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Abstract

Emotion Recognition in Conversation (ERC) has great
prospects in human-computer interaction and medical consul-
tation. Existing ERC approaches mainly focus on informa-
tion in the text and speech modalities and often concatenate
multimodal features without considering the richness of emo-
tional information in individual modalities. We propose a mul-
timodal network called MM-NodeFormer for ERC to address
this issue. The network leverages the characteristics of dif-
ferent Transformer encoding stages to fuse the emotional fea-
tures from the text, audio, and visual modalities according to
their emotional richness. The module considers text as the main
modality and audio and visual as auxiliary modalities, leverag-
ing the complementarity between the main and auxiliary modal-
ities. We conducted extensive experiments on two public bench-
mark datasets, [IEMOCAP and MELD, achieving an accuracy
of 74.24% and 67.86%, respectively, significantly higher than
many state-of-the-art approaches.

Index Terms: emotion recognition in conversation, multimodal
network, feature fusion

1. Introduction

A fundamental difference between humans and machines is
their ability in expressing and interpreting emotion. The pri-
mary objective of emotion recognition in conversation (ERC)
is to discern and assign emotion labels to individual utterances
within a conversation. Essentially, ERC is a classification task,
aiming to assign an emotion category to each expression in a
dialogue from a predefined set of emotion categories [1].

A primary characteristic of ERC is the interdependen-
cies among the utterances in a conversation, which could be
contextual- [2] or speaker-dependent [3]. Prior studies have
put forward diverse session-based approaches to capturing the
dependency. These approaches use bi-directional LSTM [4],
multi-layer GRU [5], and graph-based models [6] on multi-
modal inputs. Although they can capture the contextual depen-
dency, they often simply concatenate the features from multiple
modalities without finding a better representation through ad-
vanced fusion methods. This direct concatenation of features
leads to high-dimensional feature space, causing sub-optimal
performance [7]. Although there have been advancements in
feature fusion [4, 6], most approaches treat the features of dif-
ferent modalities identically without considering the emotion
content in different modalities. Also, these feature-level fu-
sion methods do not consider the interaction between different
modalities, limiting the recognition performance of the fused
features.
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To effectively utilize the emotion contents in multiple
modalities and to consider their interaction, we propose a novel
multimodal fusion network called MM-NodeFormer, which
leverages the characteristics of different Transformer encoding
stages to perform feature fusion. Specifically, the audio and vi-
sual features extracted from Wav2vec2.0 [8] and CLIP [9] in
a dialog are aligned with the self-attended RoBERTa [10] text
features. Then, multiple Transformer encoders capture the de-
pendence among these dialog-level feature sequences. Subse-
quently, an emotion classifier is employed to predict the emo-
tion labels.

The contributions of our works are summarized as follows:
1) we propose a novel MM-NodeFormer for ERC, featuring
a multi-stage fusion strategy to improve the quality of audio-
visual-text multimodal fusion; 2) we design a new Transformer-
based multimodal fusion called NodeFormer, allocating weights
based on the richness of emotion information to extract deeper
emotional features; and 3) extensive experiments on [IEMOCAP
and MELD demonstrate the effectiveness and superiority of the
proposed model.

2. Related Work

Unlike traditional emotion recognition, ERC uses contextual re-
lationships between the utterances in a conversation. Therefore,
it is crucial to capture such relationship via contextual model-
ing. To this end, the conversational memory network [5] and
its extension, ICON [2], use two GRUs (one for each speaker)
to learn the inter-speaker influences and dynamics in dyadic
conversational videos. DialogRNN [11] assumes that an ut-
terance’s emotional state depends on its speaker, the context
in the preceding utterances of all speakers, and the emotional
states of preceding utterances. It uses three GRUs to model
these relationships. DialogGCN [6] acquires contextual depen-
dencies by employing a graph neural network. MMGCN [12]
utilizes a multimodal graph-based fusion module to capture the
contextual features. MM-DFN [13] aggregates contextual in-
formation within and between modalities in specific semantic
spaces using graph convolution operations. M2FNet [14] incor-
porates a multi-head fusion attention layer to seamlessly merge
features extracted from diverse modalities. UniMSE [15] fo-
cuses on the similarities and complementarities between emo-
tion at syntactic and semantic levels. EmotionIC [16] models
a conversation at the feature extraction and classification lev-
els. CFN-ESA [17] models emotional transfer by introducing
an emotional shift module and extracts the shifting information
through an auxiliary task. EmoCaps [18] introduces the concept
of emotion vectors into multi-modal emotion recognition.

The models above either only use single-modal information
to perform ERC or do not assess the emotional content of fea-
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tures from different modalities to leverage the dominant modal-
ity. To fill this gap, we propose using a multi-modality Trans-
former fusion model with learnable fusion weights to capture
the contextual relationship in the utterances of a conversation.

3. Problem Statement

Assume that a dialogue has k utterances U = {u; }5_; follow-
ing a temporal sequence and that the utterances have emotion
labels {y; }¥_, and speaker labels {s;}_,. Here, y; € ), and
Y denotes the set of emotion labels. Each utterance wu; is asso-
ciated with a video clip, an audio segment, and a text transcript.
Mathematically, a dialogue can be represented as:

U,y = {{ug‘s),yi} st.6 € {a,t,v} andi € {1,...,k}}.

M
To simplify the notations, we denote ul(-é) in (1) as the J-type
input of the M utterance, which can be in the form of text
(t), audio (a), and video (v), respectively. We assume that
there are S participants P = {Pi,..., Ps;S > 2} in a dia-
logue. The 3™ utterance u; is spoken by participant P; such that
s = ¢(u;) € {1,...,S}, where ¢() is a mapping function.
ERC aims to output an emotion label §j; associated with the ™
utterance u; in the utterance sequence U = (uy,us,. .., uy)
with S participants, using the information contained in the k
utterances.

4. Methodology
4.1. Overall Architecture

Figure 1 illustrates the dataflow and structure of the proposed
MM-NodeFormer, which consists of three processing stages.

e Utterance- and Context-Levels Multimodal Feature Extrac-
tion: We extract utterance-level features independently from
the text, audio, and visual modalities using their respective
pre-trained models. We then determine the dependencies of
the features using bi-directional GRUs.

* Dialogue-Level Feature Fusion: We propose a fusion mod-
ule called NodeFormer to combine the audio, text, and visual
modalities.

* Emotion Classification: The final representations after fusion
are fed into a classifier to predict the emotion labels in the
dialogue.

4.2. Utterance-Level Features Extraction

Each utterance in a dialog is associated with multimodal inputs
ul, u¢ , and u? for text, audio, and visual, respectively, where
i € {1,...,k}. The input from each modality is processed
separately using a pre-trained feature extractor specific to that
modality. Specifically, we use RoBERTa [10], Wav2vec2.0 [8],
and CLIP [9] for the text, audio, and visual modalities, respec-
tively. We perform average pooling at the hidden states of the
last layer to obtain three modality-specific features:

x! = RoBERTa(u}) € R"*
x! = Wav2Vec2. 0(uf) € RP®
x! = CLIP(u}) € R"",

(@)

where D;, D,, and D,, are the feature dimensions of the text,
audio, and visual modalities, respectively.
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4.3. Utterance-Level Representation with Context

The features {«;4 = 1,...,k} are independently extracted
for each utterance u;. Because utterances in a dialogue are in-
herently sequential, inspired by [4, 19], we employ Bi-GRUs to
capture the contextual features in the dialogue:!

R’ =[r},...,r)] = Bi-GRU(x!,...,z)) e RP™** (3)
where D, is the GRU’s output dimension and § € {a,t,v}.

4.4. Dialog-Level Feature Extraction

The matrices (R', R*,and R"), comprising the text, audio,
and visual representations of utterances in a dialogue, are sepa-
rately inputted to the NodeFormer (middle panel of Figure 1).

Because previous studies [20, 21] on multimodal emotion
recognition demonstrated that the visual and audio modalities
contain less emotional information than the text modality, we
define text as the main modality and visual and audio as the
auxiliary modalities. For the text modality, we used an attention
mechanism to determine the contextual dependencies between
the utterances. First, R’ are linearly transformed into value and
query matrices [22]:2

V=W"R'=|v,...
Q=W°R'=[q,...,q
The attention weights and attended outputs are computed as:
a®’ = softmax(tanh(V ' Q)) € R***
T = Va® e RPL*F,

7”1@] c RDLXk,'Ui c RDLXI

GRD[‘Xk (4)

, g € RPLXL,

(&)

We concatenate the query @ and attended output T°** as the
output matrix M of the main modality:

M = Concate(Q, T*") = [m.,...,mi] € RPM**  (6)

where D s 2Dy is the text modality’s feature dimension.
For the auxiliary modalities, we concatenate the audio feature
matrix R® with the video feature matrix R" to obtain a repre-
sentation A:

A = Concate(R", R") = [a1,...

(N
where D4 = D, + D, represents the auxiliary feature’s di-
mension. We obtain a matrix C before entering the Transformer
encoder:

C = Concate(M,W*A) = [ci,... (8)

Inspired by [22], we pass the fused features C' to a series of
stacked Transformer encoders to learn contextual representa-
tions between utterances. The output from the first Transformer
encoder is

Fi =E(C)+C +W"'M ¢ RPo*¥ )

where E; () represents the first Transformer encoder, W ¢
RPc*PM contains trainable weights. When the number of en-
coders, denoted as n, is greater than or equal to 2, the final
output features can be expressed as:

F,=E.(F,_)+F, . +W'M=[f,...

,Ck} S RDCx,c_

’ .fk] c RDC ><k‘

(10
In (10), F3, denotes the feature matrix of all utterances in the di-
alog. To prevent the model from neglecting low-level features,
we utilize residual connections [23].

'We adopt the terminology in [2] where “context” refers to the in-
formation across utterances.
2In our case, the key and value matrices are the same.
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Figure 1: The three processing stages and architecture of MM-NodeFormer. Solid-line and dashed-line rectangles represent trainable

and frozen models, respectively.

4.5. Emotion Classifier

The final multimodal embeddings { f; k_| are passed to a fully
connected network:

li =ReLU(W, f; + by)

11
pPi = SOftmaX(Wsma:tli + bsmaw), (v

where p; contains the probabilities of individual emotion
classes of the i utterance, and Wi, Wipmaz, b and bgmazx
are trainable parameters. We take the emotion label ¢; with
the highest probability as the predicted emotion:

0 = (12)

arg max(p;;).
J

5. Experimental Settings
5.1. Datasets

IEMOCAP [24] is a widely used datasets for emotion recogni-
tion in conversation. For data partitioning, we adopted the pop-
ular “LOSO” (Leave-One-Session-Out) strategy. Since [EMO-
CAP does not have predefined training and validation splits,
we randomly chose 10% of each training split in the LOSO as
a validation set. MELD [25] is a multi-modal, multi-speaker
conversational dataset extracted from the “Friends” TV series.
It extends and improves the EmotionLines dataset [26] by ex-
tracting the video and audio from the episodes with timestamps
aligned with the text in EmotionLines and all utterances in a
dialogue belonging to the same scene. To ensure a fair com-
parison, we followed the predefined training/validation/testing
splits provided by the dataset, with data allocation consistent
with [13].

5.2. Experimental Setup

The hyperparameter and training settings are shown in Table 1.
D¢, D, and D,, denote the hidden layer dimensions of text, au-
dio and visual features, respectively. Dg is the dimension of
Bi-GRU’s output, D¢ is the dimension of the NodeFormer’s
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output, and n denotes the number of transformer encoder layers
within the NodeFormer.

We used categorical cross-entropy loss along with L2 reg-
ularization to train the MM-NodeFormer in Figure 1 (exclud-
ing the pre-trained modules). We employed an Adam opti-
mizer [27] to train the networks.

6. Results and Analysis
6.1. Overall Results and Effect of Different Modal Settings

Table 2 shows the detailed results of MM-NodeFormer on both
datasets. The proposed MM-NodeFormer performs the best
among all models, demonstrating its effectiveness.

Table 3 shows the performances using different combina-
tions of modalities. Compared to the bimodal and unimodal
settings, the trimodal setting achieves the best performance.
Among all the unimodal settings, the text modality achieves the
best performance. These results indicate that, for dialogue emo-
tion recognition, the text modality can capture more emotion in-
formation compared to the other two modalities. We also con-
ducted an ablation experiment by alternatively setting the text,
audio, and visual modalities as the main modalities while set-
ting the other two as the auxiliary modalities. Results in Table 3
show that the NodeFormer fusion module successfully notices
the contributions between different modalities, thereby improv-
ing the overall quality of the fused features. Table 3 also shows
that using a simple Transformer encoder to fuse the concate-
nated features from the three modalities improves the perfor-
mance slightly when compared to directly feeding the concate-
nated features to the classifier. However, the NodeFormer ev-
idently has advantages over the Transformer encoder when we
use text as the main modalities.

6.2. Effect of Different Number of Encoders

Table 4 shows the performance of MM-NodeFormer using dif-
ferent numbers of Transformer encoders. The results indicate
that when the multimodal features are processed through a stack




Table 1: The hyperparameter and training settings for IEMOCAP and MELD

Datasets Dy Dy, | Dy | Dr | Dc | n | Dropout [28] L2 Epoch | Batch Size LR Criterion
IEMOCAP | 768 | 512 | 512 | 200 | 600 | 5 0.4 3e-05 200 16 le-04 | Acc&w-F1
MELD 768 | 512 | 512 | 100 | 300 | 4 0.4 3e-05 250 70 le-04 | Acc&w-F1
Table 2: Accuracy and weighted-average F1 score (w-F1) compared with other models in the literature.
Baseline Model Modality | Proposed IEMOCAP MELD
Used Year Happy Sad Neutral | Angry | Excited | Frustrated Acc w-F1 Acc w-F1
CMN [5] T 2018 30.38 62.41 52.39 59.83 60.25 60.69 56.56 | 56.13 - -
ICON [2] T 2018 32.80 74.40 60.60 68.20 68.40 66.20 64.00 | 63.50 - -
DialogRNN [11] T 2018 32.20 80.26 57.89 62.82 73.87 59.76 63.52 | 62.89 - -
DialogRNN [11] T+A+V 2018 - - - - - - - 62.90 | 60.31 | 57.66
DialogGCN [6] T 2019 53.23 83.37 62.96 66.09 75.40 66.07 67.16 | 67.21 58.62 | 56.36
MMGCN [12] T+A+V 2021 45.14 77.16 64.36 68.82 74.71 61.40 66.36 | 66.26 - 58.65
MMDEN [13] T+A+V 2022 42.22 78.98 66.42 69.77 75.56 66.33 68.21 68.18 | 62.49 | 59.46
M2FNet [14] T+A+V 2022 - - - - - - 69.69 | 69.86 | 67.85 | 66.71
UniMSE [15] T+A+V 2022 - - - - - - 70.66 | 70.56 | 65.09 | 65.51
EmotionIC [16] T 2023 - - - - - - 69.44 | 69.61 - 66.32
CFN-ESA [17] T+A+V 2023 53.67 80.60 71.65 70.32 74.82 68.06 71.04 | 70.78 | 67.85 | 66.70
EmoCaps [18] T+A+V 2022 71.91 85.06 64.48 68.99 78.41 66.76 - 71.77 | 64.00 -
MM-NodeFormer | . \ .y | 2003 | 7609 | 7355 | 6977 | 7258 | 7953 | 7425 | 7424 | 7420 | 67.86 | 66.09
(Proposed)

Table 3: Performance of using different combinations of modal-
ities and using different modalities as the main (with x). “Con-
cat” means concatenating the features (R in Figure 1) from dif-
ferent modalities and feeding the concatenated features directly
to the classifier. “TransFormer” means using a simple Trans-
Sformer encoder to fuse the concatenated features from the three
modalities.

Modality Fusion IEMOCAP MELD

Used Method Acc w-F1 Acc w-F1

A — 57.44 | 58.64 | 49.87 | 42.51

v — 46.33 | 42.81 | 48.15 | 31.30

T — 71.69 | 71.73 | 65.65 | 63.49
A+V Concat 57.25 | 57.45 | 50.06 | 43.73
T+V Concat 72.07 | 72.16 | 65.76 | 64.50
T+A Concat 72.82 | 72.82 | 66.03 | 64.37
A+T+V Concat 73.20 | 73.20 | 66.22 | 65.27
A+T+V TransFormer | 73.89 | 73.93 | 66.64 | 64.75
A+T+V* NodeFormer | 73.07 | 73.16 | 67.28 | 65.58
A*+T+V | NodeFormer | 73.51 | 73.56 | 67.25 | 66.15
A+T*+V | NodeFormer | 74.24 | 74.20 | 67.86 | 66.09

*This modality is the main modality in the NodeFormer

of Transformer encoders, the quality of the features can be fur-
ther refined and improved, reducing redundancy and promot-
ing complementarity between the modalities. Stacking multiple
Transformer encoders can extract features at different abstrac-
tion levels. The lower-level encoders perform initial feature ex-
traction on the input, while the higher-level encoders produce
more abstract emotion representations. Such a wide spectrum
of feature representations can better capture emotional infor-
mation in different modalities and improve ERC performance.

6.3. Effect of Residual Connections

Table 5 shows the effect of residual connections [23] on the
NodeFormer. Residual connections preserve the original input
by adding it to the output of subsequent layers. In this way,
NodeFormer retains the original information. When these con-
nections are removed, the performance drops significantly, sug-
gesting that adding the output M from the main modality and
the output from the previous encoder F;,_; to the output of the

Table 4: Impact of varying the number of Transformer encoders
in NodeFormer on ERC performance.

Number of IEMOCAP MELD
Transformer Encoders n Acc w-F1 Acc w-F1
0 72.81 | 72.87 | 6298 | 61.16
1 72.69 | 72.78 | 64.13 | 62.18
2 73.81 | 73.82 | 67.44 | 65.85
3 73.82 | 73.88 | 67.86 | 66.09
4 74.24 | 74.20 | 67.10 | 65.64
5 73.95 | 74.03 | 67.29 | 65.51

Transformer encoder can improve the stability of deep feature
extraction and ensure the interaction between the modalities.

Table 5: Impact of residual connections in NodeFormer on ERC
performance.

Residual Connection IEMOCAP MELD
Previous Main
Output F,_, Input M Acc w-F1 Acc w-F1
x X 72.38 | 72.51 | 66.18 | 64.50
X v 7275 | 7279 | 6694 | 65.19
v X 73.19 | 73.28 | 67.37 | 65.65
v v 74.24 | 74.20 | 67.86 | 66.09
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7. Conclusions and Future Work

In this paper, we propose a Multimodal Fusion Network called
MM-NodeFormer to effectively capture multimodal emotion in-
formation for multimodal ERC. A NodeFormer combines char-
acteristics of multimodal features and enhances the complemen-
tarity among multiple modalities. Experimental results show
that MM-NodeFormer consistently outperforms the baselines,
and the ablation studies validate the effectiveness of each mod-
ules in MM-NodeFormer. However, genders (same or mixed) in
a multi-party conversation may also affect the emotional states
of the utterances when the dialog evolves. In future work, we
plan to add gender recognition as an auxiliary task to help the
model determine the emotion of speakers, thereby considering
gender factors in the emotion prediction task.
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