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ABSTRACT
This paper presents a new method to reduce the high false alarm rate. When the Phi-OTDR system is applied in complex
environment, irrelevant event signals similar to the target event often interfere with the recognition of the target event
and leads to false positive in the system. This method includes two key components: one is the automatic labeling
mechanism of unknown information, which is used to find unknown events easily confused with target events in real
environment; the other is the improved Region of Interest (ROI) module based on contrast clustering and EBMs, which
can detect target event signals in real complex environment and reduce the negative impact of unknown events on target
event recognition.
Keywords: Distributed Acoustic Sensing, Phi-OTDR, Pattern Recognition, Open-set

1. INTRODUCTION

Distributed Acoustic Sensing (DAS) is an optical fiber sensing technology based on the principle of back-Rayleigh
scattering, which realizes the perception of the external environment by measuring the phase change generated when the
light pulse propagates in the optical fiber. It offers advantages such as long sensing distance, high sensitivity, and
accurate positioning. It is widely used in pipeline monitoring[1], perimeter security[2], transportation[3] and other
scenarios. The ultra-long sensing distance of Phi-OTDR generates a large volume of monitoring data. The identification
algorithm can be used to analyze the data, and the remote real-time alarm of multi-source risk event signals can be
realized. Most traditional methods rely on feature extraction to recognize different types of event signals. Although these
methods can achieve a high recognition rate, the process of feature extraction is highly dependent on expert experience,
and the calculation process of event signal recognition is complex and time-consuming.
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With the development of artificial intelligence, machine learning and deep learning have been widely introduced into
Phi-OTDR to solve event recognition problems.Machine learning relies on mathematical methods to learn from existing
data, build predictive models, and predict and classify data.Support vector machines[4], F-ELM[5], and XGBoost[6] are
all used for DAS signal recognition and classification.The advantage of deep learning is that it can automatically learn
features from raw data and perform efficient pattern recognition. Neural networks such as CNN[7], SNN[8] and
MLPNN[9] have been used for DAS signal pattern recognition.The researchers proposed a two-stage recognition
network to improve the problem of the increased false alarm rate of the intrusion detection system caused by animal
activities in complex environments[10].

These methods have achieved significant results in event recognition problems of DAS, but the performance of these
methods is mostly based on research using static, closed test datasets. However, in the field deployment of DAS
equipment, due to the ultra-long monitoring distance of DAS, the environment along the sensing optical cable is
extremely complex and variable. As shown in Fig. 1, there are a large number of unknown event interferences outside
the training dataset that affect the model's recognition of target events, which have a negative impact on the actual
deployment and application of machine learning or deep learning models.

Fig.1 Confusion event interference recognition.

This paper presents a new method for the target event detection of phi-OTDR systems deployed in real environments,
which effectively improves the recognition accuracy compared with the baseline. This method includes two key modules:
the first is the automatic labeling mechanism of unknown information, which is used to find unknown events easily
confused with target events in the data to be detected in an open environment; the second is the improved ROI module
based on contrast clustering and EBMs, which can effectively separate the interference of unknown events on the
detection results of target events. After training the proposed model and baseline on a closed-set, we test them on a
closed-set and an open-set with interference items, respectively. Baseline mean precisions have decreased from 85.6% to
58.65%, and the model performance we proposed is only down from 91.92% to 67.60%. This means that our proposed
model has a lower false alarm rate regardless of whether there is interference signal. By effectively processing the
confusing unknown events, this model can enhance the reliability of DAS event detection tasks in real environments.
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2. METHOD

We use Faster-RCNN as the basic detector, which shares convolutional features with the detection network through the
regional proposal network (RPN), and can realize real-time target detection of distributed optical fiber acoustic sensing
signals in the closed data set, while maintaining high accuracy[11].

Our improved model consists of three parts: convolutional layers, an unknown-aware region proposal network (UARPN),
and an ROI-Head. In the convolutional layer, CNN network is used to extract features and generate feature maps. The
generated feature map will be processed in two ways simultaneously. The first is to continue the convolution to produce
a feature map of higher dimensions; the second is to input the feature map into the UARPN network to obtain the region
proposal and confidence. Then, the firstknown and firstunknown region proposals are retained using non-maximum
suppression. The high-dimensional features and the region proposal given by UARPN are simultaneously put into the
ROI-Head, and the features are extracted from the high-dimensional features according to the region proposal. Finally,
using EBMs combined with contrastive clustering loss, unknown interference classes were excluded, and the target
classes in the closed set were classified. At the same time, a bounding box regression was performed to obtain the final
accurate location of the detection frame. Our proposed module works on both RPN and ROI components to improve the
performance of the basic detector deployed in a real environment. The entire model structure is shown in Fig. 2.

Fig.2 The overall structure of the model proposed.

Fig. 3 Auto-labelling unknowns schematics.
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It is not possible to manually label all potential unknown disturbance signals in a real environment. As shown in Fig. 3,
we rely on the regional proposal network (RPN) being a class agnostic characteristic, given an input image, the RPN
generates a set of bounding box predictions for the foreground and background instances, along with the corresponding
confidence levels. We mark as potentially unknown those proposals that have a high confidence, but do not overlap with
ground-truth boxes. This automatic marking mechanism of unknown information quickly finds out the confusing
unknown samples in the recognition process and treats them as "unknown". In order to effectively exclude unknown
events, we introduced Energy-based models (EBMs)[12] to improve the classification head. EBMs can estimate the
compatibility between the observed variable F and the set of possible output variables L by learning a function that uses
a single output scalar. By learning the data within the distribution, EBMs can output a low energy value to the known
class sample, and give a high energy value to the out-of-distribution data, so as to realize the separation of known and
unknown classes.

In ROI-Head, we model the classification problem under open sets as a contrast clustering problem, where instances of
the same type will be clustered together and instances of different types will be further apart. We define the class set of
all known classes as Kt = {1, 2, . . . N}. For each known class i ∈ Kt , we keep a prototype vector pi . Letbe the feature
vector generated by the intermediate layer of the object detector for the class c. We define contrastive loss as follows:

ℒcont(fc) = i=0
c �(fc, pi)� where

�(fc, pi) =
D(fc, pi) , i = c

max(0, Δ − D(fc, pi) ) , otherwise

where D is any distance function and ∆ defines how close a similar and dissimilar item can be. Minimizing this loss
would ensure the desired class separation in the sample space.

3. EXPERIMENTS

The DAS system was deployed in the 8.4 km pipeline field to carry out data acquisition experiments. The DAS
equipment used was 1000 Hz pulse frequency and 10 m spatial resolution. In the experiment, we collected approximately
1000 samples of each of 4 typical signals, and formed data set A after labeling, including mining signals of rammer,
artificial mining signals, pump station operation signals, and vehicle driving signals.

Table 1. Experiment database: the instance number of each type of event.

Event Experiment database A Experiment database B

PowerRammer 1000 1000

Manual 1000 1000

Subway 1000 1000

Vehicle 1000 1000

Unknown 0 2000
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The instance types and sizes of the dataset are shown in Table 1 below. In order to simulate the field situation faced by
the model after deployment in the real scenario, we used the disturbance positioning method to detect signals collected in
the non-experimental area, and obtained about 2000 unknown signal samples, which were directly added to dataset A
without annotation to form dataset B. Both datasets were predivided into the training set and the test set in a 9:1 ratio.

After the Faster-RCNN and the model proposed in this paper are trained on the train set of dataset A respectively, the
recognition effect of the four known classes and the performance degradation caused by unknown disturbance are tested
on the test set of dataset A and B. The results are shown in Table 2.

Table 2. Test results of event identification influenced by unknown disturbance

Precisions

Faster-RCNN (baseline) Our

Experiment
database A

Experiment
database B

Experiment
database A

Experiment
database B

PowerRammer 97.1% 82.6% 87.0% 70.9%

Manual 78.7% 38.3% 85.9% 45.2%

Subway 99.0% 69.6% 99.0% 82.4%

Vehicle 67.6% 44.1% 95.8% 71.9%

Mean Precisions 85.60% 58.65% 91.92% 67.60%

It can be seen that for the data containing unknown signal samples, the recognition effect of Faster-Rcnn and our
proposed model on different categories of events decreases to different degrees. However, the model that applied the
unknown sample labeling mechanism and the novel ROI-Head had better resistance to the negative effects of unknown
disturbance than the base detector. This means that when deployed in real-world environments, the new model will
have better false alarm rate performance.

4. CONCLUSION

This paper proposes a method for identifying disturbances in distributed optical fiber acoustic sensing systems in open
environments. The experimental results show that the automatic labeling mechanism of unknown disturbance and the
new ROI-Head used in the proposed model weaken the effect of unknown disturbance on the performance of the model
trained in the open environment and trained in the closed data set to some extent. It has better performance on open
datasets than the baseline, which hopefully improves the high false alarm rate when the model is deployed in the real
world.
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