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ABSTRACT  
When random patterns are applied, correlation-based reconstruction is widely used in single-pixel imaging (SPI). The 

performance of the correlation algorithm still needs to improve in achieving high-quality object reconstruction, although 
some methods have been developed (e.g., Gerchberg-Saxton-like). Here, we present an approach to enhancing SPI 
performance by integrating the reweighted amplitude flow (RAF). The method optimizes the reconstruction process by 
weighting the measurement data adaptively to improve robustness and reconstruction accuracy. An efficient estimation 
of the object is first obtained through the weighted maximal correlation initialization. Subsequently, iterative updates 
refine the estimate using the reweighted gradient descent. This approach improves SPI performance, providing high-
quality object reconstruction. The results demonstrate effectiveness of the RAF-enhanced SPI, showing its potential for 
the applications. 
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1. INTRODUCTION
Single-pixel imaging (SPI) is an advanced computational imaging technique that captures object information using a 

single sensor instead of a camera with many sensors [1–5]. The SPI is particularly beneficial for imaging in scenarios 
where conventional imaging faces challenges, e.g., scattering environments, low-light conditions, infrared and terahertz 
[6–15]. The SPI is based on the principle of structured illumination and computational reconstruction. The object is 
illuminated with a series of known patterns (e.g., random patterns), and these patterns modulate the light that interacts 
with the object. A single-pixel detector collects light intensity transmitted or reflected by the object. Correlation 
algorithm and some developed algorithms (e.g., Gerchberg-Saxton-like) in the SPI are usually used to reconstruct the 
object from the set of single-pixel measurements [16–20]. However, these algorithms often require a large number of 
pattern illuminations and have a time-consuming process.  In addition, quality of the reconstruction still needs to be 
improved. 

In this paper, we introduce an approach to enhancing the performance of SPI by integrating the reweighted amplitude 
flow (RAF) strategy [21]. This method optimizes object reconstruction process by adaptively weighting the measurement 
data, which improves robustness and reconstruction accuracy. The first step involves obtaining an efficient initial 
estimation of the object. The initialization is achieved by a weighted maximal correlation, where some weights are 
strategically assigned to the measurements based on their reliability. By emphasizing more accurate data and diminishing 
the influence of noise-affected measurements, the initialization establishes a robust foundation for subsequent iterations. 
Following the initial estimation, object reconstruction is refined using iterative updates, which is similar to a gradient 
descent approach. In each iteration, the algorithm adapts the weights of data points, focusing on high-confidence 
measurements. This adaptive weighting enhances the convergence speed and accuracy of the reconstruction, addressing 
the challenges. The RAF-enhanced SPI demonstrates substantial improvements in image quality and reconstruction 
accuracy. The algorithm enhances the reconstruction performance by leveraging an adaptive weighting mechanism.  

2. METHODOLOGY
In SPI, a series of random patterns ( ),P x y  are applied to illuminate an object ( ), ,O x y  and the total intensity 

transmitted or reflected by the object for each illumination pattern is collected by a single-pixel detector. When each 
illumination pattern is considered as a row vector ia  of a random Gaussian matrix A  and the object is considered as a 
column vector ,x  the process of single-pixel measurements can be described by 
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   2y Ax= , (1) 

where y denotes a measurement vector containing a series of measured values .iy  Here, i  ranges from 1 to m  where 
m  denotes the total number of measurements.  
 In terms of reconstruction, correlation algorithm is widely used to reconstruct object information when random 
patterns are applied in SPI. However, performance of the correlation algorithm suffers from low quality in reconstruction 
even when a large number of measurements are used. Some methods, e.g., Gerchberg-Saxton-like, are developed to 
improve the performance of correlation algorithm. A number of iterations are necessary for Gerchberg-Saxton-like ghost 
imaging to enable high-quality reconstruction. 
  Here, RAF is utilized to simultaneously speed up reconstruction and improve the reconstruction quality. In the 
strategy of RAF, there are two essential components, i.e., initialization and iteration. For initialization, it is necessary to 
select a subset of measurements from the whole set of measurements. In this case, the selected measurements can be 
used to obtain a better initialization and can correlate the reconstruction. Hence, based on the measurement in Eq. (1), a 
series of measured values that are larger than a threshold thresholdy  are chosen. 

   { }threshold ,i iy y y y′ = >  (2) 

where y′  denotes the chosen values according to the threshold. The row vectors in the matrix A  corresponding to the 
chosen values are also selected to form a matrix .A′  Then, an initialization 0z  can be described by 

    0 0
1 ,m

iiz z y m
=

= ∑  (3) 

where 0z  denotes unit-norm principal eigenvector of ( )1 4
{ } ,TA diag Ay′ ′′  T  denotes matrix transpose, and diag  represents 

a diagonal matrix.  
 After the initialization is completed, the second step (i.e., iteration) is applied to improve quality of the initialization 
and finally realize high-quality object reconstruction. In terms of iteration, the following formula can be used. 
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where tz  denotes the updated reconstruction in the iterations, µ  denotes a learning rate, ( )sign   denotes a mathematical 
signum function, and 
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where β  denotes a weighting parameter set as 10. 
 As a result, the combination of initialization and iteration, i.e., Eqs. (3) and (4), can lead to a robust reconstruction 
with high quality.  

3. RESULTS AND DISCUSSION 
Simulation results based on the model are shown in Fig. 1. Figures 1(a) and 1(c) show the groundtruth used to test 

the model. The resolution of the ground truth is 64×64 pixels, and the number of measurements is 8192. The threshold in 
Eq. (2) is chosen with the 6302nd measured value. Using the theoretical model in Section 2, two reconstruction results 
corresponding to the ground truths are respectively shown in Figs. 1(b) and 1(d). To quantitatively show quality of the 
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reconstruction, peak signal-to-noise ratio (PSNR) is used [17]. PSNR values for Figs. 1(b) and 1(d) are respectively 
58.23 dB and 55.70 dB. It is indicated by PSNR values that the reconstruction is of high quality. 

 

   
       (a)                     (b) 

   
       (c)                     (d) 

Figure 1. (a) and (c) The groundtruth, and (b) and (d) the reconstructed images respectively corresponding to (a) and (c). 

The number of iterations is 300. Figures 2(a) and 2(b) show the MSE decreasing with the number of iterations. As 
can be seen in Fig. 2, the MSE decreases quickly as the number of iterations increases, meaning that the method is 
efficient.   
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 (a)             (b) 
Figure 2. (a) MSE versus the number of iterations corresponding to that in Fig. 1(a), and (b) MSE versus the number of 
iterations corresponding to that in Fig. 1(c). 

4. CONCLUSION 
We have presented a SPI system by incorporating RAF. This method enhances the object reconstruction process by 

adaptively weighting measurement data, leading to the enhanced accuracy. Firstly, we estimate the object using weighted 
maximal correlation initialization. Then, we use iterative updates to refine the estimate through a reweighted gradient 
descent. This approach enhances SPI performance, resulting in high-quality reconstruction. The results demonstrate 
effectiveness of the RAF-enhanced SPI, showing a potential for a wide range of applications. 
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