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Abstract. The Liner Shipping Network Design (LSND) problem involves creating

regular ship rotations to transport containerized cargo between seaports. The objec-

tive is to maximize carrier profit by balancing revenue from satisfied demand against

operating and transshipment costs. Finding an optimal solution is challenging due

to complex rotation structures and joint decisions on fleet deployment, cargo rout-

ing, and rotation design. This work introduces a set-partitioning-like formulation for

LSND with transshipment costs, featuring an exponential number of variables and

constraints. The formulation captures key service components such as ship type, sail-

ing speed, and frequency. Addressing transshipment costs requires numerous rotation-

dependent variables and constraints, making even linear programming relaxation dif-

ficult to solve. To tackle this, we propose a simultaneous column-and-row generation

(SCRG) solution method with novel speed-up techniques. Integrating SCRG into a

branch-and-price algorithm, we develop an exact method for LSND and test it on two

variants with different rotation configurations. Extensive computational experiments

demonstrate the method’s effectiveness and efficiency. In addition to advancing solu-

tion methods for LSND, this work enhances the SCRG-based method and expands its

practical applications.
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1. Introduction

In liner shipping, containerships rotate among seaports to transport cargos with a regular service

frequency (Cosco-Line 2020, Maersk-Line 2020). These sequential port calls constitute a service

network on which carriers operate their lines for cargo transportation. Due to the capricious nature

of the shipping industry, carriers need to adjust their service networks periodically to maintain their

competitiveness in response to an ever-changing market. Since 2020, the COVID-19 pandemic

has significantly influenced global supply chains, with the appearance of many potential new mar-

ket demands that need to be fulfilled by reconfiguring service networks. In planning the service

network, allowing the transfer of containers between ships at an intermediate port improves trans-

portation efficiency and enlarges the market coverage. Nowadays, through transshipment opera-

tions, liner shipping services connect more than 80% country pairs (UNCTAD 2017). According

to the UNCTAD’s (United Nations Conference on Trade and Development) Liner Shipping Con-

nectivity Index (LSCI) (UNCTAD 2021), which is one of the most popular maritime connectivity

indices (Wilmsmeier and Hoffmann 2008, Fugazza and Hoffmann 2017), the transshipment opera-

tions are increasing during recent years. Nevertheless, this entails considerable transshipment costs

that must be considered in the service network planning.

A liner shipping service is defined as a rotation that involves a cyclic sequence of port calls

maintained by a fleet of capacitated ships for a designated service frequency (e.g., weekly). In

a simple rotation, each port is visited exactly once during a round trip. If some ports are visited

twice or more, the rotation is called non-simple, and a port visited more than once is regarded as a

butterfly port. At a butterfly port, containers can be transferred between two ships operating for the

same rotation but with different sailing directions (i.e., westbound or eastbound). We define this

transshipment operation as intra-transshipment. Containers can also be transferred between ships

from different (simple and non-simple) rotations, and we call this inter-transshipment.

For example, in Figure 1, both rotations (A) and (B) belong to the non-simple types, with KH

and PS as their butterfly ports (represented by gray nodes). A shipment path for the containers from

CW to SG starts from CW on rotation (A). When arriving at the butterfly port KH, containers are

transferred to another ship heading to SG from rotation (A) via intra-transshipment and carried to

SG in the next port of call. The shipment path for the containers from PS to SG starts from PS on

rotation (B). At YH, which is an intersection port of the two rotations, containers are transferred to

a ship from rotation (A) via inter-transshipment and next transported to SG by rotation (A).
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Figure 1 Illustration of intra-transshipment and inter-transshipment. Butterfly ports are represented by gray nodes, intra-

transshipment and inter-transshipment occur at KH and YH, respectively.

The liner shipping network design (LSND) problem aims to create a set of rotations to satisfy

the container shipment demand. The goal of the LSND is to maximize the carrier’s total profit, that

is, the total freight revenue from satisfied demands minus the total operating cost, including the

costs associated with intra-transshipment and inter-transshipment operations.

The LSND is strongly NP-hard (see Brouer et al. 2014a). When transshipment costs are not

considered, this problem can be seen as a variant of the service network design with asset manage-

ment (SNDAM) problem, where multiple types of assets, which can represent ships, are deployed

on cycles to maintain designated service frequencies. For the SNDAM, set-partitioning-like mod-

els (see, e.g., Andersen et al. 2009a,b, 2011, Crainic et al. 2014) have been developed based on

a multiple commodity flow network, where each arc has a capacity aggregated among the pass-

ing cycles to limit the flow of cargos. Traditional column generation (CG) techniques (see, e.g.,

Lübbecke and Desrosiers 2005) are applicable to solving their linear programming (LP) relax-

ations, which provide valid dual bounds that can be used to develop exact solution methods. In

the SNDAM, transshipping of cargos among cycles is allowed; however, the volumes of cargos

transshipped cannot be explicitly captured in the existing models, meaning that the transshipment

costs cannot be considered. For the LSND, cargo transshipment operations and their associated

costs have been considered in some existing studies (Álvarez 2009, Plum et al. 2014b). Flexible

service frequencies are also considered to maximize profits (Giovannini and Psaraftis 2019, Brouer

et al. 2014a). In contrast to SNDAM, model formulations of the LSND in these studies are more

complicated, resulting in the current works mainly focusing on heuristics, for which optimality

gaps of the obtained solutions are rarely reported (see, e.g., Mulder and Dekker 2014, Brouer et al.

2014a,b, Koza et al. 2020). There are only a few existing exact methods developed for the LSND,
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which are primarily limited to a priori constraints on the number of feasible rotations, the maxi-

mum number of operated rotations, or allowing at most one butterfly port (Ameln et al. 2019, Wang

and Meng 2012, Reinhardt and Pisinger 2012, Plum et al. 2014b, Balakrishnan and Karsten 2017,

Hellsten et al. 2022). To the best of our knowledge, only the exact method of Thun et al. (2017)

avoids limitations on the number and structure of the rotations, but it cannot take into account all

the possible rotations if more than one butterfly port is allowed.

The results and contributions of this paper can be summarized as follows.

(i) For the first time in the literature, this study provides a new exact method for the LSND

with transshipment costs without imposing any a priori restrictions on the number of feasible

rotations or the maximum number of operated rotations but considering decisions on general

rotation configurations of various service components.

(ii) To model the problem, we define a planning network with specific transshipment nodes and

arcs used to explicitly capture transshipped cargos and transshipment costs. Based on that, we

develop a mixed-integer linear programming (MILP) formulation, a new set-partitioning-like

model for the problem with exponentially many rotation-dependent variables (or columns)

and constraints.

(iii) To tackle the challenge of solving the LP-relaxation of the newly developed MILP formu-

lation, a major contribution of this paper is the development of a novel solution method

based on simultaneous column-and-row generation (SCRG). It is composed of two phases,

where the first phase builds a dual solution for a restricted master problem, and the second

phase solves a pricing problem that uses the dual solution to check the optimality conditions

and to generate new rotation-dependent variables and constraints simultaneously. Concern-

ing existing SCRG solution frameworks (see, e.g., Feillet et al. 2010, Muter et al. 2013), we

introduce two innovative techniques, named “LP-based approach” and “post-pricing phase”,

which leverage the dual information to avoid generating unnecessary columns and thus speed

up the convergence of the solution method.

(iv) Our new SCRG-based solution method is embedded within a standard branch-and-price (BP)

framework to compute optimal or near-optimal solutions (with their optimality gaps) for

the LSND with transshipment costs. We apply it to the following two main variants of the

problem: (a) Standard LSND, all ships sail at a design speed and all rotations strictly follow

weekly frequency, and (b) General LSND, each ship of a given type can sail at any speed from

a given speed set. Each rotation can have a service frequency from a given frequency set.
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Computational experiments are conducted on these two variants to validate their effectiveness

and efficiency, and the results show that:

• the “LP-based approach” and the “post-pricing phase” are the two main factors that

significantly improve the performance of our solution method and can be adopted as general

techniques to improve the convergence of other methods that follow existing SCRG solution

frameworks;

• this exact method solves to optimality, for the first time, some difficult LSND instances

with transshipment costs (of up to 12 ports), and significantly improves the solutions provided

by existing exact and heuristic methods for some benchmark instances (of up to 20 ports).

Our study reveals and demonstrates for the first time in the literature that the LSND can be solved

using a SCRG-based solution method, extending the practical applications of the SCRG-based

solution method in general. The newly developed optimization techniques in the SCRG-based solu-

tion method for the LSND are also potentially useful to solve large-scale linear (integer) programs

with column-dependent rows for other complex optimization problems, such as those studied in

Feillet et al. (2010) and Muter et al. (2013).

The remainder of this paper is organized as follows. A literature review is presented in §2,

followed by the description and formulation of the LSND in §3. §4 is dedicated to our new SCRG-

based solution method, whereas §5 describes the exact method. Experimental results are presented

in §6, and conclusions and future research directions in §7.

2. Literature review

There is a growing body of studies on the LSND (see Christiansen et al. 2013 and Christiansen

et al. 2020 for comprehensive reviews), which have mainly investigated heuristic methods. Álvarez

(2009) studied the version of the LSND with only inter-transshipment costs and developed a

matheuristic approach, which was applied in a case study with ports of call distributed across the

globe. Brouer et al. (2014a) considered a more general LSND problem associated with new deci-

sions on sailing speed and service frequency, as well as additional intra-transshipment costs. They

developed an iterated tabu search algorithm to find heuristic solutions and tested it on benchmark

instances. Other heuristic algorithms were developed by Mulder and Dekker (2014), Brouer et al.

(2014b), and Krogsgaard et al. (2018), all of which applied neighborhood operators to refine the

obtained solutions iteratively. Recently, Koza et al. (2020) developed a CG-based matheuristic

for a more general version of the LSND, which accounts for speed optimization and additional
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service-level requirements. In the studies mentioned above, due to the lack of efficient methods for

computing strong relaxation bounds, optimality gaps between the solution values of optimal and

heuristic solutions were not reported.

For the LSND without transshipment costs (but allowing cargo transshipment), Agarwal and

Ergun (2008) proposed a set-partitioning-like model, which consists of an exponential number of

rotation-dependent binary variables. They developed two heuristic methods based on CG and Ben-

ders decomposition, respectively, which can produce feasible solutions and report their optimality

gaps. The experimental results of Agarwal and Ergun (2008) showed that all of their test instances,

which included 6 to 20 ports, were solved heuristically, with optimality gaps ranging on average

from 2.3% to 12.7%. In our study, we propose and solve a new set-partitioning-like model for

the LSND with transshipment costs. This new model can also incorporate additional decisions on

various service components, such as the sailing speed and service frequency, which have not been

considered in Agarwal and Ergun (2008). It is also complicated, containing an exponential number

of rotation-dependent binary variables and rotation-dependent constraints.

Only a few exact methods for the LSND with transshipment costs are known in the literature.

Most of them are limited to a single rotation or to a priori restrictions on the number of feasible

rotations or the maximum number of operated rotations in a solution, which, however, do not

confine our newly proposed solution method. For the LSND problem of only a single rotation to be

determined, Plum et al. (2014a) derived a mixed integer programming (MIP) model and developed

a branch-price-and-cut algorithm to solve it. Within a time limit of 1 hour, they solved optimality all

their test instances of 10 ports and some of their test instances of 15-25 ports. For test instances of

20 ports or more, their obtained solutions had an average optimality gap ranging from 4% to 153%.

With a more general setting considered, Wang et al. (2019) developed a branch-and-cut algorithm

to optimize the design of a single rotation. Their experimental results on randomly generated test

instances showed that test instances of up to 12 ports were solved to optimality in 3 hours. For their

largest instances of 20 ports, the obtained solutions had an average optimality gap of around 20%,

with the maximum gap reaching 40%.

Given a limited set of candidate routes, Wang and Meng (2012) and Meng and Wang (2011)

derived MIP models for the LSND problem with transshipment costs and used a general-purpose

MIP solver to solve the models to optimality. However, their models and methods were confined

to only a few rotations that had to be explicitly stated in advance.
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Reinhardt and Pisinger (2012), Plum et al. (2014b), and Ameln et al. (2019) developed alter-

native MIP models by using arc-based decision variables, which were, however, confined to a

priori restriction on the maximum number of operated rotations in a solution. Under such a restric-

tion, Reinhardt and Pisinger (2012) developed a branch-and-cut algorithm to solve an arc-based

model of the LSND problem. Their experiments solved test instances of no more than ten ports

and three ships to optimality within around 5.5 hours. For their largest test instances of 15 ports

and three ships, the solutions obtained had optimality gaps around 20% on average and 24% at

maximum. Plum et al. (2014b) applied a general-purpose MIP solver to directly solve an arc-based

model of the LSND problem. They reported experimental results based on two datasets, Baltic and

WAF, of the benchmark suite LINER-LIB-2012, which was introduced by Brouer et al. (2014a) to

challenge both exact and heuristic methods, as well as to encourage their developments. Experi-

mental results from Plum et al. (2014b) showed that the optimality gaps of their solutions, obtained

within 1-3 hours, were often greater than 30% for instances of 12-20 ports. Given a predetermined

maximum number of rotations, Ameln et al. (2019) further developed an arc-based model on a

layered network and directly applied a general-purpose MIP solver to solve it, which, however,

cannot incorporate all possible rotations when the number of butterfly ports in a single rotation can

be more than one. They reported experimental results on instances randomly generated from the

Baltic and WorldLarge datasets of LINER-LIB-2012. The results showed that for instances of up

to 8 ports, most of them could be solved to optimality within 10 hours. For instances of 10 ports,

the optimality gaps of the solutions obtained were around 14% on average and 19% at maximum.

Among the three existing works mentioned above, both Reinhardt and Pisinger (2012) and Plum

et al. (2014b) can incorporate decisions on service frequency, but none considered decisions on

sailing speed.

Moreover, the LP-relaxations of arc-based models, such as those mentioned above, generally

provide only weak bounds concerning the dual bounds provided by set-partitioning-like mod-

els. Indeed, in set-partitioning-like models, the rotation constraints do not need to be explicitly

expressed in the formulation; rather, they are implicit from the definition of the set of rotations

or variables. Consequently, the formulations provide better lower bounds than those obtained with

arc-based formulations because they can be obtained by applying Dantzig-Wolfe decomposition to

arc-based formulations (Vanderbeck and Wolsey 2010). This motivates our work on deriving and

solving a set-partitioning-like model that is not confined to any a priori restrictions on the number

of feasible or the maximum number of operated rotations.
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Recently, Thun et al. (2017) developed an exact method for a cost minimization variant of the

LSND problem that aims to minimize the total cost with all the cargo demands strictly satisfied,

where there are no limitations on the number of rotations and the structure of the rotations. How-

ever, similar to Ameln et al. (2019), their solution method also relies on a layered network, which

cannot incorporate all possible rotations when the number of butterfly ports in a single rotation can

be more than one. It does not consider decisions on the sailing speed or service frequency. The

set-partitioning-like model derived in Thun et al. (2017) contains many decision variables, each

associated with a combination of a rotation and its cargo flows. Thus, although a CG-based method

can be applied to solve the LP relaxation of the model, the corresponding pricing problem needs

to determine not only a rotation but also its cargo flows. Thus, such a pricing problem can only

be solved by applying an MIP solver on an arc-based model, which can be very time-consuming.

Thun et al. (2017) showed that their exact method could solve some randomly generated instances

of up to only seven ports within a time limit of 1 hour. Still, for some instances of 7 ports, their

method cannot even produce feasible solutions to satisfy all the cargo demands. Our newly derived

set-partitioning-like model for the LSND for profit maximization, which we will present later, con-

sists of significantly fewer decision variables, which leads to a more tractable pricing problem and

tighter relaxation bound. Our new model considers all possible rotations for any given number of

butterfly ports allowed, and it also considers decisions on general rotation configurations of more

service components, including the sailing speed and service frequency.

In this paper, we develop a new exact method based on SCRG to solve the LSND. In addition to

the LSND, there are several other complex optimization problems known in the literature that can

be naturally formulated as linear (integer) programming models with column-dependent rows and

can be solved by methods based on some SCRG solution frameworks (see, e.g., Feillet et al. 2010,

Muter 2011). Unlike traditional CG, an SCRG-based solution method adds columns (variables)

and rows (constraints) simultaneously by solving a row-generating pricing problem (Muter et al.

2013). Note that many well-known but fundamentally different methods, such as column-and-row

generation, column-and-cut generation, branch-price-and-cut, are named with similar terms in the

literature (see, e.g., Katayama et al. 2009, Desrosiers and Lübbecke 2011, Desaulniers et al. 2016).

For these methods, rows newly generated are valid inequalities, which are used to strengthen the

LP-relaxation of the mathematical formulation, and the generation of the columns and the rows are

performed separately. They have recently been applied to the LSND in a matheuristic developed by

Koza et al. (2020). Differently from these methods, column-dependent rows generated by SCRG
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are necessary structural constraints of the mathematical formulation, such as the flow balanced and

the ship capacity constraints in the LSND, as we will see later in §3.3. These constraints have to

be added simultaneously together with their interdependent variables. Thus, a major challenge in

using SCRG comes from generating new columns requiring the dual information on their interde-

pendent rows, which are, however, not yet present in the restricted master problem. In this sense,

implementing an SCRG-based method is more complicated than a traditional CG-based method.

Early applications of SCRG were proposed by Zak (2002) and Avella et al. (2006), in which the

LP-relaxations of problems studied are solved suboptimally. Problems with exponentially many

column-dependent rows, which cannot afford to be enumerated explicitly, have been addressed

by Feillet et al. (2010) and Muter et al. (2013). Feillet et al. (2010) described an SCRG solution

framework based on the constructions of dual solutions for LP, and they applied it in developing

two solution methods for solving the LP-relaxations of a split-delivery vehicle routing problem

and a bus rapid transit route design problem, respectively. Muter et al. (2013) proposed another

SCRG solution framework based on the solution of a two-stage row-generating pricing problem.

By following Muter et al. (2013), similar techniques have been applied to the cutting stock prob-

lems (Muter and Sezer 2018, Wang et al. 2020), the integrated airline recovery problems (Maher

2016, Huang et al. 2023), and the time-constrained routing problem (Muter et al. 2018), which are

all associated with row-generating pricing problems for generating the column-dependent rows.

As mentioned in Spliet (2024), the effectiveness of the SCRG-based solution methods hinges

on their careful design. As we will show later in this paper, the two SCRG-based solution meth-

ods in Feillet et al. (2010) are problem-specific and either cannot be used or are inefficient when

applied to the LSND. When the technique developed in Muter et al. (2013) is applied to the LSND,

the resulting solution method is outperformed by our method. Moreover, existing SCRG solution

frameworks overlook the problem of generating unnecessary columns, which will be addressed in

our method.

3. Problem description and mathematical formulation

In this section, we present the problem description of the LSND with transshipment costs, impos-

ing no prior restriction on the number of feasible or the maximum number of operated rotations.

Decisions on general rotation configurations represent various service components, including but

not limited to the ship type, sailing speed, and service frequency. Based on this, a set-partitioning-

like MIP model is derived, which captures both intra-transshipment and inter-transshipment costs,

and it can be specified to incorporate different variants of the LSND.
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3.1. Description of the LSND

We are given a set of ports H = {1, ..., |H|}, and a set of container shipment demands K =

{1, ..., |K|}, where demand k ∈K has qk containers that are available to be shipped from the ori-

gin port o(k) to the destination port d(k) each week, incurring holding and transshipment costs

during the transportation. For each demand k ∈K, shipping a container has a unit revenue p′k and

a unit rejection or penalty cost p′′k. A fleet of ships of different types transports containers. Let

S = {1, ..., |S|} be the set of ship types, where the ship of type s ∈ S is associated with a maxi-

mum capacity ms (in TEUs), a design speed us (in knots), and a fleet size ns (i.e., the number of

available ships of type s).

A liner shipping service is defined as a rotation made up of its configuration and route. The con-

figuration of a rotation is a specification of some service components, including but not limited to

the ship type, sailing speed, and service frequency, which determine the service’s ship deployment,

capacity, and cost. Let C = {1,2, . . . , |C|} indicate the index set of all available configurations.

Actual forms of the available configurations depend on the settings of specific applications. For

example, in the application studied by Plum et al. (2014b) and Reinhardt and Pisinger (2012), all

ships are assumed to sail at their design speeds, and all services are assumed to be weekly. Under

this setting, the configuration of a rotation needs to include only the ship types, implying C = S.

The route of a rotation is a cyclic sequence of port calls. Following some practical rules proposed

in the existing studies (see, e.g., Agarwal and Ergun 2008, Brouer et al. 2014a,b), a feasible route

concerning a given configuration σ ∈ C is required to (i) call at the same port h ∈H at most ψ(1)
h

times; (ii) pass the same voyage arc a∈ {(h,h′) : h,h′ ∈H,h ̸= h′} at most ψ(2)
a times; (iii) involve

at most ψ(3) port calls; (iv) have at most ψ(4) ports that are visited more than once; (v) have a

round-trip time no greater than ψ(5) weeks under configuration σ. Hereinafter, by the term route,

we refer to a feasible route. We use Γ(σ) to indicate the index set of all feasible routes concerning

configuration σ ∈C. Note that whether a rotation is of a simple or non-simply type depends on its

route structure, such as the number of butterfly ports (i.e., ψ(4)).

Let R denote the set of all rotations, where each rotation r ∈R is represented by a pair (σr, γr)

with σr ∈ C and γr ∈ Γ(σr) indicating the configuration and the route of rotation r, respectively.

Following the existing studies (see, e.g., Agarwal and Ergun 2008, Brouer et al. 2014a,b), we

assume that each rotation uses only ships of the same type. Accordingly, for each r ∈ R, let s(r)

and n(r) denote the type and the number of ships deployed for rotation r, respectively, and letm(r)

denote the weekly capacity provided by the deployed ships of rotation r, and let w(r) denote the
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weekly operating cost of all the deployed ships of rotation r. The LSND aims to choose a subset of

rotations from R to transport the cargo demands from K selectively, without exceeding the ships’

capacities and fleet sizes, to maximize the total profit obtained for each week.

3.2. Modeling rotations

We model rotations on a digraph G = (N,A) where the node set N is partitioned as N = V ∪ T

and A is the arc set. Node set V represents voyage nodes whereas set T represents transshipment

nodes. A voyage node represents a specific port of call. Since a non-simple rotation may involve

a butterfly port visited more than once, and two or more rotations may visit the same port, we

copy multiple voyage nodes for each port, such that separated voyage nodes represent repeated

port calls. Since each feasible route of a rotation call at the same port h ∈H at most ψ(1)
h times,

it is sufficient to have ψ(1)
h copies of voyage nodes for each port h ∈H . For the sake of notation,

the original set of |H| ports are represented by the first |H| nodes in V . A transshipment node

represents the yard area of the port; therefore, set T contains a node for each port. For each node

i∈N , h(i)∈H denotes the corresponding port.

The set of arcs A is partitioned as A = AV ∪ AT , where AV = {(i, j) : i, j ∈ V,h(i) ̸= h(j)}

represents voyage arcs whereas AT represents transshipment arcs. Set AT is further partitioned

as AT = A↓
T ∪A↑

T where A↓
T = {(i, j) : i ∈ V, j ∈ T,h(i) = h(j)} represents the set of unloading

arcs and A↑
T = {(i, j) : i ∈ T, j ∈ V,h(i) = h(j)} the set of loading arcs. A transshipment arc,

connecting a voyage node to a transshipment node, represents the unloading operation from aboard

the ship to the port yard. The contrary connection, from a transshipment node to a voyage node,

represents the loading operation. For each voyage node i ∈ V , we indicate with A−
V (i) = {j ∈ V :

(j, i) ∈AV } and A+
V (i) = {j ∈ V : (i, j) ∈AV } the sets of voyage arcs entering and leaving node

i, respectively. For each node i ∈N , we indicate with A↓
T (i) = {j ∈N : (j, i) ∈AT} and A↑

T (i) =

{j ∈ N : (i, j) ∈ AT} the sets of transshipment arcs entering and leaving node i, respectively.

Henceforth, if arc a connects the nodes i and j, then (i, j) and a will be used interchangeably to

denote the same arc.

Every voyage arc a ∈ AV is associated with a length ℓa in nautical miles. Every arc a ∈ A is

associated with a cost wka for moving a container of demand k ∈K on arc a. In practice, wka for

a∈AV represents the holding cost of a container in the voyage concerning arc a, andwka for a∈AT
represents the transshipment cost for moving a container at a terminal yard for arc a, which can

be any loading or unloading cost. It is worth noting that wka can also incorporate costs other than
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Figure 2 Routes of the two rotations in Figure 1 represented as elementary cycles in the underlying digraph, where port KH

and port PS have two copies of voyage nodes.

the loading or unloading costs. For example, suppose the transshipment node of wka for a ∈AT is

the origin or the destination port of demand k. In that case, the container movement of demand

k can be recognized as an import/export operation, and wka can incorporate a local import/export

tariff. Otherwise, the container movement is recognized as a transshipment operation, and wka can

be used to incorporate a local transshipment tariff.

Consider each rotation r = (σr, γr) ∈R with configuration σr ∈ C and route γr ∈ Γ(σr). Since

the digraph G= (N,A) has ψ(1)
h copies of voyage nodes for each port h ∈H , the route γr can be

represented by an elementary circuit of G that visits only voyage nodes with no repeats. Let V (γr)

and AV (γr) denote the set of voyage nodes and voyage arcs in route γr, respectively. Let AT (γr)

denote the set of transshipment arcs of graph G that leave or enter the voyage nodes in V (γr).

Figure 2 presents the representations of routes of the two rotations illustrated in Figure 1. The

figure shows that each route corresponds to an elementary circuit of distinct voyage nodes in the

underlying digraph. Furthermore, unloading and loading transshipment arcs represent intra- and

inter-transshipment operations with no need to be distinguished, and the costs associated with these

arcs accordingly model the corresponding transshipment costs.

For each rotation r = (σr, γr) ∈R, the type of ships s(r) ∈ S deployed in r is determined only

by the configuration σr. Thus, we can represent s(r) by s(σr). The weekly capacity m(r) provided

by the deployed ships in r usually depends only on the type of the deployed ships and the service

frequency. Thus, it is also determined only by σr. We can also representm(r) bym(σr). In contrast,

the number of ships n(r) deployed and the round-trip operating cost w(r) cannot be determined

only by the configuration σr, as they both also depend on the arcs and nodes of the route γr of

rotation r. Thus, we represent them by n(σr, γr) and w(σr, γr), respectively.
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Accordingly, throughout the remainder of the paper, we replace s(r), m(r), n(r), and w(r),

which are introduced to describe problem LSND in §3.1, by s(σr),m(σr), n(σr, γr), andw(σr, γr),

for each rotation r = (σr, γr) ∈R. Moreover, for different specific applications, the settings of the

LSND are different. As a result, actual forms of the configuration σr are different, and so are the

actual forms of s(σr), m(σr), n(σr, γr), and w(σr, γr). See the following two examples, two main

variants of the LSND, incorporating those problem settings considered in the literature.

EXAMPLE 1 (STANDARD LSND). As mentioned earlier, in the application studied by Plum et al.

(2014b) and Ameln et al. (2019), all ships of type s∈ S are assumed to sail at their design speeds us

and all services are assumed to be weekly. We refer to the LSND under this setting as the Standard

LSND. Accordingly, the configuration σr of each rotation r = (σr, γr) ∈R includes only the ship

type s(σr)∈ S. Thus, we can simply assume that C = S and s(σ) = σ for σ ∈C so that s(σr) = σr.

Since each ship of type s ∈ S has a maximum capacity ms and all services are weekly, we obtain

that the weekly capacity m(σr) = ms(σr). Suppose each port call requires τ days for handling

containers at the terminal, where τ is a given input parameter. Since each ship of type s ∈ S can

only sail at its design speed us, we know that ℓa/(24us(σr)) indicates the travel time associated with

each voyage arc a∈AV (γr) of the route γr of r. To maintain the weekly service frequency, the total

round-trip time (in weeks) of rotation r must be equal to the number of ships n(σr, γr) deployed in

r, which implies that n(σr, γr) =
⌈∑

a∈AV (γr)

[
ℓa/(24us(σr))+ τ

]
/7
⌉

. Moreover, following Brouer

et al. (2014a), we suppose that a fuel cost w(1)
s,a(u) is given for a ship of type s sailing on voyage

arc a at speed u, computed as w(1)
s,a(u) = (ℓa/u) · Fs(u) · κ, where κ denotes the unit ton fuel oil

price, andBs(u) = bs(u/us)
3 (with bs a given coefficient) indicates the bunker consumption rate of

a ship of type s sailing at speed u. To berth a ship of type s at port h, it incurs a given fixed port call

cost of w(2)
s,h and the τ days’ port stay cost of w(3)

s,h. Let w(0)
s denote the weekly fixed cost for every

ship of type s. As shown earlier, the total round-trip time (in weeks) equals the number of ships

deployed to maintain the weekly frequency. Thus, the weekly operating cost w(σr, γr) of all the

deployed ships of rotation r equals the round-trip cost per each deployed ship, which implies that

w(σr, γr) =w
(0)
s(σr)

·n(σr, γr)+
∑

a∈AV (γr)
w

(1)
s(σr),a

(us(σr))+
∑

i∈V (γr)

(
w

(2)
s(σr),h(i)

+w
(3)
s(σr),h(i)

)
.

EXAMPLE 2 (GENERAL LSND). In addition to the ship type, the sailing speed and the ser-

vice frequency (i.e., the number of services per week) have also been considered in the LSND

literature (see, e.g., Brouer et al. 2014a,b). They can be incorporated in the following setting

of the LSND, referred to as the General LSND. Suppose that each ship of type s ∈ S can
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sail at any speed from a given speed set Us, and each rotation can have a service frequency

from a given frequency set F . The General LSND endogenizes decisions on each rotation’s

sailing speed and service frequency. Accordingly, each configuration σ ∈ C needs to be asso-

ciated with not only the ship type s(σ) ∈ S, but also the sailing speed and service frequency,

denoted by u(σ) ∈ U and f(σ) ∈ F , respectively, where U =
⋃
s∈S Us. As a result, for each

rotation r = (σr, γr) ∈ R, its ship type, sailing speed, and service frequency are represented by

s(σr), u(σr) and f(σr), respectively. Following similar arguments in Example 1, we can obtain

that the weekly capacity m(σr) provided by deployed ships of rotation r can be computed by

m(σr) = f(σr)ms(σr), the number of ships n(σr, γr) deployed in rotation r can be computed

by n(σr, γr) = f(σr)
⌈∑

a∈AV (γr)
[ℓa/(24u(σr))+ τ ]/7

⌉
, and the weekly operating cost w(σr, γr)

of all the deployed ships of rotation r can be computed by w(σr, γr) = w
(0)
s(σr)

· n(σr, γr) +

f(σr)
[∑

a∈AV (γr)
w

(1)
s(σr),a

(u(σr))+
∑

i∈V (γr)

(
w

(2)
s(σr),h(i)

+w
(3)
s(σr),h(i)

)]
.

3.3. Mathematical formulation

The formulation of the LSND uses the following three sets of decision variables: (i) non-negative

continuous variables g = [gkr,a : k ∈K,r = (σr, γr) ∈ R,a ∈ AV (γr) ∪AT (γr)], variable gkr,a rep-

resenting the quantity of demand k moved on arc a of rotation r, (ii) non-negative continuous

variables x = [xk : k ∈ K], variable xk representing the amount of cargos satisfied for demand

k, and (iii) binary variables y = [yr : r ∈ R], variable yr equal to one if rotation r is selected in

solution, zero otherwise. The LSND can be formulated into a set-partitioning-like MIP model as

follows:

(F) max
∑
k∈K

p′kxk−
∑
k∈K

p′′k (qk−xk)−
∑
k∈K

∑
r∈R

∑
a∈AV (γr)∪AT (γr)

wkag
k
r,a−

∑
r∈R

w(σr, γr)yr (1a)

s.t.∑
a∈A−

V (i)∩AV (γr)

gkr,a+
∑

a∈A↓
T (i)

gkr,a−
∑

a∈A+
V (i)∩AV (γr)

gkr,a−
∑

a∈A↑
T (i)

gkr,a = 0, ∀k ∈K, r ∈R, i∈ V (γr),

(1b)

∑
a=(j,i)∈A↓

T (i)

∑
r∈R:j∈V (γr)

gkr,a−
∑

a=(i,j)∈A↑
T (i)

∑
r∈R:j∈V (γr)

gkr,a =


−xk, o(k) = h(i)

0, otherwise

xk, d(k) = h(i)

,∀k ∈K, ∀i∈ T,

(1c)
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r∈R:s(σr)=s

n(σr, γr)yr ≤ ns, ∀s∈ S, (1d)

∑
k∈K

gkr,a−m(σr)yr ≤ 0, ∀r ∈R, a∈AV (γr), (1e)

gkr,a− qkyr ≤ 0, ∀k ∈K, r ∈R, a∈AV (γr), (1f)

xk ≤ qk, ∀k ∈K, (1g)

xk ≥ 0, gkr,a ≥ 0, ∀k ∈K, r ∈R, a∈AV (γr)∪AT (γr), (1h)

yr ∈ {0,1}, ∀r ∈R. (1i)

The objective function (1a) states to maximize the total profit, where the first two terms compute

the total profit by subtracting the penalties of the unsatisfied demands from the revenues of the sat-

isfied demands, the third term computes the cost for moving cargos on the network arcs, including

any transshipment cost, and the last term computes the cost of the rotations. Constraints (1b) bal-

ance the cargo flows at the voyage nodes for all rotations. Constraints (1c) balance the cargo flows

at the transshipment nodes. Note that the two flow balance constraints guarantee that any cargo

under loading or unloading operations must go through the transshipment arcs. Constraints (1d)

limit the number of utilized ships to be less than or equal to the fleet size associated with each ship

type. Constraints (1e) enforce the cargo flows on each rotation to be no greater than the maximum

capacity of the deployed ship. Constraints (1f) enforce the cargo flows on each arc to be no greater

than their maximum demand volumes. Constraints (1g) impose that the satisfied cargo demands are

no greater than their maximum values. The non-negativity and integrity of the decision variables

are given in (1h) and (1i).

By grouping the coefficients of variable xk in (1a) as pk = p′k+ p′′k for each k ∈K, the objective

function of formulation F can be rewritten as follows:

max
∑
k∈K

pkxk−
∑
k∈K

∑
r∈R

∑
a∈AV (γr)∪AT (γr)

wkag
k
r,a−

∑
r∈R

w(σr, γr)yr−
∑

k∈K
p′′kqk, (2)

where the last term in the expression is a constant term that, for simplicity of presentation, is

disregarded in the following. We denote by LF the LP-relaxation of formulation F .

4. Solving problem LF to optimality: method SCRG-LF

In addition to exponentially many rotation-dependent columns, such as variables [gkr,a] and [yr],

problem LF also has exponentially many rotation-dependent rows, such as constraints (1b), (1e),

and (1f). Consequently, a standard CG procedure cannot compute its optimal solution.
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This section describes a novel exact method based on SCRG for problem LF , called SCRG-LF.

We define the dual of problem LF , called DLF , as follows. The variables of DLF are given by

vectors [λkr,i], [µ
k
i ], [δs], [πr,a], [β

k
r,a] and [φk] associated with constraints (1b), (1c), (1d), (1e), (1f)

and (1g), respectively. Problem DLF is as follows:

(DLF) min
∑
s∈S

nsδs+
∑
k∈K

qkφk, (3a)

s.t. µko(k) −µkd(k) +φk ≥ pk, ∀k ∈K, (3b)

λkr,j −λkr,i+πr,a+ βkr,a ≥−wka, ∀k ∈K, r ∈R, a= (i, j)∈AV (γr), (3c)

λkr,j −µki ≥−wka, ∀k ∈K, r ∈R, a= (i, j)∈A↑
T ∩AT (γr), (3d)

−λkr,i+µkj ≥−wka, ∀k ∈K, r ∈R, a= (i, j)∈A↓
T ∩AT (γr), (3e)

n(σr, γr)δs(σr) −
∑

a∈AV (γr)

m(σr)πr,a−
∑
k∈K

∑
a∈AV (γr)

qkβ
k
r,a ≥−w(σr, γr),∀r ∈R,

(3f)

λkr,i unrestricted, ∀k ∈K, r ∈R, i∈ V (γr), (3g)

µki unrestricted, ∀k ∈K, i∈ T, (3h)

δs ≥ 0, πr,a ≥ 0, φk ≥ 0, βkr,a ≥ 0, ∀s∈ S, k ∈K, r ∈R, a∈AV (γr). (3i)

In formulation DLF , dual variables δs and φk represent the variation in the objective function of

problem LF when the number of available ships of type s and the demand (available containers)

of commodity k change by a unit, respectively. Let R̃ be a restricted set of rotations, a subset of

R. Given set R̃, we define problem RLF , also called restricted master problem, as the problem

obtained from problem LF by substituting the set R with R̃. We denote by DRLF the dual of

problem RLF , which can also be obtained from problem DLF by substituting the set R with R̃.

For the sake of notation, hereinafter we denote by Θ and Π solutions of problem LF and DLF ,

respectively, and by z(Θ) and z(Π) the corresponding solution values. Similarly, we denote by

Θ̃ and Π̃ solutions of problems RLF and DRLF , respectively, and by z(Θ̃) and z(Π̃) the corre-

sponding solution values. These solutions are feasible if they satisfy the constraints of problems

LF , DLF , RLF , and DRLF , respectively.

4.1. SCRG solution frameworks

Based on the solution framework of Feillet et al. (2010), our new method SCRG-LF for solving

relaxation LF of the LSND iteratively performs the following three main steps.
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(i) Build a feasible solution Θ of LF . Given Θ̃ = (g̃, x̃, ỹ), a feasible LF solution Θ= (g,x,y)

can be easily defined by setting x = x̃, gr = g̃r, yr = ỹr, ∀r ∈ R̃, and gr = 0, yr = 0, ∀r ∈

R \ R̃; clearly we have z(Θ) = z(Θ̃);

(ii) Build a solution Π of DLF . Build solution Π based on solution Π̃ such that z(Π) = z(Π̃);

(iii) Check if solution Π is a feasible DLF solution (pricing problem). Check if solution Π is

a feasible DLF solution. If Π is a feasible DLF solution, by strong duality z(Θ̃) = z(Π̃),

and z(Θ) = z(Π̃) = z(Π), thus showing the optimality of solutions Θ and Π. Otherwise, new

columns and rows are generated, and the restricted master problem is updated accordingly.

In the next section (§4.2), we describe the details of method SCRG-LF. In §6.2 we compare

our newly proposed method SCRG-LF of solving relaxation LF with the following alternative

methods:

• The method derived from the approach of Xia et al. (2015), referred to as XLMX (see §EC.4

of the e-companion). Method XLMX is based on a relaxation of LF obtained by aggregating

inequalities (1b), (1e), and (1f), respectively, for all r ∈R with σr = σ. The derived relaxation of

LF can be conveniently solved by using a standard CG technique.

• The method derived from the SCRG solution framework proposed by Muter et al. (2013),

referred to as SCRG-LF-MBB (see §EC.6 of the e-companion). In method SCRG-LF-MBB, the

DLF solution required at step (ii) of the framework is built by the method adapted from Muter

et al. (2013).

• The method derived from the work of Thun et al. (2017) (see §EC.7 of the e-companion).

More specifically, following Thun et al. (2017), problem F can be reformulated using an alter-

native set-partitioning-like model, which is defined by a large number of decision variables, each

indicating the adoption of a combination of a rotation and its delivery pattern (i.e., cargo flows of

the rotation) to serve the demands. By doing this, a linear relaxation of the model can be solved by

a CG technique.

In §EC.5 of the e-companion, we also illustrate why the two solution methods developed in

Feillet et al. (2010) cannot be used or are inefficient when applied to solve relaxation LF .

4.2. Description of method SCRG-LF

Following the approach described in §4.1, we develop the main steps of method SCRG-LF as

shown in Algorithm 1. We use Π= (λ,µ,δ,π,φ,β) and Π̃ = (λ̃, µ̃, δ̃, π̃, φ̃, β̃) to represent DLF



Xia, Xu, and Baldacci: Simultaneous Column-and-Row Generation for LSND
18 Article submitted to Operations Research

Algorithm 1 Method SCRG-LF

1: Initialization. Define problem RLF by initializing set R̃ to contain all rotations r = (σr, γr)

such that route γr consists of exactly two-ports and configuration σr ∈C;

2: Solution of the restricted master problem. Solve problem RLF and let Θ̃ and Π̃ =

(λ̃, µ̃, δ̃, π̃, θ̃, β̃) be the corresponding optimal primal and dual solutions of values z(Θ̃) and

z(Π̃), respectively;

3: Build a solution Π ofDLF . Based on the optimalDRLF solution Π̃, determine Π̄ = (λ̄, π̄, β̄)

by computing values of the unknown dual variables associated with rotations in R \ R̃, and

construct a DLF solution Π= Π̃∪ Π̄ such that z(Π) = z(Π̃) by setting each µki = µ̃ki , δs = δ̃s,

and φk = φ̃k, setting each λkr,i = λ̃kr,i, πr,a = π̃r,a, βkr,a = β̃kr,a for r ∈ R̃, and setting each λkr,i =

λ̄kr,i, πr,a = π̄r,a, βkr,a = β̄kr,a for r ∈R \ R̃. Two alternative approaches can be used to construct

solution Π: sequential and LP-based approaches (see §4.3);

4: Pricing problem. Execute a pricing algorithm (see Algorithm 2 later in §4.4) to check if Π can

be transformed to a feasibleDLF solution Π′ with z(Π′) = z(Π), and compute R̄⊆ (R\ R̃) as

a subset of rotations for which dual constraints (3c)–(3f) are violated. Two alternative pricing

techniques can be used: with and without the post-pricing phase (see §4.4.1 and §4.4.2).

5: Check optimality condition. If R̄ is empty, implying that Π can be transformed to a feasible

DLF solution Π′ such that z(Π′) = z(Π), which must be an optimal DLF solution, then stop.

Otherwise, update set R̃= R̃∪ R̄, so that problem RLF is updated by adding all primal vari-

ables [gkr,a : k ∈K,r ∈ R̄, a ∈AV (γr)∪AT (γr)] and [yr : r ∈ R̄], as well as all corresponding

rotation-dependent constraints, and then go to Step 2.

solutions and DRLF solutions, respectively. We use Π̄ = (λ̄, π̄, β̄) to represent a vector that con-

tains values for the dual variables associated with the rotations in the subset R \ R̃, where λ̄ =

[λ̄kr,i : k ∈K,r ∈ R \ R̃, i ∈ V (γr)], π̄ = [π̄r,a : r ∈ R \ R̃, a ∈ AV (γr)] and β̄ = [β̄kr,a : k ∈K,r ∈

R \ R̃, a∈AV (γr)].

Step 1 of Algorithm 1 ensures the feasibility of the initialRLF problem. Similar to the approach

in Agarwal and Ergun (2008) for the LSND without transshipment costs, it initializes R̃ to include

only two-port rotations that cover all voyage arcs, providing a warm-up start of method SCRG-LF.

Based on the optimal DRLF solution Π̃ = (λ̃, µ̃, δ̃, π̃, φ̃, β̃) obtained in Step 2 for the restricted

master problem, Step 3 of Algorithm 1 computes Π̄ = (λ̄, π̄, β̄) that contains values for the

unknown dual variables associated with rotations in R \ R̃. It then defines a DLF solution Π =
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Π̃∪ Π̄, which combines the values of dual variables in Π̃ and Π̄. Since the objective function (3a)

of problem DLF does not depend on the dual variables in Π̄, we obtain that z(Π) = z(Π̃).

Step 4 of Algorithm 1 examines whether the solution Π obtained in Step 3 can be transformed

to a feasible DLF solution Π′ with z(Π′) = z(Π). For this, it is sufficient to execute a pricing

algorithm to check if the dual variables in Π̄ satisfy or can be transformed to satisfy the dual

constraints (3c)–(3f) for all r ∈R \ R̃. If Π can be transformed to a feasible DLF solution Π′ with

z(Π′) = z(Π), then since z(Π) = z(Π̃), Π′ is a proven optimal DLF solution, and Algorithm 1

stops at Step 5; otherwise, R̃ is updated to include a subset R̄ of rotations for which constraints

(3c)–(3f) are violated, so that problem RLF is updated, accordingly, and is solved again.

In the following, §4.3 illustrates the two approaches used to compute Π̄ = (λ̄, π̄, β̄) for the

construction of the DLF solution Π at Step 3 of Algorithm 1. §4.4 describes the pricing algorithm

used at Step 4 of Algorithm 1 and proves the correctness and convergence of Algorithm 1.

4.3. Computing Π̄ = (λ̄, π̄, β̄)

The dual variables composing Π̄ = (λ̄, π̄, β̄) cannot be built directly since the number of rotations

inR\ R̃ is exponential. To tackle this challenge, we first define a vector Π̂ = (λ̂, π̂, β̂) that consists

of values for some auxiliary variables, denoted by [λ̂kσ,i : k ∈K,σ ∈ C, i ∈ V ], [π̂σ,a : σ ∈ C,a ∈

AV ], and [β̂kσ,a : k ∈K,σ ∈ C,a ∈AV ], satisfying the dual constraints (3c)–(3e) for all r ∈R \ R̃.

Specifically, we aim to find Π̂ = (λ̂, π̂, β̂) that satisfies the linear constraints of the following

problem:

λ̂kσ,j − λ̂kσ,i+ π̂σ,a+ β̂kσ,a ≥−wka, ∀k ∈K, σ ∈C, a= (i, j)∈AV , (4a)

λ̂kσ,j ≥−wka + µ̃ki , ∀k ∈K, σ ∈C, a= (i, j)∈A↑
T , (4b)

−λ̂kσ,i ≥−wka − µ̃kj , ∀k ∈K, σ ∈C, a= (i, j)∈A↓
T , (4c)

λ̂kσ,i unrestricted, ∀k ∈K, σ ∈C, i∈ V, (4d)

π̂σ,a ≥ 0, β̂kσ,a ≥ 0, ∀k ∈K, σ ∈C, a∈AV , (4e)

in which the numbers of constraints and variables are in O(|K||C|(|A|+ |V |)), which are polyno-

mial in |K|, |C|, |A|, and |V |. Here, values of [µ̃ki ] are given in Π̃ which, as previously mentioned,

is an optimal DRLF solution.

Given Π̂ = (λ̂, π̂, β̂), we can compute Π̄ = (λ̄, π̄, β̄) by a mapping that sets λ̄kr,i = λ̂kσ,i, π̄r,a =

π̂σ,a and β̄kr,a = β̂kσ,a, for each k ∈K, σ ∈C, i∈ V , and r ∈R\ R̃ with σr = σ. By doing this, the set
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of unknown dual variables associated with rotations r ∈R \ R̃, which has an exponential size, are

mapped to a set of auxiliary dual variables associated with configurations σ ∈C, which has a size

polynomial in |K|, |C|, |A|, and |V |. Since solution Π̄ satisfies the dual constraints (3c)–(3e) for all

r ∈R \ R̃, to check further that the solution also satisfies the dual constraints (3f), it is necessary

to solve the following pricing problem at Step 4 of Algorithm 1:

∆= min
r∈R\R̃

w(σr, γr)+n(σr, γr)δ̃s(σr) −
∑

a∈AV (γr)

m(σr)π̂σr,a−
∑
k∈K

∑
a∈AV (γr)

qkβ̂
k
σr,a

 , (5)

which is defined based on the values of auxiliary dual variables specified in Π̂ = (λ̂, π̂, β̂). Note

that −∆ computes the maximum reduced cost for the rotations in R \ R̃. Accordingly, if ∆≥ 0,

which implies that all rotations in R \ R̃ are with non-positive reduced costs, then solution Π̄ must

satisfy the dual constraints (3c)–(3f), implying that Π= Π̃∪ Π̄ constructed at Step 3 of Algorithm 1

is a proven optimal DLF solution.

It is worth noting that the above mapping from Π̄ to Π̂ is essentially based on a dimension

contraction from the rotation set R (which equals Γ×C) to the configuration set C, thus reducing

the number of dual variables to be polynomial. However, in some situations, such as in the General

LSND, it is possible that the configuration setC itself has a large size. To further reduce the number

of dual variables, one can partition C into disjoint groups of configurations with the configurations

in the same group having the same values of some service components (e.g., having the same

value of ship type), so that the dual variables associated with rotations in R \ R̃ can be mapped

to the auxiliary dual variables associated with the configuration groups. Reducing the number of

dual variables still ensures that the solution Π returned by Algorithm 1 is a proven optimal DLF

solution. For simplicity of presentation, we consider only the mappings based on configurations

σ ∈ C. The same method can be adapted to other mappings mentioned here by replacing the

configuration indices with the configuration group indices.

In the following, we describe two alternative approaches to compute Π̂ = (λ̂, π̂, β̂).

A sequential approach We first compute the values of variables [λ̂kσ,i], and then define the

values of variables [π̂σ,a] and [β̂kσ,a]. Variables [λ̂kσ,i] are computed as λ̂kσ,i = µ̃kj for k ∈ K, σ ∈
C, (i, j) ∈ A↓

T , for which we know that for each (i, j) ∈ A↓
T , node j is the unique transshipment

node in T defined for the port h(i) of the voyage node i. Since each wka is non-negative, the values

of [π̂σ,a] and [β̂kσ,a] defined above guarantee that constraints (4b) and (4c) are satisfied. We then

compute variables [π̂σ,a] as π̂σ,a = 0 for σ ∈C, a∈AV , and variables [β̂kσ,a] as β̂kσ,a =max{0,−µ̃kj +
µ̃ki −wka} for k ∈K, σ ∈C, a= (i, j)∈AV , in order to satisfy constraints (4a).
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An LP-based approach This approach is based on the following proposition.

PROPOSITION 1. Consider any Π̂1 = (λ̂1, π̂1, β̂1) and Π̂2 = (λ̂2, π̂2, β̂2) that satisfy constraints

(4a)–(4e). If m(σ)π̂1
σ,a +

∑
k∈K qkβ̂

k,1
σ,a ≤m(σ)π̂2

σ,a +
∑

k∈K qkβ̂
k,2
σ,a holds for each σ ∈ C and a ∈

AV , with at least of such inequalities being strict, then the pricing problem (5) under Π̂1 has an

optimal solution value larger than or equal to that under Π̂2.

Proof. See §EC.1.1 of the e-companion to this paper. □

For any Π̂1 and Π̂2 that satisfy the condition stated in Proposition 1 above, we say Π̂1 dominates

Π̂2. The condition implies that a rotation having a non-negative reduced cost under Π̂1 cannot

have a negative reduced cost under Π̂1. This implies that choosing a non-dominated Π̂ for the

constructions of Π̄ and Π can potentially speed up the convergence of method SCRG-LF.

As shown in §EC.2 of the e-companion, the sequential approach may generate a dominated

Π̂. To obtain a non-dominated Π̂, we propose an LP-based approach, which solves the LP model

below:

min
∑
σ∈C

∑
a∈AV

ησ,a

(
m(σ)π̂σ,a+

∑
k∈K

qkβ̂
k
σ,a

)
s.t. (4a)− (4e),

where the coefficient ησ,a for each σ ∈ C and a ∈ AV denotes the total number of existing rota-

tions r ∈ R̃ with σr = σ and a ∈ A(γr). It can be seen that the objective of the LP model above

is equivalent to maximizing the total reduced cost concerning the existing rotations in R̃. As a

result, solving the LP model above reduces the chance that the solution to the pricing problem may

unnecessarily generate existing rotations in R̃. This LP-based approach can be adapted and applied

to other problems, for which one needs to form an LP model according to the dual formulation of

the problems, aiming at yielding a non-dominated dual solution for the subsequent pricing stage.

Let Π̂3 indicate the optimal solution to the LP model above. It can be shown that Π̂3 must be

non-dominated. By contradiction, suppose that there exists a solution Π̂1 satisfying constraints

(4a)–(4e) and dominating Π̂3. We have that m(σ)π̂1
σ,a +

∑
k∈K qkβ̂

k,1
σ,a ≤m(σ)π̂3

σ,a +
∑

k∈K qkβ̂
k,3
σ,a

holds for each σ ∈ C and a ∈ AV , with at least one of such inequalities being strict. Thus,∑
σ∈C

∑
a∈AV

ησ,a

(
m(σ)π̂1

σ,a+
∑

k∈K qkβ̂
k,1
σ,a

)
<
∑

σ∈C
∑

a∈AV
ησ,a

(
m(σ)π̂3

σ,a+
∑

k∈K qkβ̂
k,3
σ,a

)
,

which contradicts to the fact that Π̂3 is an optimal solution to the above LP model.

4.4. Pricing rotations

Given the optimal DRLF solution Π̃ = (λ̃, π̃, β̃) and the values of auxiliary variables contained

in Π̂ = (λ̂, π̂, β̂), which are used to construct the DLF solution Π as described in §4.3, the pricing
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problem (5) for generating rotations of positive reduced costs can be decomposed into a set of inde-

pendent pricing subproblems, with one for each configuration. To see this, for each configuration

σ ∈C and each route γ ∈ Γ(σ), we define

∆(σ,γ) =w(σ,γ)+n(σ, γ)δ̃s(σ)−
∑

a∈AV (γ)

m(σ)π̂σ,a−
∑
k∈K

∑
a∈AV (γ)

qkβ̂
k
σ,a. (6)

For each r = (σr, γr) ∈ R, the value of −∆(σr, γr) equals the reduced cost with respect to rota-

tion r. Thus, a rotation r of a positive reduced cost corresponds to a rotation r with ∆(σr, γr)< 0,

and finding a rotation of the maximum reduced cost is equivalent to finding a rotation with the

smallest ∆(σr, γr). Accordingly, the pricing problem (5) can be decomposed as follows:

∆=min
σ∈C

{∆σ},

where for each configuration σ ∈C,

∆σ = min
{
∆(σ,γr) : r= (σr, γr)∈R \ R̃ with σr = σ

}
. (7)

Each pricing subproblem ∆σ for σ ∈ C corresponds to finding a route γ in graph G that mini-

mizes its weight indicated by ∆(σ, γ), where the weights of arcs and nodes of graph G are preset

accordingly with the values of dual variables [δ̃s(σ)], [π̂σ,a] and [β̂kσ,a] contained in Π̃ and Π̂.

It is worth noting that an existing rotation r ∈ R̃ involved in the restricted master problem can

have a positive reduced cost, i.e., ∆(σr, γr) < 0, since values of dual variables in Π̂ do not nec-

essarily satisfy the dual constraints associated with rotation r. What is more, given a rotation r

which is not necessarily in R̃ and has a positive reduced cost concerning the objective function of

the pricing subproblem (7), one can potentially identify for rotation r some alternative values of

dual variables [λkr,i], [πr,a] and [βkr,a] to satisfy dual constraints (3c)–(3e), leading to a non-positive

reduced cost, so that the generation of rotation r becomes unnecessary. This is because the defi-

nition of the auxiliary variables [λ̂kσ,i], [π̂σ,a] and [β̂kσ,a] (see §4.3) is based on the whole set of arcs

instead of the specific set of arcs composing rotation r. As a result, a post-pricing phase (discussed

later in §4.4.2) is needed to avoid generating such unnecessary rotations, which can potentially

speed up the convergence of method SCRG-LF.

Next, we present our algorithm for pricing rotations. It is based on a conventional circuit

search procedure (CSA) that detects negative weight elementary circuits on a weighted network,

as described in §4.4.1. In §4.4.2, we introduce the post-pricing phase used in the CSA to avoid

generating unnecessary rotations. The overall pricing algorithm is then summarized in §4.4.3.
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In the following, we denote with R̂ and R∗ the set of rotations computed by procedure CSA

and the forbidden rotations that cannot be included in R̂. The final set of rotations returned by the

pricing algorithm at Step 4 of Algorithm 1 is denoted by R̄.

4.4.1. Procedure CSA without post-pricing phase Similar to the generic dynamic program-

ming algorithm applied to shortest path problems with resource constraints (see, e.g., Irnich and

Desaulniers 2005), procedure CSA is a dynamic programming-based algorithm that dynamically

expands a state-space graph for each configuration σ ∈C, where each state corresponds to a feasi-

ble forward path defined below.

A forward path P = (i0, i1, . . . , ik−1, ik) is an elementary path in G starting from voyage node

i0 = start(P ), visiting voyage nodes in {i1, . . . , ik−1, ik}, and ending at voyage node ik = end(P ).

Similar to routes of rotations, we denote by V (P ) and AV (P ) the set of voyage nodes and the

set of voyage arcs of path P , respectively. A forward path is feasible if it satisfies rules (i)-(v)

described in §3.1. Thus, a feasible forward path P may form a partial route of a rotation, and it

forms a complete route only when start(P ) = end(P ).

Replacing σr and γr in n(σr, γr) and w(σr, γr) with σ and P , respectively, we can define n(σ,P )

and w(σ,P ), which can be regarded as partial values of n(σr, γr) and w(σr, γr) for rotations r with

σr = σ and with γr containing P at the beginning. Similar to ∆(σ,γ) defined in (6) as the weight

of a route γ, we can define ∆(σ,P ) below as the weight of the forward path P :

∆(σ,P ) =w(σ,P )+n(σ,P )δ̃s(σ) −
∑

a∈AV (P )

m(σ)π̂σ,a−
∑
k∈K

∑
a∈AV (P )

qkβ̂
k
σ,a. (8)

When start(P ) = end(P ), the forward path P forms a feasible route γ ∈ Γ(σ), and thus, −∆(σ,P )

equals the reduced cost −∆(σr, γr) of the corresponding rotation r with σr = σ and γr = γ.

The set R̂ of rotations to be returned by procedure CSA is initialized by setting R̂ = ∅. As

mentioned earlier in §4.4, there may be some existing rotations in R̃ that have positive reduced

costs, which, however, should not be returned by procedure CSA. Accordingly, for procedure CSA,

it is given a set R∗ of forbidden rotations that cannot be included in R̂, where R∗ contains all the

existing rotations in R̃.

Procedure CSA examines every configuration σ ∈C. For σ currently examined, Procedure CSA

iteratively expands forward paths to search rotations with negatively reduced costs. Let P denote

a set of feasible forward paths (concerning σ) that are generated but not expanded. Initially, we

set P = {P1, . . . , P|H|} where each Ph for h ∈ H represents a forward path that consists of only
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one node and that such a node is a voyage node for port h (i.e., start(Ph) = end(Ph) = i for some

i∈ V with h(i) = h).

At each iteration of procedure CSA where σ is examined, the forward path P ∈ P having the

smallest weight ∆(σ,P ) is extracted from P to expand. The expansions of the forward path P are

derived by expanding P with each arc (end(P ), j)∈AV for j /∈ V (P ) \ {start(P )}. Consider the

following two situations after the expansion:

(i) j = start(P ). The expansion of forward path P creates a route of a rotation, denoted by γ,

so that we can obtain a rotation r= (σr, γr) with σr = σ and γr = γ. If route σ is not feasible

concerning the configuration σ or such a rotation r is in the forbidden set R∗, then rotation

r is discarded. Otherwise, route γ is feasible so that γ ∈ Γ(σ), and if ∆(σ,γ)< 0, implying

that rotation r has a positive reduced cost, then we insert r in the set R̂;

(ii) j ̸= start(P ). The expansion of the forward path P creates a new forward path P ′ = P ∪{j}

so that end(P ′) = j; if the path P ′ is feasible concerning σ, we add P ′ to the set P .

The iterations of Procedure CSA for σ are terminated when either P = ∅ or there are Λ1 rotations r

with σr = σ that have been newly inserted in R̂, where Λ1 > 0 is a parameter defined a priori.

After all configurations σ ∈C have been examined, we sort rotations r ∈ R̂ in a non-increasing

order of their reduced costs −∆(σr, γr), and keep only the first min{Λ2, |R̂|} rotations in R̂ to

return, where Λ2 > 0 is a parameter defined a priori. If procedure CSA returns R̂ = ∅, the con-

structedDLF solution Π= Π̃∪ Π̄ is a feasibleDLF solution, implying that problem LF is solved

to optimality.

4.4.2. Procedure CSA with post-pricing phase Consider every rotation r = (σr, γr) to be

inserted in R̂ by procedure CSA in situation (i) above after the path expansion, where σr ∈C and

γr ∈ Γ(σr). We know that ∆(σr, γr)< 0 and r is not in the forbidden set R∗.

We introduce a post-pricing phase to check further if it is necessary to insert rotation r in set

R̂. For this, we solve the following rotation-dependent LP problem, which aims to find alternative

values for the rotation-dependent dual variables that result in a negative reduced cost of r:

∆∗(σr, γr) = max w(σr, γr)+n(σr, γr)δ̃s(σr) −
∑

a∈AV (γr)

m(σr)πσr,a−
∑
k∈K

∑
a∈AV (γr)

qkβ
k
σr,a

s.t. λkr,j −λkr,i+πr,a+ βkr,a ≥−wka, ∀k ∈K, a= (i, j)∈AV (γr),

λkr,j ≥−wka + µ̃ki , ∀k ∈K,a= (i, j)∈A↑
T ∩AT (γr),

−λkr,i ≥−wka − µ̃kj , ∀k ∈K, a= (i, j)∈A↓
T ∩AT (γr), (9)
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λkr,i unrestricted, ∀k ∈K, i∈ V (γr),

πr,a ≥ 0, βkr,a ≥ 0, ∀k ∈K, a∈AV (γr).

Here, values of variables [µ̃ki ] and [δ̃s(σr)] are given in Π̃ which is an optimal solution of DRLF .

The values of vectors [λ̄kr,i], [π̄r,a] and [β̄kr,a] given in solution Π̄ (with λ̄kr,i = λ̂kσr,i, π̄r,a = π̂σr,a and

β̄kr,a = β̂kσr,a) also form a feasible solution to problem (9). Hence, ∆(σr, γr)≤∆∗(σr, γr) must hold.

Accordingly, if ∆∗(σr, γr)< 0, no alternative values exist for the rotation-dependent dual vari-

ables that result in a negative reduced cost of r. Thus, we claim that rotation r passes the post-

pricing phase and insert it in R̂. Otherwise, rotation r is discarded.

The following proposition shows that when the procedure CSA with such a post-pricing phase

terminates with R̂= ∅, problem LF is solved to optimality.

PROPOSITION 2. When procedure CSA with post-pricing phase terminates with R̂= ∅, theDLF

solution Π = Π̃ ∪ Π̄ can be transformed to a feasible DLF solution Π′ such that z(Π′) = z(Π),

and problem LF is solved to optimality.

Proof. See §EC.1.2 of the e-companion to this paper. □

4.4.3. Pricing algorithm: computing R̄ at Step 4 of Algorithm 1 Let us first introduce a

heuristic dominance rule below, which can be applied to shorten the running time of procedure

CSA with the post-pricing phase.

Heuristic Dominance Rule: For any σ ∈ C, a forward path P1 dominates a forward path P2

with respect to configuration σ, if start(P1) = start(P2), end(P1) = end(P2), V (P1) ⊆ V (P2),∑
a∈AV (P1)

ta ≤
∑

a∈AV (P2)
ta and ∆(σ,P1)≤∆(σ,P2).

The heuristic dominance rule above is applied to eliminate forward paths that visit more nodes

and consume longer travel times but have larger path weights among the paths with the same

starting and ending nodes. However, some forward paths that lead to optimal solutions to the

pricing problem may be dominated by some partial paths that lead to forbidden rotations and may,

therefore, be eliminated by this heuristic dominance rule. Thus, procedure CSA with both the post-

pricing phase and using this heuristic dominance rule cannot ensure that the problem LF is solved

optimally when terminating with R̂= ∅.

Hence, in our pricing algorithm, if procedure CSA with both the post-pricing phase and the use

of the heuristic dominance rule produces a non-empty R̂, we return R̄ = R̂, rotations in which

all have positive reduced costs. Otherwise, R̂ is empty, and we then run the CSA again with the
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Algorithm 2 Pricing algorithm used at Step 4 of Algorithm 1

1: Initialize the output rotation set R̄= ∅ and the forbidden rotation set R∗ = R̃.

2: Execute procedure CSA with the post-pricing phase and with the use of the heuristic domi-

nance rule to obtain a set R̂ of rotations (if any), where each r ∈ R̂ has passed the post-pricing

phase, and thus satisfies ∆∗(σr, γr)< 0. Update R∗ to include all the rotations checked in the

post-pricing phase of procedure CSA.

3: Consider the following two cases of R̂:

• Case 1: R̂ ̸= ∅. Set R̄= R̂, and return R̄.

• Case 2: R̂ = ∅. Execute procedure CSA with the post-pricing phase and without the use

of the heuristic dominance rule to obtain an updated set R̂ of rotations, where each r ∈ R̂ has

passed the post-pricing phase, and thus, satisfies ∆∗(σr, γr)< 0. Set R̄= R̂, and return R̄.

post-pricing phase but without the use of the heuristic dominance rule to obtain an updated R̂ to

return as R̄. If the updated R̂ is still empty, by Proposition 2, problem LF is solved optimally.

We summarize the above pricing algorithm in Algorithm 2, where at the beginning, the output

rotation set R̄ is initialized to be empty, and the forbidden rotation set R∗ is initialized to contain

all the existing rotations in R̃. This pricing algorithm is used at Step 4 of Algorithm 1.

We can now establish Theorem 1 to show the correctness and convergence of Algorithm 1 for

method SCRG-LF in solving problem LF .

THEOREM 1. With Algorithm 2 applied as the pricing algorithm in Step 4, Algorithm 1 solves

problem LF to optimality in a finite number of iterations.

Proof. See §EC.1.3 of the e-companion to this paper. □

5. An exact algorithm for the LSND

This section presents our exact method for solving problem F of the LSND. It is based on a BP

approach, where, at each node of the enumeration tree, an upper bound on the optimal solution

value is computed by method SCRG-LF in §4.

5.1. Exact algorithm: applying SCRG-LF in branch-and-price

In our BP-based exact method, we apply method SCRG-LF (Algorithm 1) at each node of the

enumeration tree to compute an upper bound on the optimal solution value of problem F . The

enumeration tree is explored by following a best-bound strategy, i.e., the node with the highest
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upper bound will be explored first. We adopt a binary branching strategy based on variables [yr].

More precisely, we select the variable yr whose value is closest to 0.5 and then branch by enforcing

the selected rotation to be included in the solution or not, i.e., yr = 1 or yr = 0, respectively.

A node of the enumeration tree can be fathomed if the resulting upper bound is less than or

equal to the incumbent lower bound of problem F . Nevertheless, at different nodes of the enu-

meration tree, it can be time-consuming for method SCRG-LF to compute the upper bound by

solving relaxation LF to optimality. This is because for proving the optimality of a solution to LF ,

method SCRG-LF needs to solve the pricing problem to optimality, which may require the pricing

algorithm to explore exponentially many partial paths. Method SCRG-LF may also suffer from

degenerations (similar to traditional CG algorithms), which slows down the convergence.

To further speed up the computation at each node of the enumeration tree, we allow method

SCRG-LF to terminate prematurely with an infeasible solution of DLF , based on which we can

compute a valid upper bound (see §5.2) for problem F to fathom the nodes of the enumeration

tree. The premature termination of method SCRG-LF only occurs in the following situation: In

procedure CSA with post-pricing, we impose that the size of the set P of partial paths explored

cannot exceed an a priori defined limit Λ3, so that if |P| becomes greater than Λ3, and R̂ is empty,

method SCRG-LF can terminate prematurely.

After the computation of the upper bound at the root node of the enumeration tree, we use the

set R̃ of rotations, obtained from method SCRG-LF, to define a restricted MIP formulation for the

LSND by substituting the rotation set R in formulation F with R̃. The restricted MIP formulation

is then solved to compute an initial lower bound on the optimal solution of the LSND using a

general-purpose MIP solver.

5.2. Computing a valid upper bound under premature termination of SCRG-LF

As mentioned in §5.1, in our BP-based exact method, when method SCRG-LF terminates prema-

turely with aDLF solution Π that has not been proved to be feasible, we need to use this infeasible

DLF solution Π to compute a valid upper bound on the optimal solution value of problem F . The

computation can be executed at any iteration of our method SCRG-LF (Algorithm 1), aiming to

construct a feasible DLF solution derived from Π obtained at Step 3 of Algorithm 1. More pre-

cisely, it attempts to compute new values to replace [δ̃s] of the optimal DRLF solution Π̃ used in

the construction of Π, so that the dual constraints (3f) are satisfied for all r ∈R \ R̃.
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To achieve this, for any iteration of method SCRG-LF, consider the values of auxiliary variables

contained in Π̂ = (λ̂, π̂, β̂) which are used in the construction of Π at Step 3 of Algorithm 1. As

explained in §4.3, solution Π̂ consists of auxiliary variables [λ̂kσ,i : k ∈ K,σ ∈ C, i ∈ V ], [π̂σ,a :

σ ∈ C,a ∈AV ], and [β̂kσ,a : k ∈K,σ ∈ C,a ∈ AV ], satisfying the dual constraints (3c)–(3e) for all

r ∈ R \ R̃. Consider any rotation set R′′ such that each rotation r ∈ R′′ does not pass the post-

pricing phase of method SCRG-LF, i.e., ∆∗(σr, γr) defined in (9) is non-negative. With R′′, for

each ω ∈ {1,2, ..., ns(σ)} and σ ∈C, we define ∆(R′′, ω, σ) as follows, so that −∆(R′′, ω, σ) equals

the maximum reduced cost, as defined in pricing problem (5), of all the rotations r ∈R \R′′ with

n(σr, γr) = ω and σr = σ:

∆(R′′, ω, σ) = min
r∈R\R′′:σr=σ,
n(σr,γr)=ω

w(σr, γr)+n(σr, γr)δ̃s(σr) −
∑

a∈AV (γr)

m(σr)π̂σr,a−
∑
k∈K

∑
a∈AV (γr)

qkβ̂
k
σr,a

 ,

(10)

where ∆(R′′, ω, σ) =+∞ if no rotation r in R \R′′ satisfies σr = σ and n(σr, γr) = ω.

By Proposition 3 below, any lower bound ∆−(R′′, ω, σ) on ∆(R′′, ω, σ) for each ω ∈

{1,2, ..., ns(σ)} and σ ∈C can be used to compute new values to replace [δ̃s] of the optimal DRLF

solution Π̃ for the construction of Π, to obtain an upper bound on the optimal solution value of

problem F .

PROPOSITION 3. Given any set R′′ of rotations r satisfying ∆∗(σr, γr) ≥ 0, let ∆−(R′′, ω, σ)

be any lower bound on ∆(R′′, ω, σ) defined in (10) for each ω = {1,2, ..., ns(σ)} and σ ∈ C.

Consider the values of dual variables, [δ̃s : s ∈ S] and [φ̃k : k ∈ K], given in the optimal

DRLF solution Π̃ obtained at Step 2 of Algorithm 1. Define a vector [δ−s : s ∈ S] where δ−s =

δ̃s − minω∈{1,2,...,ns};σ∈C:s(σ)=s {min{0,∆−(R′′, ω, σ)}/ω} for each s ∈ S. Then, (
∑

s∈S nsδ
−
s +∑

k∈K qkφ̃k) provides an upper bound on the optimal solution value of problem F .

Proof. See §EC.1.4 of the e-companion to this paper. □

To apply Proposition 3, we need to compute set R′′ and lower bounds ∆−(R′′, ω, σ) on

∆(R′′, ω, σ) for all ω ∈ {1,2, ..., ns(σ)} and σ ∈C. In our study, we compute R′′ and ∆−(R′′, ω, σ)

by using a row generation-based procedure described in §EC.3 of the e-companion.

6. Numerical experiments

This section reports on the computational results of the different methods described in this paper.

All algorithms were implemented in C language, and CPLEX 12.8 (IBM 2020) was used as the
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LP and MIP solver. The experiments were performed on an Intel Core i7 (3.2 GHz) Desktop PC

with 16 GB RAM. Based on the results of preliminary experiments, which were conducted to

identify good parameter settings, we used Λ1 = 50, Λ2 = 3, and Λ3 = 5000 for the pricing algorithm

described in §4.4 and for the BP-based algorithm presented in §5.1.

Our experiments were conducted on the Standard LSND and the General LSND, the two main

variants of the LSND studied in the literature. In §6.1, we describe the test instances used in our

experiments. In §6.2, we examine the computational results of the methods used to solve relaxation

LF . In §6.3 and §6.4, we compare the results of the methods used to solve problem F of the Stan-

dard LSND and the General LSND, respectively. Through these experiments, we also evaluate the

benefits of explicitly accounting for transshipment costs and the benefits of endogenizing decisions

on sailing speed and service frequency.

6.1. Test instances

The instances used in our experiments are based on two datasets, Baltic (with 12 ports, 22 origin-

and-destination pairs for demands, and six ships of two types) and WAF (with 20 ports, 37 origin-

and-destination pairs for demands, and 42 ships of two types), these being obtained from the

LINER-LIB-2012 benchmark set for the LSND provided by Brouer et al. (2014a). The size of

the instances based on the selected datasets is comparable to or larger than the sizes of instances

employed in the existing literature on exact methods for the LSND with transshipment costs (see,

e.g., Reinhardt and Pisinger 2012, Plum et al. 2014b, Thun et al. 2017), and it is also comparable to

the size of instances employed in the study of Agarwal and Ergun (2008) on the CG-based method

for the LSND without transshipment cost.

In addition to benchmark instances (i.e., six instances taken directly from the LINER-LIB-2012

set), we also considered new randomly generated instances based on the LINER-LIB-2012 set

to have more coverage on instance scales. Based on the LINER-LIB-2012 set, we generated 20

new random instances that include different numbers of ports (ranging from 7 to 20), different

numbers of origin-destination pairs for the demands (ranging from 8 to 37), and different numbers

of ships that are available to deploy. The instances are grouped into three test sets for the sake of

the solution tests. Set-A consists of the 12 smaller random instances, including the port number

ranging from 7 to 12. Set-B consists of the other eight larger random instances, including port

numbers ranging from 12 to 20. As previously mentioned, set-C consists of the six benchmark
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Table 1 Parameter setting of the test instances.

Name |H| |K| |S|
∑

s∈S ns ψ
(1)
h ψ

(2)
a ψ(3) ψ(4) ψ(5)

Set-A

p7-d8-s6 7 8 2 6 1 1 5 0 +∞
p7-d12-s6 7 12 2 6 1 1 5 0 +∞
p8-d11-s6 8 11 2 6 1 1 5 0 +∞
p8-d14-s6 8 14 2 6 1 1 5 0 +∞
p9-d12-s6 9 12 2 6 1 1 5 0 +∞
p9-d16-s6 9 16 2 6 1 1 5 0 +∞
p10-d14-s6 10 14 2 6 1 1 5 0 +∞
p10-d18-s6 10 18 2 6 1 1 5 0 +∞
p11-d16-s6 11 16 2 6 1 1 5 0 +∞
p11-d20-s6 11 20 2 6 1 1 5 0 +∞
p12-d18-s6 12 18 2 6 1 1 5 0 +∞
p12-d22-s6 12 22 2 6 1 1 5 0 +∞

Set-B

p12-d16-s10 12 16 2 10 1, 2 1 10 1 +∞
p12-d20-s15 12 20 2 15 1 1 +∞ 0 +∞
p14-d22-s12 14 22 2 12 1, 2 1 7 2 +∞
p14-d26-s20 14 26 2 20 1 1 11 0 +∞
p16-d26-s18 16 26 2 18 1, 2 1 +∞ 2 +∞
p16-d30-s25 16 30 2 25 1, 2 1 10 1 +∞
p18-d28-s32 18 28 2 32 1, 2 1 12 3 +∞
p18-d32-s28 18 32 2 28 1, 2 1 +∞ 1 +∞

Set-C

p12-d22-s5-low 12 22 2 5 2 1 +∞ 1 +∞
p12-d22-s6-base 12 22 2 6 2 1 +∞ 1 +∞
p12-d22-s7-high 12 22 2 7 2 1 +∞ 1 +∞
p20-d37-s33-low 20 37 2 33 2 1 +∞ 1 +∞
p20-d37-s42-base 20 37 2 42 2 1 +∞ 1 +∞
p20-d37-s51-high 20 37 2 51 2 1 +∞ 1 +∞

instances of Brouer et al. (2014a). All the data sets, problem instances, and source codes can be

found in the e-companion to this paper.

The test instance in Set-A and Set-B is named by a string “pX-dY-sZ”, implying that the instance

involves “X” ports, “Y” origin-destination pairs for the demand, and a total of “Z” available ships.

Moreover, the benchmark instance in Set-C is named by a string “pX-dY-sZ-I”, containing an

additional scenario indicator I ∈ {low, base,high} to indicate different market conditions. More

information on the scenarios can be found in Brouer et al. (2014a).

Table 1 shows the parameter setting of the test instances. It includes the number of ports (“|H|”),

the number of demands (“|K|”), the number of ship types (“|S|”), and the total number of available

ships (“
∑

s∈S ns”). It also includes the following parameters for defining feasible rotations: (i) ψ(1)
h ,

the maximum number of calls for port h; (ii) ψ(2)
a , the maximum number of passes on voyage arc
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a; (iii) ψ(3), the maximum total number of port calls; (iv) ψ(4), the maximum number of butterfly

ports; and (v) ψ(5), the maximum number of weeks for the round trip duration. Their settings accord

with the actual practice in liner shipping (see §EC.8.1 of the e-companion for details).

Our additional experiments, presented in §EC.8.5 of the e-companion, show that the computa-

tional performance in solving the LSND is affected by the above problem parameters. For example,

the difficulty of the LSND grows with the increase in the number of ports, the number of demands,

and the total number of available ships. The problems allowing non-simple route structures (such

as those allowing butterfly ports) are more challenging than those not allowing them.

The fuel oil price is set to 600 for all the test instances, and the port stay time is set to one

day. The unit penalty costs for unsatisfied demands are zero for the randomly generated instances

in Set-A and Set-B. For the benchmark instances in Set-C, such penalty costs are set to zero for

the Standard LSND and to 1000 for the General LSND, to be consistent with the settings in the

literature (Plum et al. 2014b, Brouer et al. 2014a,b).

6.2. Results of solving relaxation LF

To show the efficiency of newly proposed method SCRG-LF (see §4) for solving relaxation LF of

the LSND, we have compared method SCRG-LF with method SCRG-LF-MBB based on Muter

et al. (2013) (see §EC.6 of the e-companion). To demonstrate the effectiveness of the speed-up

techniques used in method SCRG-LF, we have also compared two variants of method SCRG-

LF, including one using the sequential approach and the other using the LP-based approach for

constructing the DLF solution Π. We have compared them with method SCRG-LF-MBB under

two situations, where the post-pricing phase (see §4.4.2) is disabled and enabled, respectively.

The comparison results are shown in Table 2 and Table 3 for situations with and without post-

pricing phase in the SCRG methods, respectively. For these comparisons, we considered the set

of randomly generated instances of Standard LSND in Set-A, and we imposed a time limit of 300

seconds on each solution method. Our method, SCRG-LF, using the LP-based approach, solves

all instances to optimality even without the post-pricing phase. Accordingly, the optimal solution

value of relaxation LF is shown in “Obj” under the “LP-based Approach” of Tables 2 and 3.

For the other two SCRG methods, the percentage gaps between the solution values of their final

solutions obtained and the optimal solution values of relaxationLF are shown in “∆Obj(%)” under

“SCRG-LF-MBB” and “Sequential Approach” of Tables 2 and 3, and negative gaps indicate that

their final solutions are not optimal. For each instance and each SCRG method, Tables 2 and 3 also
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Table 2 Solving relaxation LF of Standard LSND by SCRG methods without post-pricing phase: comparison between

method SCRG-LF-MBB based on Muter et al. (2013) and our method SCRG-LF.

SCRG-LF

SCRG-LF-MBB Sequential Approach LP-based Approach

Name ∆Obj(%) Col Iter Time(s) ∆Obj(%) Col Iter Time(s) Obj Col Iter Time(s)

p7-d8-s6 0.00 59 11 0.4 0.00 68 14 0.5 46211.6 39 4 0.2
p7-d12-s6 0.00 166 47 4.2 0.00 791 254 105.7 412423.3 61 12 0.8
p8-d11-s6 0.00 684 215 61.5 0.00 1341 432 300.3 316481.2 77 13 1.6
p8-d14-s6 0.00 101 23 1.9 0.00 374 114 21.4 181231.9 55 7 0.9
p9-d12-s6 -0.53 1139 360 300.8 -0.20 1093 343 300.9 275965.0 143 33 13.4
p9-d16-s6 0.00 1090 342 303.1 -0.85 694 210 302.9 690803.2 113 20 4.2
p10-d14-s6 0.00 904 279 203.9 0.00 1126 351 302.9 285826.3 107 15 4.1
p10-d18-s6 0.00 949 292 301.4 -2.29 607 178 303.2 763932.9 114 18 5.4
p11-d16-s6 0.00 1126 346 301.7 0.00 1000 303 301.2 431630.1 147 22 9.72
p11-d20-s6 -1.19 624 177 300.5 -4.94 561 156 305.4 770558.8 153 25 14.68
p12-d18-s6 0.00 921 270 300.9 -2.92 660 182 300.1 708864.6 141 13 9.48
p12-d22-s6 -1.96 540 142 303.1 -7.84 572 153 300.0 770558.8 161 21 18.1

Notes: values in “Obj” are the optimal solution values of LF obtained by method SCRG-LF with the LP-based approach.

Table 3 Solving relaxation LF of Standard LSND by SCRG methods with post-pricing phase: comparison between method

SCRG-LF-MBB based on Muter et al. (2013) and our method SCRG-LF.

SCRG-LF

SCRG-LF-MBB Sequential Approach LP-based Approach

Name ∆Obj(%) Col Iter Rej Time(s) ∆Obj(%) Col Iter Rej Time(s) Obj Col Iter Rej Time(s)

p7-d8-s6 0.00 39 3 340.7 0.4 0.00 39 4 48.3 0.2 46211.6 39 4 5.3 0.2
p7-d12-s6 0.00 58 10 256.7 1.3 0.00 57 10 779.7 2.9 412423.3 57 11 27.5 0.7
p8-d11-s6 0.00 69 10 1211.7 4.1 0.00 67 9 1330.8 4.1 316481.2 67 9 22.9 1.5
p8-d14-s6 0.00 52 7 240.7 1.2 0.00 54 7 356.1 1.5 181231.9 54 7 12.7 1.0
p9-d12-s6 0.00 97 14 1725.4 9.6 0.00 105 16 2387.0 14.8 275965.0 83 10 60.6 4.6
p9-d16-s6 0.00 88 10 1915.4 8.3 0.00 86 11 2296.9 10.4 690803.2 90 12 66.8 4.4
p10-d14-s6 0.00 88 8 1267.5 12.8 0.00 94 10 1898.8 14.9 285826.3 90 10 50.5 4.4
p10-d18-s6 0.00 103 13 2231.7 16.7 0.00 102 13 2487.8 20.4 763932.9 98 12 57.6 6.1
p11-d16-s6 0.00 109 9 2469.7 47.8 0.00 109 11 4140.2 47.2 431630.1 107 9 60.1 7.5
p11-d20-s6 0.00 131 17 2924.8 62.2 0.00 123 14 3246.6 56.6 770558.8 128 16 69.9 11.6
p12-d18-s6 0.00 135 12 5663.8 67.8 0.00 133 11 4798.5 86.3 708864.6 128 9 53.8 10.0
p12-d22-s6 0.00 147 14 2871.7 65.5 0.00 152 17 3774.9 80.6 770558.8 146 15 74.0 15.3

Notes: values in “Obj” are the optimal solution values of LF obtained by method SCRG-LF with the LP-based approach.

show the number of rotations generated (“Col”), the total computing time in seconds (“Time(s)”),

and the number of iterations carried out (“Iter”). Table 3 reports the average number of columns

(“Rej”) generated by the pricing algorithm but rejected by the post-pricing phase.

From Table 2, it can be seen that when the post-pricing phase is disabled, our new method

SCRG-LF with the LP-based approach significantly outperforms its variant with the sequential

approach and the method SCRG-LF-MBB. It optimally solves all instances by consuming a much

shorter time than the imposed time limit. At the same time, the other two versions of the SCRG

method cannot solve some instances with nine or more ports to optimality within the imposed

time limit. This demonstrates the efficiency of our new method SCRG-LF and the effectiveness of

utilizing the LP-based approach for speed-up of method SCRG-LF (which is due to the benefit of

using non-dominated values of dual variables to construct the DLF solution Π).
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Column “Col” under the LP-based approach in Table 2 shows that when the post-pricing phase

is disabled, the total number of columns (or rotations) generated by method SCRG-LF-MBB does

not grow as significantly as the other two versions of the SCRG method, concerning the growth of

the instance size. This indicates that unlike the other two versions of the SCRG method, method

SCRG-LF with the LP-based approach is hardly affected by the degeneracy, which is known

to be tailing-off effect in applications of the standard simplex-based column generation method

(Lübbecke and Desrosiers 2005).

For the situation where the post-pricing phase is enabled, the results in Table 3 indicate that the

method SCRG-LF with the LP-based approach still significantly outperforms its variant with the

sequential approach and the method SCRG-LF-MBB. Moreover, by comparing the results in Table

2 and Table 3, it can be seen that the post-pricing phase improves all the three versions of the SCRG

method. This demonstrates the particular usefulness of the post-pricing phase in speeding up the

SCRG method to solve relaxation LF , not only for our newly proposed method SCRG-LF but also

for those adapted from the existing SCRG-based methods, such as SCRG-LF-MBB. In particular,

method SCRG-LF with the LP-based approach also solves all the instances optimally and is, on

average, faster than SCRG-LF without post-pricing. In contrast, methods SCRG-LF-MBB and

SCRG-LF with the sequential approach can solve all instances optimally within the imposed time

limit. For method SCRG-LF with the LP-based approach, although the computational advantage

from post-pricing seems to be minor in solving a singleLF , such an advantage can be accumulated,

and it results in significant computational benefits when more LF problems are computed in the

branch-and-price search. This motivates us to implement the SCRG with the LP-based approach

and the post-pricing phase in our BP-based exact method.

From columns “Col” and “Iter” of Table 3, we can see that by enabling the post-pricing

phase, both the numbers of rotations generated and the numbers of iterations needed by method

SCRG-LF-MBB and by method SCRG-LF with the sequential approach are significantly reduced.

From columns “Rej” and “Time(s)” of Table 3, it can be seen that for method SCRG-LF-MBB

and method SCRG-LF with the sequential approach, the post-pricing phase rejects quite several

columns that are generated by the pricing algorithm. These rejections occur at the cost of more

computation time in solving relaxation LF . In comparison, method SCRG-LF with the LP-based

approach performs more efficiently, as the number of rejections of such unnecessary columns is

much smaller than those of the other two versions of the SCRG method.
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Furthermore, we have also compared the new method SCRG-LF with other methods that can be

used to solve relaxations of the LSND, including the CPLEX LP solver applied to relaxation LF ,

method XLMX based on the approaches of Xia et al. (2015) and a relaxation of LF (see §EC.4 of

the e-companion), the method based on model TAC adapted from the work of Thun et al. (2017)

and an LP-relaxation of an alternative set-partitioning-like model (see §EC.7 of the e-companion).

For instances of the Standard LSND in Set-A, all feasible rotations can be generated a priori,

thus allowing the application of the CPLEX LP solver to solve relaxation LF . According to the

comparison results (see §EC.8.2 of the e-companion for details), our new method SCRG-LF sig-

nificantly outperforms method XLMX, method TAC, and the CPLEX LP solver. The comparison

results show that method SCRG-LF is the only method capable of optimally solving all instances

within the imposed time limit, and its running time is much shorter. The upper bounds provided by

relaxation LF are also significantly tighter than those provided by method XLMX and TAC.

Since relaxation LF provides the best LP-relaxation for the LSND, we have implemented

method SCRG-LF with the LP-based approach and the post-pricing phase in our exact method,

which, as shown above in Table 2 and 3, performs the best in solving relaxation LF ,

6.3. Results of solving problem F of Standard LSND

This section reports on the results of our BP-based exact method described in §5, hereafter called

method BP, to evaluate its performance in solving problem F of Standard LSND.

First, we compare method BP with the MIP solver of CPLEX on the set of randomly generated

instances from Set-A. In our experiment for this, a time limit of two hours was imposed on both the

CPLEX solver and method BP. The time for method BP to compute the lower bound at root node

was limited to ten minutes. The CPLEX solver was applied to the MIP formulation of problem

F based on the complete set of rotations, which had to be explicitly enumerated. We only ran the

CPLEX solver on Set-A instances since the MIP formulations are too large for larger instances.

The obtained results are given in Table 4. For each instance and each method, Table 4 shows

the solution values (profits) of the obtained solutions (“Obj”), the percentage gap of the best upper

bound and the best lower bound found by the method (“Gap(%)”), the total number of rotations

generated (“Col”), and the total computing time in seconds (“Time(s)”). For method BP, the table

also shows the solution obtained at the root node of the enumeration tree (under “Root Node

Solution”), as well as the solution finally obtained (under “BP”).
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Table 4 Solving problem F of Standard LSND: comparison between CPLEX MIP solver and our exact method BP on

randomly generated instances in Set-A.

CPLEX MIP Solver Root Node Solution BP

Name Obj Gap(%) Time(s) Obj Gap(%) Col Time(s) Obj Gap(%) Col Node Time(s)

p7-d8-s6 45894 0.00 11.5 45894 0.69 39 0.2 45894 0.00 41 2 0.6
p7-d12-s6 412325 0.00 605.2 412325 0.02 57 0.1 412325 0.00 57 1 0.2
p8-d11-s6 315504 0.00 505.1 315503 0.31 67 1.1 315503 0.00 87 11 18.2
p8-d14-s6 177762 0.00 2600.0 177762 1.91 54 1.7 177762 0.00 58 8 11.7
p9-d12-s6 215629 88.81 7200.7 248983 9.78 83 8.3 248983 0.00 194 67 212.9
p9-d16-s6 676285 16.09 7200.6 679974 1.57 90 8.8 679974 0.00 294 277 778.8
p10-d14-s6 0 100 7200.5 278054 2.72 90 6.9 278054 0.00 111 9 36.8
p10-d18-s6 440940 104.14 7200.8 708652 7.24 98 15.1 717781 0.00 210 85 410.3
p11-d16-s6 0 100 7201.4 431630 0.00 107 11.0 431630 0.00 107 1 11.0
p11-d20-s6 0 100 7201.8 725766 5.81 128 13.1 725782 0.00 446 497 4792.0
p12-d18-s6 n/a n/a 106.2† 681659 3.84 128 16.8 681659 0.00 227 56 485.9
p12-d22-s6 n/a n/a 87.8† 721497 6.37 146 73.0 725782 0.00 486 507 6602.9

Notes: “†” indicates the “out-of-memory” status. “n/a” indicates that no solution to LF is obtained. When the solution value (“Obj”) equals
zero, only a trivial feasible solution with no rotation operated is obtained, resulting in a 100% gap between the best upper bound and the best
lower bound found.

Table 5 Solving problem F of Standard LSND by exact method BP on randomly generated instances in Set-B.

Root Node Solution BP

Name Obj Gap(%) Col Time(s) Obj Gap(%) Col Node Time(s)

p12-d16-s10 2106991 10.65 145 105.5 2106991 3.88 411 239 7206.3
p12-d20-s15 2697833 6.39 110 112.0 2697833 3.04 347 178 7203.7
p14-d22-s12 2340210 12.59 170 136.3 2340210 7.24 370 101 7204.4
p14-d26-s20 3503897 5.97 166 249.4 3554237 1.49 313 46 7204.4
p16-d26-s18 3236887 18.45 252 1201.7 3236887 14.16 373 11 7314.6
p16-d30-s25 3830746 14.15 244 1000.9 3834203 9.50 413 41 7385.0
p18-d28-s32 4811084 23.43 300 1475.5 4811084 16.38 432 7 7784.7
p18-d32-s28 5322757 13.46 307 2606.3 5322757 11.91 504 9 7926.9

As shown in Table 4, method BP solves all instances to optimality within the time limit, signifi-

cantly outperforming the CPLEX MIP solver, which fails to solve more than half of the instances to

optimality. For almost half of the instances, the CPLEX solver produces no solution or only a triv-

ial feasible solution with no rotation being operated. This also highlights that the LSND represents

a very challenging optimization problem.

To further attest to the effectiveness of method BP in solving difficult LSND instances, we

also tested BP on the set of randomly generated instances in Set-B with increased problem scales

and relaxed rotation settings and on the set of six Baltic and WAF benchmark instances from the

LINERLIB-2012 in Set-C, for which computational results have been reported in the literature.

Table 5 gives the results of method BP on the Set-B instances using the same notation introduced

for Table 4. The results show that none of the instances has been optimally solved by method BP

within the imposed time limit, thus representing difficult LSND instances for method BP. Indeed,

for these instances, the time to compute the root node solution ranges from 2 to 45 minutes. This is

mainly due to the increased number of ports, ships, and origin-destination demand pairs in the men-
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tioned instances and the relaxed settings for defining feasible rotations, which slow down the solu-

tion of problem RLF and the pricing problem. However, despite their difficulty, many instances of

such scales are solved within two hours with high-quality sub-optimal solutions by the BP method.

From columns “Gap(%)” in Table 4 and Table 5, we can see that the average percentage gaps of the

lower bounds computed at the root node of method BP are 3.36% and 13.14% for instances of Set-

A and Set-B, respectively. The enumeration phase of method BP improves the lower bounds for

two instances of Set-A and two instances of Set-B, with average percentage improvements equal to

0.94% and 0.76%, respectively. For Set-A instances, method BP closes the optimality gaps of all

the instances, whereas for Set-B instances, the enumeration phase significantly reduces the average

optimality gap from 13.14% to 8.45%.

Concerning the six Baltic and WAF benchmark instances in Set-C, Plum et al. (2014b) computed

both upper and lower bounds based on an MIP model, but with an upper limit imposed on the

number of rotations, and with all ports being allowed more than one visit. Therefore, only the

lower bounds computed by Plum et al. can be compared with the results of our method BP. The

MIP model of Plum et al. was run on an Intel i5 (2.53 GHz) equipped with 3 GB of RAM and

was solved using the CPLEX 12.2 MIP solver, with a time limit of one hour and three hours for

the Baltic and WAF groups of instances, respectively. According to the SuperPi (1M) benchmark

(http://www.superpi.net/), our machine is about 10% faster than that used by Plum et al. (2014b).

The six instances considered in Plum et al. (2014b) have also been tested by a heuristic method

proposed by Brouer et al. (2014a), but under different settings of the LSND problem. In particular,

Brouer et al. (2014a) took into account also biweekly services (i.e., once per two weeks) and speed

optimization in their LSND problem. For the sake of comparison, we, therefore, implemented and

adapted their heuristic method to compute valid lower bounds for the six instances considered

under our setting of the Standard LSND problem. The heuristic method of Brouer et al. (2014a)

was inspired by the approach presented in Álvarez (2009). It applies a tabu search on a set of

rotations iteratively generated by an MIP neighborhood. It includes heuristic measures on cargo

composition and is designed to generate simple and on-simple rotations of high quality.

The results on the six benchmark instances of Set-C are reported in Table 6. We use PPS and

BAPPS to denote the methods used in Plum et al. (2014b) and our implementation of the heuristic

method proposed by Brouer et al. (2014a), respectively. We imposed time limits of one hour and

three hours for the Baltic and WAF groups, respectively, on both methods, BAPPS and BP. For each

instance and each method, Table 6 shows the best lower bound obtained (“Obj”) and the computing

http://www.superpi.net/
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Table 6 Solving problem F of Standard LSND: comparison of method PPS of Plum et al. (2014b), method BAPPS based on

Brouer et al. (2014a), and our exact method BP on the benchmark instances in Set-C.

PPS BAPPS BP

Name Obj Time(s) Obj Time(s) Obj Gap(%) Col Node Time(s)

p12-d22-s5-low 427485 3600 442306 2614 662767 5.58 391 60 3600
p12-d22-s6-base 408771 3600 505306 3002 748618 2.76 378 43 3600
p12-d22-s7-high 636152 3600 571954 3379 790618 2.28 322 45 3600
p20-d37-s33-low 1940817 10800 4195167 10800 5175561 14.91 372 5 10800
p20-d37-s42-base 3372618 10800 4525371 10800 5762190 17.21 413 7 10800
p20-d37-s51-high 3899767 10800 4630588 10800 6089836 14.84 418 7 10800

time in seconds (“Time(s)”). For method BP, Table 6 also gives the percentage gap (“Gap(%)”) of

its best upper bound and the best lower bound found, the number of rotations generated (“Col”),

and the total number of nodes of the enumeration tree (“Node”).

Table 6 shows that none of the six instances can be solved optimally by either PPS or BP within

the imposed time limit, highlighting the difficulty of solving the LSND to optimality. However, the

differences between the solution values computed by BP, PPS, and BAPPS show that the quality

of the solutions obtained can be greatly improved by method BP and that method BP can provide,

on average, high-quality solutions within the imposed time limit.

Moreover, we have compared the network design solutions produced by the BP, PPS, and BAPPS

methods on the six benchmark instances in Set-C. The results, illustrated in Table EC.3 of the

e-companion, show that the BP solution is advantageous for utilizing the current fleet of ships to

serve more demand pairs. The resulting BP solutions involve more rotations and port calls for all

these six benchmark instances, and the average capacity utilization ratios over the voyage arcs are

the highest for five of these six benchmark instances.

We have also investigated the benefits of considering the transshipment costs in the Standard

LSND. As illustrated in §EC.8.3 of the e-companion, the solutions that explicitly account for trans-

shipment costs can lead to significantly improved solutions with higher total profits. For the six

Baltic and WAF benchmark instances, a total profit improvement from a minimum of about 3% to

a maximum of about 23% has been achieved by considering the transshipment costs.

6.4. Results of solving problem F of General LSND

To evaluate the performance of our method BP in solving the General LSND problem, we tested

method BP on the six benchmark instances in Set-C. We compare its results with the benchmark

results available in the literature, including Plum et al. (2014b), Brouer et al. (2014a), and Brouer
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Table 7 Solving problem F of General LSND: comparison of method PPS of Plum et al. (2014b) and our exact method BP on

the benchmark instances considering the optimization of service frequency.

PPS BP

Name Obj Time(s) Obj Gap(%) Col Node Time(s)

p12-d22-s5-low -265117 3600 210433 46.46 353 11 3600
p12-d22-s6-base -134687 3600 461384 34.16 325 10 3600
p12-d22-s7-high -183348 3600 646154 16.24 261 3 3600
p20-d37-s33-low 411317 10800 5114795 19.65 510 8 10800
p20-d37-s42-base 1059352 10800 5824197 14.91 456 6 10800
p20-d37-s51-high 1281583 10800 6264127 13.94 449 5 10800

et al. (2014b), which were produced under different configuration settings concerning the opti-

mization of the sailing speed and service frequency for the LSND. Accordingly, we compare our

new exact method BP with the exact method PPS of Plum et al. (2014b) on instances considering

optimization of the service frequency, with the heuristic method BDP of Brouer et al. (2014b) on

instances considering optimization of the sailing speed, and with the heuristic method BAPPS of

Brouer et al. (2014a) on instances considering optimization of both the sailing speed and service

frequency. Moreover, using the experiment settings considered in the literature of these benchmark

methods, we set the penalty cost for rejecting a unit of cargo equal to 1000. As the optimization

of the sailing speed and service frequency is considered, the size of the rotation configuration set

is enlarged, which inevitably leads to computational challenges for method BP. To guarantee suf-

ficient explorations on the lower and upper bounds, we increased the time limit for method BP to

compute the lower bound at the root node to one hour and increased the total time limit of method

BP to three hours.

Table 7 compares the performance of our method BP and method PPS on the six benchmark

instances of the General LSND where ships’ sailing speeds are predetermined to adopt their design

speeds, but service frequencies, which can be either weekly (once per week) or biweekly (once per

two weeks), need to be optimized. The table’s notation of columns is the same as Table 6. Table 7

shows that although neither method solves these General LSND instances to optimality within

the imposed time limit, our method BP produces significantly better solutions than method PPS.

For the first three instances, solutions of method PPS all have negative profits, while solutions of

method BP all have positive profits. For the other three instances, solutions of method BP improve

solutions of method PPS by about four to ten times in the solution values.

Table 8 and Table 9 compare our new exact method BP with heuristic methods BDP and BAPPS

on the six benchmark instances of General LSND where the sailing speeds, which belong to some

given speed sets, need to be optimized. According to Brouer et al. (2014b), the benchmark results
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Table 8 Solving problem F of General LSND: comparison of method BDP of Brouer et al. (2014b) and our exact method BP

on the benchmark instances considering the optimization of sailing speed.

BDP BP

Name Obj Obj Ub ∆Obj(%) Obj+ ∆Obj+(%)

p12-d22-b-low -137369 -145898 10226.0 -6.21 -134412 2.15
p12-d22-b-base 246605 251169 331169.0 1.85 266510 8.07
p12-d22-b-high 430593 415516 500476.4 -3.50 430675 0.02
p20-d37-w-low 4578177 4481997 5349587.5 -2.10 4599098 0.46
p20-d37-w-base 5590381 5922462 6346280.5 5.94 5934951 6.16
p20-d37-w-high 6264469 6496608 6836831.5 3.71 6514383 3.99

produced by method BDP were under the setting where the speed sets were continuous intervals

[10,14] and [10,17] for the two types of ships. According to Brouer et al. (2014a), the benchmark

results produced by method BAPPS were under the setting where the speed sets were discrete sets

U1 = {10,11, ...,14} and U2 = {10,11, ...,17} for the two types of the ships. For our method BP,

we followed Brouer et al. (2014a) to adopt U1 = {10,11, ...,14} and U2 = {10,11, ...,17} as the

discrete speed sets for the two types of the ships. Moreover, for a solution produced by our method

BP, the discrete sailing speed obtained for each rotation can be adjusted to a continuous sailing

speed that equals the ratio of the length and the duration of the rotation. This adjustment can reduce

time slack on a rotation, possibly slow down the sailing speed, and improve the solution value due

to fuel cost savings by slow steaming. We, therefore, also examine such improved solutions of

method BP with speed adjustment applied in our experiments.

Table 8 shows the results of our new exact method BP and the heuristic method BDP, where sail-

ing speeds need to be optimized, but service frequencies are fixed to be weekly. For method BDP,

column “Obj” reports the solution (profit) values of its best-known Baltic and WAF solutions pro-

duced, which are available at https://github.com/blof/LINERLIB/. For our method BP, in addition

to the solution values (“Obj”) obtained, we report their improvement percentages (“∆Obj(%)”)

against the solution values of the solutions produced by method BDP. We also report the solution

values (“Obj+”) for solutions of the method BP with speed adjustment applied and their improve-

ment percentages (“∆Obj+”) against the solution values of the solutions produced by method BDP.

We also report the upper bound (“Ub”) produced by the method BP.

From Table 8, we can see that although these instances are not solved to optimality, our method

BP with speed adjustment outperforms method BDP in producing better solutions, with up to

8.07% improvements. With the speed adjustment applied, solutions obtained by BP are signif-

icantly improved, particularly for Baltic instances (i.e., the first three instances). For the WAF

instances, the strength of our exact method BP over the heuristic method BDP is more remarkable,

https://github.com/blof/LINERLIB/
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Table 9 Solving problem F of General LSND: comparison of method BAPPS of Brouer et al. (2014a) and our exact method

BP on the benchmark instances considering the optimization of sailing speed and service frequency.

BAPPS BP

Name Obj Obj Ub ∆Obj(%) Obj+ ∆Obj+(%)

p12-d22-b-low 235044 218605 362067.9 -6.99 234172 -0.37
p12-d22-b-base 325305 458775 648536.0 41.03 472226 45.16
p12-d22-b-high 609700 702692 788281.6 15.25 710156 16.48
p20-d37-w-low 4486261 5117998 5957101.0 14.08 5196478 15.83
p20-d37-w-base 5565389 6310642 6869302.0 13.39 6314192 13.45
p20-d37-w-high 6220044 6940677 7350122.5 11.59 6940677 11.59

further validating the effectiveness of our exact method in searching profitable solutions against

existing heuristic methods for instances of such scales.

Table 9 shows the results of our new exact method BP and the heuristic method BAPPS where

both sailing speeds and service frequencies must be optimized. The table’s notation of columns is

the same as Table 8. The solution values reported for the best-known solutions obtained by method

BAPPS of Brouer et al. (2014a) are obtained from Plum et al. (2014b). The results in Table 9 show

that although no instances are solved to optimality, our new exact method BP produced signifi-

cantly better solutions than the heuristic method BAPPS for the five benchmark instances out of

the six. When speed adjustments are not applied, 11.59% to 41.01% improvements are achieved

for these five instances. When the speed adjustments are applied, the improvements are further

increased slightly for these five instances, and for the remaining instance (p12-d22-b-low), the

solution quality of method BP has significantly improved, with the percentage gap of its solution

value against that of the solution of method BAPP improved from -6.99% to -0.37%. These again

demonstrate the effectiveness of the speed adjustment for method BP, as well as the strength of

our exact method BP against the existing heuristic methods in solving General LSND for instances

of such scales. Moreover, by comparing the solution values of our method BP shown in Table 7,

Table 8 and Table 9, we can see that the flexibility in choosing sailing speeds and service frequen-

cies can indeed bring a substantial increase in the profit of the final LSND solutions, demonstrating

the benefits of considering the optimization of the sailing speed and service frequency.

Furthermore, we compare the network design solutions produced by BDP and BP methods on

the six benchmark instances in Set-C of the General LSND. Solutions produced using the BAPPS

method are unavailable in the literature. As illustrated in §EC.8.4 of the e-companion, the BP

solutions are advantageous to select proper sailing speeds for the rotations operated under different

market conditions. This finding accords with the facts in the liner shipping industry that carriers

adopt a slow-steaming strategy under an overcapacity market (such as the liner shipping market
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after the financial crisis of 2008) while speeding up the liner services when the capacity supply is

insufficient (such as the liner shipping market during the Covid-19 pandemic since 2020).

7. Conclusions and future research

This paper studied the liner shipping network design (LSND) problem with transshipment costs,

which is today’s core of liner shipping operations. To model the problem, we considered decisions

on general rotation configurations, where a configuration specifies various service components,

such as the ship type, sailing speed, service frequency, etc. With the aim of profit maximization,

the model identifies profitable demands to serve and can produce a network design solution con-

sidering existing and potential demand markets.

We proposed a new set-partitioning-like formulation with an exponential number of variables

and constraints to capture the transshipment costs. The proposed formulation is associated with

rotation-dependent variables and constraints, so the traditional column generation (CG) method

cannot be applied. To solve the linear programming relaxation of the new formulation, we devel-

oped a simultaneous column-and-row generation (SCRG) method, together with several novel

speed-up techniques. The SCRG method was embedded in an exact branch-and-price algorithm

to find optimal or near-optimal LSND solutions without any a priori restriction on the number of

feasible or the maximum number of operated rotations. The newly proposed solution method was

examined on test instances from the literature and newly generated for two main LSND variants

based on different rotation configurations: the Standard LSND and the General LSND. Our new

exact method outperformed several alternative solution methods known in the existing literature.

It significantly improved the best-known lower and upper bounds on the optimal solutions to sev-

eral benchmark problem instances. This study has enriched the solution methods for the LSND,

enhanced the SCRG-based solution method in general, and extended its practical applications.

Our work has opened up several promising future research directions. First, in this paper, we

have proposed a new SCRG-based solution method for the LSND. To further improve it, we can

develop alternative approaches to computing dual solutions and enhance the algorithm for solving

the pricing problem. In particular, it would be of great interest to investigate how to avoid the

generation of unnecessary rotations more effectively. Although this work focused on developing

an exact method that can be directly used to plan regional rotations, the SCRG-based solution

method can also be used to develop heuristic methods for solving larger-sized instances of the

LSND. For example, it can be applied to plan inter-region rotations, where a region represents a
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cluster of regional ports (i.e., FarEast and NorthEurope) with their demands being aggregated (see,

e.g., Xia et al. 2015). By solving the pricing problem approximately or using port aggregation and

disaggregation techniques (see, e.g., Mulder and Dekker 2014), one could transform our branch-

and-price algorithm to a heuristic. In the future, we will investigate how such a heuristic performs

in solving larger-sized LSND instances, how to identify a suitable size for the configuration set,

and improve its performance. we will also investigate how our SCRG-based solution method can

be applied to tackling other challenging LSND variants, such as those with transit time restrictions

(Karsten et al. 2018), transit time costs (Trivella et al. 2021), and load-dependent fuel consumption

(Xia et al. 2015), for which sailing speeds need to be optimized for each voyage arc.

Second, the proposed SCRG-based solution method can be adapted to incorporate additional

rotation constraints arising in real-world situations by modifying the rotation generation phase

of the SCRG-based solution method. Moreover, the SCRG-based solution method is developed

to solve the LSND with general rotation configurations, which can incorporate not only those

common service components, such as the ship type, sailing speed, and service frequency, but also

those emerging ones. For example, green technologies, such as scrubbers and shore powers, are

being adopted on ships nowadays to meet the emission control requirements at the ports and voyage

legs of the rotation. However, despite some studies in the liner shipping fleet deployment literature

(see, e.g., Zhen et al. 2020), decisions on green technology adoptions for rotations have not been

studied for the LSND. As such decisions can be incorporated into the configurations of rotations,

our new SCRG-based solution method can be adapted to solve this new variant of the LSND.

Finally, we have enhanced our SCRG-based solution method for the LSND by developing sev-

eral new speed-up techniques to prevent the generation of unnecessary columns, which have been

overlooked in previous studies. These techniques are potentially useful in solving other large-scale

linear (integer) programming models with column-dependent rows, such as those for the bus rapid

transit route design problem (Feillet et al. 2010), the multi-stage cutting stock problem (Muter et al.

2013), and the quadratic set covering problem (Muter et al. 2013). Future studies on applications

to these problems and the adaption of our new speed-up techniques hold great promise.
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