological regions, which is essential for diagnosis and treatment planning. As a vital component of 

computer-aided detection, medical image segmentation plays an indispensable role in various clinical practices, including 

tumor detection and organ localization [13,14,15]. It is widely applied in radiological imaging, such as Computed 

Tomography (CT) scans and Magnetic Resonance Imaging (MRI), providing clinicians with deeper insights into 

pathological areas and forming the basis for more precise treatment plans. With the rapid development of computer-

assisted medical image segmentation techniques, this technology is revolutionizing healthcare by offering high-

performance automated tools that enhance diagnostic accuracy and efficiency. However, segmentation is often hindered 

by challenges such as image noise, blurred boundaries, and the inherent complexity of anatomical structures. These issues, 

often caused by noisy labels and annotation errors, result in unclear boundaries, making precise segmentation difficult [1]. 

Boundary information is crucial in image segmentation, primarily tasked with detecting and localizing object boundaries 

by exploiting the discontinuity in intensity or color between different regions in an image [16,17,18]. By capturing 

significant changes between different regions in the image, boundary information assists segmentation algorithms in more 

accurately delineating foreground and background areas. This precise differentiation allows segmentation results to more 

accurately reflect the edge contours of various objects, thereby improving the overall quality of the segmentation outcome.  

Effective utilization of boundary information also helps preserve boundary details in the segmentation results, enabling 

segmented images to maintain the important features of target boundaries without distortion, while ensuring accuracy. 

However, challenges remain in dealing with fuzzy boundaries, especially when there are noticeable changes in boundary 

sizes. 

To address these limitations, we propose a novel triple-branch network (TB-Net) that optimizes medical image 

segmentation by incorporating implicit boundary priors. The boundary map, generated through a boundary detection 

algorithm, guides the boundary branch to focus on refining edges and improving segmentation accuracy, particularly in 

complex or irregular regions. By capturing subtle boundary features, the network preserves fine structures crucial for 

medical image analysis. In summary, the main contributions of this study are as follows: 

1) We propose a novel medical image segmentation network named TB-Net. The network is composed of a semantic 

branch, a detail branch, and a boundary branch, fully integrating the advantages of detailed, semantic, and boundary 

information. 

2) We introduce precise boundary features as a boundary prior, which imposes shape constraints on the boundary generated 

by the boundary branch, enabling the capture of image boundary features.  
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3) Experiments on publicly available polyp datasets show that TB-Net achieves excellent performance. 

2. THE PROPOSED TB-NET 

Overall Architecture 

 

Fig.1.  Framework of our proposed TB-Net. 

 

Fig. 1 shows the overall structure of our proposed deep model for polyp image segmentation. Our network consists of three 

parts: a semantic branch, a detail branch, and a boundary branch. We use PVTv2 [2] as the encoder, which produces feature 

maps at different resolutions. These feature maps are extracted in the three branches to obtain detail features (𝑇𝑑), semantic 

features (𝑇𝑠), and boundary features (𝑇𝑏), respectively. These features are then fused to produce the final output. We train 

our deep model using the segmentation loss between the detail branch output 𝑇𝑑  and the final output 
fT  with the 

segmentation label 𝐺𝑑 . High-resolution images are renowned for their rich textures, semantic information, and clear 

boundaries. We use the CBAM [19] attention module to extract crucial information from multiple dimensions of high-

resolution feature maps. The module can focus on different scales and resolutions, capturing more details and semantic 

information. We also use the DAPPM [20] module to enrich feature representation to process low-resolution images. Low-

resolution images typically contain more detailed information, and the DAPPM module helps extract deep features from the 

feature maps, allowing them to obtain richer low-resolution multi-scale information. By comprehensively applying different 

modules, the network can handle high-resolution and low-resolution images more effectively and efficiently, improving 

image analysis and processing. 

Boundary prior 

To reduce boundary noises, we first remove bright noise from the original images. Then, we use the Canny operator [3], a 

boundary detection algorithm, to extract the image boundaries. Observing that the extracted boundary textures are thin, 

we apply a dilation algorithm to thicken the boundaries, obtaining more prominent boundary maps to serve as our boundary 

labels. 
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We introduce the boundary map of training images as an implicit prior to train the network. In our network, we employ 

the snake convolution (SConv) [4] in the encoder network to generate feature maps at different resolutions, denoted as 1y , 

2y , 3y , 4y . SConv is particularly effective in extracting line and boundary structures. The four feature maps are scaled 

to have the same resolution and are then concatenated. We combine the convolutional feature maps by concatenating them 

after resizing them to the same dimensions, producing the final boundary map, denoted as 3T . The specific implementation 

is as follows: 

 3 1 2 3 4( , , , ),T Concat y y y y=  (1) 

where ( )Concat   denotes feature concatenation along the channel dimension. The four boundary maps, i.e., 𝑏1, 𝑏2, 𝑏3, and 

𝑏4, at different resolutions are added to form 𝑙1, which is then used to calculate the binary cross entropy loss, as follows: 

 1 1 2 3 4 ,l b b b b= + + +  (2) 

 1 1 1( , ).BCE l G=    (3) 

where  𝐿𝐵𝐶𝐸
𝜔 denotes the BCE loss. 

 

Overall loss function 

We use the common binary cross entropy (BCE) loss [5] to calculate our boundary loss, and use the sum of intersection 

over union loss and binary cross entropy loss to calculate segment loss. The loss function is as follows: 
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where 1  and 2  represent the boundary loss and main loss, respectively. ( )IoU

   and ( )BCE

   [38] denote the 

weighted intersection over union (IoU) loss and weighted binary cross entropy (BCE) loss, respectively. 

 

3. EXPERIMENTAL RESULTS 

Experiment Settings 

We adopt the industry authoritative datasets for colorectal polyp segmentation training, consisting of 900 samples from 

Kvasir and 550 samples from CVC-Clinic. For quantitative evaluation, we applied several commonly used metrics: mean 

Dice and mean IoU. Our model is implemented using PyTorch framework and trained on a single 3090 GPU with a batch 

size of 16 for 100 epochs. The images are resized to 352×352 for both training and testing. We evaluated the performance 

of our network on various colorectal image datasets, including CVC-ClinicDB [6], Kvasir [7], and ETIS-LaribPolyDB [8]. 

The segmentation results on the polyp image datasets are shown in Table 1 and Fig. 2. We compared our TB-Net with U-

Net [9], SANet [10], PraNet [11], and MSNet [12]. 

 

Proc. of SPIE Vol. 13510  135100A-3



 

 
 

 

 

Fig.2.  Visual comparison of existing methods on polyp datasets. 

 

Table 1. Quantitative comparison with existing methods on CVC-ClinicDB, Kvasir and ETIS-LaribPolyDB datasets. 

 Clinic-DB ETIS Kvasir 

  Dice IoU Dice IoU Dice IoU 

U-Net [9] 0.824 0.761 0.398 0.336 0.821 0.727 

SANet [10] 0.909 0.859 0.739 0.661 0.901 0.843 

PraNet [11] 0.918 0.838 0.679 0.617 0.897 0.843 

MSNet [12] 0.930 0.879 0.734 0.664 0.915 0.816 

Ours 0.938 0.895 0.797 0.714 0.922 0873 

 

As shown in Table 1, the experimental results demonstrate that our method achieves the best performance across the 

Clinic-DB and Kvasir medical image segmentation datasets, showing exceptional segmentation capabilities. Specifically, 

on the Clinic-DB dataset, our model surpasses other methods with a Dice score of 0.938 and an IoU score of 0.895, 

significantly outperforming models like U-Net and PraNet. On the more challenging ETIS dataset, our model also stands 

out with a Dice score of 0.797 and an IoU score of 0.714, showing a substantial improvement over U-Net with a Dice 

score of 0.398 and an IoU score of 0.336, highlighting its advantage in handling complex images. On the Kvasir dataset, 

our method once again achieves the best performance, with Dice and IoU scores of 0.922 and 0.873, respectively, further 

validating its robustness and generalization across different datasets. 

 

Ablation experiments 

 

Table 2. Ablation study on the CVC-ClinicDB, Kvasir, and ETIS-LaribPolyDB datasets. 

Components CVC-ClinicDB Kvasir ETIS-LaribPolyDB 

Boundary Dice↑ IoU↑ Dice↑ IoU↑  Dice↑ IoU↑ 

× 0.911 0.858 0.905 0.856 0.765 0.682 

√ 0.938 0.868 0.922 0.873 0.797 0.714 
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In the CVC-ClinicDB, Kvasir, and ETIS-LaribPolyDB datasets, including boundary information leads to improvements 

in both Dice and IoU scores to varying degrees. For instance, in the CVC-ClinicDB dataset, the Dice score increases from 

0.911 to 0.938, while IoU improves from 0.858 to 0.868. Similarly, in the Kvasir dataset, the Dice score rises from 0.905 

to 0.922, and IoU increases from 0.856 to 0.873. Notably, in the more complex ETIS-LaribPolyDB dataset, the Dice score 

improves from 0.765 to 0.797, and IoU increases from 0.682 to 0.714. These results demonstrate that the incorporation of 

boundary information effectively enhances the model’s ability to capture the edges of target regions, resulting in more 

accurate and consistent segmentation, particularly in scenes with complex details and boundaries. Overall, boundary 

information plays a crucial role in improving the accuracy and robustness of the model's segmentation performance. 

4. CONCLUSION 

In this paper, we have introduced a triple-branch network with implicit boundary priors, which consists of three parts: a 

semantic branch, a detail branch, and a boundary branch. They effectively extract semantic, detailed, and boundary 

information from images. Our proposed model provides an innovative solution to medical image segmentation, 

overcoming the trade-off problem between boundary preservation and segmentation accuracy faced by existing methods. 
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