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Abstract
Articulatory-feature based pronunciation models (AFCPMs)
are capable of capturing the pronunciation variations among
different speakers and are good for high-level speaker recogni-
tion. However, the likelihood-ratio scoring method of AFPCMs
is based on a decision boundary created by training the target
speaker model and universal background model (UBM) sepa-
rately. Therefore, the method does not fully utilize the discrim-
inative information available in the training data. To fully har-
ness the discriminative information, this paper proposes train-
ing a support vector machine (SVM) for computing the verifi-
cation scores. More precisely, the models of target speakers,
individual background speakers, and claimants are converted to
AF-supervectors, which form the inputs to an AF-based ker-
nel of the SVM for computing verification scores. Results
show that the proposed AF-kernel scoring is complementary
to likelihood-ratio scoring, leading to better performance when
the two scoring methods are combined. Further performance
enhancement was also observed when the AF scores were com-
bined with acoustic scores derived from a GMM-UBM system.

1. Introduction
Studies have shown that combining low-level acoustic infor-
mation with high-level speaker information—such as the usage
or duration of particular words, prosodic features and articu-
latory features (AF)—can improve speaker verification perfor-
mance [1–5]. However, in most systems (e.g., GMM-UBM [6]
and CD-AFCPM [5]), scoring is done at the frame-level, i.e.,
each frame of speech is scored separately and then frame-based
scores are accumulated to produce an utterance-based score for
classification. This frame-based scoring scheme has two draw-
backs. First, treating the frames individually may not be able
to fully capture the sequence information contained in the ut-
terance. Second, the goal of speaker verification is to mini-
mize classification errors on test utterances rather than on in-
dividual speech frames. These drawbacks motivate us to de-
rive a sequence-based approach in which an utterance is consid-
ered comprising a sequence of symbols and the utterance-based
score can be obtained from a support vector machine (SVM)
through a kernel function of the sequence of symbols.

This paper derives an articulatory-feature based sequence
kernel and apply it to high-level speaker verification. For each
target speaker, the observation sequences (AF labels) derived
from his/her utterances are used to train a phonetic-class de-
pendent articulatory feature-based pronunciation model (CD-
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AFCPM) [5]. These models are then converted to fixed-
dimension AF supervectors for training a speaker-dependent
SVM to discriminate the target speaker from background speak-
ers in the AF-supervector space. To enhance the discrimina-
tion, a kernel that computes the similarity between the target
speaker’s supervector and the claimant’s supervector is derived
for the SVM. During verification, the AF labels derived from
the speech of a claimant are used to build a CD-AFCPM of the
claimant, which together with the target speaker model form the
inputs to the speaker-dependent SVM to compute the verifica-
tion scores. Because the kernel depends on the AF models of
both the target speaker and the background speakers, we refer
to it as AF-kernel.

The remainder of the paper will derive the AF-kernel and
discuss the relationship between traditional frame-based log-
likelihood (LR) scoring and AF-kernel based SVM scoring. Ex-
perimental results on the NIST2000 database are presented.

2. Phonetic-Class Dependent AFCPM
2.1. Articulatory-Feature Based Supervectors

Articulatory features (AFs) are representations describing the
movements or positions of different articulators during speech
production. Typically, the manner and place of articulation
are used for pronunciation modeling. Manner has 6 classes:
M ={Silence, Vowel, Stop, Fricative, Nasal, Approximant-
Lateral}, and place has 10 classes: P ={Silence, High, Mid-
dle, Low, Labial, Dental, Coronal, Palatal, Velar, Glottal}.
AFs can be automatically determined from speech signals us-
ing AF-based multilayer perceptrons (MLPs) [4]. More specif-
ically, given a sequence of acoustic vectors (MFCCs) xt where
t = 1, . . . , T , the MLPs produce a sequence of manner labels
lMt ∈ M and a sequence of place labels lPt ∈ P (see Fig. 1).
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Figure 1: The training procedure of the AF kernel-based high-
level speaker verification system.

The characteristics of background speakers are represented
by G (= 12 in this work) CD-AFCPMs. Each model comprises
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the joint probabilities of manner m ∈ M and place p ∈ P
conditioned on a phonetic class k:

P CD
b (m, p|k) k = 1, . . . , G

=
#(m, p|k) in background speakersP

m′∈M,p′∈P #(m′, p′|k) in background speakers
(1)

where #(m, p|k) denotes the number of times the combination
(m, p) appears in phonetic class k.1 A collection of G back-
ground CD-AFCPMs is referred to as a universal background
model (UBM).

Given the utterance of a target speaker s, G speaker-
dependent CD-AFCPMs can be obtained bybP CD

s (m, p|k) = βkP
CD
s (m, p|k)+(1−βk)P

CD
b (m, p|k), (2)

where k = 1, . . . , G, P CD
s (m, p|k) is a model obtained from

the target speaker utterance, and βk ∈ [0, 1] controls the con-
tribution of the speaker utterance and the background model on
the target speaker model [5]. A collection of G target-speaker
dependent CD-AFCPMs is referred to as a target-speaker
model. The elements of G CD-AFCPMs { bP CD

s (m, p|k), k =
1, . . . , G} of a target speaker are concatenated to form a 60G-
dim supervector

−→
A s, namely CD-AFCPM supervector.

2.2. AF-Based Likelihood-Ratio Scoring

Denote a test utterance from a claimant as XT
1 =

{X1, . . . , Xt, . . . , XT }, where Xt contains 9 frames of
MFCCs centered on frame t of the utterance. Also denotebP CD
s (lMt , l

P
t |k) as the output of the k-th CD-AFCPM of the tar-

get speaker given that Xt belongs to the k-th phonetic class,
where lMt ∈ M and lPt ∈ P are the labels determined by the
manner and place MLPs, respectively.2

The log likelihood-ratio (LR) score can be expressed as:

SLR(X
T
1 ) =

GX
k=1

0@ 1

T

X
t:fG(qt)=k

 
log

bP CD
s (lMt , l

P
t |k)

P CD
b (lMt , l

P
t |k)

!1A (3)

where fG(qt) is a function that maps phoneme qt to phonetic
class k [5] and qt is determined by a null-grammar phoneme
recognizer. Grouping frames according to M and P , we have

SLR(X
T
1 ) =

GX
k=1

1

T

X
m∈M
p∈P

X
t:

(
fG(qt)=k,

lM
t =m,lP

t=p

log
bP CD
s (lMt = m, lPt = p|k)

P CD
b (lMt = m, lPt = p|k)

=
GX

k=1

Tk

T

8>>><>>>:
1

Tk

60X
i=1

0BBB@
 
log

bP CD
s (Li|k)

P CD
b (Li|k)

! X
t:

j
fG(qt)=k
Li

1

1CCCA
9>>>=>>>;

=
GX

k=1

Tk

T

(
60X
i=1

  
log

bP CD
s (Li|k)

P CD
b (Li|k)

!
Ni,k

Tk

!)
(4)

where L1 = {lMt = ‘Vowel’, lPt = ‘High’ for any t}, . . . ,
L60 = {lMt = ‘Lateral’, lPt = ‘Glottal’ for any t}, Ni,k is the
number of frames belonging to phonetic class k and Li, and Tk

is the number of frames belonging to phonetic class k. Note that

Ni,k

Tk
=

#(Li|k) in the claimantP
j #(Lj |k) in the claimant

= P CD
c (Li|k) (5)

1We can see that for each phonetic class, there are 6 × 10 = 60
probabilities in the model.

2A similar notation is also applied to bpCD
b (lMt , lPt |k).

where P CD
c (Li|k) is a claimant model and the index i corre-

sponds to the i-th combination of the manner and place class
(m, p). Substituting Eq. 5 into Eq. 4, we have

SLR(X
T
1 ) =

GX
k=1

Tk

T

(
60X
i=1

 
log

bP CD
s (Li|k)

P CD
b (Li|k)

!
P CD
c (Li|k)

)

=
GX

k=1

*
26666664

log
bP CD
s (L1|k)bP CD
b (L1|k)

· · ·

log
bP CD
s (L60|k)bP CD
b (L60|k)

37777775
60

,

26664
Tk

T
P CD
c (L1|k)

· · ·
Tk

T
P CD
c (L60|k)

37775
60

+

=

*
log

−→
A s
−→
A b

,−→w . ∗ −→A c

+
=
D−→
A ′

c, log
−→
A s

E
−
D−→
A ′

c, log
−→
A b

E
(6)

where −→w = [T1/T, . . . , T1/T, . . . , TG/T, . . . , TG/T ]
T;−→

A s,
−→
A b and

−→
A c stand for the AF supervector of the

speaker, background, and claimant, respectively; log

−→
X
−→
Y

≡»
log

x1

y1
, . . . , log

xN

yN

–T

; and
−→
X. ∗ −→

Y ≡ [x1y1, . . . , xNyN ]T,

where xi and yi are elements of
−→
X and

−→
Y , respectively. Eq. 6

suggests that the LR score can be obtained by computing a dot
product. Fig. 2 illustrates the implementation of LR scoring.
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Figure 2: A dot-product implementation of the traditional log-
likelihood scoring in CD-AFCPM speaker verification.

3. Articulatory Feature-Based Kernels
Fig. 2 suggests a possible improvement of LR scoring: Replac-
ing the fixed multiplication factors ‘+1’ and ‘−1’ by weights
that are optimally determined by SVM training. This strategy,
however, requires the function inside the ‘circle’ in Fig. 2 to
satisfy the Mercer’s condition [7]. Unfortunately, the function
f(

−→
X,

−→
Y ) =

D−→
X, log

−→
Y
E

does not satisfy the Mercer’s con-

dition because it cannot be written as
D
Φ(

−→
X ),Φ(

−→
Y )
E

. We
propose 3 approaches to remedying this problem.

3.1. Euclidean AF-Kernel

The simplest type of Mercer AF-kernel is a linear kernel:

KAF-E(
−→
A c,

−→
A s) =

D−→
A c,

−→
A s

E
. (7)

Essentially, this kernel can be derived from the Euclidean dis-
tance between projected vectors in the feature space [7]; there-
fore we refer to it as Euclidean AF-Kernel.
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3.2. Mahalanobis AF-Kernel

Kernel can also be derived using Mahalanobis distance:

dM(
−→
A c,

−→
A s) =

q
(
−→
A c −

−→
A s)TΣ−1(

−→
A c −

−→
A s)

=

q
KAF-M(

−→
A c,

−→
A c)− 2KAF-M(

−→
A c,

−→
A s) +KAF-M(

−→
A s,

−→
A s),

where

Σ =
1

M

MX
i=1

−→
A bi

−→
A T

bi −
 

1

M

MX
i=1

−→
A bi

! 
1

M

MX
i=1

−→
A bi

!T

(8)
is a covariance matrix computed from background models and

KAF-M(
−→
A c,

−→
A s) =

D
Σ− 1

2
−→
A c,Σ

− 1
2
−→
A s

E
(9)

is a kernel function. Comparing with Eq. 7, the dimensions
of the supervectors are now normalized by the variances of the
background models. Note also that this kernel is similar to the
GMM-supervector kernel [8]. If we discard the substraction of
the means in Eq. 8, we will obtain the GLDS kernel [9].

3.3. Likelihood-Ratio AF-Kernel

The above two kernels are derived from distance metric. Ker-
nels can also be derived from similarity metric such as likeli-
hood ratio. To this end, we ensure that Eq. 6 can satisfy the
Mercer condition by the following approximation:*

−→
A ′

c, log

−→
A s
−→
A b

+
≈
*
−→
A ′

c,

 −→
A s
−→
A b

−−→
1

!+

=

*
−→
A ′

c,

−→
A s
−→
A b

+
−
D−→
A ′

c,
−→
1
E
=

*
−→
A ′

c,

−→
A s
−→
A b

+
− 1,

(10)

The approximation is valid because the speaker models are
adapted from the UBM

−→
A b and therefore

−→
As−→
Ab

→ −→
1 . Dropping

the constant in Eq. 10 that does not affect verification decisions,
we define a likelihood-ratio (LR) based AF-kernel (because this
kernel is derived from LR scoring, we refer to it as LR AF-
kernel):

KAF-LR

“−→
A c,

−→
A s

”
≡
*
−→
A ′

c,

−→
A s
−→
A b

+
=

* −→
A ′

cq−→
A b

,

−→
A sq−→
A b

+

=

*−→w . ∗ −→A cq−→
A b

,

−→
A sq−→
A b

+
≈
*p−→w b. ∗

−→
A cq−→

A b

,

p−→w b. ∗
−→
A sq−→

A b

+

where −→w b =

26664
60

z }| {

T b
1

T
, · · · , T

b
1

T
,

60
z }| {

T b
2

T
, · · · , T

b
2

T
, · · · ,

60
z }| {

T b
G

T
, · · · , T

b
G

T
,

37775
T

60G
contains the phonetic-class weights obtained from the back-
ground speakers, T b

k is the number of times phonetic class
k appears in the utterances of background speakers, andp−→

X ≡ [
√
x1, . . . ,

√
xN ]T. The approximation aims to make

the similarity measure symmetric. Fig. 3 shows the scoring
procedure during the verification phase. Figs. 4(a) and 4(b)
show the un-normalized supervectors

−→
A s and the normalized

supervectors
√−→w b.∗

−→
As√−→

Ab

for 150 speakers, respectively. For
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Figure 3: The verification phase of an AF-kernel based speaker
verification system.

clarity, only 120 features are shown. Evidently, without
normalization, some features have a large but almost constant
value across all speakers (e.g., rows with dark-red color). These
features will cause problems in SVM classification because
they affect the decision boundary of the SVM, even though they
contain little speaker-dependent information. This problem has
been largely alleviated by the normalization, as demonstrated
in Fig. 4(b). In particular, the normalization has the effect of
keeping all features within a comparable range, which helps
prevent the large but almost constant features from dominating
the classification decision.

3.4. Comparing AF-Kernel Scoring and LR-scoring
The SVM output can be considered as a scoring function:

SAF-kernel(X
T
1 ) = α0KAF

“−→
A c,

−→
A s

”
−

MX
i=1

αiKAF

“−→
A c,

−→
A bi

”
,

(11)
where KAF is any of the three AF-kernels mentioned earlier, α0

is the Lagrange multiplier corresponding to the target speaker,
and αi (i = 1, . . . ,M ) are Lagrange multipliers (some of
them may be zero) corresponding to the background speak-
ers. Comparing Eqs. 6 and 11 and comparing Figs. 2 and 3
suggest that AF-kernel scoring is more general and is poten-
tially better than LR scoring (Eq. 6) in two aspects. First, the
SVM optimally selects the most appropriate background speak-
ers through the non-zero αi. Second, instead of using a single
background model that contains the average characteristics of
all background speakers, a specific set of background speakers
is used for each target speaker for scoring. This is to some ex-
tends analogous to cohort scoring. However, the cohort set is
now discriminatively and optimally determined by SVM train-
ing, and the contribution of the selected background models is
also optimally weighted through the Lagrange multipliers αi.
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4. Experiments and Results
Datasets. NIST99, NIST00, SPIDRE, and HTIMIT were used
in the experiments. NIST99 was used for creating the back-
ground models and mapping functions, and the female part of
NIST00 was used for creating speaker models and for perfor-
mance evaluation. HTIMIT and SPIDRE were used for train-
ing the AF-MLPs and the null-grammar phone recognizer, re-
spectively. The phone recognizer uses standard 39-D vectors
comprising MFCCs, energy, and their derivatives. The AF-
MLPs use 38-D vectors comprising 19-D MFCCs and their first
derivative computed every 10ms.
Feature Selection. We applied SVM-RFE [10] to select 600
features from 720 features in the AF supervectors and found
that the EER can be reduced from 24.14% to 23.87%. Because
of this encouraging result, feature selection was applied to all
experiments.
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Figure 5: DET produced by LR scoring, AF-kernel scoring,
acoustic GMM-UBM, and their fusion.

EER and DET Performance. Fig. 5 shows the performance
of likelihood-ratio (LR) scoring, kernel-based scoring, and their
fusion with an MFCC-based GMM-UBM system. Results show
that the Euclidean kernel performs slightly better than the Ma-
halanobis kernel. This may be attributed to the inaccurate co-
variance matrix. Unlike the MFCCs in GMM-supervectors,
there are significant correlation among the features in the AF
supervectors; therefore, a full covariance matrix should be used.
However, this will demand extensive amount of training data to
estimate the matrix accurately. Insufficient training data could
lead to singular matrix. We solved this problem by assuming
diagonal covariance, but the assumption is too crude for articu-
latory features.

The results also show that scoring based on the LR AF-
kernel KAF-LR (Curve B) outperforms LR scoring (Curve A) at
the low false-alarm region, whereas the situation is reverse at the
low miss-probability region. This suggests that the two scoring
methods are complementary to each other, which is evident by
the superior performance (Curve A+B) when the scores result-
ing from the two scoring methods are fused.

At the low-miss probability region, LR AF-kernel scoring
is only slightly worse than LR scoring, but it is significantly bet-
ter than LR scoring in the low false alarm region. This suggests
that LR AF-kernel scoring is generally better than LR scoring,
which is mainly attributed to the explicitly use of discrimina-
tive information in the kernel function of the SVM and to the
optimal selection of background speakers by SVM training. Al-
though LR scoring also considers the impostor information, it
can only implicity use this information through the UBM. In
AF-kernel scoring, on the other hand, the SVM of each tar-
get speaker is discriminatively trained to differentiate the target
speaker from all of the background speakers. The SVM effec-
tively provides an optimal set of weights for this differentiation.
On the other hand, in log-likelihood scoring, all target speak-
ers share the same background model and the weight is always
equal (= −1) across all target speakers. This explains the supe-
riority of the AF-kernel scoring approach.

Interestingly, LR AF-kernel scoring outperforms Euclidean
AF-kernel and Mahalanobis AF-kernel scoring. This suggests
that normalizing the features of AF-supervectors by the back-
ground models can prevent some features (with large numerical
values) from dominating the SVM scoring.

Among the four scoring methods, LR scoring is the fastest
and the Mahalanobis kernel is the slowest, 0.11sec vs. 0.65sec
per utterance.

5. Conclusions
An AF-based kernel scoring method that explicitly uses the dis-
criminative information available in the training data was pro-
posed. Experimental results on NIST2000 suggests that the
method is superior to the conventional likelihood ratio scoring
method and that the method is readily fusible with low-level
acoustic systems.
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