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We study the complex band hybridization induced by nonreciprocal local resonances in photonic crystals.
Composed of trimer unit cells, a two-dimensional magnetophotonic crystal with an analytically obtainable
solution is considered. We find that a nonreciprocal spectral gap may appear without nonreciprocal transmission
and that the imaginary parts of the complex wave vectors Im(k) may blow up at resonance to give extreme
nonreciprocal transmission. We further show that, for a subwavelength lattice, the isolation ratio for the nonrecip-
rocal transmission is determined solely by Im(k) instead of the extensively studied real part Re(k). Our finding
contradicts the common belief that “spectral nonreciprocity [w(k) # w(—k)] always implies nonreciprocal

transmission.”
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Band hybridization in solid-state materials plays a signif-
icant role in the transport properties of waves and particles.
Introducing additional localized states in crystals can further
induce many interesting band properties and transport phe-
nomena. For example, Kondo insulator effects [1,2] occur
when electronic band gaps are created through the hy-
bridization between localized states and conduction bands.
Similar band hybridization effects can also occur in artificial
wave-functional materials, leading to novel wave transport
phenomena such as local-resonance gaps [3,4], superabsorp-
tion [5,6], extraordinary transmission [7], and slow waves [8].
Recent literature has also reported that local-resonance flat
bands may have a nontrivial topological nature [9,10], which
has played a unique role in robust (nonreciprocal) one-way
transport against disorder [11,12].

Nonreciprocal transport of light requires the breaking
of electromagnetic reciprocity (i.e., nonreciprocity) [13,14],
which refers to the difference in the local electromagnetic
fields received when the source and the receiver are ex-
changed. For photonic applications such as in isolators [15],
circulators [16], and directional amplifiers [17], electro-
magnetic nonreciprocity must be severely broken. Current
mechanisms for nonreciprocity include nonlinearity [18], time
modulation [19], and Lorentz nonreciprocity [15]. In the lin-
ear regime, periodic photonic structures composed of Lorentz
nonreciprocal media can support spectral nonreciprocity
[i.e., o(k)# w(—k) for real values of angular frequency
o and wave vector k] when all necessary symmetries are
broken [20-22].

In contrast, transport properties are especially sensitive
to the complex nature of wave vectors [23-25], which
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was largely ignored in Bloch’s theory of Hermitian sys-
tems [26-28]. Similarly to the reciprocal cases, nonreciprocal
local resonators could also provide peaks of Im(k) in the real
frequency spectra [29], and a nonreciprocal active metamate-
rial [30] has experimentally shown a large difference between
Im(k) for nonreciprocal transmission. This may suggest that
there is a fundamental relation between Im(k) and nonrecip-
rocal transmission that has not been explicitly shown. In this
Letter, we study the realization of such nonreciprocal features
on the complex band structure (CBS) [23-25] (with complex
values of k) and the associated physical consequences by
considering a two-dimensional (2D) trimer photonic crystal
made of gyromagnetic and dielectric cylinders [see Fig. 1(a)].

We consider the band hybridization among nonreciprocal
local resonances and band-folded propagating photon bands.
The nonreciprocal local resonances originate from the gyro-
magnetic cylinder placed at the center in each unit cell [see the
label M in Fig. 1(a)]. The two side-by-side parallel dielectric
cylinders (L and R) are to provide tunable degrees of freedoms
to turn on/off the spatiotemporal symmetries and Hermiticity.
These cylinders couple with the gyromagnetic cylinders to
provide hybridized modes in each single-grating layer [32].
The relative permittivity of these cylinders is denoted by ¢ =
¢’ +ie”, where ¢’ and ¢” correspond to the real and imaginary
parts, respectively. A subscript of M, L, and R is used to
label corresponding parameters for the gyromagnetic, left,
and right cylinders, respectively. The dielectric properties of
the left cylinder are used to control the breaking of spatial
symmetries and Hermiticity through &; and &}, respectively.
The gyromagnetic cylinder is subjected to a bias magnetic
field in the negative z direction (along the cylinder axis) and its
permeability tensor is used to control the breaking of Lorentz
reciprocity. For a continuous wave of single angular fre-
quency w = 27 f (with f being the real frequency), its relative
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FIG. 1. Band hybridization due to nonreciprocal local resonance.
(a) Lattice structure of the 2D trimer photonic crystal. The yellow
crosses represent the centers of unit cells shown in the inset, which
consists of a gyromagnetic cylinder (blue circle) at the center and the
two dielectric cylinders (gray circle) on two sides. The open arrows
with solid (dashed) boundaries are the incoming (outgoing) waves
for each layer. The red (blue) solid arrows represent the forward
(backward) incident directions. (b) Complex band structure for the
nontrivial but Hermitian case. K is the normalized complex wave
number in the y direction. The black and blue lines refer to the real
and imaginary parts of K, respectively. Geometric parameters are
the lattice constant ¢ = 50 mm, core-to-core distance d = 12 mm,
and radius » = 1 mm. Material parameters are M; = 1750 Oe, Hy =
500 Oe, ey = 15, e = 92.16, ¢, = e,/1.44, ¢ = e = 0[31-33].

permeability tensor is given as [34]

Hr g O
w=|—-ipe w0}, (D
0 0 1

where My = 1+ a)mwh/(w]% - wz)’ My = a)mw/(wi - a)z),
wm = Yy M, o, = yHy, y is the gyromagnetic ratio, M is the
saturation magnetization in the ferromagnetic materials, and
Hj is the applied static magnetic field. Here, the time har-
monic convention is taken as e, This permeability tensor
describes a Lorentz nonreciprocal medium with p # uT [35].
The parameter w, could be later artificially set to zero for
comparison with the Lorentz reciprocal cases. A small cylin-
der made of such material could provide nonreciprocal local
resonance at the frequency where u, + u, ~ —1 [34]. When
there is no loss/gain media (i.e., i,, U, and all ¢ are real
numbers), the permeability tensor satisfies o = ' and the
photonic (magnon) system is Hermitian [36].

We consider transverse electric modes with electric fields
parallel to the z axis. The dynamic responses of the dielec-
tric and gyromagnetic cylinders are, respectively, modeled
as electric displacement currents oscillating along the z axis
and magnetization precessing about the z axis. We describe
the 2D photonic crystals as layers of gratings stacked along
the y direction, as shown in Fig. 1(a). To obtain analytical
solutions, multiple scattering theory [32,37] is applied to all
cylinders within each layer and the transfer/scattering matrix
method [38,39] is used to account for the multiple scatter-
ings between layers. The grating constant a in each layer is
considered smaller than the background wavelength so that
wa/c < 2m and all non-zeroth-order diffractions are evanes-
cent. Neglecting evanescent coupling between layers [42],
each transfer/scattering matrix becomes a simple 2 x 2

TABLE I. Classification of the four general cases with u, # 0.

Dielectric Trivial Nontrivial
parameters & = &g &) # &p
Hermitian ¢] =0 Case (a) Case (b)
Non-Hermitian &; # 0 Case (c) Case (d)

matrix and the (generalized) Bloch’s theorem gives the dis-
persion relations, which can be written as [39]

costir = (14D, (1D, ) T3/~

T »
sin(k;a) + sin(k; a) = Z(l - D/, )
where kyi are the y components of the two different solutions
of the wave vectors. We solve for complex number solu-
tions of kyi satisfying Eq. (2) by keeping the frequency w
a real number. The choice of solutions with real frequency
and complex wave vectors has an advantage of modeling
continuous-wave excitation, which was employed in some
reciprocal systems [23-25]. In Eq. (2), T, = tr(C) and D, =
det(C) are, respectively, the trace and the determinant of the
frequency-dependent transfer matrix [39]

c— L|:<T+T _ptp—)eikoa ot :|, 3

T _10 e*ikna

for a single layer of cylinder grating lying on the xz plane,
and ky = w/c refers to the free-space wave number. We
note that p™ = p~ = p due to an unobvious spatiotemporal
symmetry of the grating [39]. The determinant D; = %/t~
indicates transmission nonreciprocity of single-grating layer.
When D, = 1, the closed-form expression reduces back to the
reciprocal cases as in the literature [43,44].

We first consider a Hermitian case with two different di-
electric (ceramic) cylinders [31,33] where &; = &}/1.44 and
g/ = e = 0. The CBS calculated from the dispersion relation
[Eqg. (2)] between the real frequency and the complex nor-
malized wave vector K = kya/(2m) is plotted in Fig. 1(b).
The broken symmetries lead to asymmetric Re(K) (black
lines), while Im(K) (blue lines) is symmetric due to the loss-
less condition. This is because the two complex solutions of
K at fixed w must be either purely real or form a pair of
complex conjugates [i.e., w(K) = w(K*)] when the system is
Hermitian [39]. Such spectral nonreciprocity is most profound
in the range between 3.6 and 4 GHz, which is due to the two
nonreciprocal local-resonance frequencies of single-grating
layers. In comparison, symmetric dispersion appears near the
Bragg gap at frequency f > 4.6 GHz. It is apparent that
nonzero imaginary K appears in the region of band gaps.

To understand the band hybridization near local-resonance
frequencies, we compare four scenarios involving Lorentz
nonreciprocity, which are summarized in Table I with the
corresponding CBSs being shown as solid lines in Fig. 2. We
note that the “trivialness” defined in Table I refers only to
symmetry instead of topology. Lorentz reciprocity (i.e., the
condition of g = uT) can further be “switched” on or off
by changing the parameter u,. For a complete comparison,
the results for the corresponding Lorentz reciprocal (u, = 0)
cases are also shown as dashed lines for each of the four
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FIG. 2. Effects of spatial asymmetry, non-Hermiticity, and non-
reciprocity on complex band structures. (a) Trivial Hermitian case.
(b) Nontrivial Hermitian case. (c) Trivial non-Hermitian case.
(d) Nontrivial non-Hermitian case. Black and blue lines correspond
to, respectively, the real and imaginary parts of K. For direct com-
parison, results for reciprocal (u, = 0) and nonreciprocal (u, # 0)
cases are shown as dashed lines and solid lines, respectively. The
parameters are &; = €/1.44 for nontrivial cases and ¢ =2 for
non-Hermitian cases. Other parameters are the same as in Fig. 1.

cases mentioned above. It should be noted that the nontrivial
Hermitian case [Fig. 2(b)] is identical to that in Fig. 1(b)
except for the addition of dashed lines.

In the trivial Hermitian case [Fig. 2(a)], the imaginary part
of CBS (blue solid lines) shows two sharp peaks of |Im(K)|
at around 3.7 and 3.9 GHz, which are associated with local
resonances. Narrow gaps associated with divergingly large
Im(K) are opened due to the hybridization among propagat-
ing photonic modes and the local resonances. These local
resonances are nonreciprocal due to the breaking of Lorentz
reciprocity by magnetized materials. However, the band struc-
ture is still symmetric [i.e., o(K) = w(—K)]. If we replace the
nonreciprocal relative permeability tensor with a symmetric
one by setting u,, = 0, these local-resonance gaps disappear
from the frequency range in Fig. 2(a) (dashed lines), showing
only one single continuous band below 4.2 GHz. In contrast,
no noticeable change is observed for the trivial Bragg gap
above 4.2 GHz.

In the nontrivial Hermitian case, the left-right symmetry
is broken by a reduction in the dielectric constant of the left
cylinder (i.e., &, = €;/1.44). The CBS is shown as solid lines
in Fig. 2(b), which is a replication of the same plot in Fig. 1(b).
In addition to the lifting of bands to higher frequencies due to
the lower index, this also leads to strong asymmetry in the
real part of CBS (as mentioned previously) and broadening
of the local-resonance band gap near 4 GHz. For compari-
son, we include the dashed lines in Fig. 2(b) to represent a
fully symmetric CBS of the “nonmagnetized” case by setting

(a) N g =¢4
4.2
N 40 N
I I
Q e
y_ 3.8 4y 3.8 ',"
/ \
3.6 { 3.6 / \
| \
-0.50 -0.25 0.00 0.25 0.50 -0.50 -0.25 0.00 0.25 0.50
Im(K) Re(K)
! !
46{(C) £ # &R
4.4
~N N
T 42 T
Y] o] G
Z 4.0 —— =
“— <\"“' —
3.8 1
3.6 / \
-0.50 -0.25 0.00 0.25 0.50 -0.50 -0.25 0.00 0.25 0.50
Im(K) Re(K)
— &= - g =2 g =11
— &'=0 g=2 g =11

FIG. 3. Effects of non-Hermiticity on nonreciprocal bands for
trivial and nontrivial cases. (a) Imaginary part and (b) real part of
CBS where ¢; = ¢} (trivial nonreciprocal case). (c) Imaginary part
and (d) real part of CBS where &; = ¢5/1.44 (nontrivial nonrecip-
rocal case). The solid lines, dashed lines, and dotted lines refer to
e/ =0, 2, and 11, respectively. Other parameters are the same as in
Fig. 1.

e = 0. Itis shown that the real part of CBS in the magnetized
case (black solid lines) is generally symmetric except for the
range of strong band hybridization. As mentioned above, the
imaginary part of CBS (blue solid lines) shows symmetric
peaks in Im(K) even though the real part is not symmetric. In
contrary to the common belief on the strong relation between
nonreciprocal transport and band properties [20,45], we find
that such asymmetry in Re(K) will not contribute to the trans-
mittance, which is discussed in a later section of this Letter.
To study the effect of non-Hermiticity, we introduce energy
loss (¢] = 2) to the Hermitian photonic crystals already dis-
cussed in Figs. 2(a) and 2(b). The corresponding CBSs with
such a non-Hermitian effect are shown in Figs. 2(c) and 2(d).
In both the trivial [Fig. 2(c)] and nontrivial [Fig. 2(d)] cases,
the results clearly show asymmetries in both Re(K) and
Im(K). Since the conjugate pairing of K is no longer required
in non-Hermitian cases, the diverging frequencies in Im(K)
for the two directions become misaligned, and the waves
decay differently in the two opposite wave propagation direc-
tions. To further illustrate the effect, we separate the real and
imaginary parts of Figs. 2(b) and 2(d) and show their changes
with respect to ¢ in Fig. 3. The new curves for &/ =11
show that extreme ¢ can lead to highly asymmetric CBS with
asymmetric peaks of Im(K). However, there is an obvious
difference between the trivial and nontrivial cases. In the
trivial case [Figs. 3(a) and 3(b)], we can see weakening in the
resonance strength and broadening of the resonance linewidth.
When the absorption parameter increases to €] = 11, there are
much clearer asymmetries in the band regions compared to
the gap regions. In contrast, the nontrivial case [Figs. 3(c) and
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3(d)] shows obvious further diverging Im(K') near the minigap
at 3.75 GHz. In both cases, there is a large distortion in the real
parts of the CBS on one side when ¢] is large, and we find no
obvious relation between Re(K') and the magnitude of Im(K).

To reveal the meaning of the complex wave number in
transmission, we obtain a closed-form expression of the trans-

mittance T based on Eq. (3) as [39]

4z :
— E? —
L=l = ‘(1 + g)2etiNe _ (1 — g)2etikiNa| @
where
_ (1 + peikoa)Z _ -L-+-L——ei2k0a 5
- (1 _ peikoa)Z _ -L-Jrl-feiZkoa ( )

has the meaning of the relative impedance of the system in
effective-medium description [30], N is the number of layers,
and 74 and tﬁ denote the transmittance and the transmission
coefficient for the forward and backward solutions. It can be
shown from Eq. (4) that the isolation ratio,

T,
ln(T—)‘ = 47N |AIm(K)|, (©6)

is fully determined by the difference in the magni-
tudes of imaginary parts of wave numbers AIm(K) =
|Im(kja/2n)| — [Im(k; a/2m)|. Here, we have used the fact
that the pair of forward and backward solutions in Eq. (2)
should have opposite signs in Im(k, ).

Finally, we show the transmittance spectra calculated using
Eq. (4) for the magnetized cases (see the solid lines in Fig. 4).
The results align closely with the full-wave finite-element
simulation shown as dashed lines, except that there are small
differences due to the nonzero mesh size of the finite-element
method (FEM) and the dipole approximation in our analytical
model. The results indicate that the forward transmittance
(blue line) differs from the backward one (red line) in both
trivial [Fig. 4(a)] and nontrivial [Fig. 4(c)] cases when the
system is non-Hermitian (i.e., &/ # 0). The numerical results
are consistent with our analytical formula in Eq. (6) and the
two curves of Im(K') shown as blue dashed lines in Figs. 3(a)
and 3(c). For the trivial non-Hermitian case in Fig. 4(a), an
interesting nonreciprocal transmittance window appears be-
tween 3.65 and 3.9 GHz with forward transmittance greater
than backward transmittance. Such an asymmetric attenuation
of waves can also be understood as selective absorption due
to the difference in field strength between the two dielec-
tric cylinders [32]. For the nontrivial non-Hermitian case in
Fig. 4(c), we see a backward transmittance dip at around
3.8 GHz, which aligns with the corresponding diverging neg-
ative Im(K) in Fig. 3(c), while the forward transmittance
maintains a relatively stable value due to small positive
Im(K). Both our analytical model and full-wave simulation
confirm the absence of nonreciprocal transmittance when the
system is Hermitian, as shown in Figs. 4(b) and 4(d) for
gl =0.

In conclusion, we have studied the band hybridization
associated with nonreciprocal local resonances in magne-
tophotonic crystals using a complex band-structure perspec-
tive. Nonreciprocal local resonances combined with sufficient
symmetry breaking could selectively provide a divergingly
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FIG. 4. Effects of non-Hermiticity on transmittance spectra.
(a) Trivial non-Hermitian case with &; = ¢ and ¢/ = 2. (c) Nontriv-
ial non-Hermitian case with &; = ¢5/1.44 and ¢/ = 2. Number of
layers N = 12. Other parameters are the same as in Fig. 1. The solid
lines and dashed lines indicate the transmittance calculated from our
analytical model and the full-wave simulation in COMSOL MULTI-
PHYSICS, respectively. The color in red and blue denote, respectively,
the results for —y (backward) and +y (forward) propagation direc-
tions. The corresponding Hermitian cases with ¢/ = 0 for (a) and
(c) are shown in (b) and (d), respectively. The solid purple lines
indicate two identical overlapping analytical results from Eq. (4)
for both forward and backward incident directions while the dashed
black lines correspond to that of the full-wave simulation results.

large Im(k) in the backward transport of light. Our analyt-
ical solution for a 2D photonic system reveals a commonly
misunderstood aspect in light transport in nonreciprocal pho-
tonic systems. These analytic results are consistent with
full-wave simulations. Our example demonstrates that the
commonly believed statement that “spectral nonreciprocity
[w(K) # w(—k)] implies nonreciprocal transmission” is not
always correct. Furthermore, we have shown that the isolation
ratio for nonreciprocal transmission is determined solely by
Im(k), instead of the extensively studied real part Re(k). We
note that, in general, the signal transport speed of a non-
Hermitian system cannot be inferred from the slope (dw/dk)
in the CBS without generalizing it to complex group veloc-
ity [46]. We conclude that non-Hermiticity plays a crucial role
in controlling the transmission nonreciprocity, which can only
be revealed by examining the complex band structures with
complex values of k.
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