
Batching in a two-stage flowshop with
dedicated machines in the second stage

T.C.E. CHENG1, M.Y. KOVALYOV2 and K.N. CHAKHLEVICH1

1Department of Management, The Hong Kong Polytechnic University, Hung Hom,
Kowloon, Hong Kong

2Faculty of Economics, Belarus State University, Skorini 4, 220050 Minsk, Belarus

Abstract

The problem of batching and scheduling n identical jobs of F, F ≥ 2, part types in
a shop made up of F + 1 machines is studied. The processing of each job comprises two
stages. The first stage is undertaken on the machine common to all jobs and the second
stage is undertaken on the machine specific to a particular part type. Setup times are
necessary at the first stage to switch processing from a job of one part type to a job of
another part type. Jobs of the same part type processed contiguously at the first stage form
a batch. The objective is to find a batch schedule minimizing makespan. We show that
this problem is equivalent to a special case of a single machine family scheduling problem
to minimize maximum lateness and, therefore, it can be solved in O(nF) time by a known
algorithm. Furthermore, for the case F = 2, we present an iterative exact algorithm with
O(k0 log L) running time, where k0 is the maximum number of batches in a schedule created
in any iteration of the algorithm and L is the problem input length in unary encoding. The
algorithm finds a schedule with the minimum number of batches k∗ in any optimal solution.
Computational experiments were conducted to investigate the relationship between k∗ and
k0. For all tested examples, k0 = max{k∗1, k∗2}, where k∗1 (k∗2) was the minimum number of
batches in any optimal schedule starting with a batch of one part type (the other part type).

Keywords: Batching; Scheduling.

1

This is the Pre-Published Version.

1 Introduction

The batch scheduling problem studied in this paper can be formulated as follows. A set of

independent non-preemptive jobs each belonging to one of F, F ≥ 2, part types f = 1, . . . , F

has to be scheduled for processing in a shop comprising F + 1 machines M0,M1, . . . , MF .

Each job is ready for processing at time zero and has to be processed first on machine M0,

and then on machine Mf if it is of part type f. A job can start its processing on machine

Mf , f ≥ 1, immediately after its completion on machine M0. Machine M0 requires a setup

time Sf whenever there is a switch of processing from a job of part type g 6= f to a job of

part type f or when a job of part type f is the first job to start processing on this machine.

The processing requirements for all jobs are identical on each machine but they differ among

the machines. The processing time of any job on machine Ml is vl, l ∈ {0, 1, . . . , F}. The

number of jobs of part type f is equal to qf ≥ 1, f = 1, . . . , F . All parameters are assumed

to be non-negative integers.

A maximum set of jobs of the same part type scheduled contiguously on machine M0 is

called a batch. The objective is to partition the jobs into batches and find a batch schedule

minimizing the makespan Cmax, i.e., the maximum completion time of all jobs. We denote

this problem as CMAX.

Since all jobs are identical, the sequence of jobs on each machine is immaterial. Therefore,

only the batching decision is essential. Recent reviews of research on batch scheduling

and scheduling with setup times have been provided by Potts and Van Wassenhove (1991),

Webster and Baker (1995), Allahverdi, Gupta and Aldowaisan (1999) and Potts and Kovalyov

(2000).

Motivation of problem CMAX comes from scheduling jobs at a bottleneck facility, after

which the jobs will be processed on separate production lines. Each production line is

dedicated to producing a part type. When the bottleneck facility is changed over from jobs

of one part type to jobs of another part type, a setup time is incurred since the part types

manufactured by the bottleneck facility for the subsequent production lines are different.

The objective is to batch jobs of different part types so as to keep all the production lines

busy with few setups on the bottleneck facility, which is equivalent to the minimization of

total production time. Ching, Liao and Wu (1997) observed this production situation in a

2

leading PC manufacturer in Taiwan, where various kinds of circuit boards were assembled

on surface mounting technology facilities to feed subsequent production lines, each of which

was dedicated to the production of a specific PC family.

There exist the following results for the case F = 2 of problem CMAX. Ching, Liao and

Wu presented an integer programming formulation as well as a heuristic algorithm. Cheng

and Kovalyov (1998) presented a dynamic programming algorithm with time complexity

O((q1 + q2)q
4
1q

3
2).

In this paper, we show that problem CMAX is equivalent to a special case of the problem

of scheduling jobs of F families on a single machine to minimize maximum lateness. Though

the computational complexity of this special case is unknown, it can be solved to optimality

in O(q1q2 · · · qF) time by the algorithm of Ghosh and Gupta (1997).

For the case F = 2 of problem CMAX, we present an iterative exact algorithm with

O(k0 log L) running time, where k0 is the maximum number of batches in a schedule created

in any iteration of the algorithm and L is the problem input length in unary encoding.

The algorithm finds a schedule with the minimum number of batches k∗ in any optimal

solution. This property is important for situations when there is a secondary criterion to

minimize a total time or cost associated with setups.

Let k∗f denote the minimum number of batches in any optimal schedule in the class of

schedules starting with a batch of part type f, f = 1, 2. Observe that k∗ ∈ {k∗1, k∗2}. Com-

putational experiments were conducted to investigate the structure of an optimal schedule

and the relationship between k0, k∗1 and k∗2. For all the tested examples, k0 = max{k∗1, k∗2}.

2 Equivalence to a single machine family scheduling

problem

The single machine family scheduling problem can be formulated as follows. The jobs each

belonging to one of F families have to be scheduled for processing on a single machine.

Family f comprises the jobs (1, f), (2, f), . . . , (nf , f), f = 1, . . . , F. Each job (j, f) has a

processing time p(j,f) and a due date d(j,f). A machine setup time Sf is needed whenever

the machine switches from processing a job of family g 6= f to a job of family f or at time

zero when the machine starts with a job of family f. The objective is to find a schedule that

minimizes maximum lateness Lmax = max(j,f){C(j,f) − d(j,f)}, where C(j,f) is the completion

3

time of job (j, f). In this section, it is assumed that each maximum is taken over all jobs

(j, f). We denote this problem as LMAX.

Given an instance IC of problem CMAX, we construct the following instance IL of prob-

lem LMAX. The machine in problem LMAX is the machine M0. The processing times of

the jobs are all equal to v0. Family f comprises the qf jobs of part type f indexed as

(1, f), (2, f), . . . , (qf , f). The job due dates are determined as follows:

d(j,f) = −(qf + 1− j)vf , f = 1, . . . , F, j = 1, . . . , qf . (1)

We now prove that the two instances are equivalent. The following statements are needed

for these purposes.

Lemma 1 Consider instance IC of problem CMAX. Given D, there exists a schedule such

that Cmax ≤ D if and only if the job of part type f sequenced j-th completes on machine M0

by time

D − (qf + 1− j)vf , f = 1, . . . , F, j = 1, . . . , qf .

Proof. Consider a schedule for which Cmax ≤ D. Since after the completion of the j-th job

of part type f on machine M0, this job and the remaining qf − j jobs of part type f must

be processed on machine Mf by time D, so this job must be completed on machine M0 by

time D − (qf + 1− j)vf . This statement holds for all f and j.

Now assume that the j-th job of part type f completes on machine M0 by time D −
(qf + 1 − j)vf . Then this job and the remaining qf − j jobs of part type f can be pro-

cessed on machine Mf in the time interval [D − (qf + 1− j)vf , D] of length (qf + 1− j)vf .

This statement holds for all f and j. Therefore, for the corresponding schedule, Cmax ≤ D.

Let σ∗ and C∗ be an optimal batch schedule and the corresponding makespan value for

the instance IC of problem CMAX.

Corollary 1 According to σ∗, the j-th job of part type f completes on machine M0 by time

D∗
(j,f) := C∗ − (qf + 1− j)vf and there is no batch schedule σ such that max(j,f){C(j,f)(σ)−

D∗
(j,f)} < 0.

Now we prove the main result of this section.

4

Theorem 1 A batch schedule σ∗ that is optimal for the instance IC of problem CMAX is an

optimal batch schedule for the instance IL of problem LMAX with the value Lmax(σ
∗) = C∗.

Proof. For an arbitrary batch schedule σ, we have

Lmax(σ) = max
(j,f)

{C(j,f)(σ)− d(j,f)} =

max
(j,f)

{C(j,f)(σ)− (C∗ − (qf + 1− j)vf)}+ C∗ = max
(j,f)

{C(j,f)(σ)−D∗
(j,f)}+ C∗.

From Corollary ??, it follows that max(j,f){C(j,f)(σ)−D∗
(j,f))} ≥ 0 and max(j,f){C(j,f)(σ)−

D∗
(j,f))} = 0 for σ = σ∗. Therefore, Lmax(σ

∗) = C∗ is the minimum objective function value

for the instance IL of problem LMAX.

Bruno and Downey (1978) proved that problem LMAX is NP-hard. However, our prob-

lem CMAX is equivalent to a special case of problem LMAX, the computational complexity

of which is unknown.

Ghosh and Gupta (1997) derived a dynamic programming algorithm for problem LMAX

with running time O(q1q2 · · · qF). This algorithm can be used to solve our problem CMAX

if d(j,f) are calculated according to (??) and the job processing times are all equal to v0.

3 Problem CMAX for F = 2

For F = 2, problem CMAX can be solved in O(q1q2) time by the algorithm of Ghosh and

Gupta (1997). In this section, a different algorithm is derived for this case, which appears

to be more efficient.

3.1 Lower bounds and trivially solvable cases

As above, let C∗ and σ∗ denote the minimum value of Cmax for problem CMAX and the

corresponding optimal schedule, respectively. Since F = 2, a schedule is completely charac-

terized by the sequence of batch sizes and the part type of the first batch. In this subsection,

we establish lower bounds LB1, LB2 and LB3 for C∗, which are based on the following

observations.

We first note that minimum delays of S1 + v0 and S2 + v0 time units are needed before

the processing of any job can start on machines M1 and M2, respectively. Therefore, the

5

last jobs on machines M1 and M2 cannot be completed at time earlier than

LB1 = S1 + v0 + q1v1 and LB2 = S2 + v0 + q2v2,

respectively.

Furthermore, the last job on machine M0 cannot complete at time earlier than S1 +S2 +

(q1 + q2)v0. Since after finishing on machine M0 this job has to be processed on machine M1

or M2, we have

LB3 = S1 + S2 + (q1 + q2)v0 + min{v1, v2}.

We now identify special cases of the batching problem, in which C∗ coincides with one

of the above lower bounds.

In the sequel, assume without loss of generality, that v1 ≤ v2.

Case v1 ≤ v2 ≤ v0. Construct batch sequence σ2 in which there are two batches and the

first batch is of part type 2 (see Fig. ??).

Insert Fig. ?? here

From Fig. ?? it is easy to see that σ2 is optimal because Cmax(σ2) = LB3.

Case v1 ≤ v0 < v2. In this case, batch sequence σ2 is again optimal. The maximum

completion time is reached either on machine M1 or M2 (see Fig. ?? and ??).

Insert Fig. ?? and ?? here in this order

Thus, for the case v1 ≤ v0 < v2, we have Cmax(σ2) = min{LB2, LB3} = C∗.

We conclude this subsection by noting that the only non-trivial case of the problem is

when the processing requirements on machines M1 and M2 are greater than that on machine

M0, i.e., v0 < v1 ≤ v2.

3.2 The non-trivial case v0 < v1 ≤ v2

We start with partitioning the set of feasible batch sequences into three subsets Σ0, Σ1 and

Σ2. All sequences in Σ0 consist of two batches. Clearly, there are only two sequences in Σ0.

All sequences in Σ1 consist of more than two batches and start with a batch of part type 1,

and all sequences in Σ2 consist of more than two batches and start with a batch of part type

6

2. Let σ(0), σ(1) and σ(2) denote the batch sequences delivering the minimum Cmax values in

Σ0, Σ1 and Σ2, respectively. It is clear that σ∗ ∈ {σ(0), σ(1), σ(2)}.
Let σ1 denote a batch sequence comprising two batches and starting with a batch of part

type 1. We have Cmax(σ
(0)) = min{Cmax(σ1), Cmax(σ2)}.

Now assume that there are at least three batches in an optimal batch sequence. In this

case, we may use the inequalities LB ≤ C∗ ≤ UB, where LB = max{LB1, LB2, LB3} and

UB = Cmax(σ
(0))− 1.

We first develop an algorithm that either finds batch sequence σ(1) or detects that Σ1 = φ.

At the upper level of this algorithm, a bisection search over the range [LB, UB] is conducted.

At the beginning, the question “Is there a batch sequence σ ∈ Σ1 such that Cmax(σ) ≤
C?” is answered for C = LB and C = UB. The procedure stops if the answer for C = LB

is “yes” or the answer for C = UB is “no”. In the former case, we find σ and set σ∗ = σ. In

the latter case, Σ1 = φ. Otherwise, we set T = LB, V = UB and conduct a general iteration

of the bisection search by answering the above question for C = b(T + V)/2c. If the answer

is “yes”, then we find and keep the corresponding batch sequence, reset V = C, retain T

unchanged and go to the next iteration of the bisection search. If the answer is “no”, then

we reset T = C, retain V unchanged and go to the next iteration of the bisection search.

The procedure stops when the length of the current interval [T, V] to be partitioned is equal

to zero. In this case, σ(1) is the last found batch sequence.

It remains to provide an algorithm for solving the problem of finding a batch sequence

σ ∈ Σ1 such that Cmax(σ) ≤ C, C ∈ [LB,UB]. This algorithm plays a central role in our

study.

Let the sequence σ to be found be (A1, B1, A2, . . .), where Aj and Bj are batches of part

types 1 and 2, respectively, appearing j-th among batches of the same part type in σ. Let

bj
1 and bj

2 denote the sizes of batches Aj and Bj, respectively: |Aj| = bj
1 and |Bj| = bj

2.

The following algorithm CHECK either finds the above batch sizes and, hence, the cor-

responding batch sequence σ or determines that such a sequence does not exist. The main

idea of this algorithm is to assign as many jobs to the current batch of part type f as per-

mitted by the latest possible starting time for the unassigned jobs of part type (3 − f) on

machine M0. This latest time is equal to C − (x · v3−f + v0), where x is the number of the

unassigned jobs of part type (3− f). If the starting time of the current batch and the latest

7

possible starting time for the next batch are known, the size of the current batch can easily

be calculated.

In iteration k of algorithm CHECK, batch sizes bk
1 and bk

2 are computed and, hence, the

corresponding batches are identified. The total numbers of jobs of part types 1 and 2 assigned

to batches up to iteration k are denoted by T k
1 and T k

2 , respectively. The total processing time

of the batches plus the corresponding setup times assigned to machine M0 up to iteration

k plus two extra setup times S1 and S2 is denoted by Pk. Thus, we have T k
f =

∑k
j=1 bj

f ,

f ∈ {1, 2}, and Pk = (k + 1)(S1 + S2) + v0
∑k

j=1(b
j
1 + bj

2) = (k + 1)(S1 + S2) + v0(T
k
1 + T k

2),

k = 1, 2, . . .

Algorithm CHECK.

Input: S1, S2, q1, q2, v0, v1, v2, and C ∈ [LB, UB].

Output: batch sizes b1
1, b

1
2, b2

1, b
2
2, . . . or determination that sequence σ ∈ Σ1 such that

Cmax(σ) ≤ C does not exist.

Step 1. (Initialization) Set T 0
1 = T 0

2 = 0, P0 = S1 + S2 and k = 1.

Step 2. (Recursive computation of batch sizes) Compute the following.

bk
1 = bC − (q2 − T k−1

2)v2 − Pk−1

v0

c − 1.

If bk
1 ≤ 0, then stop: sequence σ does not exist.

If T k−1
1 + bk

1 ≥ q1, then Ak is the last batch of part type 1 and, hence, Bk is the last

batch of part type 2. Therefore, reset bk
1 = q1 − T k−1

1 and compute bk
2 = q2 − T k−1

2 .

Output σ that is determined by batch sizes b1
1, b

1
2, b2

1, b
2
2, . . . , bk

1, b
k
2.

If T k−1
1 + bk

1 < q1, then compute T k
1 = T k−1

1 + bk
1 and P ′

k = Pk−1 + S1 + bk
1v0.

Compute

bk
2 = bC − (q1 − T k

1)v1 − P ′
k

v0

c − 1.

If bk
2 ≤ 0, then stop: sequence σ does not exist.

If T k−1
2 + bk

2 ≥ q2, then Bk is the last batch of part type 2 and, hence, Ak+1 is the last

batch of part type 1. Therefore, reset bk
2 = q2 − T k−1

2 and compute bk+1
1 = q1 − T k

1 .

Output σ that is determined by batch sizes b1
1, b

1
2, b2

1, b
2
2, . . . , bk

2, b
k+1
1 .

8

If T k−1
2 + bk

2 < q2, then compute T k
2 = T k−1

2 + bk
2 and Pk = P ′

k + S2 + bk
2v0. Repeat Step

2 for k = k + 1.

Theorem 2 Algorithm CHECK either finds a batch sequence σ ∈ Σ1 such that Cmax(σ) ≤ C,

C ∈ [LB,UB], or establishes that such a sequence does not exist. Moreover, the sequence σ

found by the algorithm has the minimum number of batches among schedules satisfying the

above conditions.

Proof. We first show that if algorithm CHECK finds a batch sequence σ, then Cmax(σ) ≤ C.

The makespan value of σ can be calculated as follows.

Cmax(σ) = max{S1 + v0 + q1v1, S1 + S2 + (b1
1 + 1)v0 + q2v2,

2S1 + S2 + (b1
1 + b1

2 + 1)v0 + (q1 − b1
1)v1, . . . }.

We have S1 + v0 + q1v1 = LB2 ≤ LB ≤ C. Furthermore, from

(b1
1 + 1)v0 = bC − q2v2 − (S1 + S2)

v0

cv0 ≤ C − q2v2 − (S1 + S2),

we obtain

S1 + S2 + (b1
1 + 1)v0 + q2v2 ≤ C,

and from

(b1
1 + b1

2 + 1)v0 = b1
1v0 + bC − (q1 − b1

1)v1 − (2S1 + S2 + b1
1v0)

v0

cv0 ≤

b1
1v0 + C − (q1 − b1

1)v1 − (2S1 + S2 + b1
1v0),

we obtain

2S1 + S2 + (b1
1 + b1

2 + 1)v0 + (q1 − b1
1)v1 ≤ C.

By repeating the above calculations for the remaining batches in σ, we prove that

Cmax(σ) ≤ C.

Furthermore, σ comprises at least three batches. This statement is easily deduced from

Cmax(σ) ≤ C, C ∈ [LB,UB], Σ0 = {σ1, σ2} and Cmax(σ2) > UB, Cmax(σ1) > UB.

Let us now consider an arbitrary batch sequence σ′ ∈ Σ1 such that Cmax(σ
′) ≤ C,

C ∈ [LB, UB]. We show that σ′ can be transformed into the batch sequence σ constructed

by the algorithm CHECK with a fewer or equal number of batches. The proof is illustrated

by a diagram given in Fig. ??.

9

Insert Fig. ?? here

Let σ′ = (G1, H1, G2, . . .), where Gj and Hj are batches of part types 1 and 2, respec-

tively, appearing j-th among batches of the same part type in σ′, and let |Gj| = aj
1 and

|Hj| = aj
2, j = 1, 2, . . . Denote the times when machines M1 and M2 finish their processing

by F1 and F2, respectively.

Consider time t(H1) = S1 + a1
1v0 + S2 + v0, when the first job of batch H1 starts its

processing on machine M2. If C − q2v2 − t(H1) ≥ v0, then move a job from G2 to G1. Value

F1 will not increase and value F2 may increase by at most v0 due to the starting time of

batch H1 being postponed by v0 time units after the expansion of batch G1. Therefore, for

the new batch sequence, we have Cmax ≤ C. Continue to move jobs from G2, G3, . . . to G1

and stop when C − q2v2 − t(H1) < v0. Let us retain the same notation σ′ for the new batch

sequence and leave all other related notations unchanged. It is easy to verify that after the

moves are stopped, the number of jobs in batch G1 is equal to

b1
1 = bC − q2v2 − (S1 + S2)

v0

c − 1.

This value is also determined in iteration k = 1 of algorithm CHECK. Therefore, in the new

sequence, G1 = A1. Clearly, the number of batches is not increased.

Notice that b1
1 < q1 because otherwise there should be two batches in σ′. It was shown

above that in this case Cmax(σ
′) > UB, which contradicts our assumption about σ′.

Now assume that G1 = A1. Consider time t(G2) = max{S1 + v0 + b1
1v1, 2S1 + S2 +

(b1
1 + a1

2 + 1)v0}, at which the first job of batch G2 starts its processing on machine M1. If

C−(q1−b1
1)v1− t(G2) ≥ v0 and H1 is not the last batch of part type 2, then move a job from

H2 to H1. Value F2 will not increase and value F1 may increase by at most v0. Again, for the

new batch sequence, Cmax ≤ C. Continue moving jobs from H2, H3, . . . to H1 and stop when

C − (q1 − b1
1)v1 − t(G2) < v0. Leave the notation for the new batch sequence unchanged.

After the moves are stopped, the number of jobs in batch H1 is equal to

b1
2 = bC − (q1 − b1

1)v1 − (2S1 + S2 + b1
1v0)

v0

c − 1.

This value is determined in iteration k = 1 of algorithm CHECK. Therefore, we have obtained

H1 = B1. The number of batches is not increased.

10

If H1 is the last batch of part type 2, i.e., |H1| = q2, then it is easy to verify that the

initial value b1
2 found by algorithm CHECK, i.e., the one calculated before resetting, is equal

to q2 if C − (q1− b1
1)v1− t(G2) < v0, and it is greater than q2 if C − (q1− b1

1)v1− t(G2) ≥ v0.

The final value b1
2 is equal to q2.

Thus, the sequence σ′ can be transformed so that G1 = A1, H1 = B1 and the number of

batches is not increased. Repeating this argument for the remaining batches in σ′ completes

the proof.

Algorithm CHECK incorporated in the binary search procedure described above allows

us to find the batch sequence σ(1) that is optimal in the set Σ1 or determine Σ1 = φ. It can

also be used to find the batch sequence σ(2) or determine Σ2 = φ. The only difference in the

description of algorithm CHECK is that the notation for part types must be switched. If

σ(1) is found, then the upper bound UB can be reset to be equal to Cmax(σ
(1)).

Recall that k∗f denotes the number of batches in the sequence σ(f), f = 1, 2. An optimal

batch sequence σ∗ with the minimum number of batches k∗ for the case v0 < v1 ≤ v2 can be

found lexicographically from

(Cmax(σ
∗), k∗) = lexmin{(Cmax(σ

(0)), 2), (Cmax(σ
(1)), k∗1), (Cmax(σ

(2), k∗2)},

where lexmin{(a1, k1), (a2, k2), (a3, k3)} = (aj, kj) if aj = min{a1, a2, a3} and kj =

min{kl | al = aj, l = 1, 2, 3}.
It is easy to see that algorithm CHECK runs in O(k) time, where k is the number of

batches in the final complete or partial schedule created by this algorithm. It is used by the

bisection search procedure O(log UB) times. Since UB is bounded by a polynomial of L,

the complexity of finding σ∗ is equal to O(k0 log L), where k0 is the maximum number of

batches in a schedule created in any application of algorithm CHECK.

If algorithm CHECK is applied for the set Σf 6= φ and a trial value C ≥ Cmax(σ
(f)),

then it follows from Theorem ?? that the number of batches created by this algorithm does

not exceed k∗f , f = 1, 2. We conjecture that this statement also holds if C < Cmax(σ
(f)),

f = 1, 2. If the conjecture is true, then the running time of our algorithm can be estimated

as O((k∗1 + k∗2) log L).

11

4 Computational experiments

In this subsection, we observe the results of computational experiments conducted to inves-

tigate the structure of an optimal schedule with the minimum number of batches and the

relationships between k0, k∗1 and k∗2.

Only the non-trivial case v0 < v1 ≤ v2 was analyzed. About 500 problem instances

were tested for various configurations of the parameters. The main observations of the

experiments are the following.

1) For the examples with S1 = S2 = 0, v0 = 1, v1 = v2 = 2 and q1 = q2, we have k∗ = q1 + 1.

The latter equation can easily be proved analytically. It follows that, in general, k∗ is not

bounded by a polynomial in log L. However, for the above examples, the sizes of the first

and last batches were equal to 1 and all the other batch sizes were equal to 2. Therefore,

it might be the case that for any instance of the problem, either k∗ ≤ log L, or σ∗ has a

structure that allows the problem to be solved in polynomial time.

2) Batch sizes were non-increasing or non-decreasing for each part type, with the possible

exception for the first or last batch of one part type.

3) The value of k∗ increased, decreased or increased and then decreased while any of the

problem input parameters r, r ∈ {S1, S2, q1, q2, v0, v1, v2}, increased assuming that the other

parameters did not change, i.e., the dependency k∗ = f(r) is Λ-shaped.

4) For all tested instances, k0 = max{k∗1, k∗2}.

Note that the integer programming algorithm by Ching, Liao and Wu (1997) required

up to 2.5 hours on a Sun 3/60 workstation to find an optimal solution for an example with

q1 + q2 = 1200 while our algorithm found the same solution in less than 0.01 second on a 260

Mhz Pentium-II. Moreover, the maximum number of batches of each part type was bounded

by m = 6 in their experiments because the integer programming formulation of the batching

problem included 2m variables and 10m − 1 constraints. We had shown that there were

examples with 2m ≥ k∗ = q1 + 1.

12

5 Conclusions

The problem of batching and scheduling jobs of F part types in a shop made up of F + 1

machines is shown to be equivalent to a special case of a single machine family scheduling

problem. An O(q1 · · · qF) time algorithm for the latter problem is known in the literature.

An iterative algorithm with O(k0 log L) running time has been presented to solve the

problem with F = 2 part types. Here k0 is the maximum number of batches in a schedule

created in any iteration of the algorithm and L is the problem input length in unary encoding.

The algorithm finds a schedule with the minimum number of batches k∗ in any optimal

solution. Computational experiments were conducted. For all the tested examples, k0 =

max{k∗1, k∗2}, where k∗f was the minimum number of batches in any optimal schedule in the

class of schedules starting with a batch of part type f, f = 1, 2. The algorithm outperformed

the previous algorithms suggested in the literature both in the quality of the solution with

respect to the number of batches created and in running time.

Further research can be undertaken to establish the computational complexity of the

general case of the problem. Relevant practical extensions of this model are also of interest.

They can include the presence of jobs with distinct processing times, ready times or due

dates, transportation between the machines, total cost criteria, etc.

Acknowledgments

This research was supported in part by The Hong Kong Polytechnic University under grant

number G-S818 and the Croucher Foundation under a Croucher Senior Research Fellowship

for the first author. The second author was also supported by INTAS (Projects 96-0820 and

00-217).

References

Allahverdi, A., Gupta, J.N.D. and Aldowaisan, T. (1999) A review of scheduling research

involving setup considerations. Omega, 27, 219-239.

Bruno, J. and Downey, P. (1978) Complexity of task sequencing with deadlines, set-up times

and changeover costs. SIAM Journal on Computing, 7, 393-404.

13

Ching, C.Y., Liao, C.-J. and Wu, C.J. (1997) Batching to minimize total production time

for two part types. International Journal of Production Economics, 48, 63-72.

Cheng, T.C.E. and Kovalyov, M.Y. (1998) An exact algorithm for batching and scheduling

two part types in a mixed shop: a technical note. International Journal of Production

Economics, 55, 53-56.

Ghosh, J.B. and Gupta, J.N.D. (1997) Batch scheduling to minimize maximum lateness.

Operations Research Letters, 21, 77-80.

Potts, C.N, and Kovalyov, M.Y., 2000. Scheduling with batching: a review, Europ. J. Oper.

Res., 120: 228-249.

Potts, C.N. and Van Wassenhove, L.N. (1992) Integrating scheduling with batching and lot-

sizing: a review of algorithms and complexity. Journal of the Operational Research Society,

43, 395-406.

Webster, S. and Baker, K.R. (1995) Scheduling groups of jobs on a single machine. Opera-

tions Resesearch, 43, 692-703.

14

S2 S1

Machine M1

Machine M0

Machine M2

Figure 1: Sequence σ2 for the case v1 ≤ v2 ≤ v0

15

S2 S1

Machine M1

Machine M0

Machine M2

Figure 2: Case v1 ≤ v0 < v2. The value of Cmax is reached on machine M2

16

S2 S1

Machine M1

Machine M0

Machine M2

Figure 3: Case v1 ≤ v0 < v2. The value of Cmax is reached on machine M1

17

t(H1)

S1 S2 S1 S2

t(G2)

T
T

T

F1

C0

F2

G1 H1 G2 H2

Machine M2

Machine M0

Machine M1

Figure 4: Sequence σ′

18

