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Abstract

Achieving desirable performance for speaker recognition with
severe domain mismatch is challenging. Such a challenge be-
comes even more harsh when the source data are missing.
To enhance the low-resource speaker representation, this study
deals with a practical scenario, called hypothesis domain adap-
tation, where a model trained on a source domain is adapted
to a significantly different target domain as a hypothesis with-
out access to source data. To pursue a domain-invariant repre-
sentation, this paper proposes a novel collaborative hypothesis
domain adaptation (CHDA) where the dual encoders are col-
laboratively trained to estimate the pseudo source data which
are then utilized to maximize the domain confusion. Combined
with the constrastive learning, this CHDA is further enhanced
by increasing the domain matching as well as the speaker dis-
crimination. The experiments on cross-language speaker recog-
nition show the merit of the proposed method.

Index Terms: Domain adaptation, speaker verification, con-
trastive learning, collaborative learning

1. Introduction

Speaker verification aims to verify a person’s identity based on
his/her voice. In recent years, deep neural networks have played
a pivotal role to achieve a remarkable success in speaker verifi-
cation [1, 2, 3]. However, speaker models are susceptible to the
robustness issue when faced with domain mismatches. Domain
mismatches in speaker verification can arise from various vari-
ations in the collected speech data [4] due to background noise,
recording equipment, language difference, etc. This paper deals
with the practical applications where a pre-trained model is pro-
vided but the source data for training the model are absent. Do-
main adaptation (DA) methods are explored to mitigate the im-
pact of domain mismatches in speaker verification.

To deal with the domain mismatch, many domain adap-
tation methods have been proposed for speaker verification.
There are two common DA approaches to reducing the distri-
bution shift between target and source domains. The first ap-
proach imposes the source domain information on the target
data. This can be achieved by explicitly matching the feature
distribution of the target domain with that of the source do-
main. For instance, a method called correlation alignment was
proposed to minimize the domain shift by aligning the second-
order statistics of source and target distributions [5]. In [6, 7],
the maximum mean discrepancy was performed to reduce the
domain mismatch by minimizing the mean-squared difference
of the statistical features between two domains. These ap-
proaches leveraged the statistical measures to align the distribu-
tions between source and target domains, thereby reducing the
mismatch and facilitating the domain adaptation. Other studies

have been extended to use domain adversarial training [8, 9, 10],
which involved training a domain classifier, also known as a
domain critic, along with the primary task for speaker recogni-
tion. The speaker classifier and domain classifier were jointly
trained in an adversarial manner to learn domain-invariant fea-
tures that can generalize to the target domain. However, the data
distributions in both domains were required. The overly match-
ing in distribution might inadvertently reduce the capability of
speaker discrimination. Besides, it is worth noting that the pre-
vious methods utilized the data distributions from source and
target domains, which raise the concerns regarding data privacy
and data portability. Thus, it is necessary to develop a practical
method to efficiently adapt an existing model trained on source
domain data to a new target domain where no source data are
available.

This paper presents a collaborative contrastive learning
method for hypothesis domain adaptation to tackle the chal-
lenges in source-free cross-language speaker recognition. Mo-
tivated by the deep Q-network (DQN) [11, 12] as a model-free,
online, off-policy reinforcement learning (RL) method, a tar-
get network, copied from the Q-network, was used to approxi-
mate the Q-function and stabilize the training process of DQN
by allowing the target network to be controlled while incorpo-
rating the most recent changes to the Q-network. Following
the idea of collaborating two networks in DQN, this paper pro-
poses a collaborative contrastive learning for domain adaptation
and speaker recognition where the dual encoders are smoothly
learned to enhance speaker embeddings in a target domain with
unknown mismatches with the source domain.

2. Advances in Domain Adaptation
2.1. Hypothesis domain adaptation

Traditional domain adaptation methods required the access to
both labeled source data and unlabeled target data to implement
domain adaptation. However, in a real scenario, it is often im-
practical to have the access to source data. It is emerging to de-
velop the hypothesis domain adaptation (HDA) where such an
access is waived [13, 14]. In [13], the source hypothesis trans-
fer was proposed to employ a pseudo labeling strategy that com-
bined the information maximization with the entropy minimiza-
tion to adapt the trained classifier to fit the target features. In
[14], the perturbations to model parameters through variational
Bayesian inference were introduced to maintain the discrimi-
native power of a model while performing model adaptation.
A number of HDA methods have employed a strategy where
the source classifier was frozen during the adaptation process to
preserve the class information [15, 16, 17]. Pseudo-labels were
then assigned to the target data based on the classifier’s outputs.
This was because, in a typical HDA, a closed set was assumed,
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i.e., the source and target label spaces are the same. However,
the source and target label spaces are different in speaker veri-
fication due to the fact that speakers from different recordings
or languages are inherently distinct. Therefore, the presence of
domain mismatch causes a significant challenge in developing
a robust speaker verification system.

2.2. Contrastive domain adaptation

Contrastive learning has shown remarkable advances in unsu-
pervised or self-supervised learning representation [18, 19, 20]
by effectively learning the instance discrimination. For vi-
sual learning representation, some studies have explored data
augmentation methods to generate positive and negative paired
samples for contrastive learning. Typically, the goal of con-
trastive learning is to maximize the similarity between posi-
tive pairs of samples while minimizing the similarity between
negative pairs of samples. Some recent works reduced the do-
main discrepancy through minimization of a contrastive loss
[21,22,23]. In [21], the class-wise contrastive learning was uti-
lized to bridge the inter-domain gap to achieve contrastive align-
ment between the original input image and the strongly aug-
mented target images. In [24], the generalization of contrastive
learning was shown to be closely related to three key factors,
including the alignment of positive samples, the divergence be-
tween class centers, and the concentration of augmented data.
In this study, we leverage speaker representation learning and
present a new data augmentation to enrich the learned embed-
dings to be robust to severe mismatch.
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Figure 1: Collaborative hypothesis domain adaptation for

speaker recognition with two encoders and one classifier. The
numbers in Dy and Dy indicate the speaker identities.

3. Collaborative Hypothesis Adaptation

This study presents the collaborative hypothesis domain adap-
tation (CHDA) for source-free cross-language speaker verifica-
tion. The overall process is depicted in Figure 1 with two stages.
The first stage is to partition the target domain data into two
parts with high and low confidence according to the prediction
likelihood based on the source model. A pseudo-source encoder
and a classifier are used. The second stage is to treat individual
parts of samples with specific objectives for collaborative [25]
and contrastive domain matching, which encourages to learn
a discriminative target representation through both adaptation
methods in instance level and distribution level where data aug-
mentation with a target encoder is implemented. The process
involves speaker representation learning, collaborative domain
matching, and contrastive domain adaptation.
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3.1. Speaker representation learning

Speaker verification is a task that involves accepting or rejecting
an identity claim based on a speech sample. Numerous speaker
verification systems have adopted the classification objective
during model training. Our objective is to train the target en-
coder fp, from labeled data in target domain. fp, transforms
the input x; in D = {X1,...,Xn} to an £2-normalized embed-
ding vector z; = fo,(x;). The classifier g, is used to output
the predicted speaker. The training objective for speaker loss
is calculated through the additive angular margin (AAM) loss
[26], which is a margin-based softmax method. AAM-softmax
optimizes the geodesic distance margin directly by leveraging
the precise correspondence between angle and arc on the nor-
malized hypersphere. Let x; € R? denote an original input
speech sample with speaker label y;, the target encoder 6, and
classifier ¢ are trained by minimizing the AAM-softmax loss as

B

. e’ cos(dy, +a)
r - _ = lo
speaker B Zl € o5 cos(dy,;
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RS

M
where B is the batch size, s denotes the radius of a hypersphere
of learned embeddings, cos ¢, denotes the target logit, which
is the dot product between the normalized class-weight vector
and the normalized embedding vector x;, and « is an additive
angular margin that increases intra-class compactness and inter-
class disparity. A classification loss is minimized.
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Figure 2: Collaborative dual encoders for domain matching.

3.2. Collaborative domain matching

Vanilla DA directly minimizes the domain discrepancy between
source and target domains for domain matching. In contrast,
HDA follows a different scenario where only a pre-trained
source model is available, and there is no access to source data.
HDA copes with the problem of unavailable source data by
splitting the target domain data. Thus, CHDA tackles the task of
transferring a source-trained encoder to fit a new target domain
by employing two distinct encoders, including a target encoder
fo, and a pseudo-source encoder fs,, which were both pre-
trained on source domain data. The target and pseudo-source
encoders have different updating methods. The pseudo-source
encoder aims to generate embeddings that are closely related to
the source domain, thereby maximizing the domain confusion
through the data population generated by both encoders. It is
important to point out that the pseudo-source encoder has been
pre-trained on source domain data, so it is possible to simulate
the source domain distribution by exploring the encoder’s out-
puts. Figure 2 shows how collaborative domain matching works
in the proposed CHDA framework.

First, following the prediction confidence or entropy score
by using fs,, the mini-batches of training samples are divided
into a source-relevant set D, and a source-irrelevant set D;

D: = {x; | top-K(—pilogp;),Vx; € D} 2)



where p; = g4(fo,(x:)) is the prediction probability, K is the
size of source-irrelevant set Dy, and the source-relevant sam-
ples D, are the remaining target data, where D = {D,, D:}.
Given the subsets D and Dy, a kind of collaboration [27] be-
tween dual encoders { fo., fo, } is performed to encourage do-
main matching by minimizing the Kullback-Leibler (KL) di-
vergence between source-relevant and source-irrelevant embed-
dings

[rdomain = ]ExSN’DS ,x¢~Dy [DKL(f9s (XS) Hfgt (xt))} . (3)

However, it was found that fixing the pseudo-source encoder
during training resulted in poor performance. We hypothesize
that this failure is caused by a rapidly changing target encoder,
which reduces the consistency of the embeddings for the same
instance. Therefore, this study adopts the momentum scheme,
which was popular in optimization [28], into domain adaptation
to stabilize the learning process through a smoothing function.
Similar to the momentum in gradient updating, the parameter
updating of pseudo-source encoder is done iteratively by

05 < mbs + (1 —m)by, m € [0,1) 4)
where m is a momentum coefficient. Notably, only the parame-
ter of target encoder 6, is updated by back-propagation, and the
momentum updating in Eq. (4) makes 65 evolve more smoothly
than 6;. Such a smoothed domain adaptation addresses the
potential generation of overly aggressive embeddings resulting
from the excessively distribution matching. This strategy guides
the embeddings to enhance the adaptation process through the
collaborative dual encoders. Similar to the stabilization in DQN
for RL, the pseudo-source encoder is a smoothed copy of target
encoder to stabilize the collaborative learning.

3.3. Collaborative contrastive learning

To leverage the information from target domain data without
access to source data, collaborative contrastive learning is pro-
posed to enhance the cross-language speaker representation.
Figure 3 shows how this learning strategy is performed. The
idea is to pull together an anchor sample and a positive sample
in the embedding space, and push apart this anchor from those
negative samples. In the implementation, the weak and strong
augmented data from source-irrelevant samples D; are gener-
ated. For contrastive learning [29], the speaker characteristics
in embedding vectors should remain consistent across different
augmentations for the same instance, while the embeddings for
different instances should exhibit distinct characteristics.
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Figure 3: Collaborative contrastive domain adaptation.

Therefore, two different augmentation strategies are con-
sidered. For the original utterance in the target domain, the
speaker embedding z; via target encoder fp, is viewed as an
anchor. For weak and strong augmentation utterances, the
embeddings z}** and 2" based on target encoder are ob-
tained, respectively, and viewed as the positive samples. The

embedding z;°""° via pseudo-source encoder fy, can be also
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viewed as a positive sample. Thus, a set of positive samples
Pi = {2}, 2" 25"} corresponding to an anchor z; are
accessible. Then, the remaining utterances in the same mini-
batch are treated as the negative samples. The contrastive loss
[18] for domain adaptation is accordingly yielded by

K
1
Lecontrastive = _? Z Z 10g

=1 gt+ep;

esim(z,; zT) /T

Zle esim(z,;,zj)/‘r (5)
where sim(z;,z;) = z{ z;/||z:||||z;|, K is the size of source-
irrelevant samples, and 7 denotes a temperature parameter. By
incorporating the embeddings from the pseudo-source encoder
that are closely associated with source domain into the con-
trastive objective, the hybrid adaptation process encourages the
matching not only at the distribution level as seen in Eq. (3) but
also at the instance level as given in Eq. (5).

In this study, the weak augmentation was performed by ran-
domly using various additive noises and reverberations based on
MUSAN [30] and RIR [31] datasets, respectively. For strong
augmentation, the adversarial augmentation method using the
projected gradient descent (PGD) [32] was implemented. PGD
is a well-known adversarial attack where the forward and back-
ward processes are run to compute the perturbation § by gradi-
ent ascent which is finally added to the input x as Xaay — X+ 9.
Given the logarithm of Mel filterbanks of original speech utter-
ance x with speaker label y and the parameters of target en-
coder 6, and classifier ¢, the adversarial perturbation ¢ is esti-
mated as a worst-case projection via a multi-step gradient ascent
by maximizing the 108s Lypeaker(Xadv,y). Therefore, the two-
stage parameter learning for target encoder 6;, pseudo-source
encoder 6 and speaker classifier ¢ is performed by minimizing
ﬁchda = Espeaker + ﬁdomain + [fcomrastive through Algorithm 1.

Algorithm 1 Collaborative hypothesis domain adaptation

Input: target domain data D, target encoder 6, pseudo-source encoder 0, clas-
sifier ¢, epoch number NV, augmentation strategy A
Output: target encoder 6
initialize 0, 65 by pre-trained source encoder
for epochs n = 0,..., N — 1do
sample a mini-batch {x;, y;}2 | ~ D
Stage 1 (D, 05, ¢)
compute Lgpeaker (X, ¥) by Eq. (1)
update speaker classifier ¢ with Lypeaker
divide D into Dy = {xs,ys}, D¢ = {x¢,y¢}
Stage 2 (Ds, Dy, 05,0+, ¢)
compute ACspeaker (xt7 yt) by Eq. (1)
compute Lgomain (X5, X¢) by Eq. (3)
compute L contrastive (x37 Xty A(xt)) by Eq. (5)
compute Lehda = Lpeaker + Ldomain + Leontrastive
update target encoder 6 with Lchda
update pseudo-source encoder 65 by Eq. (4)
end for
return 6,

4. Experiments
4.1. Experimental settings

This study conducted the experiments on using VoxCeleb2 [33]
and CNCeleb [34]. VoxCeleb2 comprised more than 1 million
utterances from over 6,000 celebrities, extracted from YouTube
videos, in both English and Spanish. CNCeleb was a mainland
Mandarin accent speech dataset collected from bilibili videos.
CNCeleb contains more than 130K utterances from 1,000 Chi-
nese celebrities, covering 11 diverse domains, and each speaker
might have speech samples in multiple domains. Compared
with VoxCeleb (the source domain), the size of CNCeleb (the



target domain) is much smaller. The encoder was initially pre-
trained on VoxCeleb and subsequently transferred to CNCeleb.
The performance was evaluated on CNCeleb, which comprises
18,024 target pairs and 3,586,776 non-target pairs. The back-
bone speaker model is an ECAPA-TDNN [35] with 512 chan-
nels. The input features consist of 80-dimensional log Mel-
filterbanks. The embedding with a dimension of 192 was ex-
tracted from the final layer before AAM-softmax layer. The
Adam optimizer was used to update model parameters with the
weight decay parameter 2e-5 and initial learning rate of 0.001.
The number of training epochs was set to 15. The AAM’s loss
scale s and the temperature parameter 7 in Eq. (5) were set to 32
and 0.07, respectively, and K was set such that D, constitutes
80% of the target domain data D.

For evaluation, the verification score was determined by
calculating the cosine similarity between the pairs of test and
enrollment segments and then averaging them. The metrics of
equal error rate (EER) and minimum detection cost function
(minDCF) were measured. Test data in CNCeleb were used
for evaluation. Target-domain adaptation data were used for
domain matching via CHDA without access to source data in
VoxCeleb. Only the pre-trained backbone model was used for
computing the speaker embedding vectors.

4.2. Experimental results

The proposed CHDA is evaluated as shown in Table 1. CHDA is
compared with the baseline with EER=12.35%, which involves
only AAM-softmax 10ss Lspeaker but without backbone model
from VoxCeleb2. When comparing the performance of the same
architecture on the test set of VoxCeleb (EER=1.01%) [35] with
that on CNCeleb, it is obvious that the limited and heteroge-
neous CNCeleb is seen as a challenging dataset for speaker ver-
ification. When the pre-trained encoder from VoxCeleb was
evaluated on the CNCeleb data, an EER of 13.74% was ob-
tained. This result highlights a considerable domain mismatch
between the two datasets even though VoxCeleb is much larger
than CNCeleb. The pre-trained encoder from VoxCeleb fine-
tuned on CNCeleb using a classification loss Lpeaker (11.64%)
performs better than the standard training (13.74%). This is be-
cause the pre-trained encoder already contained the knowledge
to distinguish speakers. When fine-tuning on the target domain,
the encoder does not have to start from scratch.

In this comparison, the proposed CHDA obtains the low-
est EER (9.68%). Language mismatch between VoxCeleb and
CNCeleb is compensated by domain adaptation via fine-tuning.
Furthermore, comparison with CHDA without (w/o0) different
loss terms was conducted to demonstrate the benefit of the pro-
posed learning strategy. Results show that removing domain
discrepancy loss results in the most significant drop of EER.

Table 1: Performances on the test set of CNCeleb.

Pre-training | Adapt loss function | EER(%) | minDCF
CNCeleb None 12.35 0.6038
VoxCeleb None 13.74 0.5971
VoxCeleb Lpeaker 11.64 0.6379
VoxCeleb CHDA w/0 Lagomain 10.42 0.5282
VoxCeleb CHDA w/0 Lcontastive 10.19 0.5506
VoxCeleb CHDA 9.68 0.5091

In Table 2, the proposed CHDA is further compared with
the hypothesis domain adaptation (HDA) in [36]. The lat-
ter focused on self-supervised contrastive domain adaptation,
where the encoder uses ResNet34. However, simply using self-
supervised learning may lose the speaker discrimination on the
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target domain, so the method in [36] further adopted the labeled
data in the source domain to conduct joint training using speaker
classification loss Lgpeaker- In the self-supervised setting, the en-
coder was trained on CNCeleb by using the generalised end-to-
end (GE2E) objective (13.34%), which is slightly worse than
standard supervised training (12.35%). This result indicates
that supervised training outperforms self-supervised training in
speaker verification. In supervised setting, both VoxCeleb and
CNCeleb data were simultaneously fed into the encoder during
training, where VoxCeleb2 was used to calculate the classifica-
tion loss Lspeaker, While CNCeleb was used in the GE2E loss. It
is found that the proposed CHDA is superior to the other HDA
variants by using self-supervised training on the target domain
(CNCeleb) even without access to source-domain data.

Table 2: Comparison with the related method in [36]. ‘SF’ de-
notes source-free or adaptation without access to source data.

Source loss function | Adapt loss function | SF | EER(%)

Lpeaker GE2E X 10.24
None GE2E v 13.34
None CHDA 4 9.68

Table 3: Performances of applying CHDA target encoder 0, by
using different m for updating the pseudo-source encoder 0.

Parameter update for 6 | EER(%) | minDCF

No update 11.36 0.6092
Momentum update (m = 0.2) 10.00 0.4996
Momentum update (m = 0.3) 9.77 0.4995
Momentum update (m = 0.4) 9.68 0.5091
Momentum update (m = 0.5) 10.08 0.5539

This paper proposes using the momentum update to ad-
dress the severe inconsistency between the embeddings of the
same speaker produced by two different encoders, which in-
terferes the adaptation process. The performance of different
momentum values m is examined as shown in Table 3. When
the pseudo-source encoder is used as the source-trained encoder
and then fixed during training (the first row), the results deterio-
rate. The best result is obtained when m=0.4. The embeddings
produced by the pseudo-source encoder using this value of m
contain valuable source information while also maintaining a
manageable gap between source and target domains. A lower
momentum value results in a weaker influence of the source-
trained encoder on the target domain, leading to a diminished
performance in capturing the characteristics of source data.

5. Conclusions

This paper presented a novel collaborative hypothesis domain
adaptation method for speaker verification that leveraged dual
encoders with different updating strategies to address cross-
language source-free domain adaptation. The key idea is to
exploit the concept of momentum updating and incorporate it
into domain adaptation, which reduced the inconsistencies of
embeddings from two different encoders while preserving the
source information. The target domain data were partitioned
according to the prediction confidence. This method imple-
ments the distribution-level and instance-level domain adapta-
tion and matching. The experiments on speaker recognition
show that the proposed method outperforms the related meth-
ods and mitigates the language domain mismatch without the
access to source domain data.
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