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Abstract

Contrastive self-supervised learning has played an important
role in speaker verification (SV). However, such approaches
suffer from false-negative issues. To address this problem,
we enhance the non-contrastive DINO framework by enabling
knowledge transfer from the teacher network to the student net-
work through diversified versions of global views and call the
method Within-Global-View Knowledge Transfer (W-GVKT)
DINO. We discovered that given the global view of the en-
tire utterance, creating discrepancies in the student’s output
through applying spectral augmentation and feature diversifica-
tion to the global view can facilitate the transfer of knowledge
from the teacher to the student. With negligible computational
resource increases, W-GVKT achieves an impressive EER of
4.11% without utilizing speaker labels on Voxcelebl. When
combined with the RDNIO framework, W-GVKT achieved an
EER of 2.89%.

Index Terms: speaker verification, self-supervised learning,
knowledge transfer, DINO

1. Introduction

In recent years, deep learning has experienced rapid develop-
ment and has been widely applied in various domains. How-
ever, in most cases, the learning is supervised, which relies
heavily on a large amount of labeled data for model training.
Acquiring such labeled data is resource intensive. The possibil-
ity of dispensing with labeled data in self-supervised learning
provides a perfect solution to the data labeling issues in many
applications, such as computer vision [1-4], natural language
processing [5, 6], and speaker verification (SV) [7-17].

Self-supervised learning can be divided into two categories:
contrastive and non-contrastive. In SV, self-supervised con-
trastive learning aims to reduce the distance between (posi-
tive) samples from the same speaker and maximize the dis-
tance between (negative) samples from different speakers. Not-
ing that separating channel and speaker information is vital in
SV, the authors of [18] combined adversarial training with self-
supervised contrastive training to prevent the speaker embed-
ding network from learning channel information. The MoCo
framework was applied to speaker verification (SV) in [7], al-
leviating the burden of requiring large batch size. The au-
thors in [19] incorporated DSVAE into the SimCLR and MoCo
frameworks, aiming to disentangle speaker information from
non-speaker information in audio.

The aforementioned approaches assume that all samples in
a mini-batch come from different speakers. However, in reality,
we do not have the access to speaker labels and cannot guar-
antee this condition. In contrastive learning, for each anchor
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utterance in a mini-batch, utterances spoken by other speak-
ers in the mini-batch are considered negatives. However, if a
negative utterance shares the same speaker identity as the an-
chor, this false-negative utterance will cause contrastive learn-
ing to push the embeddings of the negative utterance and the
anchor utterance apart. This issue, known as the class colli-
sion problem, can significantly impact the performance of self-
supervised contrastive learning [20].

Many researchers have shifted their focus to non-
contrastive frameworks to address the issue of false negatives.
For example, researchers in computer vision have proposed a
novel method called BYOL (Bootstrap Your Own Latent) [21]
by only considering positive sample pairs in self-supervised
learning, avoiding the problem of false negatives. Leveraging
the success of BYOL, a subsequent study developed a knowl-
edge distillation method with no labels (DINO) [4], streamlin-
ing BYOL’s model architecture with a more efficient training
strategy.

DINO is a self-distillation framework that consists of two
components: a student network and a teacher network. Un-
like traditional distillation methods, the student and teacher net-
works have the same structure but different parameters. For SV
tasks, an utterance is cropped and segmented into global and lo-
cal views of different durations (the long segments are referred
to as the global view, while the short segments are referred to
as the local views). After applying data augmentation, both the
global and local views are fed into the student network, while
only the global views are inputted into the teacher network.
The learning process involves minimizing the cross-entropy be-
tween the output distributions of the student and teacher net-
works. The teacher network’s parameters are updated by the
exponential moving average (EMA) algorithm [3].

Several researchers have applied DINO to SV. For instance,
a clustering approach was utilized to obtain more reasonable
global and local views for DINO in [22]. The effectiveness of
curriculum learning in the DINO framework was demonstrated
in [12]. The authors in [23] introduced two regularization terms
to address the issue of model collapse in DINO. However, none
of the aforementioned methods have paid attention to how to
enhance the knowledge transfer from the teacher network to the
student network, which we believe is crucial for the success of
the DINO framework. Based on this argument, we propose a
simple yet effective framework to enhance the knowledge trans-
fer from the teacher to the student.

Knowledge distillation in DINO is achieved by minimiz-
ing the cross-entropy between the output distributions of the
teacher and student networks using different audio segments
of an utterance as input. DINO excludes the cross-entropy be-
tween the teacher network’s output and the student network’s
output arising from the same global view. However, we advo-
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cate that transferring knowledge from the teacher to the student
based on the same global view can also benefit the student. Be-
cause our method allows knowledge transfer within the same
global view, we call it “within-global-view knowledge transfer
(W-GVKT)” to differentiate it from the conventional DINO. We
also introduced two strategies, spectral augmentation enhance-
ment (SAE) and complementary feature enhancement (CFE),
to increase the information diversity between the teacher and
student networks within a global view. We are the first to lever-
age the knowledge distillation through diversifying the global
views in SV tasks. Our contribution is that the proposed within-
global-view knowledge transfer enables the student to receive
the teacher’s knowledge through diversified global views. The
transfer is achieved without adding complex modules to the
DINO framework, achieving significant performance gain with
negligible computation overhead.

2. Methods
2.1. DINO for Speaker Verification

DINO [4] transfers knowledge from a teacher to a student
through the cross-entropy loss at their outputs and the aug-
mented views of objects at their inputs. In the context of SV,
the student network comprises an encoder (fs) that processes
frame-level features and a projection network (hs) that pro-
cesses segment-level features, as shown in the lower branch of
Figure 1. The teacher’s encoder (f;) and projection network
(ht) have the same structure as the student network but with
different parameters.

We randomly sample one long segment x4 and two short
segments {X;1, X;2 } from one utterance, where ¢ and [ indicate
that the corresponding segments belong to the global and local
views, respectively. After augmentation and feature extraction,
we obtain filter-bank (FBank) features X4, X1, and X9, re-
spectively (see the “Random Cropping & Augmentation block”
in Figure 1). We feed X* = { X} into the teacher network and
X° = {Xg4, X1, X2} into the student network. We obtain
probability vectors P* = {y% } and P* = {yk , ¥x,,  Ux,, }
at the softmax layer of the projection network (MLP), where y
is a vector of K dimensions. To prevent model collapse, the
output of the teacher’s projection head undergoes a centering
operation before the softmax function.

The student network is optimized by minimizing the cross-
entropy between the distributions of the student’s and teacher’s
outputs. The loss for each utterance is defined as:

Lpino = Z Z CrossEntropy (¥, yx/),

Xext x'exs @)
X'#£X
where CrossEntropy(a,b) = — Zszl ak log b,. The teacher

network (f; and h:) are updated from the student network (fs
and hs) using the exponential moving average (EMA) algo-
rithm [3]. After training, the vectors outputted from the teacher
encoder f; are used as speaker embeddings.

2.2. W-GVKT DINO

Due to the constraint X’ # X in Eq. 1, DINO does not com-
pare the teacher’s and student’s outputs of the same global seg-
ment x4. Because every term in Eq. 1 represents a certain
knowledge transfer, it will be beneficial to the knowledge trans-
fer by diversifying the input instead of omitting some terms. We
propose diversifying the input by creating multiple augmented
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views of the entire utterance and including these augmented
global views in the cross-entropy computation. We also pro-
pose using spectral augmentation [24] and complementary fea-
tures to enhance the diversity of the augmented views. They are
named SpecAugment Enhancement (SAE) and Complemen-
tary Feature Enhancement (SFE). The diversification is imple-
mented by the “Random Cropping & Augmentation” block in
Figure 1.

For SAE, we apply SpecAugment [24] to X, to cre-
ate Xg.specAug by masking a portion of the frequency bins
of the Fbank features at certain time intervals. For CFE,
we extract different acoustic features, such as mel-frequency
cepstral coefficients (MFCCs), linear frequency cepstral co-
efficients (LFCCs), and a spectrogram from x4 to create
Xgmrce, Xgrrce, and X g gpectro, respectively.  Taking
LFCCs as an example, we obtain X' = {X,} and X° =
{Xg-SpecAug, Xg-LrcC, Xi1, X2} as the input to the teacher
and student networks, respectively. The W-GVKT DINO loss
for each utterance is defined as:

Lw-gVKT-DINO = Z Z CrossEntropy (¥, yx/)-
Xext X'cxs®

(@)

As observed from [22,23], the diversity of input data or em-
beddings is important to prevent DINO from falling into trivial
solutions. In W-GVKT DINO, we not only focus on how to en-
hance knowledge distillation from the teacher to the student but
also use SAE and CFE to increase input information diversity
to prevent the system from falling into trivial solutions. By ap-
plying the augmented versions and various acoustic features of
the same global view, diverse information can be distilled from
the teacher to the student.

3. Experimental Setup
3.1. Datasets

We used Voxceleb2 [25] as the training set. This dataset com-
prises 1,092,009 utterances from 5,994 speakers. During the
training process, we did not use the speaker labels. The perfor-
mance of the systems was evaluated on Vox1-O, Vox1-E, and
Vox1-H [26]. We followed the Kaldi recipe for data augmen-
tation, incorporating noise from the MUSAN [27] dataset and
reverberation using the RIR [28] dataset.

3.2. System Configuration

We utilized the small ECAPA-TDNN [29] with 512 channels
as the backbone. The MLP in Figure 1 contains three fully
connected layers, with a hidden layer of 2048 dimensions, fol-
lowed by an Lo-normalization layer and a weight normalization
layer [30]. The MLP maps the speaker embeddings to an output
layer with K dimensions. We set K to 65,536, the same as the
configuration in [4]. Although this value is much larger than
the actual number of speakers (5,994) in Voxceleb2, the DINO
and W-GVKT DINO work well under this setting. A reason for
the good performance is that knowledge transfer could occur as
long as the hypothetic “classes” are distinguishable. It does not
matter if each class corresponds to a speaker. In our case, each
speaker may belong to many hypothetic classes because the du-
rations of the utterances are rather short in our experiments.

In W-GVKT DINO, we chose three different hand-crafted
features, LFCCs, MFCCs, and spectrograms, as the global
views of an utterance. The LFCCs and MFCCs have a dimen-
sion of 40, while the spectrograms have a dimension of 257.
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Figure 1: The Framework of W-GVKT DINO. EMA and sg stand for exponential moving average and stop gradient, respectively. The
first layer of the student network is divided into two branches to handle features of different dimensions. The lower branch of the student

encoder is used for the EMA update of the teacher encoder.

Because the FBank, MFCC (or LFCC), and spectrogram fea-
tures have different dimensions, the convolutional operations
in the first layer of the student network were divided into two
branches, as shown in Figure 1. The parameters of the teacher
encoder were updated by EMA using the lower branch of the
student encoder. The teacher’s MLP was updated by EMA us-
ing the student’s MLP. Therefore, the part of the student net-
work used for the EMA update has the same structure as the
teacher network.

Each global view was derived from a segment with a du-
ration of 3 seconds, while the segments for deriving the local
views were limited to 2 seconds. The temperature parameter
of the student network’s softmax function was set to 0.1. The
temperature parameter for the teacher’s softmax function was
linearly increased from 0.04 to 0.07 during the first 30 epochs
and fixed afterward. For SpecAugment, we set the frequency
masking parameter to 6 and the time masking parameter to 10.
We used the SGD optimizer and the Cosine scheduler [21] to
optimize the models. The initial learning rate was set to 0.2,
and the final learning rate was set to 0.00005.

Results are presented using two metrics: equal error rate
(EER) and minimum detection cost function (MinDCF). The
MinDCF was computed with the settings Prarget =0.01 and Ct,,
miss = 1. The cosine similarity was employed to calculate
the scores.

4. Results and Disscussions
4.1. Main Results

Table 1 presents the main experimental results. The first row
corresponds to the baseline using Eq. 1 as the loss function,
i.e., there is no knowledge transfer from the teacher to the stu-
dent through the same global view. The second row corresponds
to the scenario where knowledge can be transferred through
the same global view. However, the two strategies (SAE and
CFE) for enhancing the information diversity among the same

3781

global view were not used. The third row represents the case
where X j-specaug Was fed into the student network instead of
X,. The fourth row corresponds to the scenario where both
X g-specaug and X 4-rcc were fed into the student network.
We have reproduced the work of RDINO [23] and conducted
experiments using W-GVKT RDINO. The results are shown in
Rows 5 and 6.

We conducted experiments on three test scenarios in Vox-
Celebl, and our method (W-GVKT DINO) consistently outper-
forms the baseline across all scenarios (improvement of 19%
on Vox1-0O, 17% on Vox1-E, and 17% on Vox1-H). These re-
sults demonstrate the effectiveness of W-GVKT DINO. Com-
paring the first and second rows of Table 1, we observe that
distilling knowledge through diversified global view can indeed
improve performance. Rows 3 and 4 show that applying SAE
and CFE on the same global view can enhance the effectiveness
of knowledge transfer from the teacher to the student. Rows
5 and 6 demonstrate the effectiveness of combining W-GVKT
with RDINO. It shows that under the standard DINO setting (2
globals and 4 locals), W-GVKT remains effective and achieves
competitive performance.

To further verify the benefits of knowledge transfer via the
diversified global views, we compared W-GVTK DINO with
other recent self-supervised methods. Because the model size
of RDINO in [23] differs from ours, readers should not di-
rectly compare the performance of RDINO in [23] with the
performance in Tables 1 and 2. To have a fair comparison,
we re-implemented RDINO using the ECAPA-TDNN as the
backbone. Table 2 shows that W-GVKT DINO outperforms
the previous self-supervised methods. Notably, the systems
in [9, 12, 14] utilize a more computationally expensive setup
with 2 global and 4 local views. Additionally, the length of
the global views in these studies was set to 4 seconds, whereas
ours was set to 3 seconds only. Therefore, our method achieves
superior performance while conserving training resources.



Table 1: Comparison of the Proposed W-GVKT DINO with the baseline on Voxcelebl test sets. In RDINO, we used a small ECAPA-
TDNN with 512 channels. The other experimental settings were kept the same as [23].

Vox1-O \ Vox1-E \ Vox1-H
Row | System EER (%) minDCF | EER (%) minDCF | EER (%)  minDCF
1 DINO (Baseline) 5.07 0.582 5.93 0.682 10.82 0.839
2 DINO+W-GVKT (no SAE and CFE) 4.80 0.522 5.67 0.592 10.32 0.766
3 DINO+W-GVKT (w/ SAE) 4.76 0.513 5.61 0.567 9.70 0.720
4 DINO+W-GVKT (w/ SAE & CFE) 4.11 0.466 4.93 0.536 8.96 0.750
5 RDINO [23] 3.85 0.401 4.26 0.493 7.24 0.689
6 RDINO+W-GVKT (SpecAug + LFCC) 2.89 0.333 3.02 0.392 6.04 0.567
Table 2: Comparison of our method (W-GVKT) with other state- Table 4: Impact of masking time-, frequency, and time-

of-art methods on the Vox1-O test set. The minDCF with a * was
calculated using Ptarget = 0.05 instead of Ptarget = 0.01.

System EER (%) minDCF
AP+AAT [18] 8.65 0.454*
MoCo+WavAug [7] 8.23 0.590
Contrastive [10] 7.36 N/R
SSReg [13] 6.99 0.434*
DINO [9] 4.83 N/R
DINO+CL [12] 4.47 0.3057*
DINO+W-GVKT (Ours) 4.11 0.466
RDINO 3.85 0.401
RDINO+W-GVKT (Ours) 2.89 0.333

Table 3: The Impact of applying CFE on different handcrafted
features on the performance in VoxI-O.

Handcrafted Feature EER (%) minDCF
MFCC 4.44 0.471
Spectrogram 4.51 0.485
LFCC 4.11 0.466

4.2. Impact of CFE and SAE

We conducted experiments to investigate the effect of feature
diversification through CFE and SAE on knowledge transfer.
Table 3 presents the impact of using different handcrafted fea-
tures for diversifying the global views. Results show that setting
X° = {XgspecAug; XgLrcc, Xi1, X2} for the student net-
work achieves the best performance.

We also conducted a series of experiments to explore the
impact of time masking and frequency masking in SpecAug-
ment, which introduces diversity in the same global view. Ta-
ble 4 shows that the performance is the best when both time and
frequency masks are applied.

4.3. Fine-tuning on Self-supervised Models

To further illustrate the effectiveness of W-GVKT, we investi-
gate the performance of fine-tuning the self-supervised models
with a small amount of labeled data in VoxCelebl. Specifically,
a classification head was added to the teacher encoder of the
DINO variants, and the AAMSoftmax [31] loss was adopted to

frequency domains in SpecAugment on the performance in
VoxI-0.

Domain EER (%) minDCF
None 4.80 0.522
Time 4.81 0.533
Freq 4.87 0.561
Time-Freq 4.76 0.513

Table 5: Performance of training a speaker encoder from
scratch (Row 1) or fine-tuning variant of DINO-based self-
supervised models (Rows 2—4) on the VoxI-O test set using the
labeled data in the development set of Voxcelebl.

Row Initial Teacher Encoder EER (%) minDCF
1 Randomly Initialized 2.67 0.273
2 DINO (Baseline) 2.41 0.257
3 DINO+W-GVKT 2.16 0.242
4 RDINO+W-GVKT 1.86 0.229

fine-tune the teacher encoder using the labeled data in the de-
velopment set of Voxcelebl. As a comparison, we also trained
a randomly initialized speaker encoder, whose performance is
shown in the first row of Table 5.

Table 5 shows that fine-tuning the DINO encoder (Rows 2—
4) achieves much better performance than training a speaker
encoder from scratch (Row 1). With a small amount of la-
beled data, fine-tuning RDINO+W-GVKT leads to a 30.34%
reduction in EER. Moreover, DINO with W-GVKT achieves
much better performance than pure DINO, demonstrating that
W-GVKT is effective for the DINO to find a good initial condi-
tion for supervised fine-tuning.

5. Conclusions

This paper investigates the knowledge distillation in DINO us-
ing the diversified global views of an utterance for speaker ver-
ification. The idea leads to an enhanced DINO called within-
global-view knowledge transfer (W-GVKT) DINO, where
knowledge distillation is promoted by using the augmented ver-
sions of the global views and diverse acoustic features derived
from them. We demonstrate that this idea of global view di-
versification can boost the performance of DINO and the more
recent RDINO framework for speaker verification.
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