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Problem definition: We study a multi-store assortment planning problem in which a seller centrally
decides the assortment of products in each store. Each store is visited by a certain fraction of customers.
Upon arrival, customers observe the products offered in the current store. The seller can either 1) show
products offered in other stores to customers simultaneously (called simultaneous offering strategy) or 2)
show products offered in other stores to customers if they decide not to purchase in the current store
(called sequential offering strategy). Customers may incur a disutility if they choose products from other
stores. We study the optimal assortment planning problem under each of the two strategies and compare
their performance. Methodology /results: We show that under the simultaneous strategy, the optimal
assortment for each store is revenue-ordered, and the seller cannot do better than if it operates each store
separately. In contrast, adopting the sequential strategy can significantly increase the seller’s revenue. In
particular, when customers’ disutilities of purchasing from other stores are universally homogeneous, the
optimal assortment under the sequential offering strategy is revenue-ordered for each store, and the store with
a lower (higher, resp.) demand should offer a larger (smaller, resp.) assortment to facilitate the sequential
selling process. We then compare the two offering strategies in terms of the seller’s revenue and customer
surplus and analyze the impact of parameters on the revenue comparison. We also consider several extensions,
e.g., heterogeneous valuation, capacity constraint, and partial recommendation, and find that our main
results still hold qualitatively. Managerial implications: The sequential offering strategy may be a better
strategy for sellers in practice. We provide detailed guidelines for sellers to implement the sequential strategy,

such as regarding the optimal assortment decisions and when sellers can exploit the most benefits.
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1. Introduction

In the retail industry, a retailer often operates multiple stores under a common brand. With the
rapid development of information technology, a multi-store retailer has the potential of increasing
the coordination across different stores, instead of running each store independently. In particular,
with state-of-the-art information technologies, the availability information of products in one store
can be seamlessly shared with other stores, and such information empowers the seller to serve cus-
tomers in one store with products offered only in other stores, and ultimately make a holistic product
recommendation decision across different stores. An example of such information technology is Ster-
ling Order Management, an inventory management software platform introduced by IBM, which can
help sellers accurately track real-time inventory levels and coordinate different stores (IBM 2021). In
luxury retail, Zegna adopted a series of Oracle Retail solutions, through which, Zegna not only gains
convenient access to real-time inventory data but can also offer in-store services, including shipping
products from other locations or scheduling in-store pickups (Spicer 2023).

The advancement of inventory tracking systems has provided sellers with the capability to recom-
mend products from other stores. In practice, two main recommendation strategies have emerged.
The first strategy is known as simultaneous offering strategy. With this approach, when a customer
arrives at a store, the seller presents the assortment of products available in both the current store
and other stores simultaneously. The customer is then able to choose from all the products, including
those in the current store as well as those in other stores. This strategy has been widely implemented
in the retail industry, where retailers utilize in-store kiosks or tablets to allow customers to browse
and virtually explore products from other stores before making a purchase decision. For example,
smart mirrors equipped with interactive displays can enable customers to access a wider range of
products, such as makeup, hats, jewelry, eyewear, clothing, and shoes, even if these products are not
physically present in the store they are visiting. Figure 1 provides an illustrative example, showcas-
ing how full-length mirrors can allow customers to use swiping gestures to browse Superdry’s new
collection of winter apparel (Ferrandez 2022) in other stores.

Alternatively, the seller can adopt sequential offering strategy, where they initially present the
assortment of products available in the current store to the customer. Only if the customer shows
no interest in purchasing from the current store would the seller proceed to show products offered
in other stores. This strategy allows the seller to first focus on promoting and selling the products
within the current store before expanding the options to products in other locations. In practice,
advanced technologies can assist retailers in detecting customers’ inclination to leave without mak-
ing a purchase. For instance, beacon technology utilizing Bluetooth Low Energy (BLE) can detect
customers’ presence and proximity to specific areas within the store (Beacon 2023). Retailers can

utilize beacons to send targeted push notifications to customers’ smartphones when they are near
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Figure 1 Superdry’s smart mirror

the exit. Such a strategy can also be implemented with the help of a salesperson. Consider the sce-
nario of high-end retail stores that specialize in selling watches, fine jewelry, or luxury handbags.
Typically, there is a salesperson who interacts with customers and makes product recommendations
based on their needs. In this process, the salesperson may initially suggest products available in the
current store since each store may have its own sales target. Only if the customer shows no interest in
the current store’s offerings would the salesperson recommend products from other stores under the
same brand to retain the customer. In such a scenario, implementing a sequential offering strategy is
natural and straightforward, particularly after providing the salesperson with appropriate training.

Undoubtedly, the flexibility provided by the above two strategies has the potential to bring con-
venience to customers and benefits to the seller. However, there are also significant challenges in the
implementation process. One of the fundamental challenges is to decide what products to offer in
each store. In the revenue management literature, this challenge is often known as the assortment
planning problem, which aims to find the optimal set of products to offer with the goal of revenue
maximization. The second challenge is to decide on a simultaneous or sequential recommendation
strategy. Because the products offered in one store may affect customer purchase behavior in other
stores, the presence of the second challenge further complicates the assortment planning decisions in
each store. To our knowledge, no study has attempted to address these challenges. This paper fills
the gap in the literature by answering the following questions:

1. Which offering strategy (simultaneous or sequential) is more beneficial to the seller?

2. Under each offering strategy, what is the optimal assortment decision in each store?

3. How does the optimal assortment decision depend on customer characteristics?

To answer these questions, we build a stylized model to analyze the two offering strategies in a

multi-store retailing setting. Specifically, we consider a seller that operates m physical stores and sells
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n substitutable products to a group of customers, each of whom may purchase at most one product.
Each store is visited by a fraction of customers, with the total number of customers normalized to 1.
In the simultaneous offering strategy, when a customer visits store ¢, she observes the products offered
in both store ¢ and the other m — 1 stores simultaneously. If the customer chooses a product in the
current store, she receives the full utility. However, if the customer chooses a product in another store,
then her utility suffers a discount, which can be attributed to a delivery fee, waiting cost, or traveling
cost. The customer chooses a product (or chooses not to purchase) according to a multinomial logit
(MNL) choice model. For the sequential offering strategy, a customer visiting store i is first presented
with the set of products in store ¢ only. If she decides not to purchase any of them, then the seller
subsequently presents the products available in all other stores to the customer.

We first study the optimal assortment decision under the simultaneous offering strategy. We find
that the optimal assortment decision is simply to offer the optimal assortment when each store oper-
ates independently, for which it is known that a revenue-ordered assortment is optimal. Therefore,
under the simultaneous offering strategy, the seller cannot do better than operating each store sep-
arately. In other words, the coordination between stores cannot generate additional benefits for the
seller. The reason for this somewhat surprising result is as follows. On the one hand, the introduction
of the assortments in other stores can recapture the lost demand in the current store. On the other
hand, it also diverts customers from purchasing the high-priced products in the current store to pur-
chasing the low-priced products in other stores. It turns out that the cannibalization effect always
dominates under this strategy. Thus, it is optimal to offer the same revenue-ordered assortment in
each store, as this can eliminate the cannibalization effect.

However, the situation differs considerably if the seller adopts the sequential offering strategy.
We show that the sequential offering strategy under multi-store retailing always brings the seller
higher revenue than operating each store separately. However, it is difficult to analyze the optimal
assortment decisions in general, which is established to be an NP-hard problem. Therefore, we aim to
explore the structural properties of the optimal assortments under certain conditions. We show that
if the utility discounts (incurred when customers purchase from other stores) are homogeneous across
all stores and all products, then revenue-ordered assortments are still optimal. More importantly, we
find that the store with a relatively lower (higher, resp.) demand should offer an assortment larger
(smaller, resp.) than the optimal assortment when each store operates separately. To understand the
rationale, consider an example with two stores. If customers are not interested in products in the
current store, the store (offering a smaller assortment) has a second selling opportunity by offering
products in the other store, while the other store sacrifices its own revenue by offering a larger
assortment. Therefore, the seller faces a trade-off between increasing the revenue of one store by

implementing a two-step selling process and sacrificing the revenue of the other store by offering a
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larger assortment to facilitate the two-step selling process for the first store. Intuitively, the seller
can exploit the largest benefit by implementing a two-step selling process in a higher-demand store
and minimizing the sacrifice by offering a larger assortment in the other store.

We also study the impact of the model parameters, including the arrival fraction and utility
discount, on the optimal assortments and revenue when the utility discounts are homogeneous. Given
a fixed market size, we find that when the arrival rates of the stores are more differentiated, the
total expected revenue is higher and, correspondingly, the optimal assortment of the store with a
higher demand becomes smaller. Not surprisingly, the total expected revenue decreases in the utility
discount. However, the size of the optimal assortments may not change monotonically with the utility
discount.

We then compare the two strategies in terms of the seller’s revenue and consumer surplus. We
find that the sequential offering strategy always generates higher revenue than the simultaneous
strategy. As discussed above, because of the cannibalization effect, the simultaneous strategy cannot
perform better than operating each store separately (called the benchmark). However, the sequential
strategy consistently outperforms the benchmark. On the negative side, the low-demand store offers
a larger assortment than the benchmark case and cannot implement a two-step selling process for
itself, leading to slightly lower revenue than in the benchmark case. On the positive side, the high-
demand stores offer a smaller assortment to take advantage of the two-step selling process, which
not only captures the lost demand in the first step, but also avoids the cannibalization effect caused
by the low-priced products offered in the second step. This explains why the sequential strategy
always performs better than the simultaneous strategy. However, for the same assortment set, the
simultaneous offering strategy always leads to a higher consumer surplus than the sequential offering
strategy. We also conduct extensive numerical experiments to investigate how model parameters affect
the revenue comparison. We find that the revenue improvement of the sequential offering strategy
over the simultaneous strategy becomes more significant when the arrival fractions of different stores
are more differentiated or the utility discounts are smaller.

We also discuss how our results are related to the omnichannel setting where there exists an online
store that carries the full set of products. We find that under certain conditions, the optimal assort-
ments in all physical stores are still revenue-ordered for both strategies. Moreover, the introduction
of the online channel enlarges the size of the assortment in physical stores under the simultaneous
offering strategy. In contrast, the assortment size under the sequential offering strategy is smaller
than that when each store operates separately. This is because, in the two-step selling process, the
physical store would like to keep the high-priced products only since it can leverage the capability

to recapture the lost demand. In terms of the seller’s revenue, the sequential offering strategy still



Author: Optimal Assortment Recommendation in Multi-Store Retailing
6 Article submitted to Manufacturing & Service Operations Management; manuscript no. MSOM-XXXX-XXXX. XX

performs better than the simultaneous offering strategy, consistent with our main insight in the base
model.

We consider three model extensions afterward. First, we confirm the advantages of the sequential
offering strategy when customers visiting different stores have different valuations of the same prod-
uct. Given the NP-hardness of the assortment problem under the sequential strategy, we provide a
heuristic that yields a theoretical lower bound and good numerical performance. Second, we consider
a capacitated problem in which a cardinality constraint is imposed on the size of the assortment in
each store. We propose an integer programming formulation, conduct extensive numerical experi-
ments, and observe that the sequential offering strategy still performs better than the simultaneous
offering strategy in most spaces of the parameter set, which confirms that our main insight largely
holds in the presence of capacity constraints. Third, we study partial recommendation where the
seller is allowed to offer a subset of other stores’ products to customers. We show that partial rec-
ommendation cannot improve revenue under the simultaneous offering strategy. For the sequential
offering strategy, we conduct extensive numerical experiments and find that partial recommendation
cannot benefit the seller in the vast majority of the cases. For the limited instances where partial
recommendation did provide some benefit, the revenue improvement appears to be quite small. The
overwhelming lack of incremental benefit from partial recommendation simplifies the decision-making
process for sellers.

Finally, we study the joint assortment and pricing problem under both strategies. In this setting,
the seller needs to jointly decide the optimal assortment and prices in each store, and customers
visiting different stores have different price sensitivity parameters. We explicitly characterize the
optimal assortment and pricing decisions under the simultaneous offering strategy. For the sequential
offering strategy, we extend our approximation results in the base model to the new setting. Moreover,
for a special case of the joint problem, we propose an efficient solution algorithm and find that the
sequential offering strategy still outperforms the simultaneous offering strategy. Due to the page

limit, we relegate this part to Appendix H.

2. Literature Review

Our work is closely related to three streams of research: assortment optimization, omnichannel retail-

ing, and sequential recommendation. In the following, we review related works in each stream.
Assortment optimization. Assortment optimization is one of the most prominent research direc-

tions in revenue management. It studies the problem of offering a subset of products to customers

to maximize firm profit. The seminal work of Talluri and van Ryzin (2004) studies the assortment

optimization problem under the multinomial logit (MNL) model and shows the optimality of revenue-

ordered assortments. Following Talluri and van Ryzin (2004), there has been a substantial body of
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research on this area under various customer choice models, including the mixed multinomial logit
model (Bront et al. 2009, Rusmevichientong et al. 2014), nested logit models (Davis et al. 2014, Gal-
lego and Topaloglu 2014), Markov chain choice models (Blanchet et al. 2016, Feldman and Topaloglu
2017), consider-then-choose choice models (Wang and Sahin 2018), multi-stage choice models (Gao
et al. 2021). We also adopt the MNL model to characterize customers’ purchasing decisions regarding
substitutable products. A major difference is that the decision in the above studies is to optimize
the assortment for a single store. In contrast, the seller in our model operates multiple stores and
makes assortment decisions for all stores jointly. The coordination between different stores allows
customers who visit one store to make a purchase in other stores, which is a key feature in our model.
Such coordination substantially affects assortment decisions and presents considerable challenges to
analyzing the problem.

Some recent works also study joint assortment planning problems. For example, Xu and Wang
(2023) study a multi-stage assortment optimization problem where the seller sequentially decides
the assortment offered in each stage with commitment. Wang (2022) proposes a hybrid model to
characterize customers’ sequential and simultaneous choice behavior with search cost, and analyzes
the corresponding assortment and pricing problem. This strand of research usually assumes that
the assortment decisions are made sequentially for a single store. However, the seller in our model
needs to centrally decide the assortment in each store simultaneously by taking into account the
interactions between different stores. While Chen et al. (2024) examine a personalized assortment
planning problem where the retailer recommends add-ons after customers select the primary item,
our analysis differs by focusing on the recommendation strategies for primary item assortments across
multiple stores, rather than add-ons.

Omnichannel retailing. Our work is also closely related to the literature on omnichannel retail-
ing. Omnichannel retailing is a new business mode that integrates both offline and online channels.
It has received considerable attention from operations management scholars. Within the context of
omnichannel retaling, Gao and Su (2017a) study how the “buy online and pick-up in store” option
affects store operations in the presence of strategic customers. Gao and Su (2017b) investigate three
information mechanisms to analyze how retailers can effectively deliver online and offline informa-
tion to omnichannel customers. Harsha et al. (2019) develop omnichannel pricing solutions given
that customers navigate across channels to maximize the value of their purchases. Gao et al. (2022)
quantify the performance of online booking limit algorithms in the context of omnichannel fulfillment
to answer the question of when to fulfill online orders using in-store inventory. Different from these
works, our paper focuses on assortment decisions in a multi-store environment where customers are
offered the assortments in different stores either simultaneously or sequentially, and we compare the

performance of different offering strategies.
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There has been an emergence of research on omnichannel assortment planning problems in recent
years. For example, Dzyabura and Jagabathula (2018) analyze the problem of determining the assort-
ment of products to showcase in the offline channel to maximize the profit from both offline and
online channels. Lo and Topaloglu (2022) examine a similar problem by introducing a features tree
to organize products by features. In both works, the seller’s decision is only the offline assortment,
and the interaction is unilateral from offline to online. In contrast, the seller in our model needs to
decide the assortments for all stores, where the interaction between each pair of stores is bilateral.
Chen et al. (2022) study a problem where a seller running an online channel plans to open physical
stores in multiple locations. The seller needs to decide the location and product assortment jointly for
each physical store by considering the impact of physical stores on the online channel. Different from
our model, no customers are allowed to purchase from other physical stores, and the assortments
in physical stores affect the online channel unilaterally. Moreover, our paper differs from the above
works by comparing simultaneous and sequential recommendation strategies to identify the optimal
selling mechanism, which is not studied in the above literature. We also discuss how our results can
be related to the omnichannel setting.

Sequential recommendation. Finally, our work is also related to the study of sequential rec-
ommendation mechanisms in the revenue management literature. In the retail industry, sellers may
recommend products in multiple stages or pages sequentially. Accordingly, customers evaluate the
products and make purchase decisions sequentially. Gallego et al. (2020) consider a product framing
model, in which the customer decides on the number of pages to view based on an exogenous dis-
tribution and selects from a consideration set consisting of products only on these pages. Gao et al.
(2021) assume that an impatient customer views the product assortment starting from the first page.
If the customer does not choose any product on the current page, then she continues to view the
next page as long as her patience does not run out. Liu et al. (2020) and Feldman and Segev (2022)
consider an assortment optimization problem where the seller offers a new assortment of products in
each stage. Similar to the above literature, our work also analyzes a sequential offering strategy such
that the products in other stores are offered subsequently if the customer is not interested in the
products offered in the first store. However, their model dynamics unfold sequentially starting from
the first page/stage. In contrast, different stores in our model are visited simultaneously by different
customers as their first choice. That is, each store is the first choice for some customers but not for

others.

3. Model Overview

We consider a multi-store assortment planning problem where a single seller operates m stores and

sells n substitute products to infinitesimal customers. The market size is normalized to 1, and we
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assume that a fraction \; of customers visit store i € {1,2,...,m}, where \; >0 and > A\, =1. We
use N =1{1,2,...,n} to denote the full set of products. The revenue for each product k € N is denoted
by r,. Without loss of generality, we assume ry > ry > --- > r,. The intrinsic utility of product k
is denoted by wuy, and we let v, = exp(uy) and call vy, attraction value.! Moreover, we assume that
there is an outside option 0 with utility ug =0. We use S; to denote the set of products offered in
store i and S = (S, 5s,...,5,,) to denote the assortment planning decisions for all stores. We also
let S=5,US,U---US,, denote the union set of offered products. If a customer visits store ¢ and
is not interested in any product in S;, then she may purchase a product in S\ S;.2 However, in this
case, the customer suffers a utility discount for this product, which is attributed to the delivery cost
and/or waiting time. We use cf; >0 for all 4,j € [m] and k € [n] to denote the utility discount when
a customer visits store ¢ but eventually purchases product k from store j. We assume cf, =0 for all
i € [m] and k € [n], i.e., there is no utility discount if a customer purchases a product from the initial
store she visits. Sections 3.1 and 3.2 introduce two models with different selling mechanisms within
this framework, a simultaneous recommendation (SMR) model and a sequential recommendation

(SQR) model, respectively.

3.1. Simultaneous Recommendation Model

In the SMR model, when a customer visits store ¢, the seller presents to her both the products
offered in store i (i.e., S;) and products not offered in store i but offered in other stores (i.e., S\ S;)
stmultaneously. Figure 2(a) depicts the customer’s decision process under the SMR model, where all
products (S; and S\ S;) are offered simultaneously for consideration. We adopt a random utility
model to characterize the customer’s utility for each choice. Specifically, if the customer visiting store
1 decides to purchase product k& where k € S;, then she receives a utility wu + ¢;; for this product,
where ¢, is a random variable capturing customers’ idiosyncrasies toward different alternatives. If
the customer decides to purchase product k where k € S\ S;, then she purchases from the store that
leads to the least utility discount and thus receives a utility u, — minjegres, cfj + €. To simplify

the notation, we let ¢f(8) =minjeres,) cf; if {I|k € Si} #0 and ¢f(S) = oo otherwise.

! Section 7.1 considers a more general case in which the same product has different attraction values in different
stores.

2 Throughout the paper, we use she/her to refer to the customer and he/his to refer to the seller.
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Figure 2 Customer’s decision process under the two models

We assume that customer choice behavior follows the MNL choice model. That is, €;, follows
independent and identical Gumbel distributions with scale parameter 1. Then, for each store 7, given

S =(S1,...,Sn), the choice probability of product k is:

v . ‘
1+Zl€Si Ul+Zleg\5i v exp(fcé(S)) if ke Sz,
ok _ B
Pic(S) = wop e (5) if ke S\S;, (1)

1+Elesz~ UH'ZleS‘\Si v exXp (_Cé(s))

0 otherwise,

where the superscript M in p} (S) refers to the SMR model.
The goal of the seller is to decide the optimal assortment S = (Si,...,S,,) to maximize the total
expected revenue. Therefore, the optimization problem for the seller under the SMR model is formu-

lated as follows:

. M M is given i
S:(SII,I}‘?E;,).(..,S,,L) Z)\ZZrkpzk (S), where pj; (S) is given in (1). (SMR)

i=1 k=1

3.2. Sequential Recommendation Model

In the SMR model, the customer is presented with all products that are available in at least one of
the stores simultaneously. However, in practice, the seller may first present the products available in
the current store only, and then show the products in other stores if the customer is not interested
in any product in the current store. The sequential recommendation model considers such a two-step
selling mechanism. Specifically, when a customer visits store ¢, her initial consideration set includes
the products offered in store i (i.e., S;) only.® If she purchases a product in S;, then she leaves the

market. If she decides not to purchase any of the products in S;, then the seller shows the products

3 We assume that the customer is not strategic, i.e., she cannot anticipate whether and what products in other stores
will be offered when deciding whether or not to purchase in the current store. Such an assumption is reasonable since
customers who visit physical stores directly typically do not have information about products in other stores.
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not offered in store i but offered in other stores (i.e., S\ S;) for her consideration.* Figure 2(b) depicts
the customer’s decision process under the SQR model, where the two sets of products (S; and S\ S;)
are offered to the customer sequentially.

When the customer evaluates the products in .S;, the random part of the outside option, namely,
the value of €;9, will be realized. We assume that if the customer decides not to purchase any product
from S; (meaning that uy + €;, < ug+ € for all k € S;), €;0 will not be re-sampled when she evaluates
the products in S\ S;. When she further considers the products in S\ S;, she chooses the product
I such that u; — ci(S) + €; achieves the maximal utility among S\ S; and u; — cL(8) + €5 > ug + €50.
This choice process is consistent with the impatient MNL model in Gao et al. (2021). Following the
same analysis as in Gao et al. (2021), for a fixed S = (51, ...,S,,), the choice probability of product k
for the customer visiting store 4 initially (which we denote by pl-Qk (S), where the superscript @ refers

to the SQR model) is given in the following proposition.
PROPOSITION 1. (Gao et al. 2021) The choice probabilities under the SQR model are given as

Vi 3 .
[ S if kes;,

Qg = v exp(—c; (5)) ; S\ S, 2
pzk( ) (1+Zl65i Ul)(1+zlesi ”l+zle§\si v cxp(—Cé(S))) ka c S\SU ( )

0 otherwise.

The seller’s optimization problem under the SQR model is then formulated as follows:

max Z/\inkng(S), where p2(8S) is given in (2). (SQR)
k=1

§=(51,52,..-,5m) —1

Observe that the main difference between the SMR and SQR models is the seller’s recommendation
strategy, i.e., simultaneous offering versus sequential offering. In the following sections, we first analyze
the assortment optimization problem under each model and then compare the seller’s revenue to
shed light on the optimal assortment recommendation strategy.

To facilitate our discussions, we define the following single-store problem:

Zkes Tk Uk (3)

R =max .
S ]‘+ZkeSvk

We denote the optimal solution to problem (3) by S. We call S a revenue-ordered assortment if

S={1,2,...,k} for some k € [n]. According to Talluri and van Ryzin (2004), at least one revenue-

ordered assortment is optimal for problem (3). If there are multiple optimal solutions, then we choose
S.

the smallest revenue-ordered assortment as

4 In practice, if customers are not interested in products in the current store, then the products in all other stores are
usually recommended simultaneously instead of sequentially, especially when customers have limited patience. This
is why we focus on a two-step sequential offering strategy instead of more steps. In Section 7.3, we consider a more
general case where the seller is allowed to recommend a subset of the products in other stores.
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4. Analysis of the SMR Model

In this section, we analyze the assortment optimization problem under the SMR model. The optimal

assortment decision for this case is given below.

THEOREM 1. The optimal solution to the SMR problem is given by 8* = (S, S, .. 5 9).

The above theorem states that the optimal assortment decision is simply to offer the single-store
optimal assortment in each store. Note that there is no cross-selling under this recommendation
strategy. We can then conclude that the seller cannot do better than operating each store separately
if he chooses to adopt the simultaneous offering strategy.® Hereafter, we refer to the optimal revenue
that can be achieved when each store operates separately as the benchmark.

Below, we provide a proof sketch for Theorem 1, which can help us understand the rationale behind
Theorem 1 better. There are three main steps:

Step 1: We consider a simpler case with two stores only (store 1 and store 2), which we call a
two-store optimization problem. Suppose that store 2 offers S,. We first focus on the revenue of store

1

1. We let ¢* =c¥, for any k € [n] and denote ¢ = (c!,...,c"). Then, store 1’s optimization problem

becomes

A ZkeSl Tk + ZkeSQ\Sl 73U, - exp (—c")
max  R(S1,¢) = .
Sl QN 1 + Zkesl /Uk _I_ ZkESQ\Sl Uk : eXp (_C )

We show that at optimality, each product in S; has a higher price than the expected revenue of store

(4)

1 in (4), which is a weighted average of the revenue accrued from S; and the revenue accrued from
S5\ S1. Otherwise (if there is a lower-priced product in S;), the expected revenue of store 1 in (4)
can be improved by removing that product from S;.

Step 2: We show that the optimal objective value of problem (4) under any ¢ is bounded above by
the optimal objective value when ¢ = (00,...,00). At first glance, this result is somewhat surprising
because the introduction of S, recaptures some lost demand in store 1 compared with when store
1 operates independently. However, because of the introduction of S, some customers switch from
purchasing the high-priced products in S; to purchasing the low-priced products in Sy \ S;. Such
“switch and buy down” behavior (which is a form of cannibalization) decreases store 1’s revenue
and outweighs the positive effect of recapturing the lost demand. Accordingly, when ¢ = (o0, ..., 0),
the cannibalization effect is eliminated, and store 1’s revenue in (4) is maximized. The same logic
applies to store 2’s problem. Hence, we establish that both stores achieve the highest revenue when
¢ = (00,...,00). That is, the coordination between the two stores does not benefit the seller under the
SMR strategy, and each store should offer the same assortment as when they operate independently.
5 The result in Theorem 1 is obtained when there is no capacity constraint on stores. If there are capacity constraints,

then the optimal assortments may differ across stores. More importantly, it can lead to higher revenue than when
each store operates separately (we give one such example in Appendix E.1).
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Step 3: We generalize the above analysis and conclusion to the problem with multiple stores.
The idea is that we view stores {2,...,m} as a “proxy” store 2 and reduce the general problem to
a two-store problem with store 1 and store 2; see Figure 3. For any assortment set (S1,52,...,5m),
we denote S5 =S, US3U---US,, and h* =minjeqres, i=2,....m} ¢;;- Then, store 1’s problem can be
expressed as (4) by replacing Sy with S5 and ¢* with h*. Following the analysis in Steps 1 and 2, the
highest revenue in store 1 is achieved when h* = co for any k € [n]. The same logic applies to other

stores. This establishes the result in Theorem 1.

Store 1

S —————

_________________________________________

k
Store 1 m Store 2

Figure 3  lllustration of Step 3

In the following, we discuss how our results are related to the omnichannel setting, in which there
exists an online store that carries the full set of products. Without loss of generality, we assume that
store m is the online store with S,, =N and stores {1,2,...,m — 1} are physical stores. We are
interested in the optimal assortments for the physical stores. We first remark that in the presence
of the online store, the optimal assortment in each physical store may not be identical and revenue-
ordered, as is indicated by an example in Appendix E.2. However, under some mild conditions on

the utility discounts, the following proposition holds.

PROPOSITION 2. For the ommnichannel setting, i.e., S, = N, if & =c* >0 for each i €

{1,2,...,m—1} and k € [n], then the optimal assortments in the first m — 1 stores are identical and

revenue-ordered. Moreover, the optimal assortment is larger than S.

Proposition 2 shows that under certain conditions, the optimal assortments in the physical stores
are still revenue-ordered. However, the assortment size is larger than that when each store operates
separately, which means that the introduction of the online channel enlarges the product selection in
physical stores. The underlying rationale is as follows. As argued in Step 1 above, for each physical
store, all products with prices above the store’s expected revenue should be included in the optimal
assortment, because otherwise, the physical store can collect more revenue by adding that product

to its assortment. Given that an online store offers the whole product set, the expected revenue of
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each physical store becomes lower due to the cannibalization effect. Therefore, more products should

be included in the optimal assortment.

5. Analysis of the SQR Model

Section 4 shows that under the SMR model, the seller cannot do better than the benchmark. That
is, the coordination between different stores does not benefit the seller. However, the situation is
different under the SQR model. We start with the following example.

ExAMPLE 1. Consider a problem with two stores and three products with (ry,79,73) = (1.8,1.1,1).
The arrival fractions are (A1, A2) = (0.5,0.5). The attraction values are (vy,vs,v3) = (1.2,1.7,2). For
any i,j € [m],i# j and k € [n], we set ¢}, = 1. One can verify that the optimal solution to the SQR
model is {{1},{1,2,3}}, which generates a total revenue of 1.0928. However, for the benchmark (as
well as the SMR model), the optimal solution is {{1,2},{1,2}} and the corresponding total revenue
is 1.0333. By adopting the SQR selling mechanism, the seller can increase the revenue by over 5%
relative to the benchmark. The rationale behind this improvement is as follows. Note that product 3
brings a higher utility than products 1 and 2, so offering product 3 will shift customer demand from
products 1 and 2 to product 3 whose price is the lowest. As a result, it is never optimal to include
product 3 in the benchmark. One can also verify that for the benchmark, the revenues contributed by
store 1 and store 2 are both 0.517. For the SQR model, the revenues contributed by store 1 and store
2 are 0.582 and 0.511, respectively. Compared with the benchmark, the revenue of store 2 decreases
slightly because it offers a larger assortment than the single-store optimal assortment. However, the
revenue of store 1 increases significantly, which is attributed to the benefit of implementing a two-step
selling process. Specifically, customers who visit store 1 will be presented with product 1 only. Only
if they decide not to purchase product 1, will store 1 recommend products 2 and 3. In this sequential
process, products 2 and 3 will not shift customer demand away from product 1 (with a relatively
higher price) but can recapture the lost demand from customers who do not purchase product 1.
Overall, the revenue improvement in store 1 dominates the revenue loss in store 2, leading to a higher
total revenue compared with the benchmark. O

Having observed the potential of the SQR strategy, this section analyzes the assortment optimiza-
tion problem under the SQR model. The following proposition states that for general cfj’s, the SQR
problem is NP-hard. This result sets a boundary between the solvable and intractable cases under

the SQR model.
PROPOSITION 3. For general utility discounts cfj ’s, the SQR problem is NP-hard.

Given the NP-hardness of the general SQR problem, we aim to explore the structural properties

of the optimal assortments under certain conditions. We find that when the utility discounts are
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homogeneous across all stores and all products, revenue-ordered assortments are still optimal, based
on which an efficient algorithm can be designed to find the optimal assortments. Moreover, the
optimal strategy is to offer a larger assortment in the store with the lowest demand and smaller
assortments in other stores. Finally, we investigate the impacts of the arrival fraction and utility

discount on the optimal assortment and expected revenue.

5.1. Two-Store Problem

We start with a simpler case with two stores only, from which we derive important insights and lay
the foundation for the analysis of the case with multiple stores. In the two-store case, we assume
that a fraction A of customers visit store 1 and the remaining customers visit store 2. According to

the probability equation (2), the problem can be formulated as follows:

max R(S,,Ss) Ay ZkeSl Tk Uk A Zkesz\sl Ty - exp (—ck,)

S1,S2 1+Zk65‘1 Uk (1+Zk65’1 vk)(1+2k651 Uk+2k652\51 Uk - €Xp (_C]fQ))
+(1-N) Skesiys, TEVR XD (—ch) |
(1+2 ke, vn) (L4 D kes, Ve + D2 kes;\s, U - XP (—¢51))

Even for the problem with two stores, the analysis of the optimal assortments is complex. This

()

complexity arises because the assortment in one store affects the expected revenue of the other store
in a complicated way. To simplify the analysis, we make the following assumption regarding the utility
discounts. We say that the utility discounts are universally homogeneous if cfj = ¢ with ¢> 0 holds
for any 7,7 € [m],i# j and k € [n]. This assumption requires the utility discounts to be homogeneous
across all stores and all products, which is reasonable in practice. For example, if the utility discounts
are attributed to the shipping cost, then the shipping costs between different stores in a certain region
are similar. We find that when the utility discounts are universally homogeneous, revenue-ordered

assortments are optimal to problem (5).

THEOREM 2. Suppose the utility discounts are universally homogeneous. Then, there exists an
optimal solution (S7,S5) to problem (5) such that ST and S; are both revenue-ordered. Moreover,

when 0 < X < 0.5, we have S;QS’QS{; when 0.5 <A <1, we have S{‘QS’QS;.

For the SQR problem with two stores, if the goal is to maximize the revenue of store 1 only, then
the seller has the incentive to set S; C Sy to facilitate a two-step selling for store 1; that is, the
products in S, \ S; will be recommended to customers in store 1 if they decide not to purchase any
product in S7. However, this will sacrifice the revenue of store 2 because there is no sequential selling
to customers in store 2, and the assortment S, performs worse than S, when store 2 cannot take
advantage of the interaction with store 1. Therefore, the seller faces a trade-off between increasing the
revenue of one store by first offering a smaller assortment then later presenting a larger assortment

from the other store, and reducing the revenue of the other store by offering the larger assortment.
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Figure 4 lllustration of the proof idea in Theorem 2

The results of Theorem 2 suggest that the optimal recommendation strategy is to facilitate a two-step
selling process for the high-demand store and reduce the sacrifice of the low-demand store. As shown
in Example 1, such a differentiated offering strategy could bring benefits to the seller, even when the
arrival fractions of customers are the same for the two stores.

Now we present a sketch of the proof for Theorem 2, which can help us understand the rationale
behind the results better. Note that when the utility discounts are universally homogeneous, we can

simplify problem (5) as follows:

AL W(S) BW (S \ 51)
B RO ) ST T TV T+ V(S + BV (5. S1) (6)
W(S,) BW(S1\ S2)
+(1— )\)W(SQ) +(1-2) (14+V(S2)(1+V(S)+BV(S1\Ss))’

where V(S) =3, cqvk, W(S) =D ,cqTkUk, and 8 =exp(—c) with 0 < < 1. Note that the cases

when 0 < A <0.5 and 0.5 < A <1 are symmetric, so we assume 0.5 < A <1 hereafter. There are three

main steps to establish the results in Theorem 2.5

Step 1: We show that there exists an optimal solution (S7,S3) to problem (6) such that S7 C S;.
That is, the store with a lower (higher) demand should offer a larger (smaller) assortment. Before
proceeding, we briefly explain the idea behind the proof of the inclusion property. Given any
solution (.S7,S3), the union set of products S; U S, can be partitioned into three subsets, i.e.,
S1 NSy, S1\ Sz, and Sy \ S;. As shown in Figure 4, for each subset, we merge all products into
one proxy product; specifically, we refer to S; NS, as product 1, S; \ S, as product 2, and S, \ Sy
as product 3. Now, with these proxy products, we can simply express the assortments of store
1 and store 2 as S = {1,2} and S, = {1, 3}, respectively. Denote the revenues and attraction
values of the three proxy products as R;, Ry, R3 and Vi, V5, Vs, respectively. We can show that
if R, > Rs, then the assortment set {{1,2},{1,3}} is dominated by either {{1},{1,2,3}} or
{{1,2},{1,2,3}}. Otherwise (i.e., if Ry < R3), the assortment set {{1,2},{1,3}} is dominated

6 These three steps also summarize the essence of the proof for Theorem 4, which extends the results in Theorem 2
to the m-store problem where the utility discounts are not universally homogeneous.
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by either {{1},{1,2,3}} or {{1,3},{1,2,3}}. Therefore, there must exist an optimal solution in
which the inclusion property S; C S, holds.
Step 2: With S; \ Sy =0, problem (6) can be simplified as

W(S1) i\ BW (S2\ S1)

max A W)
$1.52:51C% 14+ V(S)) T (1+V(S)1+V(S)) +BV(Sy\ Sh))

1+ V(Sz) .

+(1-2MX) (7)

For problem (7), we first analyze the case in which S, is fixed, under which problem (7) reduces

to the following single-store assortment optimization problem for store 1:

A W(S) BW (S5 \ Sy)
omax,  R(S) = 11V T A+ VSV S +AV(S\ 51 ®

We can show that there exists a revenue-ordered (with respect to products in S>) assortment
that is optimal to problem (8). Based on this result, we prove that there exists an optimal
solution (S},S3) to problem (7) such that S; and S5 are both revenue-ordered. The proof idea
is similar to the merge operation discussed in Step 1.

Step 3: We show that for the aforementioned optimal solution (S, S3), the property S; C S C Si
holds. That is, the store with a lower (higher) demand should offer a larger (smaller) assortment
than the optimal assortment in the benchmark. Combining these three steps, we establish the

results in Theorem 2.

5.2. m-Store Problem

We now generalize the results in Theorem 2 to the case of m stores, where m > 2.

THEOREM 3. Suppose that the utility discounts are universally homogeneous. Assume that \,, =
min{ Ay, ..., Ay}, then there exists an optimal solution (S7,Ss,...,S%) to the SQR problem such that
Sr=8;=...=8% | CSCS* and S; and S*, are both revenue-ordered.

Theorem 3 states that when the utility discounts are universally homogeneous, the optimal assort-
ment recommendation strategy with m stores is to offer a larger assortment in the store with the
smallest customer arrival fraction and smaller assortments in all the stores. Additionally, the assort-
ments in all other stores should be identical. The rationale behind this result is as follows. In the
two-store problem, as shown in Theorem 2, the store with a lower demand should sacrifice its rev-
enue by offering a larger assortment than S to facilitate a two-step selling process for the store with
a higher demand. Extending this argument to the problem with m stores, we choose to sacrifice
the revenue of store m (because of its lowest demand) and boost the revenue of other stores. Note
that because of the universally homogeneous disutility, customers in the first m — 1 stores will not
purchase from each other because they can always purchase from store m, which offers the largest

assortment. Hence, it is not necessary to offer different assortments in the first m — 1 stores. Because
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Sy and S}, are both revenue-ordered with S; C S | efficient algorithms can be proposed to solve the
general SQR problem when the utility discounts are universally homogeneous.

Finally, it is worth noting that the condition in Theorem 3 can be generalized. We say that the
utility discounts are store-wise homogeneous if cf; = ¢; >0 holds for any i,j € [m],i# j and k € [n].

We obtain the following results.

THEOREM 4. Suppose that the utility discounts are store-wise homogeneous. Assume that A, =
min{Ay, ..., A} and ¢; <cg <--- < ¢, then there exists an optimal solution (S7,Ss,...,S%) to the

SQR problem such that ST CS; C---CS) | C S C Sy and S7,S5,...,5; are all revenue-ordered.

m

Theorem 4 extends the results of Theorem 3 to the scenario where the utility discounts are store-
wise homogeneous. The intuition is as follows. First, when A, = min{\,...,\,,}, as suggested by
Theorem 3, it is more beneficial to offer the largest assortment in store m to facilitate the sequential
selling process for other stores. Additionally, when ¢; < ¢y <--- < ¢,,, the utility discount of store
m’s customers is greater than that of customers in the remaining stores’, which also implies that it
is better to offer the largest assortment in store m. Therefore, these two “forces” align in the same
direction, which leads to the result that S, is the largest. However, unlike the situation in Theorem
3, the utility discounts in the first m — 1 stores are not homogeneous. In fact, the selling process is
the same among the first m — 1 stores: if customers are not interested in any product in the current
store, they will be offered the products in S} . Note that the objective of offering the products in
S in the second step is to recapture the lost demand in the first step, the effectiveness of which
depends on the magnitude of customers’ utility discount. The lower the utility discount, the stronger
the ability to recapture the lost demand. Therefore, compared with store m — 1, store 1 should only
keep the higher priced products in S?, ; to leverage its strong ability to recapture the lost demand.
This explains why store 1 offers the smallest assortment. In the following example, we show that if
the two “forces” act in opposite directions, then the optimal solution may not be revenue-ordered
when the utility discounts are store-wise homogeneous.

ExAMPLE 2. Consider a problem instance with two stores and three products with (ry,ry,73) =
(9,6,5). The arrival fractions are (A1, Ag) = (0.25,0.75). The attraction values are (vy,vq,v3) =
(1,0.5,0.5). The utility discounts are ¢; = c¢j, = 3, = ¢, = 0.5 and ¢y = ¢}, = 3, =3, = 1. For this
problem instance, we have A\; < Ay and ¢; < ¢o. One can verify that the optimal solution to problem
(5) is given by (S7,S5) ={{1,3},{1,2}}, which is not revenue-ordered. O

Before we delve into comparative statics, we discuss how the results of the SQR model can be
applied to the omnichannel setting. We have the following result.

" This assumption is reasonable given that a faraway store may admit a low demand and lead to a high utility discount
for customers in other stores.
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PROPOSITION 4. For the omnichannel setting, i.e., S,, =N, if the utility discounts are store-wise
homogeneous and ¢y < co < -+ < 1, then there exists an optimal solution (S7,S5,...,5% ) to the

yMm—1

SQR problem such that S; CS;C---CS* | CS and S%,S5,...,5% | are all revenue-ordered.

Proposition 4 extends the results in Theorem 4 to the omnichannel setting.® It is intuitive that
when the utility discounts are store-wise homogeneous, the m-store problem under the omnichannel
setting can be reduced to solving a series of two-store problems consisting of a physical store and the
online store, as there is no interaction between different physical stores. In addition, the size of the
optimal assortment in each physical store decreases when the store-specific utility discount becomes
smaller, because in the two-step selling process, the physical store would like to keep the high-priced
product only since it can leverage the increasing capability to recapture the lost demand. This also
explains why the assortment size in each physical store under the SQR model is smaller than that
when each store operates separately, different from the SMR model where the assortment size in each
physical store is larger than the benchmark case. We also note that if the utility discounts are not
store-wise homogeneous, then the structure of the optimal assortment offered in each physical store

could become much more complicated, as indicated by an example in Appendix E.3.

5.3. Comparative Statics

Next, we study the impact of the model parameters, including the arrival fraction and utility discount,
on the optimal assortments and revenue. We focus on the scenario where the utility discounts are
universally homogeneous. By Theorem 3, it suffices to study the case with two stores. We use R, (c)
and R4 (M) to denote the optimal revenue of problem (6) as a function of ¢ and A, respectively
(recall that 8 =exp (—c)). We first study the effect of the utility discount ¢ on the optimal revenue.
Perhaps not surprisingly, 1,(c) is monotonically decreasing in ¢; that is, the total revenue decreases
when the utility discount increases (see Appendix B.8 for a rigorous statement of this result). Recall
that the store with a lower demand should sacrifice its revenue by offering a larger assortment than
S to facilitate a two-step selling process for the store with a higher demand. The revenue of the
store offering a larger assortment is independent of the utility discount c. For the revenue of the
other store, as discussed above, the objective of offering a larger assortment in the second step is to
recapture the lost demand in the first step, the effectiveness of which depends on the magnitude of
customers’ utility discount. The lower the utility discount, the stronger the ability to recapture the
lost demand, and thus the higher the revenue. In one extreme case where ¢ — 0o, Rf)(c) is equivalent
to the benchmark where two stores operate separately. In the other extreme case where ¢ =0, the
benefit of cross-store selling is the largest.

8 We also obtain the result in the omnichannel setting when the utility discounts are universally homogeneous. We
choose not to present this result since it is very similar to Theorem 3.
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Figure b Revenue of three candidate assortments in Example 3

We then study the effect of ¢ on the optimal assortments. Intuitively, when ¢ is small, it is reasonable
to set the assortments in the two stores differently to take advantage of cross-selling. When c is
sufficiently large, the optimal assortments in both stores should be equal to S. Therefore, one may
expect that as ¢ increases, the cardinality of the smaller (larger) assortment will monotonically
increase (decrease), and the optimal assortments will converge to S when ¢ is sufficiently large.
However, the following example shows that this may not be the case.

ExXAMPLE 3. Consider a problem with two stores and three products with (r1,72,73) = (7,6,5).
The arrival fractions are (A;, A2) = (0.5,0.5). The attraction values are (vq,vs2,v3) = (1.1,5.9,6.3).
The utility discounts are universally homogeneous and are denoted by c. Figure 5 plots the total rev-
enue of three candidate assortment decisions when the utility discount ¢ increases from 0 to 1. When
c =1, the utility discount is large and the benefit of cross-selling is small, and thus the optimal assort-
ments in both stores are S = {1,2}, corresponding to the horizontal line. When ¢ decreases to 0.5,
the benefit of cross-selling increases, and the optimal assortment set becomes {{1},{1,2,3}}, corre-
sponding to the starred line. When ¢ decreases to 0, the optimal assortment set becomes {{1},{1,2}},
corresponding to the dotted line. Therefore, the cardinality of the larger assortment S is not mono-
tonically increasing as ¢ decreases from 1 to 0. Note that compared with {1,2}, offering {1,2,3}
in S, lowers store 2’s revenue because {1,2} is the optimal assortment when each store operates
independently. Moreover, it yields two counteracting effects on store 1’s revenue. One is that offering
product 3 can capture store 1 customers who are not interested in products 1 and 2. The other is the
cannibalization effect, as product 3 brings a lower revenue than product 2 and attracts customers
who may purchase product 2 in the absence of product 3. When ¢ is relatively large (e.g., ¢ =0.5), the
positive force dominates the cannibalization effect, making {1,2,3} better than {1,2}. As ¢ decreases

to 0, the cannibalization effect becomes more prominent, and thus it is optimal to offer {1,2}. O

9 Other assortment combinations are never optimal for any 0 < ¢ < 1 and thus are not plotted.
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Figure 6 Impact of arrival fraction )\ on the optimal revenue and assortments of the SQR model.'!

Next, we study the effect of the arrival fraction A on the optimal assortments and revenue. We

have the following proposition.

PROPOSITION 5. Denote the optimal solution to problem (6) by (S7,S3).1° We have:
(a) R5(N) s decreasing in X when X € [0,0.5) and increasing in X when X € (0.5,1]. Moreover,
R§(N) is a piecewise linear and convex function in .

(b) |S7| is weakly decreasing in X when X € [0,0.5) and |S;| is weakly increasing when X\ € (0.5, 1].

We illustrate Proposition 5 using Figure 6. Figure 6(a) plots the optimal revenue of problem (6)
for different values of A\. As shown, the optimal revenue is increasing as the two stores become more
differentiated (in terms of the arrival fraction). Recall that the SQR model offers a larger (smaller)
assortment to the store with a lower (higher) demand, which benefits the store with a higher demand
while sacrificing the revenue of the other. As the two stores become more differentiated, i.e., A
increases from 0.5 to 1, the benefit for store 1 increases because of the growing demand, while the
sacrifice for store 2 decreases because of the declining demand, resulting in an increase in the total
expected revenue. In extreme cases (i.e., A=0 or 1), the total revenue is the largest because we
only focus on customers in one store. That is, we can fully unlock the benefit of the two-step selling
strategy without having to sacrifice any store.

Figures 6(b) and 6(c) plot the cardinalities of the optimal assortments for different values of .
When A € [0,0.5), Figures 6(b) and 6(c) show that |S;| is weakly decreasing, which is consistent with
Proposition 5(b). According to Theorem 2, when X € [0,0.5), we have S; C S C S7. As \ increases,
the cost of offering a sub-optimal assortment in store 1 (deviating from the optimal assortment S
in its own interest) becomes more significant, which explains why [S;| is weakly decreasing and
converges to |S|. However, |S;| may not be increasing when A increases within the range [0,0.5].
10Tf there are multiple solutions at optimality, we choose the solution with the smallest | S| (if |SF] is the same, pick

the one with the smallest |S3|) when A € [0,0.5) and the solution with the smallest |S5| (if |S3]| is the same, pick the
one with the smallest |ST|) when A € (0.5,1].

1 The problem instances for Figure 6 are described in Appendix E.5.
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For example, as A increases from 0.3 to 0.4, |S5| increases from 1 to 2 in Figure 6(c) but decreases
from 2 to 1 in Figure 6(b), while |S}| decreases in both subfigures. Therefore, as the two stores
become less differentiated, i.e., as A increases from 0 to 0.5, the optimal assortment of the low-demand
store (which offers a larger assortment) becomes smaller, while the optimal assortment size of the

high-demand store (which offers a smaller assortment) may increase or decrease.

6. Comparison of the SMR and SQR Strategies

In Sections 4 and 5, we analyze the structure of the optimal assortment decisions under both SMR
and SQR strategies. Now, we compare the two strategies in terms of firm revenue and consumer
surplus.'? We also conduct extensive numerical experiments to investigate how the model parameters

affect the revenue comparison.

THEOREM 5. (a) The SQR strategy always leads to higher revenue than the SMR strategy.
(b) For any given assortment set, the SQR strategy always leads to a lower consumer surplus than

the SMR strategy.

As illustrated in Theorem 1, because of the cannibalization effect, the SMR strategy cannot out-
perform the benchmark where each store operates independently. However, the SQR strategy consis-
tently outperforms the benchmark. The intuition is as follows. Following the logic of Theorem 3, the
store with a lower demand should offer a larger assortment to facilitate a two-step selling process for
the stores with a higher demand. In contrast to the benchmark where each store operates separately,
the high-demand stores offer a smaller assortment that only includes high-priced products. Only if
the customer does not make a purchase will the seller offer her the low-priced products (available in
the low-demand store). In such a two-step process, the lost demand in the first step is subsequently
recaptured by the low-priced product offered in the second step without incurring a cannibaliza-
tion effect. This is different from the SMR strategy and can significantly increase the revenue of
the high-demand stores. On the downside, the low-demand store offers a larger assortment than the
benchmark case and cannot implement a two-step selling for itself, resulting in slightly lower revenue
than in the benchmark case. Overall, the benefit for the high-demand stores (m — 1 stores) outweighs
the revenue loss of the low-demand store (one single store), especially when m is large. Therefore,
the SQR strategy is always better than the benchmark. This explains why the SQR strategy always
leads to higher revenue than the SMR strategy. We note that the same conclusion holds under the
omnichannel setting.

In general, it is difficult to compare the consumer surplus of the two strategies with the optimal

assortments.'> However, we find that for the same assortment set, the SQR strategy always leads

12 Due to the page limit, we relegate the full expressions of consumer surplus under both strategies to Appendix C.1.

13 We give an example in Appendix E.4, where the SQR strategy with the optimal assortments yields a higher
consumer surplus than the SMR strategy with the optimal assortments. Thus, a win-win outcome emerges.
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Al 0.1 0.2 03 | 04 | 05

0.5 |3.58% | 2.73% | 2.08% | 1.63% | 1.26%
1 [3.34% | 2.50% | 1.91% | 1.49% | 1.13%
1.5 |3.05% | 2.30% | 1.73% | 1.42% | 1.12%
2 12.66% |2.08% | 1.58% | 1.21% | 0.99%

Table 1 Effects of arrival fractions and utility discounts on the revenue improvement of SQR over SMR

a

to a lower consumer surplus than the SMR strategy. Under the SQR strategy, many customers are
offered fewer choices in the first step, and they do not have the opportunity to purchase low-priced
products in their first purchasing decisions.

We are also interested in how the model parameters affect the revenue improvement of SQR over
SMR. We conduct numerical experiments to investigate the effects of the arrival fractions and utility
discounts. We restrict our analysis to the case of two stores. We let m =2, n =3, and vary A (the
arrival fraction of store 1) from 0.1 to 0.5 with a step size of 0.1. Moreover, the utility discount
cj; is randomly sampled from a uniform distribution U[0, o, where « is varied from {0.5,1,1.5,2}.
The revenue r; is randomly sampled from U[0,10] and the utility w; is sampled from UJ0,5]. For
each combination of parameters (i.e., A and «), 10,000 problem instances are randomly generated.
Table 1 summarizes the average revenue improvement of SQR over SMR. It shows that the revenue
improvement increases when the arrival fractions of the two stores are more differentiated or the
utility discounts decrease. As the arrival fractions are more differentiated (i.e., A decreases from 0.5
to 0.1), the advantage of the two-step selling mechanism (first offering Sy and then offering S; \ S,
to store 2 customers) becomes more prominent. Recall that the revenue of the SMR strategy is
equal to the benchmark, which is independent of A. Therefore, the revenue improvement of SQR
over SMR becomes more significant when the arrival fractions are more differentiated. Meanwhile,
as the utility discount increases, the benefit of cross-selling in the SQR strategy decreases, leading to
a smaller revenue improvement. This implies that practitioners can enjoy more benefits by adopting
the sequential recommendation strategy when the seller operates a large number of stores or when

the shipping costs (time, resp.) between different stores are relatively low (short, resp.).

7. Extensions

This section considers three model extensions to check the robustness of our main result in the base
model. First, we study the case in which the same product may have different attraction values in
different stores. For example, customers who visit the flagship stores downtown may have a higher
valuation than those who visit outlet stores. To capture that, we use u;, to denote the utility of
purchasing product k in store i and let v;;, = exp(u;;,). We call this case the heterogeneous case. Section

7.1 compares the two strategies under the heterogeneous case. Second, the base model does not
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impose any capacity constraint. However, in practice, because of the limited space in physical stores,
the seller may face capacity constraints when making assortment decisions. Section 7.2 considers the
capacitated case of the base model. Third, in Section 7.3, we consider partial recommendation where

the seller is allowed to offer a subset of other stores’ products, instead of the full product set.

7.1. Heterogeneous Valuation

For the SMR model under the heterogeneous case, the choice probabilities are given by:

Vik ; )
1+Zzesi vmzleg\si V4] €XP (*Cé(s)) if k€ S“
i €X —Clvc . a
p%(S): vk exp (—c; (5)) lfk?ES\Si, (9)

1+Elesi Uil*Zles'\si V5] €Xp (702(5))

0 otherwise,

We define the SMR, problem under the heterogeneous case as follows:

hax i Y rpit(S), where p}l(S) is given in (9). SMR-heter
S=(51,52,--,5m) ; ;::1 kPik (S) P (S) is g (9) ( )

Similarly, for the SQR model under the heterogeneous case, we derive:

ik if ke S;,

43 es; vil

Q8 = vik, exp(—cf (5)) . o\ Q@ 10
pzk( ) (1+El€Si 1)il)(1+zlesi v’il""zleé\si V41 exp(—c,li(S))) if k € S \ S“ ( )

0 otherwise.

We define the SQR problem under the heterogeneous case as follows:

max E)\Z-Zrkpfi(S’), where p(8) is given in (10). (SQR-heter)
k=1

S$=(51,52,...,5m) -
=1

A natural question is whether the SQR strategy still garners higher revenue than the SMR strategy

under the heterogeneous case. We provide an affirmative answer to this question.

PROPOSITION 6. The optimal objective value of the SQR-heter problem is greater than that of the
SMR-heter problem.

Proposition 6 extends Theorem 5 to the heterogeneous case and confirms the robustness of our
main result. Given the advantage of the SQR strategy under the heterogeneous case, we then study
the corresponding assortment optimization problem. According to Proposition 3, the problem is NP-
hard in general and thus we are interested in heuristic solutions with good performance. A naive
idea is to offer the single-store optimal assortment in each store. We denote the optimal revenue
of the SQR-heter problem as Ry, and the revenue of the SQR-heter problem when implementing

(5'1, e, S’m) as Rg . The following proposition shows the performance of such a heuristic.

ProrosiTiON 7. We have Rg > %RZ2 and also identify an instance where the equality holds.
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Proposition 7 states that by offering the single-store optimal assortment in each store, we are
guaranteed to collect at least half of the optimal revenue. It also implies that by adopting the SQR
strategy, the revenue improvement over the benchmark could be as large as twofold. Our numerical
results in Appendix F further indicate that the performance of such a heuristic on the synthesized

data can be much better than the theoretical guarantee.

7.2. Capacity Constraints
This section introduces a cardinality constraint on the offered assortment in each store, i.e., |S;| <
C; for each i =1,...,m, where C; is a positive integer. Then, the SMR and SQR problems with
cardinality constraints can be formulated as follows:
max RM(S) = A ripM(8 SMR-const
o, FIE) =Nl (S) ( )

where p}(S) is given in (9) and

max : R9(S) = Z by Z rp (S) (SQR-const)
=1 k=1

§$=(51,52,...,5m

where pf,i(S’) is given in (10). For tractability, we still assume universally homogeneous utility dis-
counts and propose an integer programming formulation for the SQR-const problem. Note that when

the utility discounts are universally homogeneous, the SQR-const problem has the form

- > kes, TKVik > ked\s, TwUik
max R9(S) = i €5; + €5\5;
Sm) ; <1+ZkESZ Vik (1+ZkESZ ’Uik)(].‘f‘zk,esi vik—f—ZkES‘\Si ’Uik,B)

Due to the page limit, we relegate the detailed derivation of the integer programming formulation
to Appendix G. We note that a similar integer programming formulation can be proposed for the
SMR-const problem.

With the integer programming formulations, we conduct numerical experiments to check the
robustness of our main result. We set the number of stores m = 2 and vary the number of products
n € {3,5,7} and arrival fraction A € {0.1,0.3,0.5}. For simplicity, we let C; = Cy = C and vary the
value of C € {1,2,3}. We assume cfj = ¢ in this case, where ¢ is randomly sampled from UJ0, 1]. The
revenue r; is randomly sampled from U[0,10] and the utility w;; is sampled from U[0,5]. Then, for

each combination of parameters (i.e., n, A, and C), we randomly generate 10,000 problem instances.

For each problem instance, we calculate the optimal revenues of the SMR-~const problem (denoted by
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Revenue improvement of SQR over SMR | Percentage of SQR over SMR
Max Mean Min Ry > Ry, Ry, > Ry,
A=0.1 36.53% 2.82% -2.91% 51.23% 97.48%
C=1|{)1=0.3 24.87% 1.03% -3.22% 31.14% 94.71%
A=0.5 22.45% 0.53% -2.92% 23.07% 92.40%
A=0.1 41.24% 3.49% -0.08% 69.29% 99.98%
n=3C=2|X=0.3 28.14% 2.35% -0.01% 59.99% 99.98%
A=0.5 19.90% 1.81% -0.16% 55.35% 99.98%
A=0.1 35.79% 3.49% 0.00% 69.29% 100.00%
C=3|)1=0.3 32.23% 2.29% 0.00% 59.16% 100.00%
A=0.5 21.59% 1.84% 0.00% 55.90% 100.00%
A=0.1 35.18% 3.15% -2.14% 64.83% 96.87%
C=1|{)1=0.3 26.29% 1.33% -3.99% 45.31% 91.70%
A=0.5 19.89% 0.70% -4.35% 35.43% 88.07%
A=0.1 39.22% 3.90% -0.12% 83.96% 99.90%
n=5C=2|X=0.3 26.62% 2.66% -0.63% 76.82% 99.96%
A=0.5 21.12% 2.29% -0.11% 75.33% 99.95%
A=0.1 36.00% 3.89% 0.00% 84.60% 100.00%
C=3|)1=0.3 31.30% 2.79%% 0.00% 77.30% 100.00%
A=0.5 22.30% 2.33% 0.00% 75.29% 100.00%
A=0.1 32.94% 2.99% -2.15% 70.56% 96.29%
C=1|{)=0.3 27.13% 1.35% -2.91% 52.90% 90.14%
A=0.5 18.70% 0.74% -3.53% 43.28% 85.78%
A=0.1 38.67% 3.74% -0.35% 89.66% 99.91%
n=7C=2|X=0.3 23.68% 2.74% -0.10% 84.96% 99.91%
A=0.5 22.04% 2.24% -0.12% 83.08% 99.91%
A=0.1 39.03% 3.94% 0.00% 90.18% 100.00%
C=3|)1=0.3 25.33% 2.76% 0.00% 85.00% 100.00%
A=0.5 19.48% 2.36% 0.00% 83.99% 100.00%

Table 2  Revenue improvement of SQR over SMR with capacity constraints

Rj;) and SQR-const problem (denoted by Ry,), based on which we calculate the revenue improve-
ment of SQR over SMR (Ry, — R},)/Rj,. Table 2 reports the maximum, mean, and minimum revenue
improvement over all 10,000 problem instances for each combination of parameters. It also reports
the percentage of the problem instances in which the SQR strategy outperforms the SMR strategy.

Table 2 shows that the SQR strategy outperforms the SMR strategy in most spaces of the parame-
ter set. In particular, for each combination of parameters, the percentage of the problem instances in
which the SQR strategy outperforms the SMR strategy exceeds 99.9% when C' > 2. Not surprisingly,
when the imposed cardinality constraints are relatively loose (i.e., when the value of C' is larger),

the revenue improvement of SQR over SMR is more significant because the two strategies act more
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similarly to the unconstrained case. Even for the most extreme case where C'=1, the corresponding
percentage is no less than 90% when the two stores are relatively differentiated (i.e., A <0.3). There-
fore, our main managerial insight that the SQR strategy performs better than the SMR strategy

largely holds in the presence of capacity constraints.

7.3. Partial Recommendation
In the base model, the seller always shows all products in other stores to customers either simulta-
neously or sequentially. In this section, we allow partial recommendations where the seller offers a
subset of other stores’ products to customers. Specifically, for the SMR strategy, for any determined
assortment set S = (Sy,...,S5n,), the customer who visits store 1 can simultaneously evaluate the
products in S; and a subset of other stores’ products 5’1 - \ S1, which is decided by the seller to
maximize the expected revenue in store 1. For the SQR strategy, the customer who visits store 1
first evaluates the products in S; as before. If she does not purchase, then instead of recommending
S \ S1, the seller is allowed to offer a subset S’l cS \ S to maximize the expected revenue.

Note that partial recommendation is a more flexible recommendation policy, which leads to revenue
at least as large as that in the original full recommendation setting. Then, an important question
would be when partial recommendation brings additional benefits to the seller. We have the following

result for the SMR strategy.

ProproSITION 8. Under the SMR strategy, suppose
(a) customers’ valuations of the same product are homogeneous across different stores, then the
optimal partial recommendation strategy equals (S’,S’, ey g), and thus partial recommendation
has no additional benefit in that case.
(b) customers’ valuations of the same product are heterogeneous across different stores, then the
optimal partial recommendation strateqy equals (Sl,gg,...,gm), where S; is the single-store

optimal assortment in store 1.

To understand this result, a key observation is that the optimal revenue under partial recommenda-
tion (homogeneous or heterogeneous) is equal to that under the full recommendation by setting some
of the cfjs to infinity (so that the customer who visits store ¢ cannot view product k in store j). For
the homogeneous case, Theorem 1 has shown that for any cfj (including cfj = 00), the optimal assort-
ment in each store is the same as the single-store optimal assortment. Therefore, the optimal partial
recommendation strategy equals (5’ , S ey S ), which is the same as the optimal full recommendation
strategy and thus admits no revenue improvement. However, for the heterogeneous case, there could
be positive revenue improvement by adopting partial recommendations. In that case, the optimal
partial recommendation strategy follows by offering the single-store optimal assortment in each store

and not recommending products from other stores (if any). We remark that the revenue achieved by



Author: Optimal Assortment Recommendation in Multi-Store Retailing

28 Article submitted to Manufacturing & Service Operations Management; manuscript no. MSOM-XXXX-XXXX.XX
A 0.1 0.2 0.3 0.4 0.5
3 0.13% (4.54%) | 0.21% (6.93%) | 0.26% (10.77%) | 0.3% (11.02%) |0.31% (10.99%)
4 10.15% (4.42%) | 0.25% (8.76%) | 0.32% (10.64%) | 0.36% (10.15%) | 0.35% (11.80%)
5 10.17% (3.97%) | 0.28% (6.22%) | 0.35% (9.31%) | 0.37% (10.87%) | 0.37% (10.47%)
6 |0.18% (4.54%) | 0.27% (7.00%) | 0.33% (9.41%) |0.38% (11.37%) | 0.38% (12.67%)
7 10.17% (4.83%) | 0.26% (8.46%) | 0.32% (9.88%) | 0.37% (10.44%) | 0.38% (10.34%)

Table 3 Summarized statistics of the performance of partial recommendation under the SMR strategy.

the optimal partial recommendation strategy equals the weighted summation of each store’s optimal
single-store revenue, which is still dominated by the SQR strategy. That said, our main result that
the SQR strategy outperforms the SMR strategy is robust against partial recommendation.

We then conduct numerical experiments to examine the magnitude of revenue improvement
brought by partial recommendations under the SQR strategy. We set the number of stores m = 2
and vary the number of products n € {3,4,5,6,7} and arrival fraction A € {0.1,0.2,0.3,0.4,0.5}.
The utility discount ij is randomly sampled from U[0, 1]. Similar to the settings in Section 7.2, the
revenue r; is randomly sampled from U|[0,10] and the utility u;, is sampled from UJ0,5]. For each
combination of parameters (i.e., n, A, and C'), we randomly generate 10,000 problem instances.

Table 3 presents the performance of partial recommendation strategies relative to full recommen-
dation under the SMR strategy. The number reported outside (inside) the bracket indicates the
average (maximum) revenue improvement of the partial recommendation strategy against the full
recommendation. For all combinations of parameters, the average revenue improvement is below
0.5%. One can thus conclude that when partial recommendation is allowed, the potential revenue
improvement for the SMR strategy is not significant.

We then study partial recommendations under the SQR strategy. Suppose that customers’ valua-

tions are heterogeneous. The seller then aims to solve the following bi-level problem:

< 2hes, Tk > res; TRV exp(—ci(S)) )
max Z)\ ‘ma . ; .
1+Zles Vit 8;C8\S; (1—’_2[651- Uil)(l'i_ZleSi Vil +zleSi v exp(—ci(S5)))

In the outer maximization, the seller decides the set of assortments S as before. Then, for a given

(11)

S, the seller needs to solve the following problem for each store i by deciding the optimal assortment

to offer to customers who are not interested in the products in .S;:

> kes, Trvik exp(—c; (S))
_max ; . (12)
sics\s; (L4 Dies, va) (L4 X ies, vie + e, viexp(—ci(S)))

Note that the optimal solution to problem (12) must be revenue-ordered since it can be reduced to the

single-store problem under a regular MNL model. However, it is generally difficult to determine the

optimal solution to (11) even when we restrict our attention to the case where the utility discounts
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a2 0.1 0.2 0.3 0.4 0.5
3 99.92% (0.15%) | 99.96% (0.43%) | 99.97% (0.28%) | 99.93% (0.12%) | 99.95% (0.94%)
4 199.93% (0.32%) | 99.88% (0.30%) | 99.91% (0.21%) | 99.95% (0.55%) | 99.93% (0.33%)
) 99.87% (0.16%) | 99.86% (0.60%) | 99.88% (1.20%) | 99.89% (0.22%) | 99.87% (0.34%)
6 99.81% (0.36%) | 99.83% (0.48%) | 99.86% (0.41%) | 99.90% (0.36%) | 99.77% (0.67%)
7 199.87% (0.34%) | 99.78% (0.60%) | 99.82% (0.69%) | 99.85% (0.27%) | 99.82% (0.21%)

Table 4 Summarized statistics of the performance of partial recommendation under the SQR strategy.

are universally homogeneous. In this regard, we also conduct numerical experiments to examine the
magnitude of revenue improvement brought by partial recommendations under the SQR strategy.
The parameter settings are the same as that of the SMR strategy.

Table 4 presents the performance of partial recommendation strategies relative to full recommen-
dation. The number reported outside the bracket indicates the percentage of problem instances where
partial recommendation failed to improve revenue. Notably, this “no additional benefit” rate is 99.7%
or higher, suggesting that even with heterogeneous valuation, the seller cannot improve revenues by
employing a partial recommendation strategy in the vast majority of cases. For the limited instances
where partial recommendation did provide some benefit, the maximum revenue improvement is
recorded in the bracketed value. However, the gains appear to be quite small. Collectively, these
numerical results partially support that sellers can largely rely on full recommendation strategies in
practice, with no need to heavily prioritize the potential for marginal revenue improvements from
partial recommendation. The overwhelming lack of incremental benefit from partial recommendation

simplifies the decision-making process for sellers in this context.

8. Conclusion

Motivated by the prevalence of operating multiple stores in the retail industry, we study a multi-store
assortment planning problem under two strategies, i.e., simultaneous and sequential offering strate-
gies. We show that under the simultaneous strategy, the seller should offer the optimal assortment
when each store operates separately, which implies that coordination between different stores cannot
benefit the seller. However, if the seller adopts the sequential strategy, the revenue improvement
relative to operating each store separately could be significant. We analyze the structural property
of the optimal assortment under the sequential strategy. We find that under mild conditions, the
optimal assortment is revenue-ordered for each store, while the store with a lower (higher, resp.)
demand should offer a larger (smaller, resp.) assortment to facilitate the sequential selling process.
We also study the impact of model parameters on the optimal assortments and revenue. Finally, we
consider three extensions and study the joint assortment and pricing problem under both strategies,

and we find that our main results are robust in general.
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One may wonder why some retailing industries still adopt the SMR strategy since the SQR strategy
performs better. We provide two possible reasons. First, as discussed in Section 7.2, when capacity
constraints are imposed, the SMR strategy can lead to higher revenue than the SQR strategy in some
cases. Additionally, according to Section 6, for the same assortment set, the SMR strategy always
generates a higher consumer surplus than the SQR strategy. That said, under the SMR strategy,
the customer is better off and thus is more likely to participate in future purchases. Second, the no-
purchase decision of a customer is not easily observed in some cases, which may cause some difficulty
in implementing the SQR strategy. For instance, in the example of beacon technology we mentioned
earlier, the utilization of BLE may not be accurate enough to detect the customer’s instant intention
to leave, and it also runs the risk that the customer may disregard those notifications. In contrast,
it is much more flexible to implement the SMR strategy since it does not require knowing the exact
time when the no-purchase decision is made. To summarize, although the main managerial insight
is that the SQR strategy outperforms the SMR strategy in terms of revenue, we do not rule out the
potential benefits of the SMR strategy in other aspects, which may explain why it is still adopted in
some businesses.

There are several directions for future research. First, we analyze the performance of the two
offering strategies for a monopolistic seller. An immediate follow-up would be to consider the impact
of competition on the performance of the two strategies. Second, it would be interesting to study
the optimal assortment decision when the utility discounts follow a more general structure under
the SQR strategy. Lastly, our paper assumes exogenous arrival rates. In practice, customers may
update their arrival probabilities based on the assortments in different stores and the seller can
adjust the assortment recommendations dynamically. It would be worthwhile to study the optimal

recommendation strategy in this dynamic environment.
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Online Appendix to “Simultaneous vs Sequential: Optimal
Assortment Recommendation in Multi-Store Retailing”

Yicheng Liu, Xiao Alison Chen, Yan Liu, Zizhuo Wang

Here we only provide proofs for main theorems and propositions. Results marked with “(*%*)” can be found

in the full version of the paper via https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4592172.

Appendix A: Proofs for Section 4
We restate store 1’s optimization problem discussed in Section 4 here for clarity.

A Dkes, ThVE D peg,\ s, kUL - €XP (=)
max R(S1,¢) = -
S1EN 1+Zkesl Uk+2kesz\sl vk-exp(—c )

Given ¢, we denote the optimal solution to (A.1) by S%,(¢) and the optimal objective value of (A.1) by

(A1)

R;,(e), respectively. When there are multiple optimal assortments, to simplify the analysis, we focus on the
optimal assortment that is revenue-ordered with the least elements (the existence of such an assortment will
be confirmed by Proposition A.1). For instance, if {1,...,k} and {1,...,k+ 1} are both optimal to problem
(A.1), then we let S;,(e¢)={1,...,k}.

A.1. Proof of Theorem 1

To prove Theorem 1, we need the following two propositions.

PROPOSITION A.1. For any given ¢, there must exist a revenue-ordered assortment that is optimal to

(A.1). Moreover, we have r; > Rj,(¢) if and only if i € S3,(c).

The proof of Proposition A.1 is in Appendix A.2. We then study the effect of the utility discount factor.
Define ¢ > ¢ if ¢/ > & for any j € [n] and there exists at least one i such that ¢! > ¢'. We have the following

proposition.
PROPOSITION A.2. Ife>¢, we have R}, (c) > R}, (€).

The proof of Proposition A.2 is in Appendix A.3. We then offer a formal proof of Theorem 1.
Proof of Theorem 1: For any assortment set S = (S1,S52,...,5,), we denote S5 =S, US3U---US,, and

m} Ch ;- We then consider the following assortment optimization problem under S5 and

,,,,,

P
h = MINje{i|kesy =2

h=(h',h?, ... h"):

max  R(Sy,h) 2 2ok, kU Zkesi\sl "k Uk - OXD (_hk).

SICN 1+Zkesl U’v""Zkesé\sl v - exp (—h*)
Notice that S; is only a feasible solution to problem (A.2). Thus, we must have R(S1,h) < Rj;,;(h) where
R, (h) denotes the optimal objective value of (A.2). Also, due to Proposition A.2, we must have R}, (h) <
R, (R) where h = (00, ..., 00). Therefore, we have R(S;,h) < R%, (h). We notice that R(Sy,h) is the expected

(A.2)

revenue of store 1 under the solution S. We also notice that the solution (5’ ,S,...,8 ) has its expected revenue

for each store equal to R}, (71,) Thus, the revenue obtained in store 1 under S must be less than that under

(S‘ ,-.+,9). Repeat this argument for all stores, we are able to prove Theorem 1. |
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A.2. Proof of Proposition A.1 (x*x)

A.3. Proof of Proposition A.2 (xxx*)

A.4. Proof of Proposition 2

Proof: The proof is quite similar to that of Theorem 1. We first denote the optimal solution to the following

assortment optimization problem as S:

TRV, + TV - exp (—c”
max Ekes kVk Zke/\/\s kYK ( ) (A.3)

SCN 1+Zkesvk+2k€j\f\svk'exp(_ck)

Due to Proposition A.1, we know that S is revenue-ordered. For any assortment set S = (S1,52,- s Sm_1,N),

we denote h* = minjeqres, i=2,...,m} c’f]. and consider the following problem:

.....

max  R(Sy,h) 2 Z’%Sl TrUk + Zke/\/\sl "kUk " OXP (_h:) .
S1CN 1—1—22%51 Uk+zkeN\sl vy - exp (—hF)
Clearly, we have R(S1,h) < R%,;(h) where R};(h) denotes the optimal objective value of (A.4). Also, due

to Proposition B.2, we must have R%,(h) < R%,(h) where h = (c',¢2,...,c*). Therefore, we have R(Sy,h) <

(A4)

R, (h). We again notice that R(S;,h) is the expected revenue of store 1 under the solution §. We also
notice that the solution (S S, L SN ) has its expected revenue for each store equal to R}, (7),) Thus, the
revenue obtained in store 1 under S must be less than that under (S’ S, SN ). Repeat this argument
for all stores, we have proved that the optimal solution should be (S , S yeens S ,N'). Moreover, we know that
Ry, (71,) < R;,((00,...,00)), which is the optimal expected revenue of the single-store problem. Then, based
on Proposition A.1, we must have that [S| > |S]. |

Appendix B: Proofs for Section 5
B.1. Proof of Theorem 2

Proof: Theorem 2 can be viewed as a special case of Theorem 4, thus the proof is omitted here. |

B.2. Proof of Theorem 3

Proof: Theorem 3 can also be viewed as a special case of Theorem 4. The only thing we need to show is
that when ¢; = ¢y =--- =¢,, = ¢, we must have S; =55 =---=5% ;. To see this, we first define § =exp (—c)
with § € (0,1). By Theorem 4, we know that there exists an optimal solution (S7,S;,...,S”) such that
SrC Sy foralli=1,2,...,m—1. We can then express the total expected revenue from all m stores under

this solution as:
-1

3

) WS\ S0)- 5 w(s;,)
A’(1+V >+<1+V<sz>><1+V<sz>+V<s;\s:>-ﬁ))“””st,z)

( (S0) W(S:\55) 8 A W(S5) )

R(S;,....S

11v(SH) T UFVIS )ALV (S)+ V(S-S B) T T=r, T4V (S

||M| ||M

We denote the optimal solution and the optimal objective value of the following problem as (S ",5") and R*
respectively. We know that S" and S” are both revenue-ordered and S" C S”.

W (S1) BW(S2 \ S1)
max (1= T M) G @ AT visy) + 5V 85\ 50)
. W(Ss) i BW (51 \ S2)

"1V (S,) T V(S2)(1+V(S2) + BV (S1\S2))
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Then, we have R(Sj,...,S) < R* and the inequality holds as equality when we choose the solution as
(8',5",...,8,8"). Therefore, all of the optimal solutions of the SQR problem will be dominated by a solution
of (§,8,...,8",8"), which leads to the conclusion that (S",S",...,5,5") is indeed an optimal solution. H

B.3. Proof of Theorem 4

The proof of Theorem 4 consists of three steps. In this section, we list the results for each step and prove
them in the following subsections.

Step 1:

In step 1, we first prove the following proposition.

ProroSITION B.1. Suppose the wutility discounts are store-wise homogeneous. Assume N, =
min{Aq,..., A\, } and ¢,, =max{ci,..., ¢}, then there exists an optimal solution (S5,S5,...,S%,) to the

SQR problem such that S; C S foralli=1,2,...,m—1.
Based on Proposition B.1, we prove the following lemma.

LEMMA B.1. Suppose the utility discounts are store-wise homogeneous. Assume A, = min{A,..., A\, }
and ¢; < g < -+ < e, then there exists an optimal solution (S7,S;,...,S%) to the SQR problem such
that S; C S;C---C 5%

Step 2:

In step 2, we first prove the following lemma.

LEMMA B.2. There exists a revenue-ordered (within the products in Sy ) assortment S} such that it is

optimal to problem (8).
Using the result of Lemma B.2, we prove the following proposition.

PRrROPOSITION B.2. Suppose the wutility discounts are store-wise homogeneous. Assume N, =
min{Ay,..., A\, } and ¢y <cp <--- <¢,,, then there exists an optimal solution (S5,S5,...,5%) to the SQR
problem such that S7 C S5 C..-C S} and S7,5;,...,5;, are all revenue-ordered.

m

Step 3:

Based on the results of the first two steps, we prove Theorem 4.
Restate of Theorem 4: Suppose the utility discounts are store-wise homogeneous. Assume A, =
min{Ay,..., A\, } and ¢1 < ca <--- < ¢, then there exists an optimal solution (S;,Ss,...,Sk) for the

SQR problem such that S; CS;C---CS* |, CSCS* and S;,S;,...,5% are all revenue-ordered.

B.4. Proofs in Step 1

In this section, we prove Proposition B.1 and Lemma B.1 in Step 1. To prove Proposition B.1, we need the

following lemma.
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LEMMA B.3. (xxx) Consider an instance of the SQR problem, where there are three stores (m = 3) and four
products (n = 4). The revenues and the attraction values of the products are denoted as (Ry, Rz, R3,R4) and
(V1,Va, V3, Vy) respectively. We set Ay = Ao =1/2 and A3 =0. We assume the utility discounts are store-wise
homogeneous and use c1,ca,c3 >0 to denote them. We also assume Ry > R3 and ¢ < co. Under this problem
instance, we denote three recommendation strategies as S ={{1,2},{1,3},{4}}, S1 ={{1},{1,2,3},{4}} and
Sa ={{1,2},{1,2,3},{4}}. Then, we must have R(S) < max(R(S1),R(S2)).

Utilizing the result of Lemma B.3, we prove Proposition B.1 as follows.
Proof of Proposition B.1: We prove this argument by contradiction. Without loss of generality, we suppose

that S7 \ S7, # 0. The total expected revenue generated by store 1 and store m can be written as:

m

e WS W(5\55)- 6
Rw“&J_M(1+VWD <LH4$»0+V@$+V@\$yﬁo>
) ( WS, W(S\S2) )
TANLHV(SE) A4+ V(SE) A+ V(SE)+V(S\SL) - Bm) )

where we denote S = S;US;U---US? . We then define the following quantities:

_W(SINS.) o W(SIASL) o W(Si\S) , _ WE\(S{US;)
V(sins:)’ V(ST\S;)” V(SRS VIS\(Sfus;))’

Vi=V(SiNS;,),Va=V(ST\S,), Va=V (S, \51),Va=V(S\(S57US})).

Ry

We can then reformulate the expression of R(Sj,S?,) as follows:

R(S:,5%) = A RVi+ RyVs B1(R3Vs + R4 Vy)
L TN VAN A YAV Vo) (1 + Vi + Vo + BV + 51 Va)
R,Vi+ R3Vs Bm(R2Va+ R4Vy)

+A

m m :>\ +)\m my
1+ Vi+ Vs A+ Vi + Vo) A+ Vi + BrVat Vot BuVy) 2T omT

where we denote

o RyVi 4 Ry Vs B1(R3Vs+ RyVa)
IV (Vi V) A+ Vi Ve + BiVa+ BiVa)
_ RiVi+ R3Vs B (R2Va + R4 Vi)

IV Vs (A Vit V) (A Vi BuVe+ Va1 B Vi)
We then consider the following two cases:
Case 1: Ry > R3
We denote Sy = (S;NS7,S;US?) and express the total expected revenue generated by store 1 and store
m under S; as follows:
R,V Bi(RaVa + R3Vz + R4Vi)

A
11+V1 * 1(1+V1)(1+V1 + B1Va+ 1 Vs + 51 Va)

A R\Vi+ RyVo+ R3Vs A Bm R4V
Tl Vi+ Vet Vs AV Vo V) (14 Vi4+Va+ Vs + 5, V)

R(Sy) =\

_ 1 1
=M+ AT,

where we denote

i B1(RoVa + R3Vs + R4 V)
V14V A+ V) +Vi+BiVa+ BiVa+BiVa)
1 RiVi+RyVo+ R3Vs Bm R4V
T I+ Vit Vot Vs (LI Va+ V) (14 Vi Vo + Vs + B, Vi)

™
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We denote Sy = (55,57 US?,) and express the total expected revenue generated by store 1 and store m under

S, as follows:

R(S3) =\ RVi 4+ Ry Vs B1(R3Vs + R4Va)
2 ! 1+Vi+ Vs 1(1+V1+V2)(1+V1+V2+51V3+51V4)
R\Vi+ RyVo + R3Vs BmR4Vy 5 9
A A = 4 A,
1+ Vit Vot Vs AV A Vot Vo) (L4 Vi 4 Vot Vot B Va) o
where we denote

22— R Vi+ Ry Vs B1(R3Vs + R4Va)
! 1+ +V, A+Vi+ Vo)1 4+Vi+ Vot 1 Va+BiVa)
o RaVi+ RoVao+ R3Vs Bm R4V

[ T VAN VAN VA T+ Vit Vot Vo)1 +Vi+ Vot Vs+ BVa)

Based on the result of Lemma B.3, we must have:
max(m] + 7}, 7 +72) > T+ T

We first notice that we must have w}, = 72 < m,,. Otherwise, we should have R(S7,S? ) < R(S7,S;US?)
and note that by replacing the assortment in store m with S7 U S}, the total expected revenue generated by
the stores other than 1 and m will not change since the utility discounts are store-wise homogeneous. Then,
the total expected revenue generated by all stores will be strictly higher if we make the replacement, which
is contradictory to the optimality of (Sj,...,Sx). Then, if 7 + 7} > + m,,, we must have 7] > ;. Notice
that Ay (7] —m1) > A\ (7 — 1) > A\ (m,, — 7)) and this implies R(S1) > R(S). By the same reasoning, we
can also imply that R(S2) > R(S) if 7} + 72, > m; + m,,. To conclude, we have max(R(S1), R(S2)) > R(S) in
this case. Note that under S, S; and Ss, the total expected revenue generated by the stores other than 1
and m are the same. Therefore, the optimal solution (S5,...,S5% ) is dominated by one of the replacements
(replace S with Sy or replace S with Ss), which is enough to prove the desired result.
Case 2: Ry < R3
The proof for this case is largely the same as the proof for the first case. The only difference is that we
now should let Sg = (S¥,,S7US?) in this case, and the result follows. [ |
Based on Proposition B.1, we prove Lemma B.1 as follows.
Proof of Lemma B.1: We first define 8; = exp (—¢;) with §; € (0,1). By Proposition B.1, we know that
there exists an optimal solution (S5,S3,...,5%) such that Sy C S for all i=1,2,...,m — 1. We can then

express the total expected revenue from all m stores under this solution as:

m—1
W(S7) W(S;.\S;)-Bi ) W(S7)
R(S7,...,8%) = A a o App ———2—
(512500 = 2 (Tvisn + Tr VeI VB S ) T
N ( W(s;) W(S;\ ), LA W(S) )
TRV T A VE)AHVE) VS B) LA 1+ V(S
Suppose S}, is fixed, we know that S} must be the optimal solution to the following problem:

W) BV (S, \S)
sisicsy,  14+V(S) 14V (S))1+V(S)+B.V(S:5\S:))

We then prove the following claim:

(B.1)
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Claim: Suppose the optimal solution to problem (B.1) is unique, then |S}| must be weakly decreasing in S;.
Proof of the claim: We prove this claim by contradiction. For 0 < ” < /3, denote the optimal solution
to problem (B.1) when ; =8’ and 5; = 8” as S’ and S”, respectively. We assume |S’| > |S”|. Due to the
optimality and uniqueness of S’ and S”, we must have:
W) FW(S,\S) GO W (S,\5")

1+V(S)  (A4+V(S)A+V(S)+pV(S:\S)) ~ 1+V(S")  (A+V(S)A+V(S)+BV(S:\S"))’
and

Wisn) JACAND W) WS\ )
1+V(S”)  (A+V(SM))A+V(S")+ 8"V (S2\S") ~ 1+V(S) (A+V(S)A+V(S)+p"V(S:\S9))’
which then leads to the following inequality:

W@ASO< 5 ) 5 )
14+V(S) \14+V(S)+pV(S:\S) 14+V(S)+p"V(S:\S5)

W\ ( g ) 5 )

1+ V(S") \14+V(S")+pV(S2\S") 1+V(S")+p"V(S2\S") /)"
We then consider the following set function in S:
Wwaa( 5 ) 5 )
14+V(S) \1+V(S)+pV(S2\S) 1+V(S)+p"V(S2\S)

(8" = B")W(S2\5)

1+ V() +BV(S2\ )1+ V() + BV (S2\5))
It is then easy to see that when S” C S’, we must have f(S’) < f(S”). According to Lemma B.2, we know
that S” and S” are both revenue-ordered. Additionally, we have |S’| > |S”| and thus we have S” C S’ indeed.

(B.2)

f(8)=

However, (B.2) implies that f(S") > f(S”), which causes a contradiction. The claim has then been proved.
Then, since ¢; <c3 < ... < ¢, we must then have S; CS;C ... CS* | CS’ and the result in Lemma

B.1 has been proved. n

B.5. Proofs in Step 2

In this section, we prove Lemma B.2 and Proposition B.2 in Step 2. We first prove Lemma B.2 as follows.

Proof of Lemma B.2: Denote the optimal solution to problem (8) as S;. Since we have S7 C Sy, Sy is
partitioned into S7 and Ss \ S7. If S} is not revenue-ordered, then we must have product j and k with r; > r,,
such that j € Sy \ S7 and k € S;. Based on the optimality of S}, we know that moving product j to S7 will

at least not increase the total expected revenue, which can be written as:

W(S7) +r;v; BW(S2\ ST) —1r,v;)
1+ V(ST +v; (L4 V(S) +v;)(L+V(ST) +v; +B(V(S2\ S7) —vy)) (B.3)
W(S7) BW(S2\ S) '

STHVSH T VeI VS +AV(S:\55))

Note that (B.3) can be further transformed to
14+V(S7) +v; 1+ V(S7)+BV(S2\S7)+ (1 —B)v; 1+V(S7) 14+V(Sy)+v,
1 1

TAW(S:\51) ((1+V(51‘))(1+V(Sf)+BV(Sz\Si‘)) - (1+V(Sf>+vj)(1+V<Sf>+ﬁv<sg\s;>+(1—mvj)))'

We also note that
1 1 'U]'

1+V(Sy) 14V(SH+v;, A+V(S))A+V(S;)+v;)
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and
1 1
A+V(SH)A+V(SH) +BV(S2\St))  (1+V(S])+v)(1+V(S])+BV(S2\S7) + (1= B)vy))
A+V(S1) - (1=Bv; + A+ V(S7) +BV(S2\S7) + (1 = B)v;)v,

T VS A+ VST o) (T V(S) + BV (S2 \ S)(A+V(SP) + BV (S2\ S7) + (1 - B)vy))
Therefore, we can finally transform (B.3) into the following inequality:

W (sT) + BW (S2\S7) + B(1-B)W (S2\S7)
1+V(sY) A+V(SP)(A+V(SH)+BV(S2\57)) (1+V(Sl*)+,8V(52\Sl*))(1+V(S;‘)+BV(52\ST)+(1*ﬁ)vj):

Ty = 1—

U,

B
14V (ST)+BV (S2\S7)+(1-8)v;
Based on the optimality of S, we also know that moving product k out of S} will at least not increase the

total expected revenue, which can be written as:

W(SI) — TrVk /B(W(SQ \SI)+TkUk)
L+ V(S)) —vn - (L4 V(S]) —vR)(L+V(ST) —or + BV (52 \ 57) + ve))
W(ST) BW(S2\ 57)

< .
T 1+V(ST) (T VIS))A+ V(ST + BV (521 57))
With some algebraic calculations, the above inequality can be rewritten as:

w(S{) + BW (S2\S7) + B(1—B)W(S2\ST)
N HV(ST) — A+V(STNAHVISHHEV(S2\ST)) — (A+V(ST)+BV(S2\ST) A+ V(ST)+BV (S2\5T) ~(1-B)vie) _

k Z 1_

L.

[
1+V(SP)+BV(S2\S7)—(1-B)vg

Therefore, we have the following relationship:
Lk §7“k<’)"j SUJ
However, checking the expressions of U; and Ly, we find that U; < L;, which comes to a contradiction. W
Using the result of Lemma B.2, we prove Proposition B.2. We need the following lemma.

LEMMA B.4. (k%) For x >0, we define a function f(x) as follows:

aZerl:C

fz) =

I~

1

k3

If a;,b; >0 for all i € [m], ‘;—i >-->moand 0<dy <--- <d,,, then f(x) is quasi-conver in x for x> 0.

We then prove Proposition B.2 as follows.
Proof of Proposition B.2: Under the given conditions, denote the optimal solution to the SQR problem
as S* = (57,955,...,57). By Lemma B.1, we must have S; C S5 C..- C S . If S is revenue-ordered, then
Sy,85,...,S;

m

_, are all revenue-ordered by Lemma B.2 and the proof is completed. Therefore, we only
need to show that S, is indeed revenue-ordered. We prove it by contradiction. Suppose 57, is not revenue-
ordered, we then let k be the smallest index such that k ¢ Sy . We denote S}, , = {j|j < k,j € S} and
Sy .=1jli>k,jeS;}. We consider the following two cases:

Case 1: S;, , CS; |

Under the optimal solution S* = (S7,S55,...,5%), the total expected revenue is written as follows:
oy [ BW (S5s \ S7) + BiW (S, \ Sy 1)
RS =) "X -
— L+ V(S)) (L V(SH) A+ V(S)) + BV (S, 1\ Si) + BV (S5 \ Sh1))

W(Sh, ) + WS\ S50 1)

+ A .
L+ V(Sr_ 1)+ V(S \ Sr1)
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We consider a feasible solution Sy = (S5,..., Sk 1,5 U{k}) with its total expected revenue given as follows:
S [ () BW (S5, 1\ 81) + BV (S5, \ S 1) + Biriv
2 A Tv(sH) TR V) A+ V(ST + BV (S5 1\ S0) + AV (S5 S5 1) + Brow)
A W (S5, 1) + W(S5\ Sy, 1) + v
"1+ V(S_ )+ V(Sp\Sh 1)+ o
We consider another feasible solution S = (S5,...,57 1,5 _;) with its total expected revenue given as
follows:
m—1
W(S; WW(SE 1\ S; W(S;,_
S2:Z)\@|: ) + - /8 ('m*l\ 1) - - +)\m (m*l) .
S VISH) VIS A+ VIS + 8V (S5 1\ 57)) 1+ V(S;,1)

We aim to show the following relationship:

R(S*) <max{R(S1), R(S2)}. (B.4)
To prove (B.4), we first denote Z* = R(S*) — 3.7} /\1%, = R(S1) — X0 M) and Z, =

i=1 MIFV(sy)

R(S2) — "M\ 12]‘&?31 . Then, it is equivalent to prove Z* <max{Z;, Z»}. For notation brevity, we define
Ry = ger=tgy and Vi = V(S;,_, \ S7) for i=1,...,m—1if $;,_, \ S #0, while define R, =0 and V; =0
W\t and v = V(S5 \ S ,) if S5\ S5, #0, while define 7 =0 and

otherwise. We also define r = RGN
we must then have » <r,. Note that we can express Z*, Z, and Z, as

v =0 otherwise. Since S}, , C S}

m

m—1?
m—1
BiR: Vi + Birv W(S:_1)+rv
Z" = by A .
; (1+V(S;))(1+V(S;)+ﬁi%+ﬂi1})+ L+ V(S 1) +v
7 _m_l/\' BiR; Vi + Birv + Birp vy, n W(S:, 1) +rv+rev
FT VS A VS + BVt B+ Bon) I VS, ) vt

m—1
~ B,R.V; W(S: 1)
222 LNV Ve AT T TRV, )

Since r < r, we have the following:

5 BiRiVit Bir(v + i) W(Sha) +7(v+ )
le;A"(1+V(SZ))(1+V(S;‘)+ﬁivi+ﬁi(v+vk))“ 1+ V(Ss,_ 1)+ (vt

We then define a function f(z) for >0 as follows:

— 1)\ Bi R Vi + Birx Y W(S;,_1)+rz
LA+ V(S)A+ V(S + B Vi+Bix) "I V(Sh )+
We can now apply the result of Lemma B.4. Specifically, we let a; = 11}5‘(1;/), b; = Héib(rs*) and d; =
% fori=1,. —1. We also let a,, = A\, W (S%,_1), b = Apr and d,,, =1+ V(S?,_;). Note that
% = RiVi _ 7‘”( m1\SD) o = I,...,m—1and = = W), Thus, we have $= > 41 > 22 > ... > 2m-1,
r r m T m 1 2 m—1

Also, note that d;, = 1= 51 (L+V(Sr )) +14+V(Sr_) fori=1,...,m—1. Thus, we also have d,, <d; <dy <
-+ <d,,_1. Based on these two conditions, we know that the function f(z) must be quasi-convex for z >0

and thus we have the following:
max{Z,Zs} >max{f(v+uv), f(0)} > f(v)=Z".

Thus, inequality (B.4) is proved. a
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Case 2: S;, | CS; |

Under the optimal solution S* = (S5,S55,...,5%), the total expected revenue is written as follows:

’r~m

[ BiW (S, \ ;) + BW (S}, ) ] NG MERUCH)
1+V ) (I+V(S)A+V(S)+ BV (S5, \S7)+B8:V(S;,) T1HV(Sn )+ V(S

m—1

=1

We consider a feasible solution Sy = (S5,...,S% 1,5 U{k}) with its total expected revenue given as follows:

S [ 5) BW (S5, \S7) + BW(Sy,) + Biriv ]

S LIV V(S A+ V(S + BV (S5, \S) + BV (S5, ) + Bivk)

A (S;,z) + W(S* ) TR

"1 V(Sh )+ V(Sy,) Fue
We consider another feasible solution Sy = (S7,...,S}, 1,5}, ;) with its total expected revenue given as
follows:

— 1)\ [ (S7) n BiW (S5, \S7) A W(S;..)

S V) T AHVED)A+VE) +BYV (S \ D) T T IV (SR

We aim to show the following relationship:

R(S*) <max{R(S1),R(S2)}. (B.5)
To prove (B.5), we first denote Z* = R(S*) — .7} )‘l#fsl)v R(S) — >t )\z#fs)) and Z =
R(S3) — Z:’:ll A 11‘/‘%3)) Then, it is equivalent to prove Z* < max{Z, Z,}. For notation brevity, we define

wW(Sy, \S7)

R, = W and V; =V (S;, ,\S;) for i=1,...,m—1if S} \ S; #0, while define R; =0 and V; =0
otherwise. We also define r = —omr) and ¢ = V (S, ,) if Sk . #0, while define 7 =0 and v = 0 otherwise.

V(S5 ,r)

Based on the definition, we must then have r <r,. Note that we can express Z*, Z; and Z, as

m—1

A )\ IBlRl‘/l +ﬁi’rv + A W(S:n,l) +rv

A V(S +V(S)) +BVi+Bv) T LHV(Sy )+
7 :m_l)\_ BiR; Vi + Birv + Biri v I W (S5, ) +71v+ 7130y
PR VS A+ V(S + BVt Bt Boe) T V(S ) tut o,

Lo = A Ay —————.
. Z A+ VE)ATVE) 1BV T V(S)

Since r < r;,, we have the following:

mz BiR; Vi + Bir(v+vy) A W(S:n,l) +7(v+v)
(L+V(S))A+V(S))+B:Vi+Bi(v+w))  “"14+V(Ss )+ (v+wv)

We then define a function f(z) for > 0 as follows:

m—1

A BiR;V; + Birx 1A W(S:n,l) +rr

= (IHV(S))A+ V(S +BVi+ ) 1A V(S) )
We can now apply the result of Lemma B.4. Specifically, we let a; = ﬁvRi(;y b; = Héi(rs;) and d; =
Wforizl m — 1. We also let a,, = A, W (S}, ), by = Ay and d,,, = 1 + V(S ). Note that
‘bL RTV7 = 7‘”(5’1’\5 ) for i = 1,...,m—1and g = W(im ) . Thus, we have 3= > ‘;i > ZQ > > —‘Z: Also,

note that d; = i(1—|—V(S ))—|—1—|—V(S;J) fori=1,...,m—1. Thus, we also have dp <dy <dy<---<d,, 1
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Based on these two conditions, we know that the function f(z) must be quasi-convex for x > 0 and thus we

have the following:
max{Z1,Zs} >max{f(v+uv), f(0)} > f(v)=Z".

Thus, inequality (B.5) is proved. |
For the optimal solution 8* = (S5, 55, ...,5% ), suppose the second case happeuns, i.e., Sk, _; C S ,, we then

m,l)
have either R(S*) < R(S%,...,Sr 1,55 U{k}) or R(S*) < R(S%,...,S:

m—1 m

_1,5;,1). If the latter case happens,
the proof is completed since S}, ; is already revenue-ordered. If the former case happens, the proof is also
completed if S* U{k} is revenue-ordered. Otherwise, we let S* < S* U{k} and follow the previous argument
to analyze the current optimal solution (Sj,Ss,...,5% ), which will finally lead to a conclusion that there

exists a revenue-ordered assortment S, such that it is optimal.

Now, suppose the first case happens, i.e., S}, , €S _;, we then have either R(S*) < R(S},...,S;, 1,55 U
{k}) or R(S*) < R(Sj,...,S _1,S% _1). If the former case happens, the proof is completed if S* U {k} is

revenue-ordered. Otherwise, we let S* « S* U{k}. We then fix S’ and update S} for i € {1,...,m — 1}
by solving problem (8) with S, =S, and § = ;. Note that the total expected revenue will not decrease
after this operation and the updated S7,...,S} _; should all be revenue-ordered within S?,. We can then

follow the previous argument to analyze the updated solution. If the latter case happens, we let S}, <+

S*._1. We can also follow the previous argument to analyze the updated solution. To be specific, we now
consider two cases: S, €Sy 5, and Sy, C Sy . If the case S}, , €S, happens, for instance, we then
have either R(S5,S5,...,S% _1,5:) < R(S;,S5,...,5% 5,8 _1U{k},S: U{k}) or R(S7,S55,...,55 _1,55) <

R(SI,S;, . 'aS:n—Q’S:n—%S:n—Q

). If we continue the analysis, one can show that it will finally lead to a
conclusion that either 1) there exists a revenue-ordered assortment S7, such that it is optimal or 2) the initial
optimal solution S* is dominated by a solution (S’,5",...,5") where S’ is not revenue-ordered. However, in
the latter case, such a solution is further dominated by the solution (S .S, S’) where S is the single-store

optimal assortment, which is revenue-ordered. Therefore, the proof is completed. |

B.6. Proof in Step 3

Finally, we give a proof to Theorem 4 as follows.

Proof: Based on Proposition B.2, we have shown that under the given conditions, there exists an optimal
solution (S%,S5,...,5%) to the SQR problem such that S; C S5 C-.- CS* and S7,S53,...,S5" are all revenue-
ordered. Therefore, to prove Theorem 4, we only need to show that St CS; C---C S* _, CSCSr. We
consider the following two cases:

Case 1: S;C---CS;CScCSp,, C--CS;, for ke{0,...,m—2}
Under the optimal solution (S5,S55,...,5%), the total expected revenue is written as follows:

e e, [ WS BW (S5 \ S;) W(S:)
R(S“SQ"“’S”ZA’[HV(S:) AT VENA VD + 5VENs) | T T viss):

i=1 m
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We then consider a feasible solution (S7,...,S;, S,....S, S ) with its total expected revenue given as follows:
k
W(s7) BiW (S5, \ SF) }
R(ST,...,5;,58,...,8,5 )= A 4 e —
(505 =2 TV TV V08 PRV S
m—1 s s
W (S W(S* \S W (Ss*
A SR W LU/ AW\ ]Amlé’gi-
Ao 1V A+ VIS)(+V(S) + BV (S5 \ 9)) +V(S;)
Due to the fact that S is the optimal assortment in the single-store problem, we must have:
W (s, )* < W(S)~ ) (B.6)
L+V(S) ~ 1+V(9)
Due to the fact that |S| < |S7| <|Sz| for i=k+1,...,m — 1, we must have:
V(S;)2V(S) and BW(S;\S7)<BW(S;,\5). (B.7)

Additionally, notice that the following relationship holds: 1+ V(S7) + V(S% \ S;) =14 V(5) 4+ V(Sz \ S).
Since we also have (1 —3;)V(Sz\S7) <(1—B)V(S:\S) fori=k+1,...,m—1, we then have:

L+V(S)) + BV (S;,\ 87) 2 1+ V(S) + B,V (S;,\ 9). (B.8)
Therefore, combining (B.6), (B.7) and (B.8), we can show that R(S{,...,S;,g,...,g,S:n) >

R(S;,S5;,...,5z,), which implies that (S7,.. ,S;,g, .. .,S,S:n) should also be an optimal solution.

»~m

Case 2: S;CS;C---CS;,_,CS,CS

Under the optimal solution (S5,S53,...,S% ), the total expected revenue is written as follows:
m—1
W(s;) BiW (S, \57) ] W(s,.)
R(S7,S85,...,585) = s < ot Am me_
(51,5 ) po L+V(SZ‘) T AR VEIAF VS + BV S S TR vSy)

We denote j = |S%| + 1. Since |S| > |Sz|, we must have j € S. We then consider a feasible solution
(St,...,8r 1,55 U{j}) with its total expected revenue expressed as follows:

m—1
. (S9) BW (S: \ S;) + Birju; W(S},) +r;v;
R(SEr 08080, U = 2 0 L+v<s*>+<1+v<s:>><1+v<s:>+/3iv<s:,l\S:>+m>]“”1+V<S:;>+vj'

i=1

Then, since S is the optimal assortment of the single-store problem and j € S, we must have:
W(s)  W(S)
T1+V(S) T 14V(S:)

which implies the following inequality:

W(Sy,)+7;v; > W(S)

. B.9
1+V(S:)+v; — 1+V(S:) (B-9)

Notice that we also have the following relationship:
WS | WSS W(S5\8) L AWESAS)

TTAHV(S) T+ V(SENSD) T g (L V(S V(SRS 1 V(S) + BV(S5 N\ SY)

Therefore, combining (B.9) and (B.lO), we can show that R(S7,...,S* *U{j}) > R(S;,S5,...,55),

m—17 'm.
which implies that (55,S53,...,5% ) should also be an optimal solution. We can then incrementally add
products to S until S*, =S and conclude that (S},...,S5% _,,S) should also be an optimal solution. u
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B.7. Proof of Proposition 3

Proof: Our proof is mainly adapted from Rusmevichientong et al. (2014). We show that any instance of the
partition problem can be reduced to an instance of the assortment feasibility problem constructed below.

We first formally define the partition problem as follows.

PARTITION PROBLEM:
INPUTS: Set of items indexed by 1,2,...,n and the size w; € Z, associated with each item 1.
QUESTION: Is there a subset S C{1,...,n} such >, qw; =3,y owi?

We construct an instance of the SQR problem as follows. Let T = % > i, w;. There are three stores with

(A1, A2, As) = (5557 1457,0)- That is, store 3 does not contribute to the total revenue but stores 1 and 2

can view products from store 3. We consider n + 2 products and label them as {1,...,n,n+ 1,n+2}. The

revenues of these products are set as:
(1+8T)(3+4T) ifi=1,...,n
r; =14 4(1+8T)(3+4T) ifi=n+1
100(14+8T)(3+44T) ifi=n+2.

We first set b, =00 and &, =oco for k=1,...,n+2, i.e., store 1(2) can not see any product from store 2(1).
For product n+2, we let v,,4> =1 and c3 > = 55> = co. For product n+1, we let v,41 = 3 and ¢j5 " =0 and
exp(—chs ") = 2. For product k=1,...,n, we let v, = 4w; and exp(—cf3) = 1 and exp(—cky) = 1E2L € (0,1).

Denote the optimal solution to the above instance as (S5, S;,S5) and = (148T')(3+4T) for convenience.
We first argue that {n+42} € S;. If not, since ¢}5? = 0o, adding product n+2 to S; must increase the revenue
of store 1 and does not affect the other stores’ revenue. We then argue that S; = {n+2}, i.e., all other products
will not be included in Sj. Clearly, when ST = {n+2}, the revenue of store 1 is at least 100r/(141) = 50r. If
other products are added, the revenue of store 1 is at most (1007 +47r-1/2)/(1+141/2) +4r < 50r. We also
note that the products chosen in S} will not affect the revenue of store 2 since ¢§; = oo for k=1,...,n+2.
Therefore, we have shown that S} = {n + 2}. Due to the same reason, we have that S; = {n+2}. We then
argue that {n+ 1} € Sj since adding it will always increase the second-stage revenue of store 1 and store 2.
Therefore, the problem now becomes to decide a set S C {1,...,n} to offer in S3. The problem can now be
equivalently represented as follows:

14+4T  2r4> 2w AT 4r- 1430, wT

sctliiny 18T THL 4,520, 1487 1414y, A0ilu

s

(B.11)

One can verify that based on our construction, (B.11) is equivalent to the formulation of the assortment
feasibility problem in Rusmevichientong et al. (2014). Thus, the SQR problem under construction is NP-hard.
We should comment that although the above construction requires that the revenues of products 1,...,n are
the same, it is possible to perturb those revenues a little bit but still guarantee that the optimal solution to

problem (B.11) is attained by >, s w; =T since we assume w; € Z.. [ ]
B.8. Total revenue decreases when the utility discount increases

Claim: R (c) is monotonically decreasing in c.
Proof: From the formulation of problem (6), it is easy to see that when ¢ decreases, 5 = exp(—c) increases,

and thus the optimal objective value increases. |
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B.9. Proof of Proposition 5

Proof: We first prove Proposition 5(a). It is easy to see that Rf,()) is a symmetric function with respect
to A =0.5. The fact that it is piecewise linear follows from the observation that for each feasible assortment
(S1,52), the total expected revenue R(S;,S2) can be viewed as a linear function in A. Then, R,(A) is the
maximization of a finite number of linear functions, which is convex by definition. Due to symmetry, R, ()
must be decreasing when A € [0,0.5] and increasing when A € [0.5, 1].

We then prove Proposition 5(b). Due to symmetry, it suffices to prove that |S5| is weakly decreasing
in A when A € [0,0.5). We prove this claim by contradiction. For 0 < \; < A, < 0.5, we denote (S%,S}) as
the optimal solution to problem (6) when A=\, and (S7,S%) as the optimal solution to problem (6) when
A= \,. Suppose we now have |Si| < [S7|. Due to Theorem 2, we know that S},S%,S7 and S; should be
revenue-ordered. Also, we must have S5 C S C S! and S5 C S C 57, where S is the optimal assortment in the
single-store problem. We then express the total expected revenue when A = )\, as follows:

1 l l l
Crv 0y 0 M TS TS
= MR (51, 85) + (1= N)Ra(S1, 5) = Ra (51, 83) + Mi(Ru(S1, S3) — Ra(S1, 53)),

where we denote R;(S%,S%) (Ro(S,Sh), resp.) as the expected revenue of store 1 (store 2, resp.) when the
offered assortments are (S%,S%) (assuming arrival rate is 1). Similarly, we can express the total expected

revenue when X\ = )\, as follows:
R(S7,85) = Ra(57,55) + A (R1 (ST, S5) — Ra(S7,53)).

Since S € 5%, S C ST and |S!| < |S]], we have R;(S%,S54) > Ry(S7,S5). Then, we must have Ry(S,S%) <
R, (7, S5), since otherwise the optimal solution (S7,55) when A = )\, is dominated by the solution (S}, S%).
We also note that R;(S%,S) = Ry(S7,S55) and Ry (S%,SL) = R2(ST,S53) cannot hold at the same time since
then the optimal solution at A, would be (S%,S%) based on our definition since |S}| < |S7|. However, this
implies that the slope of the function Rf,(A) is smaller at the point A = A, (which is R, (S7,S3) — R2(S7,S3))
than at the point A = ); (which is (Ry(S},S%) — R2(S%,5%)), which is contradictory to the first argument.
This completes the proof. |

B.10. Proof of Proposition 4

Proof: The proof is directly followed by Lemma B.2 and the proof in Lemma B.1. |
Appendix C: Proofs for Section 6

C.1. Proof of Theorem 5

We first prove Theorem 5(a) as follows.

Proof of Theorem 5(a): Denote the optimal objective of the SMR and the SQR problem as R}, and Ry,
respectively. By Theorem 1, we have R}, < R*, where R* is the optimal revenue of the single-store problem.
Note that we also have Ry, > R* since we can always offer (5,S,...,5) under the SQR strategy. Therefore,
we have R, > Ry,. |

To prove Theorem 5(b), we need the following Proposition.
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PROPOSITION C.1. (xx*) When S is given, the consumer surplus under the SMR model follows:

csM(S Z/\log 1+ka+ Z v exp (—c; (S))

keS; keS\S;
The consumer surplus under the SQR model follows:

CSQ(S):Zm:Ailog(1+V( )+Zkes\5 v exp (—cF(S5))) i
1+ V(S:) + X sess, vrexp (—¢(S)) -

log(1+V(S)))

z

i=1
- D esys; Vi €xp (—cf(S))
+ A : log(1+ V(S vpexp (—
; L+ VSN + V() + Spess, Ur exp (—cF(S)) kg\js b (8)))-
We then prove Theorem 5(b) as follows.
Proof of Theorem 5(b): The result simply follows by the inequalities below:
" log(1+ V(S) + ycs0s, vk exp (— n
Ccs?8)=S"x Salts 1+ V(S
) = A VS 4 Sres, trexp (¢ Z T oL+ V(5)
S Zkeg\s. v exp (—¢; (S))
+ A d log(1+4+V (S;) + v exp (—cF (S
; L+ V(S)A+V(S)+ X eas, vrexp(—ck(S))) ( (5:) gg\:& rexp (—c; (S5)))
U og(T+V(S) + 3 ess, veexp (=ci(5) N, V(S)
< i z log(1+ V(S v exp (
; L+ V(S)+ Y ess, veexp (—ck(S)) z; "1+ V(S) kg\:s r ($))
- Dres\s, Uk eXp (—ci(S))
+ A : : g(1+ V(S v exp ( =CSM(8).
; A+ VES)I+V(S)+ X ess, U exp(fcf(S))) kg\:s k (5))) (S)

Appendix D: Proofs for Section 7
D.1. Proof of Proposition 6

Proof: To facilitate our analysis, we define the seller’s assortment optimization problem for the single store

i under the heterogeneous case as

R; =max M (D.1)
s 142 s Vi

We also denote the optimal objective value of the SQR-heter problem and the SMR-heter problem as Ry,
and Rj},, respectively. Suppose the optimal solution to the SMR-heter problem is S* = (S7,...,5%), using
the same analysis in Theorem 1, we can show that the revenue for each store ¢ with ¢ € [m] under S* is upper
bounded by the single-store optimal revenue, namely, R;. Thus, we have R}, <> "  \;R;. It is also easy to

see that Ry, > 37" | \; R} always holds, which establishes the desired result. |
D.2. Proof of Proposition 7

Proof: To prove the approximation ratio %, we need the following lemma.

LEMMA D.1. Given an MNL model, suppose the revenues and the attraction values of the products are

denoted as (ry,...,m,) and (vi,...,v,). Denote the optimal objective value of the following problem as R:

D ics iV
max —=ues 7t
o L+ Zies Ui
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Given a vector (e1,...,€,) where 0 <e€; <1 for each i=1,...,n, we also denote the optimal objective value
of the following problem as R’:
8 1+3 s €ivs

We then have R> R’.

Proof of Lemma D.1: It suffices to prove the result by showing that if we only increase the attraction

value for product 7 from ¢;v; to v; and keep the attraction values of other products the same, the optimal

expected revenue would at least not decrease. To that end, denote the optimal solution to the problem with

attraction value €;v; as S’. Then, if i ¢ S’, the result has been proved since S’ generates the same objective

value for the problem with v;. Otherwise, if i € S’, we must have r; greater than R’. Then, increasing the

attraction value for product ¢ from €;v; to v; will increase the optimal expected revenue. [ |
1

Proof of the approximation ratio ;: Denote the optimal solution to the SQR problem as §* =

(S7,...,5%). We also let S*=S;US;U---US?. We then have

Zkeéi TEVik

1Y Vi

Zkes;‘ Tk Vik Zkeé*\s; TV - exp (—cf (8))

1+Zk€$; Uik 1+Zke§*\s; v, - exp (—cF(S*))

Zkes; TkVik Zke§*\s; TV - exp (—c; (8*))

v
.MS
>

s
Il
_

RE=R(Si,...,Sn)

s
Il
—

IV
s
o> o>

s
Il
-

+ *
1+ Zkes; v (1+ Zkes; o) (14 ZkeS;‘ Vig + ZRGS*\S; Vg, - exp (—cf(S*)))

—_

Recall that S; is the optimal solution to the single-store problem. Therefore, the second inequality follows by
applying Lemma D.1 with ¢; = exp(—c¥(S*)) for i =1,...,n. We construct the following instance to prove
the tightness (similar to Gao et al. 2021, see Appendix G). Suppose there are two stores and two products are
offered. The arrival rates are A\; = 1 and A\ = 0. The revenues of the two products are 1+ % and 1, where € — 0.
The attraction values of the two products are the same in the two stores with vy =€ and vy = % We also let
cly =2, =0. One can verify that S = {1} under this instance, and the recommendation strategy {{1},{1}}
will result in a total revenue close to 1 when € — 0. However, the recommendation strategy {{1},{2}} will

result in a total revenue close to 2 when € — 0. The tightness then follows from the construction. |

D.3. Proof of Proposition 8

Proof: For any given assortment set S, the expected revenue obtained by the partial recommendation
(homogeneous or heterogeneous) is equal to that obtained by the full recommendation but setting some of
the ¢; as infinity. Based on that, recall that in Theorem 1, we have shown that under the SMR strategy, for
arbitrary ¢f; (even for ¢f; = 00), the optimal assortment in each store is the same and should be the single-
store optimal assortment S when the valuations are homogeneous. Thus, the optimal partial recommendation
strategy should be (S .S, S’) for the homogeneous case. When the valuations are heterogeneous, we have
shown in the proof of Proposition 6 that for arbitrary cfj (even for cfj = 00), the optimal expected revenue

has an upper bound of > " AR}, where R} is the single-store optimal revenue in store i. That said,
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o ARy also serves as an upper bound for any partial recommendation strategy. However, such an upper
bound can be exactly achieved by considering a partial recommendation strategy with (S‘l, So.., Sm) and

not recommending products from other stores (if any). Thus, the optimal partial recommendation strategy

should be (S, Ss,...,S,,) for the heterogeneous case. [ ]

Appendix E: Some numerical examples (% x)
E.1. Example where SMR improves revenue when there is capacity constraint

E.2. Example where the optimal assortments may not be revenue-ordered for the SMR

model under the omnichannel setting

E.3. Example where the optimal assortments may not be revenue-ordered for the SQR

model under the omnichannel setting
E.4. Example where SQR has higher consumer surplus than SMR

E.5. Problem instances for Figure 6
Appendix F: Numerical results on the heuristic performance in Proposition 7 (%% x)

Appendix G: The integer programming formulation for the cardinality-constrained
SQR problem under universally homogeneous disutilities (%)

Appendix H: Joint Assortment and Pricing Optimization (xx*)
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Additional Appendix

In this additional appendix, the proofs of the results marked with “(* * x)” in the online appendix are

provided.

Appendix A: Additional Proofs for Section 4

Proof of Proposition A.1

Proof: It suffices to prove the latter argument of Proposition A.1. We first prove the “only if” direction.

Now, suppose r; > R3i,(c) and i ¢ S3,(c), and note that the optimal revenue can be expressed as

142 esz (o) Vi T 2 jesa\sz, (o) Vi &XP(=¢)
Consider the following two cases. For the first case, we have i ¢ Sy, we then consider another assortment
S (e)U{i} and express its revenue as follows:
Vs + ZjGS}‘u(c) U5+ ZjESQ\S}‘VI(C) r;v;exp(—c?)

I+v; + Zjesxd (e) Uj + Zjesg\s;*w (e) U exp(—cj) '

R(Sy(e)Uii},e) =

Note that the following claim holds by simple algebra:

1 . fc a a+tc a
Claim: For any a,b,¢,d>0, if §> ¢, then 377 > ¢.

Since r; > R}, (e), it is then easy to verify that R(S3,(c)U{i},e) > Rj;,(¢) in this case based on the above
claim, which contradicts the optimality of S%,(¢). For the second case, we have i ¢ Sy, we also consider the
assortment S}, (c)U{i} and express its revenue as follows:
rivi(1—exp(=c")) + 37 csr (o) T3V T 2 jesast, (o) Vi xXP(—¢’)

1+v;(1 —exp(—c*)) + Zjes;/j(c) v+ ZjeSQ\SX (e) Vi exp(—ci)

Z8

R(Sy(e)Uii},e)=

Similarly, one can verify that R(S},(c) U {i},¢) > R;,(¢) in this case, which contradicts the optimality of
Sx,(e). Thus, the proof has been completed for the “only if” direction. We can use a similar argument to

prove the “if” direction. |

Proof of Proposition A.2

Proof: To prove the argument in the proposition, we only have to consider the case when ¢/ > & and ¢ = ¢
for any i € [n] and i # j. For the brevity of notation, we let 3 = exp (—¢') and 3 = exp (—¢&) for all i € [n].
Since ¢/ > &, we must have 37 < 37. As before, we denote the optimal solution to problem (A.1) under ¢ and

¢ as S;,(c) and S3,(€) respectively. We consider the following two cases:

Case 1: j€55,(€) or j ¢ S,
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In this case, we have R},(¢) > R(S},(€),¢) > R;,(€).
Case 2: j ¢ 55,(¢) and j € 5,
In this case, we must have r; < R},(¢) due to Proposition A.1. We also notice that
Eies;«d @ Tivi T Ziesz\s;u @ TiBvi— (B = B7)v;r;
1+ Zie%(a) v+ Zi652\% & Bvi — (87 = B7);

R} (e) = R(S},(€),¢) =

Notice that
R%a—z“%®”“+zmm%@”ﬁm
M - Riny
142 iest @ Vi T 2iesa\sz, @ B0

Using the fact that 37 < 37 and r; < R3,(€), we can get R%,(¢) > R%,(€). Therefore, combining the above two

cases, the proposition is proved.

Appendix B: Additional Proofs for Section 5

Proof of Lemma B.3
Proof: We let 5; =exp (—c1) and B2 = exp (—c2) with S1, 82 € (0,1). Then, the condition ¢; < ¢, is equivalent
to B1 > Ba. We first express R(S) in terms of Ry, Ry, Rz and Ry as follows:

2R(S) = R\Vi+ RyVs B1R3Vs + 1 R4V,
1+V1+Vv2 (1+‘/1+V2)(1+V1+V2+51V3+51V4)
RiVi+ R3Vs B2 RoVa + B R4V,
=Q1R1 +Q2Rs+ Q3Rs+ Q4Ry4,
LAt Vs OVt Vo)LVt BaVa + Vo 1 o) Orf T Qalfat Qolls +Qufts
where we denote
Vi Vi
- + .
@ 1+Vi+V, 14+Vi+ Vs
Q5 = Va i B2Va
T4V 4V A+Vi+Va) A4+ Vi + Vo + Vs +5oVy)
Qs = B1V3 n Vs
3 A+Vi+ Vo) 14+ Vi4+Vo+BiVa+iVe) 1+Vi+V5
Q.= B1Va B2V
4=

+ .
A+Vi+ Vo) A+ Vit Vot BiVa+5iVe) - (L4 Vi Va)(L+ Vit Vs + 52Va + 52Va)
Notice that due to 8; > 35, we have the following relationship:

<V iV
PTIAVI4 Ve (LA VA+ V) (L + Va4 BiVa+ Vi + B1Va)

We express R(S7) as follows:

= Q5.

2R(S,) = Ry B1(RaVo + R3Va + Ry Vi)
VT T4V (A Vi BiVa+ B Vs + Bi Vi)
R\Vi+ RyVo + R3Vs BaR4Vy

= Q1R +Q3Rs + Q3R + Q R4,

1+Vi+Vo+ Vs (Vi +Vo+ Vo) (1 4+ V3 + Vo + Vs + BoV4)
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where we denote

i Vi

1

@1 = 1+ * 1+Vi+Vo+ Vs’

0L — BV " Va
P+ Vi B Va+BiVa+BiVa) 1+ Vi Vot Vs

le 61V3 + VB
8 A+V)A4+Vi+ 61 Va+ 51 Va+61Va) 1+Vi+Vo+ Vs

Q! b1V B2Va

— + .
V) VI Vot BiVa+BVe) A4+ Vi+Va+Va) A+ Vi+Va+ Vit BaVa)

We also express R(Sz) as follows:

2R(S;) = RiVi+ RV, B1RsVs+ 1 R4V,
YTV I+ Vi V) (1 Vi + Vo + BiVa + BiVa)
RV + RyVo + R3Vs BaR4Vy

— Q2R+ Q2Ry + Q2Rs + Q>R
L Vid Vot Vs (it AT s Vad Vet govy) it T @Qala + Qs Re + Qult,

where we denote

2 Vl Vl
@= 1+Vi+V, + 1+Vi4+Vo+ Vs’
o Vo Va
RE R T N A R R
0 B:Vs . Va
T VIV ViA Vot iV +BiVe) LV Vo Vs
Q2= p1Va n B2Va
VAR (Vi Vot BiVs + BV (L4 ViV Va) (14 Vi Vo + Vs + BaVa)
We let v = (1+\(/ii‘\;381\‘21¥2:-v3) and it is obvious that v € (0,1). We make the following four claims.

Claim 1: vQ1 + (1 —7)Q3 = Q1.
The first claim is by simple algebra. |
Claim 2: 7Qb+ (1 -7)Q3> Q) > Q..
To prove the second claim, it suffices to prove yQi + (1 —+)Q32 > Q5. To that end, it is equivalent to prove
the following inequality:
glcs! n 1
A+V)A+Vi+BVa+ BiVa+5iVa) 1+ Vi+Va+ Vs

> 7 b
TI+Vi+ Ve (L4 Vi V) (L4 Vi BiVa+ Va+BiVy)

We plug in the expression of v and the above inequality is equivalent to:

Br(1+ V1 +Va) N 1
(I4+Vi+Va) A+ Vi+Va+ Vo)1 4+Vi+BiVo+ BiVa+5iVe)  1+Vi+Va+ Vs
1+ n B1
T+Vi+Va) A+ Vi +Vo+ V) (1+V+ Vo) (1 4+ Vi 4 BV + Ve + B V)’

1

which can be further simplified as:

Vs > 3 1 B 1+Vi+V;
1+Vi+Vo+ Vs ™ ! 14 Vi+BiVo+Va+81Ve (1+Vi+Vo+Va)14+Vi+BiVo+iVa+51Va) ]|
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Notice that if the right-hand side of the above inequality is negative, then the inequality naturally holds.

Otherwise, we have:

1 1+Vi+V,
TV T B Vet 5V A+ it Vot V) (L Vi 1 BaVa + BV £ V)
< 1 _ 1+ +V,
T4V BV Va+ 81V (L+Vi+Vo+Va) (14 Vi +61Va+Va+ 51V))
1 Vi Vi

TV BV Vet Ve 1At Vat Vs 14Vt Vet Vs
Therefore, we have proved the second claim. O
Claim 3: v(Q3 +Q3) + (1 —=7)(Q3 + Q3) > Q3 + Q3 > Q2 + Q3.
To prove the third claim, it suffices to prove v(Q3 + Q3) + (1 —7)(Q3 + Q32) > Q% + Q3. To that end, it is
equivalent to prove the following inequality:

7By (Vo + Va) VetV Ve W
I+ V)A+Vi+ B Va+BiVa+BiVa) 1+Vi+Vat Vs " 14+Vi+Vy 14Vi+ 1V,
+ vB1 V3 4 B1Va
(I+Vi+ Vo)1 +Vi+ Vot BiVa+BiVe) (L4 Vi+ Vo)1 +Vi+BiVa+Va+ BiVa)

Notice that the following equality holds by simple algebra:

VotV I n Vs
14+Vi+ Vot Vs 14Vi+Vy 14Vi+ Vs

(B.1)

Therefore, to prove (B.1), it is equivalent to show the following;:

(Va+Va)(A+Vi+Va) V(14 V1) Vo(14+ Vi +Va+V3)
14 Vi+ 61 Va+BiVa+6iVe 1+ Vi+Vo+BiVas+ 51V 1+ Vi+ B8 Vo+Va+ 51 Ve
To that end, we notice that:
(Va+Va)(1+Vi+Va)  Va(1+ Vi) +Va(1+Vi+ Vo +V3)
14+Vi+B1Va+B1Va+ 1V 14+Vi+B1Va+B1Vs+iVa
S Vi(14V4) Vo(1+ Vi + Va4 V3)
T+ Vi Vot BiVa+ Ve 1+ Vi B Va+ Va+51Va

Therefore, we have proved the third claim. O

Claim 4: vQi + (1 —7)Q% > Q.

To prove the fourth claim, it is equivalent to show the following;:

V61 751

(I+V)A+Vi+BiVat+BiVa+B1Va)  (L+Vi+V2)(1+Vi+ Vot BiVa+BiVa)

y 2 . 2

TV V) A+ Vit B Vot Va+BoVa)  (L+VidVa+ Va)(L+Vi+ Vot Va+ BoVa)
We define the following function for = € (0,1):

x €T

fa)= (1+atc)(l4+at+br+c+dr) (AI4+at+b+c)(l+a+b+c+dr)

where a,b,¢,d > 0. One can check that f'(x)=nu/de where the numerator nu is defined as

nu=— (2bd+b*) 2* — (2bc + (2a + 2) b) x + 2bdx + 2bc + b* + (2a+2) b

=2bd(z — ) +b*(1 — 22) + (2bc + (2a +2)b) (1 — x) > 0,
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and the denominator de is defined as:

de = (d* +2bd® + b*d?)z* + ((4c+ 2b+4a + 4)d® + (6bc + 4b® + (6a + 6)b)d> + (2b%c + 2b° + (2a + 2)b)d) x>
+ ((6c + (6b+ 12a + 12)c + b + (6a + 6)b+ 6a° + 12a + 6)d* + (6bc® + (8b® + (12a + 12)b)c + 2b® + (8a + 8)b> + (6a® + 12a + 6)b)d
+b2c% + (2b° + (2a + 2)b%)c + b* + (2a + 2)b% + (a® + 2a + 1)b*)z® + ((4c® + (6b+ 12a + 12)c® + (2b% + (12a + 12)b+ 12a® + 24a + 12)c
+ (2a+2)b” + (6a® + 12a + 6)b + 4a® + 12a® + 12a + 4)d + 2bc® + (4b* + (6a + 6)b)c® + (2b° + (8a + 8)b* + (6a® + 12a + 6)b)c
+ (2a+2)b° + (4a® + 8a + 4)b* + (2a® + 6a° + 6a + 2)b)x + c* + (2b+ 4a +4)c® + (b* + (6a + 6)b + 6a® + 12a + 6)c?
+ ((2a + 2)b* + (60 4+ 12a + 6)b + 4a® 4+ 12a® + 12a+ 4)c + (a® + 2a + 1)b* 4 (2a° + 6a® + 6a + 2)b + a* 4 4a® 4+ 6a* + 4a +1 > 0.

Therefore, to prove (B.2), it suffices to prove the following by noticing that 8, > 3, and f'(z) > 0:
B Y
A+V)A+Vi+BiVo+ 1 Va+51Ve) (A+Vi+ Vo)1 +Vi+ Vot BiVs+ BiVy)
1 1
> — .
T A+Vi+ V) A4+ Vit Vet Va+BiVe) (T4 Vi4+ Vot Va)(1+Vi+Vat Va4 BiVa)
We plug in the expression of v and simplify the above inequality into the following:

1+Vi+Vs 1+Vi+Vs > 1+Vi+ Vo4 Vs 1+V;
1+ Vi+ Vot Va+ 51 Ve 1+Vi+81Va+BiVa+ 01V ~ 1+ Vi+ 51 Va+Va+B1 Ve 14+ Vi+Vo+BiVa+5Va

To prove the above inequality, we first define the following amounts:

a,=1+Vi+ Ve, by =14+Vi + Vo + V5451V,
Ay =1+Vi+Vo,bo=1+Vi + 1 Vo +B1Vs+ Vs
az=1+Vi+ Vot Vg,b3=1+V1 +B1Vo+ Vs + 51V,
as=1+V1,bs=1+Vi +Vo+ 51 Vs + 1 Vi
Then, we want to prove ai /by + as/ba > a3/bs + ay/by. Namely, (a1bs + asby)/b1be > (asbs + asbs)/bsbs. By
simple algebra, we can find that a,bs + asb; = aszby + a4bs. It is also easy to verify that by + by = b3 + by and
by > max(bs,bs) and by <min(bsz,by). Therefore, we have b;bs < b3b,, which establishes (a;bs + azby)/b1by >

(azby + agby)/b3by and the fourth claim accordingly. O

Then, combining the above four claims and noticing that Ry > R3, we have the following:
20R(Sy) + (1) R(S2) ~ RI) = (1@ + (1-1)Q3 -1 B
¥ (7@% (1)@ - QQ)RQ n (vQé (- )QE - Qs) Ryt (in (1-m)Q2 - Q4> R,
> (1@ + (-0~ @) Rat (103 + (1 -)@3 - s )

= (v(Qé +Q5)+(1—N(Q3+Q3) — Q2 Qs) R3 >0,

which establishes Lemma B.3. [ |

Proof of Lemma B.4

Proof: To show that f(x) is quasi-convex in x for z > 0, we use the first-order condition for quasi-convexity
(see Page 99 in Boyd and Vandenberghe 2004). To be specific, we want to show that the following inequality
holds for all z,y > 0:

fly) < fle) =V f(z)"(y—=z)<O0.
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It is easy to see that the inequality f(y) < f(z) is equivalent to the following:

<0
Z: d +a: )(d; +y) ’
and the inequality V f(x)”(y — x) <0 is equivalent to the following:
" b.d — a.
o 1 1 < 0'
(y x);7<di+m)2 <

We first consider the case of y > x. For this case, we aim to show the following:

" bd, —a
L ()= . B.
;(dﬂrx)(dﬂry =0 Z d+a:2_ (B:3)

We define t; = b;d; — a; for i € [m]. We can assume that ¢; # 0 for all ¢ without loss of generality. We then
derive a property of ¢; as follows. Consider ¢; and ¢,; where ¢ € {1,...,m — 1}, if ¢, > 0, then we must have

t;11 > 0, since otherwise we have

Q41 < a;

dig1 < <d;,

. b,
i+1 %
which is a contradiction. Therefore, there exists a k € {0,...,m} such that ¢1,...,¢, <0 and t4y1,...,t, > 0.
Note that when k =m, inequality (B.3) holds trivially. Thus, in the following, we consider the case where

ke{l,...,m—1}. To show inequality (B.3), we first prove the following claim:

Claim: Suppose 0 < d; <dy <---<d,, and for l,ls,...,l,,, there exists a k € {1,...,m — 1} such that
li,...,lx<0and lyyq,...,0, >0. Then, for 0 <z <y, we have the following:

ll l2 + + lm <0 = ll + l2 + + lm <0
di+y doty dm+y — di+zx do+zx d,, +x_'

We prove the above claim by contradiction. Suppose we have —1— + +:+++ == >0 instead, then

di+x

() (o )
di+z  di+y dy+z  dy+y dp+z  dn+y ’

which leads to the following since we have y > x

I ly lm

d2+z

we have

@) ty) Gt )ty D))
However, we then the following inequalities:
0< b - & ot L
(di+z)(dr+y)  (d2+x)(d2+y) (dm +2)(dim +y)
Iy 1 Uy 1 Ly 1 Im 1

. +...+ . . +...+7.7
di+y dp+x dp+y dp+zx dyp1+y dptx dm+y dpe+z

1 (11+12++zm><0
Cdyt+z \di+y doty dm+y) =

which leads to a contradiction. Therefore, the above claim must hold. Then, if we let [; =

[ml,
inequality (B.3) is proved for the case of y > x. A similar analysis can be done in the case of y < x. Thus,

the proof is completed. |
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Appendix C: Additional Proofs for Section 6

C.1. Proof of Proposition C.1

Proof: We first calculate the consumer surplus for the SMR model. Under the SMR model, if the customer
visits store ¢, he will simultaneously be shown the set of products in S; (with no discount) and the set of
products in S\ S; (with utility discount exp(—c*(S))). Due to the result in McFadden (1974), we know that
the consumer surplus for this type of customer is log(1+3", cq vk + e 5, Vs €XP (—¢;(8))). The consumer
surplus for the SMR model then follows by taking a weighted sum of all types of customers.

We then calculate the consumer surplus for the SQR model. Under the SQR model, if the customer visits
store 4, he will first be shown the set of products in S;. If the customer decides not to purchase any product
in S;, he will then be shown the set of products in S\ S;. The choice process of this customer is exactly the
same as the impatient MNL model as in Gao et al. (2021). Due to the result in Gallego et al. (2023) (see
Proposition 3), the consumer surplus for this type of customer is

log(L+V(S) + 2 ycs1s, vk exp (=ci(85))) AN
L+ V(S) + 2 cas, vrexp (=i (S)) 14+V(S;)

Zkeé*\si Uy €Xp (—Cf (S))
A+ V(S)) A+ V() + Xress, v exp (—ci(S)))

log(14+V(S;))

n log(1+V(S;)+ Y weexp(—cf(S))).

keS\S;

The first term corresponds to the consumer surplus when no product is purchased. The second term corre-
sponds to the consumer surplus when some product in S; is purchased. The third term corresponds to the
consumer surplus when some product in S\ S; is purchased. The consumer surplus for the SQR model also

follows by taking a weighted sum of all types of customers. |

Appendix E: Some numerical examples
E.1. An Example where SMR improves revenue when there is capacity constraint

EXAMPLE 4. Consider a problem instance with two stores and two products with (r1,72) = (10.3,9.9). The
arrival fractions are (A1, A2) = (0.5,0.5). The attraction values are (v1,v2) = (1.9,1.3). The utility discounts
are cj, = i, = c3; = c3; = 1. We set the capacity constraint to 1 for each store, i.e., |S;| <1 and [S2| < 1.
Then, for this problem instance, one can verify that the optimal solution is (S5, S5) = {{1},{2}} or {{2}, {1}}
under the SMR model. In contrast, if the two stores operate separately (with the same capacity constraint),
then the total expected revenue is 6.748. However, if we adopt the SMR strategy, then the total expected

revenue is 6.943, which shows an improvement. |
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E.2. An Example where the optimal assortments may not be revenue-ordered for the SMR
model under the omnichannel setting
ExXAMPLE 5. Consider a problem instance with three stores and four products with (r1,7r9,73,74) =
(1,0.5,0.499,0.1). Under the omnichannel setting, we let S3 = N. The arrival fractions are (Ai, Ay, A3) =
(0.5,0.5,0). The attraction values are (v1,va,v3,v4) = (1.9,1.1,0.7,2.0). The utility discounts are:

0 1.0 1.0 0 0205 0 0703 0 051.0
C'=103 0 05|,C2=10.7 0 04|,C%=105 0 03|,C*={1.0 0 05,
0206 0 0904 0 0304 0 0406 0

where we use C* for k=1,2,3,4 to represent the matrix [c};]; j—1,2.3. One can then verify that the optimal

assortments for stores 1 and 2 are (S7,S5;5) = ({1},{1,3}), which is not revenue-ordered. [ |

E.3. An Example where the optimal assortments may not be revenue-ordered for the SQR
model under the omnichannel setting
ExXAMPLE 6. Consider a problem instance with two stores and three products with (ri,ry,7r3) =
(1,0.5,0.49). Under the omnichannel setting, we let So = A. The arrival fractions are (A1, As) = (0.5,0.5).
The attraction values are (vi,v2,v3) = (0.4,0.2,1.0). The utility discounts are (ci,,c35,ch,) = (1.0,0.3,1.0).

One can verify that the optimal assortment for store 1 is offering {1,3}, which is not revenue-ordered. = W

E.4. An Example where SQR has higher consumer surplus than SMR

EXAMPLE 7. Consider a problem instance with two stores and two products with (r1,r2) = (4,2). The
arrival fractions are (A1, A2) = (0.5,0.5). The attraction values are (vi,v2) = (1.3,1.5). The utility discounts
are cl, = ¢y =c3; =c2, =0.1. One can then verify that the optimal solution is (S7,S3) = {{1},{1}} under
the SMR model. Meanwhile, the optimal solution is (S7,55) = {{1,2},{1}} under the SQR model. Based
on Proposition C.1, one can also calculate that the consumer surplus under the SMR and SQR models are

0.8329 and 1.1848 respectively. |

E.5. Problem instances for Figure 6

The problem instance for Figure 6(a) and 6(b) consists of six products with revenues (r1,72,73,74,75,76) =
(8.4,5.7,3.9,3.7,3.7,3.1). The attraction values are (vy,vs, v3,v4,v5,v6) = (0.5,2.6,1.9,2.8,3.9,2.5). The com-
mon utility discount is ¢=0.4. The problem instance for Figure 6(c) consists of six products with revenues
(r1,72,73,74,75,76) = (7.3,6.6,6.2,5.4,3.2,3.1). The common attraction values are (vy,vs,vs3,v4,V5,06) =

(4,1.5,0.8,3.2,4.7,3.5). The common utility discount is ¢=1. |

Appendix F: Numerical results on the heuristic performance in Proposition 7

In this section, we conduct numerical experiments to evaluate the performance of the proposed heuristic in
Proposition 7 on synthesized data. We set the number of stores m =2 and vary the number of products
n € {3,4,5,6,7} and arrival fraction A € {0.1,0.2,0.3,0.4,0.5}. The utility discount cfj is randomly sampled
from UJ0,1]. The revenue r; is randomly sampled from U|0,10] and the utility w;, is sampled from UJ0, 5].

For each combination of parameters (i.e., n and X), 10,000 problem instances are randomly generated. The
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performance of the heuristic is evaluated by the average ratio of R§ /Ry, which is summarized in Table 5.
From Table 5, we observe that the proposed heuristic performs much better than the theoretical lower bound

and attains near-optimal revenue over the instances.

T2 0.1 0.2 0.3 0.4 0.5

98.65% | 99.04% | 99.30% | 99.42% | 99.47%
08.45% | 98.85% | 99.14% | 99.20% | 99.35%
98.36% | 98.80% | 99.08% | 99.24% | 99.26%
98.31% | 98.79% | 99.05% | 99.22% | 99.27%
98.31% | 98.72% | 99.02% | 99.18% | 99.26%

Table 5 Performance of the proposed heuristic

| O U = WO

Appendix G: The integer programming formulation for the cardinality-constrained
SQR problem under universally homogeneous disutilities

In this section, we propose an integer programming formulation for the following problem:

Sm) = T\ 1+ Zkesi v (1+ Zkesi o) (14 Zkesi Vi + Zkeg\si Vi 3)

where 8 = exp(—c) is the common utility discount. To formulate the problem (SQR-const) into an integer
program, we follow the following steps.

Step 1: In the first step, we aim to express the objective function R?(S) in terms of binary variables. To
that end, we first define a set of binary variables z;, € {0,1} for each ¢ € [m] and k € [n], representing the
decision of whether to include product k in S;. We also introduce a set of auxiliary variables z;;, (as defined
below) for each i € [m] and k € [n]:

0 fey= =21, =Tig1p="""=Tmr =0,
Zik = { (G.1)

[ otherwise.

Intuitively, we let z;, = 8 if at least one of the stores other than i offers product k. We then transform (G.1)
into a set of linear constraints as follows:
zik > Bxjr Vi€ m] and j#1,
Zie <B(@ 4+ F T+ Tipr e+ Tor), (S1-a)
0<zy <B.
Now, using z;, and z;,, we can reformulate the objective function R?(S) as follows:
RS =, [ es Leans,TH Vs .
i1 1+ Zkesi v (1+ Zkesi vir) (1+ Zkes‘i Vi + Zke/\/\si VikZik)

= A\, ( Zzzl TrVik T4k Ezzl Tkvikzik(l - xzk)
— NI v (L4200 i) (L4 D0y Vi@ + Dy Vinzin (1 — 2ix))

2
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Define Z;;, = z;x (1 — 24,) for each i € [m] and k € [n], which can then be linearized by introducing the following
set of inequalities:
Zik — Tk, < Tak,
%’ik < Zi, (S1-b)
Tipg <1 — @i,
T, > 0.

Now, using z;, and I, we can further reformulate R?(S) as follows:

RY(S) ix-( Lugitute _ S T
N vawn (T4 220y v ) (14 D200y vinan + Doy Virin)
D he1 TRV Tik + Dy TkVik Tk >

A+ i) (LD Vik@i + oy VikTin)

_|_
(G.3)

VipZik T VipTik

= )\z Tk * n n n ~
; ; fa D ner VirTin) (L D20y VanTan + Dy VarTr)

n

m n ~
n Z A\ Zr o Z VirZik, + Vi Tik
i kVikLik * n T n ~ .
= = (L2 Vi) (L4 305 Vi@ + 3oy Vir@ir)

k=1

Step 2: In the second step, we simplify the fractional form of (G.3) by using the change of variables
technique. Specifically, we let

1

0= T—"~—n

T 1+ D e Vikik

Vi ik
ik = ——=m——— VYV k€n],
1+ Zk:l Vit Tk
1 (G.4)

Wio = n n n ~ )

0 (1+ Zk:l Vi) (14 Zkzl VipTix + Zk:l ViEik)

VikTik + Vi T,

Wik = o = - - YV ke |n|.

SN TS S TN U S RPN 3 S )

Now, using w;; in (G.4), R9(S) in (G.3) can be simplified to (G.5) by imposing a set of constraints:

R%(S) :Z)‘izrkwik +Z)\iz7“kvikl‘ik Zwik~ (G.5)
=1 k=1 =1 k=1 k=1

s.t. ka +mo=1, (S2-a)
k=1
Zwik + wio = o, (82'b)
k=1
ik = VikTik T30, (G~6)
Wi = Uik (Tt + Tt )Wios (G.7)

for each i € [m] and k € [n].

Step 3: In the final step, we transform the nonlinear terms in the objective function and the constraints
using the same technique in Step 1. To transform the nonlinear terms in (G.5), we define y; &, x, = Tik, Wik,
for each i € [m] and k1, ks € [n] and impose the following set of constraints:

Wiky = Yirky ko < 1- Tiky s
Yiky ko S Wikys (S3-a)
Yiski ke < Tikys

Yi k1 ke = 0.
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We can then rewrite (G.5) as follows:
RQ(S) :Z)\erszk""z)\l Z rklvikl Z yi7k11k2. (GS)
i=1 k=1 =1 ky=1 ka=1
To transform the nonlinear terms in (E.6) and (E.7), we define d;;, = x;,mi0, €ix = Tixwio and fi, = Tipwio for

each i € [m] and k € [n] and impose the following three sets of constraints:

Mo — die <1 — 244, wip — €k <1 — Ty, Bwio — fir < B — T,
dir, <o, eir < Wio, Jie < ?wmy (S3-b)
dipy < Ty, €k < Tik, fir < Zi,
dg. >0, eix >0, fir = 0.
We can then rewrite (E.6) and (E.7) as follows:
Tk = ’Uzkdik (S3-C)
Wi, = Vi (€5 + fin)- (S3-d)
Note that the cardinality constraints can be represented by
Y @ <C Vi=1,...,m. (G.9)

k=1
To summarize, for the SQR problem under cardinality constraints, we establish the following mixed integer
programming formulation:
max Z Ai Z TRWik + Z Ai Z Tky Viky Z Yi ky ko
i=1 k=1 i=1

@i €401 8k, 20k 70 Tik Wi0 Wik — —
Yiky ko dik ik ik ki=1 ka=1

st. (Sl-a),(S1-b), (S2-a),(S2-b), (S3-a), (S3-b), (S3-c), (S3-d), (G.9).

Appendix H: Joint Assortment and Pricing Optimization

In the main body of this paper, we assume that product prices are exogenously given. In some situations,
the seller can also decide prices across different stores. In this section, we study the joint assortment and

pricing optimization problem under both the SMR and SQR models.

H.1. SMR Model

We first formulate the joint problem under the SMR model. We use p;;, to denote the price of product k in
store ¢. For simplicity, the production costs of all products are normalized to zero. We assume that customers’
utilities have store-specific parameters. In particular, for a customer who visits store ¢ and purchases product
k € S; with price p;;, her utility is given by «a;, — Bixpir + €ix, Where oy, € RT and 3, € RT represent the
intrinsic utility and price sensitivity of product k in store ¢, respectively, and ¢;;, are i.i.d Gumbel variables.
Let v;, = exp(up — Binpir)- If the customer purchases a product from other stores, then her utility and the

corresponding price are denoted by

Ui (8) = exp(ix — Bikpix — Cfg) and pix(S) = pix, where k ¢ S;,1=arg maxy;ikes,;yXik — BirPjx — CZ--
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Note that the values of 9, and p;;, are dependent on the decided assortments S. Let P = {p;x,i € [m], k € [n]}.

With these notations, we formulate the joint problem under the SMR model as follows:

i B ZkESi PikVik +Ek€§\si ﬁzk(s)ﬁzk(s)

max RM(S,P)2) )\ — (H.1)
5.p ; 1+ Zkesi Vi + Zke§\si Vik (S)
To tackle problem (H.1), we first define the following single-store problem for analysis purposes:
Zkespk eXp(ak _kak) (H2)

Simotelnl} 1+ > res exp(ay — Bipk)’
where o, € RT and 8, € RT. Problem (H.2) is the joint assortment and pricing problem for a single store
under the MNL model, where the optimal solution is to offer the full product set. Let 67 be the unique
solution to the equation 6; =3, . edir—Pird wwhere Ay, = i — log(Bi) — 1 for k € N'. We have the following

theorem.

THEOREM H.1. The optimal solution to problem (H.1) is §* = (N,...,N) and pj, = 0; + 5 for each
i€[m] and k € [n].

Proof: For any recommendation strategy S and prices p;,, the expected revenue of store ¢ is given by
(Zkesi DirVik + Zkeg\si Dir(S)vie(8)) /(1 + Zkesi Vi + ZkeS‘\Si 04(8)). Now, letting oy = a, and By = Bux,
consider a feasible solution to problem (H.2), where S =S, pj, = p;;, for k € S; and p), = ﬁ(aik —log(v:x(S)))
for k € S\ S;. Note that p, > p;(S) since cf; > 0. Therefore, the expected revenue of store i is upper bounded
by the expected revenue of the single-store problem under the feasible solution, and thus is further upper
bounded by the optimal revenue for the single-store problem (H.2). Note that the constructed solution in
Theorem H.1 is exactly the optimal solution to problem (H.2) for each store (see, e.g., Wang 2012), and
thus the expected revenue of each store matches the latter upper bound, which proves the optimality of the
constructed solution. ]

Theorem H.1 shows that the optimal assortment in each store is to offer the full set of products A, and
therefore the optimal revenue under the SMR strategy is equal to that by operating different stores separately.
Moreover, the optimal prices are also equal to those in the single-store price optimization problem, which is
known to follow the “constant adjusted markup” property (see, e.g., Wang 2012). This extends our results

under the SMR strategy in the base model to a more general setting.

H.2. SQR Model

We then study the joint problem under the SQR strategy, which can be formulated as follows:

" Z DikVik Z 5 ﬁik(s)fhk(s)
max R%(S,P)2 )\i( hESs + heSNS = ) H.3
S P ( ) Z 1+Zk€5¢ Vik (1+Zk651 vik)(1+2k65i vik+zke§\si Uzk(S)) ( )

Conceptually, the joint problem is more challenging than the pure assortment problem under the SQR model,

=1

which is NP-hard even with homogeneous customer valuation. Thus, we aim to find approximation solutions
to problem (H.3) with guarantee. Recall that Proposition 7 establishes a performance guarantee of 1/2
for a heuristic that offers the single-store optimal assortment. We are interested in the performance of the

single-store optimal solution in the joint problem.
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PRrROPOSITION H.1. The optimal solution (S,P) to problem (H.1) can achieve at least 1/2 of the optimal

revenue in the joint problem (H.3).

Proof: Denote the optimal solution to problem (H.3) as (8*, P*). The optimal revenue can be written as:

R(S*,P*) = i Al < Zkesi p;‘kkviiz: *ZkES‘\Si ﬁ:k(s)j]:k (S) _ )
I+ Zkesi Vik (1 + Zkesi Uz‘k)(l + Zkesi Vik + Zk@?\si vlk(S))

i=1
It is obvious that the value of >, ¢ pj v, /(143 , s, vii,) must be smaller than the optimal objective value

of problem (H.2). Clearly, if we can show that the second term in the big brackets is also smaller than the
optimal objective value of problem (H.2), then the proof is completed. We then notice that
2res\s, Pin(8)05(5) < Liess, Pi(8)05(5)
(L+ 2 s, Vi) (L+ e, Vi T 2hesns, 0(S)) = 1+, cas, Uin(S)
Now, letting oy = aur and B, = B, consider a feasible solution to problem (H.2), where S = S\ S;,
Dr = ﬁ(aik —log(75,(S))) for any k€ S\ S;. Note that p, > pu(8) since ¢f; > 0. Therefore, the value of

> keavs, Pin(S)05.(8) /(1 + 2 icavs, 0% (S)) is upper bounded by the expected revenue of the single-store
problem under the feasible solution, and thus is further upper bounded by the optimal objective value of
problem (H.2). The proof is then completed. [ ]

Proposition H.1 shows that by adopting the single-store optimal solution, we can have a revenue guarantee
of 1/2. That said, the approximation results in Proposition 7 can be extended to the joint problem setting
under the SQR model.

Given that it is hard to analyze the general joint problem, we look at a special case of (H.3) with two
stores, where store 1 holds an assortment S and store 2 holds the full set of products /. One may consider
store 2 as an online store and store 1 as a physical store. For tractability, we impose an assumption S;;, = B
for ¢ € {1,2}, which means that customers visiting different stores have the same price sensitivity toward the

same product. Then, the problem can be formulated as follows:

exp(aay — exp(ayy —
max RQ(S,pl,pg) A (1 . /\) Zkeszk P( 2k ﬁkp%) (Zkesplk P( 1k 5kp1k)
SCNp1.P2 L+ cen exp(aak — Bepak) 14> csexp(ai, — Bepir)
ZkeN\s Pk exp(a1x — BrPar — ciy) )
L4+ pesexp(ane = Bipie) (L + X e s explonn — Bebi) + 2 penr s €XP(a1r — Bipar — 1))

(H.4)

M

where p; = (p11,...,p1n) and po = (P21, ...,p2n). Letting Vi =37, _cexp(aix — Brpix), we simplify problem
(H.4) as follows:

max )\Zkesplk exp(alk — kalk) +)\ ZkeN\Ska exp(alk - ka2k - CIIQ)
SCN p1,p2 1+, (1—|—V1)(1—|—V1—|—Zk€N\Sexp(a1k—ﬁkpgk—c’fg))
Ly
Zke/\/pzk GXP(Oé% _/ka2k)
1+ Zng eXp(CYQk - 51@]?219) .

L3

Lo

+(1-))

(H.5)

For any given S, note that problem (H.5) can be decomposed into two subproblems, where the first one is

to maximize L, over p;, and the second one is to maximize Lo, and L3 over p,. For the first subproblem, the
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optimal prices also follow the “constant adjusted markup” property and thus can be efficiently calculated.
For the second one, we find that it shares similarities with the pricing problem under the finite-mixture logit
(FML) model in van de Geer and den Boer (2022). Hence, the algorithm in van de Geer and den Boer (2022)
can be used to calculate the optimal p,. Thus, problem (H.4) with a given S can be solved. We also note that
problem (H.4) with given prices (optimizing over .S) can be solved using an integer program similar to that
in Section 7.2. We iteratively repeat this procedure until we reach the optimal solution. Such an iterative
process is summarized into a coordinate ascent-type algorithm. We then conduct numerical experiments to
compare the revenue in problem (H.4) with its counterpart under the SMR model. We find that the SQR
strategy still outperforms the SMR strategy when we incorporate the pricing decisions. For the clarity of

exposition, we relegate the algorithm and numerical results to Appendix H.3 and Appendix H.4.

H.3. Algorithm Design

The algorithm for problem (H.4) with any given S is presented as follows.

Algorithm 1 Algorithm for problem (H.4) with any given S

Input: Model parameters \, iy, qor, B, cty, S, sufficiently small A, e > 0, sufficiently large M >0
Output: The optimal solution (pj,p}) to problem (H.4) for any given S.
1: Initialize (pj,p3) = (0,0).
2: for Vi =0:A:)", gexp(ay) do
3: Calculate p;: Denote 0 as the unique root to the equation ), _oexp(ay, —1—B1:0) = Vi and
let ﬁlk:ﬁﬁ-e for ke S.
4: Calculate pg: Reduce the optimization problem regarding p.;, into an instance of the pricing
problem under the FML model (van de Geer and den Boer 2022). The parameters of the instance
are denoted as (we, ac,bx) for ¢ € {1,2} and k € N. In particular, we let
« wy = 1_:“,1/(14;\‘/1 +1-X) aund<,L)2:(1—)\)/(1+)‘V1 +1-M).
o ay,=—M for k€S, ayp = ayy, — cky —log(1+ V) for ke N'\ S, and agp = gy, for k€ N
e b=/ for keN.

Utilize Algorithm BNB(e) to obtain pa.

5: Calculate R®(py,p2). If R9(p1,P2) > R (p%,ps), then update p} < Py and pj < Po.

In Algorithm 1, we first conduct a grid search on V; on the interval [0, ", _sexp(ayy)] since p1, > 0. The
grid length is controlled by the parameter A. Then, for a given value of V;, we calculate p; and Py respectively
using the approaches mentioned in Section H.2. When calculating p,, it is equivalent to solving the following;:
max Zplk -exp(air — Brpix) St Zexp(alk — Brp1x) = V1.

Pk yes kes
Using KKT conditions, one can easily verify that the optimal solution follows py;, = é + 0, where the value

of 6 is the unique solution to the equation ), _cexp(ay, —1— ,0) = V1. When calculating pa, we utilize
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the algorithm BNB(e) developed in van de Geer and den Boer (2022), where € > 0 is the tolerance of error.
The assumption of 5;, = f;, is adopted in van de Geer and den Boer (2022) to avoid introducing non-linear
constraints in their reparameterization (see Remark 2 therein). Note that we set a;, = —M for k € S with
a sufficiently large M > 0 to ensure that no matter what values we assign to py, for k € S, the attraction
value of that product stays zero. We would like to remark that the idea of the algorithm cannot be easily
generalized to the case of multiple physical stores. The major impediment is that the decision process of
the customer involves finding the product in other stores that provide the largest utility, which is generally
difficult to be reformulated to a problem similar to the pricing problem under the FLM model.
In the following, we discuss how to solve problem (H.4) based on Algorithm 1. The key idea is to adopt
a coordinate ascent-type algorithm. In particular, we first fix S = S° = A and solve problem (H.4) using
Algorithm 1. Denote the optimal solution to the pure pricing problem as (p},p3). Then, fix (p1,p2) = (pi,p3)
and solve problem (H.4) to obtain the optimal assortment in store 1, denoted as S*. Notice that one can adopt
the integer programming formulation in Appendix G to solve the pure assortment optimization problem.
Specifically, we let vy, = exp(a1y — Bxpix) and 01y, = exp(aqy — Brpar — c5y) for k € N for convenience. We
also define x, € {0,1} as the binary variable to indicate whether product k is included in S. Then, the pure
assortment optimization problem is equivalent to solving the following problem:
max 2 i1 VIP1R T > re1 Diepar (1 — ) .
e=(e1,oen) L4y o vy (LD viedn) (1 + D00 vie@r + Y g D1x(1 — 1))

Note that problem (H.6) shares the same formulation as problem (G.2) if we let m =1 and 2y, = 015 /v14-

(H.6)

Therefore, problem (H.6) can be efficiently solved by an integer program. Then, fix S = S', we solve the
pure pricing problem again. We repeat the above steps until S**1 = S*. The algorithm for problem (H.4) is

presented as follows.

Algorithm 2 Algorithm for solving problem (H.4)

Input: Model parameters \, aqy, aor, Bi, cty, sufficiently small A e > 0, sufficiently large M >0
Output: The optimal solution (S*,p;,p5) to problem (H.4).
1: Initialize t =0, S* =N and (p},p}) = (0,0).
2: while True do
3: Fix S =5 and solve the pure pricing problem (H.4) using Algorithm 1. Obtain the optimal
solution as (pi™,p5t).
4: Fix (p1,p2) = (P!, p5") and solve the pure assortment optimization problem (H.6) using
the integer program formulation in Appendix G. Obtain the optimal solution as S**!.
5: if St+1 =S and (pi™',pit") = (p1,p-) then break.
6: t=t+1
7: Let §*=S""" and (p7,p3) = (P, p5").
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H.4. Computational Experiments

In this section, we conduct some numerical experiments to compare the revenue of the two strategies for the
two-store joint problem where store 2 offers the full set of products N. For the SQR strategy, the problem
(H.4) can be solved using Algorithm 2. For the SMR strategy, we aim to solve the following problem:
M A Zkgs Pik eXp<alk - Ikalk) + Zke/\/\s D2k eXP(Oélk — Brbak — lez)
max RY(p1,p2) =X %
SCN.p1.p2 1+ Zkes exp(or — Bipir) + ZkeN\S exp(ai, — Bipar — i)

Zkeszk eXP(Oézk- - ﬁkp%)
1+ Zke/\/ exp(aar, — Bipar)

(H.7)

+(1-X)

According to Theorem H.1, one can conclude that the optimal solution to problem (H.7) follows S* = A and
i =0; + 5 fori=1,2 and k € N Recall that 6 is the unique solution to the equation 6, =37, _ \, e®+~Fix?
where &y, = ay, — log(Bi,) — 1 for k € M. Therefore, the optimal expected revenue for the SMR strategy
can be calculated. We then compute the revenue improvement of the SQR strategy compared to the SMR
strategy over randomly generated instances. The model parameters are generated as follows:

o« A~ U[0,1].
o ay, ~UJ[0,a], where a > 0 is to be selected.
e Bix ~0.1+UJ0,b], where b> 0 is to be selected.

o by ~U[0,1].
Note that we add a constant term when generating (;; to avoid numerical issues when the value of b is close
to zero. We vary the number of products n € {3,5,7}, the value of a € [2,4,6], and the value of b € [0.5,1,2].
For each combination of model parameters, we generate 1000 instances and calculate the average revenue

improvement. The computational results are summarized as follows:

b 0.5 1 2 b 0.5 1 2 b 0.5 1 2
a a a
2 10.95% | 1.28% | 1.34% 2 | 1.64% | 1.88% | 2.02% 2 12.08% | 2.50% | 2.77%
4 11.41% | 1.49% | 1.60% 4 12.29%|2.67% | 2.57% 4 12.83%|3.25% | 3.13%
6 [1.75% | 1.71% | 1.72% 6 |2.68% |2.78% | 2.69% 6 |3.22% | 3.55% | 3.49%
(a) n=3 (b) n=>5 (c)n=T7

Table 6 Summarized computational results on the revenue improvement of SQR over SMR

Table 6 shows that in the two-store joint assortment and pricing setting, the SQR strategy still garners a
considerable revenue improvement over the SMR strategy. In particular, when the number of products and
the intrinsic utilities are larger, the revenue improvement is more prominent. Table 6 confirms the robustness
of our managerial insight that the SQR strategy outperforms the SMR strategy even when we incorporate

the pricing decisions.
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