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ABSTRACT

An important aspect of SVM-based speaker verification systems is
the design of sequence kernels. These kernels should be able to map
variable-length observation sequences to fixed-size supervectors that
capture the dynamic characteristics of speech utterances and allow
speakers to be easily distinguished. Most existing kernels in SVM
speaker verification are obtained by assuming a specific form for the
similarity function of supervectors. This paper relaxes this assump-
tion to derive a new general kernel. The kernel function is general in
that it is a linear combination of any kernels belonging to the repro-
ducing kernel Hilbert space. The combination weights are obtained
by optimizing the ability of a discriminant function to separate a tar-
get speaker from impostors using either regression analysis or SVM
training. The idea was applied to both low- and high-level speaker
verification. In both cases, results show that the proposed kernels
outperform the state-of-the-art sequence kernels. Further perfor-
mance enhancement was also observed when the high-level scores
were combined with acoustic scores.

Index Terms— speaker verification; optimal kernels; sequence
kernels; SVM; high-level features.

1. INTRODUCTION

Many speaker verification systems (e.g., GMM-UBM [1]) compute
the utterance-based score of a claimant by accumulating the frame-
based log-likelihood (LR) scores. This frame-based scoring scheme
has three drawbacks. First, because the goal of speaker verifica-
tion is to minimize classification errors on the test utterances instead
of on individual speech frames, treating speech frames indepen-
dently may miss some important speaker information contained in
the claimants’ utterances. Second, consider every frame equally im-
portant means that highly speaker-discriminative sounds will not re-
ceive more attention than less speaker-discriminative sounds. Third,
for discrete generative models (commonly used in high-level sys-
tems, e.g., AFCPM [2]), frame-based scoring is computationally in-
efficient because the same probability values will be repeatedly re-
trieved many times during the score accumulation process.

To mitigate these drawbacks, a number of sequence kernels—
such as the generalized linear discriminant sequence (GLDS) kernel
[3], n-gram kernel [4], linearized LR kernel, [5], GMM-supervector
(GSV) kernel [6], and Fisher kernel [7]—have been proposed for
speaker verification. All of these kernels can convert variable-length
sequences into fixed-length vectors for classification (or scoring) by
support vector machines (SVM). They are derived from similarity
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metrics between two sequences by assuming a specific form for the
similarity (or discriminant) functions. For example, in GLDS, the
discriminant function is assumed to be linear in the kernel-induced
feature space.

In this paper, instead of assuming a fixed form for the discrimi-
nant functions, any functions in the reproducing kernel Hilbert space
are potential candidates. We show that the optimal discriminant
function can be obtained by solving a functional optimization prob-
lem using regression analysis, leading to a kernel that is a general
form of the GLDS, GSV, linearized LR or n-gram kernels. We fur-
ther demonstrate that the discriminant function can also be optimized
by the SVM training algorithm. Then, using the idea of empirical
kernel map [8], the optimized discriminant function can satisfy the
Mercer condition [9] for SVM scoring. Experimental results on the
NIST2002 SRE are presented.

2. SEQUENCE KERNELS AND SIMILARITY METRICS

In speaker verification, speech utterances are typically represented
by variable-length observations O = {o1, . . . , oT }. To apply SVM
for classification, several sequence kernels have been proposed to
convert variable-length sequences into fixed dimensional vectors:

K (uttc, utts) =
〈
Q− 1

2 φ (Oc),Q
− 1

2 φ (Os)
〉

=
〈
Q− 1

2
−→
A c,Q

− 1
2
−→
A s

〉
,

(1)

where Oc and Os are the observations of claimant c and target
speaker s, and φ (O) is a function that maps O to a fixed dimen-
sional supervector

−→
A . The definition of

−→
A and Q for different ker-

nels are summarized in Table 1.

Table 1. Definition of
−→
A and Q for different kernels. p(·) is

polynomial expansion;
−→
A b and

−→
A bi are the supervectors repre-

senting the UBM and the i-th background speaker, respectively;
M is the number of background speakers; Pr(i) is the probabil-
ity of occurrences of the i-th combinations in n-grams; R is the
number of combinations; μi is the mean of the i-th Gaussian;
Σb = diag

[
λ−1
b,1diag (Σb,1) , . . . , λ

−1
b,Gdiag (Σb,G)

]
, where λb,i and

Σb,i are the mixture weight and covariance matrix of the i-th Gaus-
sian in the UBM, and G is the number of Gaussians.

Kernel Type Supervector
−→
A Normalization Matrix Q

GLDS [3]
−→
A = 1

T

∑T
t=1 p(ot) Q = 1

M

∑M
i=1

−→
A bi

−→
A T

bi

n-gram [4]
−→
A = [Pr(1), . . . ,Pr(R)]T Q = diag

{−→
A b

}

GSV [6]
−→
A = [μT

1, . . . ,μ
T
G]

T
Q = Σb
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These sequence kernels can be derived from a similarity met-
ric that computes a similarity score between two utterances through
a specific similarity (or discriminant) function fs(

−→
A ). For exam-

ple, the (GLDS) kernel [3] is derived from a linear discriminant
(scoring) function fs(

−→
Ac) = wT

s

−→
Ac, the n-gram kernel [4] and lin-

earized LR kernel [5] can be derived from the log-likelihood ratio
function fs(

−→
Ac) =

〈−→
Ac, log

−→
As./

−→
Ab

〉
,1 and the GSV kernel [6]

can be derived from Mahalanobis distance function d2M(
−→
Ac,

−→
As) =(−→

Ac −
−→
As

)T
Σ−1

b

(−→
Ac −

−→
As

)
.

3. OPTIMIZATION OF KERNELS

A common characteristic of the kernels in Section 2 is that they are
all derived under the assumption that the discriminant function has
a specific form. This constraint can be relaxed by using a general
discriminant function fs(

−→
A ). This section derives two new kernels,

namely regression optimized kernel and maximum-margin empirical
kernel, based on two different approaches to optimizing the general
discriminant function.

3.1. Regression Optimized Kernel

For a target speaker s, our goal is to find the best discriminant func-
tion f̂s(

−→
A ):

f̂s = arg min
fs∈H

⎧
⎨
⎩

∑

i∈{s,bk}Mk=1

γiL
(
fs(

−→
Ai), yi

)
+ λ ‖ fs ‖2

⎫
⎬
⎭

(2)
where M is the number of background speakers, λ is a regularizing
parameter, L(·, ·) is a loss function, and γi is to alleviate the unbal-
ance between the two classes of data. According to [10], the optimal
solution of Eq. 2 can be written as:

f̂s(
−→
A ) =

∑

i∈{s,bk}Mk=1

ws,ik(
−→
A,

−→
Ai), (3)

where ws,i are speaker-dependent weights and k(·,−→Ai) : RN ×
RN �→ R are kernels in the reproducing kernel Hilbert space H
such that

〈
fs, k(·,

−→
Ai)

〉
H

= fs(
−→
Ai) ∀ fs ∈ H. (4)

When L(·, ·) is a squared loss function, the optimization prob-
lem amounts to finding the combination weights ws,i for which re-
gression analysis using the least squares method is a natural solution.
Eq. 3 suggests that supervector

−→
A is first mapped to an (M+1)-dim

space defined by k(·,−→Ai). Eq. 3 and Eq. 4 suggest that

‖ f̂s ‖2= 〈f̂s, f̂s〉 =
〈
f̂s,

∑

i∈{s,bk}Mk=1

ws,ik(
−→
Ai, ·)

〉

=
∑

i∈{s,bk}Mk=1

ws,i

⎛
⎝ ∑

j∈{s,bk}Mk=1

ws,jk(
−→
Ai,

−→
Aj)

⎞
⎠ .

(5)

Therefore, the optimization problem in Eq. 2 can be formulated as:

min
ws∈RM+1

{
(y −Ksws)

TΓ(y −Ksws) + λws
TKsws

}
(6)

1log
−→
As./

−→
Ab stands for element-wise division and logarithm.

where

ws = [ws,s, ws,b1 , . . . , ws,bM ]T,y = [1, 0, . . . , 0]T(M+1)×1,

Γ = diag{γs, γb1 , . . . , γbM } = diag{γ+, γ−, . . . , γ−},
(7)

and

Ks =

⎡
⎢⎢⎢⎣

ks,s kb1,s · · · kbM ,s

ks,b1 kb1,b1 · · · kbM ,b1

...
...

. . .
...

ks,bM kb1,bM · · · kbM ,bM

⎤
⎥⎥⎥⎦ , (8)

where ki,j = kj,i = k(
−→
Ai,

−→
Aj). Taking the derivative with respect

to ws in Eq. 6 and setting it to zero, the solution of Eq. 6 is

ws = (KsΓK
T
s + λKT

s)
−1(KT

sΓy). (9)

Using Eqs. 7–9, we can express the optimal discriminant func-
tion (Eq. 3) as:

f̂s(
−→
A ) =

∑

i∈{s,bk}Mk=1

ws,ik(
−→
A,

−→
Ai)

=
[
(KsΓK

T
s + λKT

s)
−1(KT

sΓy)
]T
(M+1)×1

⎡
⎢⎢⎢⎢⎣

k(
−→
A,

−→
As)

k(
−→
A,

−−→
Ab1 )

...
k(
−→
A,

−−→
AbM )

⎤
⎥⎥⎥⎥⎦

= γ+

⎡
⎢⎢⎢⎢⎣

k(
−→
As,

−→
As)

k(
−→
As,

−−→
Ab1 )

...
k(
−→
As,

−−→
AbM )

⎤
⎥⎥⎥⎥⎦

T

(
KsΓK

T
s + λKT

s

)−1

⎡
⎢⎢⎢⎢⎣

k(
−→
A,

−→
As)

k(
−→
A,

−−→
Ab1 )

...
k(
−→
A,

−−→
AbM )

⎤
⎥⎥⎥⎥⎦

.

Because γ+ is a constant, it can be discarded without affecting the
discriminative ability of f̂s(

−→
A ). Note that the matrix Ks and the

vector k(
−→
A , ·)|(s,b1,...,bM ) are target speaker-dependent.2 Consider

that these matrices and vectors are dominated by nontarget speaker
data, to make fs(

−→
A c) symmetric and to reduce computation time

and storage space, we perform the following approximations:

Ks ≈ K =

⎡
⎢⎢⎢⎣

kb,b kb1,b · · · kbM ,b

kb,b1 kb1,b1 · · · kbM ,b1

...
...

. . .
...

kb,bM kb1,bM · · · kbM ,bM

⎤
⎥⎥⎥⎦ , (10)

and
k(
−→
A, ·)|(s,b1,...,bM ) ≈ k(

−→
A, ·)|(b,b1,...,bM ),

where the universal background supervector
−→
Ab is used to approxi-

mate
−→
As. With these approximations, the regression optimized ker-

nel is written as:

KReg(
−→
Ac,

−→
As) =

〈(
KΓKT + λKT

)− 1
2
k(
−→
Ac, ·)|(b,b1,...,bM ),

(
KΓKT + λKT

)− 1
2
k(
−→
As, ·)|(b,b1,...,bM )

〉
,

(11)
where K and Γ are defined in Eqs. 10 and 7.

(
KΓKT + λKT)− 1

2

can be considered as a normalization matrix computed from the

2k(
−→
A, ·)|(s,b1,...,bM ) ≡

[
k(
−→
A,

−→
As), k(

−→
A,

−−→
Ab1 ), . . . , k(

−→
A,

−−→
AbM )

]T
.
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background speakers. Note that ki,j = k(
−→
Ai,

−→
Aj) should belong

to H. For Low-level system, one possibility is to use the GSV ker-
nel. Fig. 1 illustrates the structure of regression optimized kernels.

Fig. 1. The structure of regression optimized kernels.

The regression optimized kernel can be considered as a general
form of the GLDS, n-gram and GSV kernels. Starting from Eq. 11,
if Γ = 0 and λ = 1, then the (i, j)-th element of the regression
optimized kernel matrix KReg becomes:

{KReg}i,j = KReg(
−→
Ai,

−→
Aj)

=
〈
K− 1

2 k(
−→
Ai, ·)|(b,b1,...,bM ), K

− 1
2 k(

−→
Aj , ·)|(b,b1,...,bM )

〉

=
〈
ϕ(

−→
Ai), ϕ(

−→
Aj)

〉
.

(12)

Define Ωs =
[
ϕ(

−→
As), ϕ(

−−→
Ab1), . . . , ϕ(

−−→
AbM )

]
. Then we have

Ωs = K− 1
2

⎡
⎢⎢⎢⎣

ks,b kb1,b · · · kbM ,b

ks,b1 kb1,b1 · · · kbM ,b1

...
...

. . .
...

ks,bM kb1,bM · · · kbM ,bM

⎤
⎥⎥⎥⎦ ≈ K− 1

2Ks,

where Ks is defined in Eq. 8. Therefore, using Eq. 12, the regression
optimized kernel matrix for target speaker s is:

Ks
Reg = ΩT

sΩs = (K− 1
2Ks)

T(K− 1
2Ks)

= KT
sK

− 1
2K− 1

2Ks ≈ Ks. (because Eq. 10: K ≈ Ks)
(13)

Consider the elements of Ks. If ki,j = k(
−→
Ai,

−→
Aj) =

kGSV(
−→
Ai,

−→
Aj) =

∑G
g=1

(√
λb,gΣ

− 1
2

b,g μi,g

)T (√
λb,gΣ

− 1
2

b,g μj,g

)
,

then the regression optimized kernel matrix Ks
Reg becomes the GSV

kernel matrix Ks
GSV. Therefore, for this special value of Γ, λ, and

k(
−→
Ai,

−→
Aj), the regression optimized kernel is equivalent to the GSV

kernel. The above derivation can be generalized to other kernels.

3.2. Maximum-Margin Empirical Kernel

In the regression optimized kernel, supervectors that are mapped to
points far away from the decision plane defined by {ws,i} in the
(M + 1)-dim space may have significant influence on the position
and orientation of the plane, which may have undesirable effect on
the kernel function. To avoid the influence of these extremes, we

may use Vapnik’s ε-insensitive loss function [11] as the loss function
L(x, y) in Eq. 2:

L(x, y) =

{
0 if |x− y| < ε
|x− y| − ε otherwise.

It can be shown [10] that with L(x, y) being the ε-insensitive loss
function, the minimization in Eq. 2 is equivalent to the SVM training
algorithm. Therefore, we can generalize Eq. 3 to

fs(
−→
A ) = ws,0k(

−→
A,

−→
As)−

∑

i∈Sb

ws,ik(
−→
A,

−→
Ai) + ds, (14)

where Sb ⊆ {bk}Mk=1 is a set of support vector indexes from the
negative class, ws,0 is the Lagrange multiplier corresponding to the
(solely) positive support vector, and ws,i, i ∈ Sb, are the Lagrange
multipliers corresponding to the negative support vectors.3 There-
fore, the optimal weights (Lagrange multipliers and bias) in Eq. 14
can be found by maximizing the margin of an SVM that separates
the target speaker s from and background speakers {bk}Mk=1. We
cannot, however, use Eq. 14 as a kernel, because it may not satisfy
the Mercer’s condition. One possible solution is to use empirical
kernel map as follows.

Assume that we have M background speakers. We first train
a UBM using these M speakers, which results in a supervector de-
noted

−→
Ab. For the i-th background speaker, an SVM is trained to

distinguish his/her voice from that of the other M − 1 background
speakers and the UBM. Similarly, an SVM is trained to distinguish
the UBM from all of the M background speakers. Denote the output
of the i-th background SVM as fbi(

−→
A ) and that corresponding to

the UBM as fb(
−→
A ), where we have replaced s in Eq. 14 by bi and

b. During enrollment, given an utterance from a target speaker s,
we determine the corresponding supervector

−→
As and present it to the

UBM’s SVM and M background SVMs. We also present the UBM−→
Ab and each of the background supervectors

−→
Abi to the speaker’s

SVM. The two sets of outputs are averaged to produce an (M + 1)-
dim vector:

fs =
1

2

⎡
⎢⎢⎢⎣

fb(
−→
As) + fs(

−→
Ab)

fb1(
−→
As) + fs(

−−→
Ab1)

· · ·
fbM (

−→
As) + fs(

−−→
AbM )

⎤
⎥⎥⎥⎦ .

This vector represents the speaker class for training a linear scoring
SVM. Vectors representing the impostor class are obtained by pre-
senting each of the background speakers to the UBM’s SVM and the
M background SVMs, which results in M training vectors:

fbi =
1

2

⎡
⎢⎢⎢⎣

fb(
−→
Abi) + fbi(

−→
Ab)

fb1(
−→
Abi) + fbi(

−−→
Ab1)

· · ·
fbM (

−→
Abi) + fbi(

−−→
AbM )

⎤
⎥⎥⎥⎦ , i = 1, . . . ,M.

The kernel of the scoring SVM is given by

KMM-Emp(
−→
Ac,

−→
As) =< F

− 1
2

b fc,F
− 1

2
b fs >, (15)

where FT
b = [fb fb1 . . . fbM ] . We refer to KMM-Emp as the

maximum-margin empirical kernel.
In Eq. 11, when Γ = 0 and λ = 1, the regression optimized ker-

nel becomes Eq. 12. A comparison between Eq. 12 and Eq. 15 sug-
gests that the maximum-margin empirical kernel is a general form of
the regression optimized kernel and other kernels.

3Note that ws,i are different from the weights in Eq. 3.
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Table 2. Performance (EER) achieved by different scoring methods
in low-level and high-level speaker verification. In low-level sys-
tems, GLDS supervectors are the second order polynomial expan-
sions [3]. For other kernels in low-level systems, supervectors are
the stacking of the Gaussians mean vectors. In high-level systems,
supervectors are formed by stacking the values of probability mass
functions (AFCPM [5]). For the scoring complexity, N is the super-
vectors’ dimension, M is the number of background speakers, S is
the number of support vectors and T is the number of frames.

Scoring Kernel Low- High- Scoring
Method Type level level Complexity

GLDS 14.56% 25.67% O(N3ST )

Linearized LR 18.14% 22.69% O(N2ST )

Kernel GSV 9.47% 23.41% O(N3ST )

Scoring Regression 8.86% 22.19% O(N3(M + 1)3ST )

Max-Margin 9.14% 21.68% O(N3(M + 1)3S2T )

LR Scoring — 9.42% 23.79% O(NT )

Kernel + LR Best{MM,Reg} 7.90% 21.32% O(N3(M + 1)3S2T )

High + Low MM+Reg 7.51% O(N3(M + 1)3S2T )

4. EXPERIMENTS AND RESULTS

Datasets. NIST SRE 2001, NIST SRE 2002, SPIDRE, and HTIMIT
were used in the experiments. NIST 2001 was used for creating
background models, and NIST 2002 was used for creating speaker
models and for performance evaluation in both high- and low-level
speaker verification. HTIMIT and SPIDRE were used to train the
MLPs and the phone recognizer for high-level speaker verification
(AFCPM system [2]). For the low-level systems, cepstral mean nor-
malization was applied to the MFCCs, followed by feature warping.
Z-norm and T-norm were then applied to the scores to further reduce
the effect of channel mismatch.
Parameters for Training Kernels. In Eq. 7, γ+ = M

M+1
and γ− =

1
M+1

, where M is the number of background speakers. Moreover,
λ = 0.8 for high-level systems and λ = 0.2 for low-level systems.
A small λ was chosen for low-level systems because their speaker
models are more reliable; therefore less regularization is required.
For the high-level systems, we used the linearized LR kernel [5] as
the reproducing kernel in Eqs. 11 and 15; for the low-level systems,
we used the GSV kernel [6] as the reproducing kernel.
EER and DET Performance. Table 2 and Fig. 2 show that the pro-
posed optimized regression kernel and maximum-margin empirical
kernel outperform the GSV kernel and LR scoring. This suggests
that optimizing a general discriminant function (Eq. 3) to derive a
kernel is better than (a) using a specific distance metric (e.g., GSV
kernel) and (b) assigning a specific form for the discriminant func-
tion as in the linearized LR kernel and the GLDS kernel. Results also
show that the fusion of LR scoring and kernel scoring can further re-
duce the EER in both high- and low-level cases. Table 2 and Fig. 2
show that the performance can be further improved by linearly fusing
the best high-level system and the best low-level system, resulting in
an EER of 7.51%. To the best of our knowledge, this performance
on NIST 2002 is better than the best result [12] reported in the litera-
ture. Although the kernel is evaluated on a speaker verification task,
it is general enough for other classification problems.

  5   10   20   40
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%
)

Speaker Detection Performance
K

MM−Emp
+LR Scoring (High)

DCF=0.2108,EER=21.32%
K

GSV
DCF=0.0945,EER=9.47%
LR Scoring
DCF=0.0936,EER=9.42%
K

Reg
DCF=0.0873,EER=8.86%
K

Reg
+LR Scoring (Low)

DCF=0.0762,EER=7.90%
High−level + Low−level
DCF=0.0738,EER=7.51%

Fig. 2. DET performance of high- and low-level systems using dif-
ferent kernel scoring approaches and the fusion of the best high-level
system (KMM-Emp + LR Scoring (High)) and the best low-level sys-
tem (KReg + LR Scoring (Low)). The legends are arranged in de-
creasing EER.
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