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Abstract

Training speaker verification (SV) systems without labeled data
is challenging. To tackle the challenge, we propose Multi-Head,
Multi-Mode (MeMo) self-supervised learning based on knowl-
edge distillation. Unlike DINO, the teacher in MeMo uses two
distinct architectures to learn collaboratively, and so does the
student. MeMo employs two distillation modes: self- and cross-
distillations, with the teacher and student having the same and
different architectures, respectively. To reduce the output dis-
crepancy caused by different architectures, we divide the pro-
jection head into self- and cross-heads so that each head is re-
sponsible for distillation in its respective mode. We also dis-
cover that contrastive learning at the embedding level is sup-
portive only in early training stages. To address this issue,
we propose dynamically stopping the contrastive learning while
continuing knowledge distillation. MeMo achieves an impres-
sive EER of 3.10% on Voxcelebl using a small ECAPA-TDNN
backbone.

Index Terms: speaker verification, self-supervised learning,
knowledge distillation, DINO, cross-distillation

1. Introduction

With the advancement of deep neural networks, there has
been an increasing number of neural network-based methods in
speaker verification (SV), e.g., ResNet speaker embedding [1],
ECAPA-TDNN [2], and CAM++ [3]. Although these meth-
ods have achieved impressive performance in SV, the reliance
on labeled data poses a challenge to system development. Be-
cause manually labeling massive amounts of data is expensive
and time-consuming. In recent years, self-supervised learning,
a technique that does not rely on labeled data for training, has
gained wide attention [4-12].

Self-supervised learning can be divided into two categories:
contrastive learning [4-9] and non-contrastive learning [10-12].
The former aims to reduce the distance between (positive) sam-
ples from the same speaker and maximize the distance between
(negative) samples from different speakers. However, it faces
the challenge of false negative samples [13], i.e., having multi-
ple audio samples from the same speaker in a mini-batch. This
can lead to the model pushing the embeddings of these incor-
rect negatives away from the anchor during optimization. To
address the issue, many researchers have shifted their focus to
non-contrastive frameworks. For example, researchers in com-
puter vision have introduced a novel approach called Bootstrap
Your Own Latent (BYOL) [14], which focuses solely on pos-
itive pairs. By doing so, they effectively mitigate the prob-
lem of false negatives. Subsequently, another study advanced
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this research by introducing a label-free self-distillation method
known as DINO [15]. DINO streamlines the model architecture
of BYOL and incorporates a more efficient training strategy,
enhancing the overall effectiveness of self-supervised learning.
This paper focuses on using the DINO framework for text-
independent SV.

DINO has been applied to SV. For instance, a clustering ap-
proach was utilized in [10] to obtain more reasonable global and
local views for DINO. The effectiveness of curriculum learning
in the DINO framework was demonstrated in [16]. Addition-
ally, the authors in [12] introduced two regularization terms to
address the issue of model collapse in DINO.

The methods above only utilized one model architecture
(student and teacher have the same architecture). In [17], the au-
thors demonstrated that performing knowledge distillation be-
tween different models can boost the performance of both mod-
els. This finding motivates us to use multiple teachers with dif-
ferent architectures to collectively educate a student network
for SV. We propose an approach that involves self-distillation
within the same architecture and cross-distillation across differ-
ent architectures. However, due to the differences in model ar-
chitecture, there is a significant possibility of a mismatch in the
output distributions between the teachers and the students. This
can result in different teachers teaching different information to
a student, which can pose challenges for the student during the
optimization process. To address this problem, we propose a
Multi-Head, Multi-mode (MeMo) distillation framework. Each
network consists of one encoder and multiple heads, with each
head specialized to a specific teacher’s knowledge distillation.
This specialization of projection heads leads to more accurate
teacher signals, reducing the chance of confusing the students.

Several studies have used contrastive loss to increase the
distance between different classes in the teacher and student
model [18]. For example, [19] uses the contrastive framework
as the first stage to find a better initial parameter for DINO. In-
spired by these works, we incorporate contrastive learning at the
embedding level between the teachers and students. However,
we observed that contrastive loss provides significant benefits
to the system only in the early training stages, and it could hurt
performance at the later stages. We noticed that the degradation
is due to the false negatives in the absence of speaker labels.
To address this issue, we propose a strategy called Contrastive
Training with Early Stopping (CTES). We utilize contrastive
loss as an auxiliary training objective to assist the system during
the initial training stage and remove this objective when the suc-
cessive contrastive loss ceases to drop. The goal is to enable the
model to learn a good speaker representation during the initial
training phase. In this way, models can find a better solution
during subsequent optimization and avoid the issue of getting
stuck in trivial solutions in the early stages.
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Figure 1: The MeMo Framework.
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“EMA” and “sg” stand for exponential moving average and stop gradient, respectively. The

contrastive loss of each positive pair depends on all utterances in a training batch (see Eq 4). For clarity, we show the FBank feature

sets (X* and X*) of one utterance only.

Our contributions can be summarized as follows: 1) We
proposed the MeMo framework, which incorporates cross-
distillation for SV. To the best of our knowledge, we are the first
to apply cross-distillation in SV. 2) We proposed a multi-head
projection layer to prevent architecture-dependent bias arising
from cross-distillation between different architectures. 3) We
proposed a CTES strategy to leverage the contrastive during the
early training stage.

The rest of the paper is organized as follows. Section 2
introduces the DINO and details the MeMo framework. Section
3 presents the experimental settings, and Section 4 shows the
results and analyses. We draw a conclusion in Section 5.

2. Methods
2.1. DINO-based Self-Supervised Learning

DINO [15] facilitates knowledge transfer from a teacher net-
work to a student network by leveraging their output distribu-
tions. The teacher and student networks consist of an encoder
ge and a projection network h,, where g and h are functions pa-
rameterized by 6 and 1, respectively. Unlike traditional knowl-
edge distillation, the teacher and student networks in DINO
have the same structure but different parameters. During train-
ing, the student network is optimized by minimizing the cross-
entropy between the outputs of the two networks. The parame-
ters of the teacher network are updated from the student network
using the exponential moving average (EMA) algorithm [20].
We employ a multi-crop strategy [21] to sample four short
(local) segments {x;1, X2, X13, X14 } and two long (global) seg-
ments {Xg41,Xg2} from each training utterance, where g and [
denote the global and local views, respectively. We apply dif-
ferent types of noise and reverberation to the segments, fol-
lowed by extracting their filter-bank (FBank) features to ob-
tain two groups of spectral matrices: X, = {X 41, Xg2} and
X1 = {Xn, X2, Xi3, Xi2}. In DINO, we define the teacher
data as X* = X, and present it to the teacher network, and we
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define the student data as X'* = {Xg, X;} and present it to the
student network. This causes the teacher and student networks
to output the probability vectors P* = {y’_,,y%,,} and P*
= {Yx,, YUk, YUxi YX,sr Y,y Yy, b respectively at the
softmax layer, where vy is a vector with a dimension equal to the
hypothesized number of speakers in the training set. The logit
output of the teacher network is subject to centering before ap-
plying the softmax function to avoid model collapse. The DINO
loss is defined as:

Lpino = Z Z CrossEntropy (v, y%/), (1)
Xext xX'ex®
X'#£X

where CrossEntropy(a,b) = — Z?zl ay log b. After train-

ing, we utilize the embeddings produced by the teacher encoder
as the speaker embeddings.

2.2. Multi-head Knowledge Distillation

Traditional DINO has two networks: student network f° =
g5 o hj, and teacher network f* = g§ o hl,. In MeMo, on the
other hand, there are two student networks (f*'Z and %) and
two teacher networks (f*F and f“F), where the superscript
FE and R denote the ECAPA-TDNN and Thin-ResNet architec-
tures, respectively. Figure 1 shows the knowledge distillation
among these four networks and how they use the global and
local speech segments.

Unlike DINO, MeMo’s knowledge distillation is done
within the same architecture (self) and across different archi-
tectures (cross). As shown in Figure 1, we feed X'’ into the
teachers ¥ and f“ and X’ into the students f*¥ and f* .
The self-distillation loss is the cross-entropy between the out-
puts of the student and teacher networks with the same archi-
tecture. For the cross-distillation loss, the cross-entropy is cal-
culated between the outputs of the student and teacher networks
with different architectures. Taking f'F as an example, these



two losses are defined as:

Leeit = Z Z CrossEntropy(y}E,y;:E)

Xext x'exs @
X'#£X
Leross = Z Z CrossEntropy (¥, ¥ ), 3

Xext x'exs

X'#£X

where y’s with different superscripts denote the respective

probability vectors of the teacher and student networks. The
losses corresponding to f*® have similar forms.

While cross-distillation allows knowledge transfer between
teacher and student and between different architectures, there is
a catch. Specifically, problems arise if there is a big disagree-
ment between the teacher and student, which becomes more
likely when they are of different architectures. For example, the
teacher f*'¥ may confidently indicate that an audio segment be-
longs to Speaker “A”, whereas the teacher T strongly believes
it is from Speaker “B”. The probability of such a mismatch in-
creases when the architectural difference increases. This dis-
crepancy causes the two teachers to teach different information
to the two students, confusing the students during the optimiza-
tion process. To address this problem, we divided the MLP’s
output layer into self- and cross-heads (the reason for the name
Multi-head). The encoder’s output is fed into both heads. The
self-head is used for self-distillation, while the cross-head is
used for cross-distillation (as shown in Figure 1). Splitting the
MLP’s output layer into two projection heads allows each head
to specialize in one type of distillation, which is less demanding
than requiring a single head to handle both types of distillation
or knowledge transfer. This specialization of projection heads
leads to more accurate teacher signals, reducing the chance of
confusing the students.

2.3. Knowledge Distillation via Contrastive Loss

Besides self- and cross-distillation, knowledge distillation can
also occur at the embedding layer through the contrastive loss
(the reason for the name Multi-mode). The contrastive learning
aims to bring the embeddings of the same speaker closer and
to push the embeddings of different speakers apart. Let us take
P and f*F as an example. Given an audio sample x, we
consider its global view segments, X y1 and X 2. After feed-
ing them into g(’;’E and gg’E, we obtain four sets of embeddings:
eg’iE 95" (Xy:) and eZ;E = g5%(Xyi), where i = 1,2 in-
dexes the two global views. We perform contrastive learning on
the embeddings eZ’IE and eZ‘QE to enable the encoders to pro-
duce robust embeddings because X 41 and X 42 were obtained
from different augmentations of x.

To simplify the notations for e, we drop the superscript
E, s, and t and the subscript g in the sequel. Therefore, given
N utterances in a mini-batch, we have embeddings e;, ;, where
i=1,2and 5 = 1,..., N. Because the embeddings e; ; and
ey ; are drawn from the same utterance, they share the same
speaker identity and therefore form a positive pair. For each
positive pair with utterance index j, the other 2(N — 1) em-
beddings in the mini-batch are considered negatives. Therefore,
for a positive pair of speaker embeddings {e; j,e3_; ;}, the
contrastive loss is defined as:

exp(cos(e;,j,ej3_ ;)

N N2 4 — -4
Dk=1 2i—1 Lt kzjexp(cos(ei s, e )

= —log

li
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The contrastive loss corresponding to f“F and f*F for each
mini-batch is then given by:

1 N 2
Lga = ﬁ ;;lz,]

Note that for each pair of embeddings in Eq 4, one comes
from the teacher and another from the student, constituting the
knowledge distillation. The contrastive loss corresponding to
the ResNets (f5% and f*%) has the same form as Egs. 4 and 5.

We found that contrastive loss is helpful in the early train-
ing stage only. Due to the issue of false negatives, the con-
trastive loss limits the system’s performance during the later
training stage. Therefore, we propose a strategy called Con-
trastive Training with Early Stopping (CTES). Specifically, we
calculate the difference between the current contrastive loss
Lgc1,+ and the previous loss Lgc1,:—1, where ¢ is the iteration
index. When Lgc1+—1 — Lsc1,+ < 7 (a threshold parameter), we
consider the auxiliary effect of contrastive loss on the system
to be minimal and remove the contrastive loss from the training
objective.

(&)

3. Experimental Setup
3.1. Datasets

The training set utilized in our study is Voxceleb2 [1], which
consists of 1,092,009 utterances from 5,994 speakers. Notably,
we did not use the speaker labels during training. The system’s
effectiveness was assessed using Vox1-O, Vox1-E, and Vox1-
H [22]. We adhered to the Kaldi recipe for data augmentation,
integrating noise from the MUSAN [23] dataset and reverbera-
tion from the RIR [24] dataset.

3.2. System configuration

We used the ECAPA-TDNN [2] with 512 channels (a smaller
version of ECAPA-TDNN) as 4% and f*F and the Thin-
ResNet [27] (a smaller version of ResNet) as ft’R and f s8R
The embedding dimensions for the ECAPA-TDNN and Thin-
ResNet were set to 256. The cross-head and self-head in Fig-
ure 1 have the same architecture. They consist of three fully-
connected layers, where the hidden layer has 2048 nodes. This
is followed by an L2-normalization layer and a weight normal-
ization layer [28]. This architecture aims to map the speaker
embeddings to an output layer with K dimensions. We set K
to 65536, following the default setting in DINO.

We applied the multi-crop strategy to each utterance dur-
ing MeMo training. In this strategy, we considered 4-second
segments as the global views, while 2-second segments were
treated as the local views. The ECAPA-TDNNs and Thin-
ResNets receive 80-dimensional filter bank (FBank) features as
input. Each FBank vector was computed from 25ms of speech,
with a 10-ms frameshift. Mean and variance normalization was
applied to the FBank features. The temperature parameter of the
student network’s softmax function was set to 0.1. The tempera-
ture parameter of the teacher’s softmax function was linearly in-
creased from 0.04 to 0.07 during the initial 30 epochs and fixed
afterward. The weights for combing different types of loss were
set to 1, and the threshold 7 in Section 2.3 was set to 0.01. The
ECAPA-TDNNs and Thin-ResNets were optimized by an SGD
optimizer using a cosine scheduler. The initial learning rate was
set to 0.2, and the final learning rate was set to 0.00005.

We utilized equal error rate (EER) and the minimum detec-
tion cost function (MinDCF) as the performance metrices. The



Table 1: Comparison of the Proposed MeMo with the baseline on Voxcelebl test sets. “SeMo” means single-head multi-mode distilla-
tion, where the MLP’s output was not split into multiple heads. SCL and CTES stand for self-supervised contrastive loss and contrastive

training with early stopping, respectively (see Section 2.3).

Speaker Embedding Vox1-O Vox1-E Vox1-H
Row | Knowledge Distillation Method | SCL | Network EER (%) minDCF | EER (%) minDCF | EER (%) minDCF
1 DINO (Baseline) N 6.33 0.394 6.82 0.411 11.69 0.599
2 SeMo N 6.14 0.368 6.66 0.392 11.02 0.559
3 MeMo N Thin-ResNet 5.86 0.376 6.47 0.388 10.71 0.543
4 MeMo (w/o CTES) Y 6.32 0.393 691 0.435 12.02 0.599
5 MeMo (w/ CTES) Y 5.78 0.359 6.40 0.399 10.71 0.553
6 DINO (Baseline) N 4.03 0.301 4.40 0.336 8.65 0.592
7 SeMo N 3.53 0.252 4.02 0.300 7.52 0.478
8 MeMo N ECAPA-TDNN 3.19 0.246 3.68 0.351 7.68 0.488
9 MeMo (w/o CTES) Y 5.35 0.355 6.19 0.405 11.47 0.588
10 | MeMo (w/ CTES) Y 3.10 0.229 3.53 0.297 7.04 0.569

Table 2: Comparison of our method (MeMo) with other start-
of-art methods on the VoxI-O test set. The minDCF with a *
was calculated using Ptarget = 0.01 instead of Ptarget = 0.05.

System EER (%) minDCF
AP+AAT [5] 8.65 0.454
MoCo+WavAug [8] 8.23 0.590*
Contrastive first stage [9] 7.36 N/R
Contrastive second stage [9] 3.52 N/R
SSReg [25] 6.99 0.434
DINO [26] 4.83 N/R
DINO+CL [16] 4.47 0.3057
CA DINO [10] 3.585 0.353
RDINO [12] 3.29 0.247
MeMo w/ SCL+CTES (Ours) 3.10 0.229

MinDCF was determined using the parameters Piarget = 0.05
and Ct, = Chiss = 1. We used the cosine similarities of embed-
ding pairs as verification scores.

4. Results and Discussions

Table 1 presents our main results. We conducted experiments on
three test scenarios in Voxcelebl and tested on the speaker em-
beddings extracted from either the ECAPA-TDNN or the Thin-
ResNet to demonstrate the effectiveness of MeMo. The term
SeMo stands for single-head multi-mode, meaning that only one
projection head was used for self- and cross-distillation. Row 4
indicates that MeMo also uses contrastive loss for training, but
does not use the CTES strategy.

Our baseline is the standard DINO model with two global
views and four local views. Our method (MeMo) performs bet-
ter than the baseline using the embeddings from either ECAPA-
TDNN or Thin-ResNet. This indicates that under the MeMo
framework, two different models can learn collaboratively in a
self-supervised manner. By comparing the results of Rows 1
and 2 and Rows 6 and 7, we observe that diversifying the model
architecture is effective for DINO. By comparing the results of
Rows 2 and 3 and Rows 7 and 8, we observe that MeMo, with
distillation-type-dependent heads, is superior. Comparing the
results of Rows 4 and 9 with the baseline suggests that a naive
application of contrastive learning under the MeMo framework
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Figure 2: The EERs achieved by MeMo with and without SCL at
three different epochs, with speaker embeddings extracted from
the ECAPA-TDNN.

can hurt performance. However, as shown in Figure 2, with
the assistance of contrastive learning, MeMo can obtain a bet-
ter speaker representation in the early training stage. The con-
trastive loss may prevent the model from getting stuck in a triv-
ial solution in the early stages. Therefore, we propose the CTES
strategy. Rows 5 and 10 in Table 1 indicate that the CETS strat-
egy can boost system performance.

To further demonstrate the effectiveness of MeMo, we also
compared it with state-of-the-art self-supervised methods in re-
cent years. From Table 2, our method achieved 3.10% on Vox-
celebl by using a smaller ECAPA-TDNN backbone. This re-
sult is better than those of other recent self-supervised methods,
including the previously state-of-the-art RDINO [12], demon-
strating the effectiveness of MeMo.

5. Conclusions

We found that increasing model architecture diversity is effec-
tive for knowledge distillation under the DINO framework. We
proposed dividing the classification heads into distillation-type-
dependent heads to overcome the architecture-dependent bias in
the teacher and student networks. We also introduced knowl-
edge distillation at the embedding layer through contrastive
learning, discovering that stopping contrastive learning at the
early learning stage is critical. Early stopping can help MeMo
learn better speaker representation at the later stage of training.
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