
Efficient Personalized Adaptation for Physiological Signal Foundation Model

Chenrui Wu 1 2 Haishuai Wang∗ 1 Xiang Zhang 3 Chengqi Zhang 4 Jiajun Bu 1

Abstract
Time series analysis is crucial across various fields
like energy, environment, transportation, finance
and health. Deep learning has significantly ad-
vanced this field, particularly, the Time Series
Foundation Model (TSFM) excels in multiple do-
mains due to extensive pre-training. In this work,
we focus on TSFM’s challenges in medical prac-
tice: limited computing resources and medical
data privacy. TSFM variants include fine-tuned
models and those pre-trained for rapid deploy-
ment on diverse data. There may not be enough
computing resources to train physiological signals
locally in hospitals, and generalized TSFM is still
inferior to task-specific methods on private, im-
balanced local data. To address this, we propose
PhysioPFM, a framework for efficiently person-
alizing TSFM. Our approach involves low-rank
pre-training on public datasets, generator training
by trained LoRA weights, and efficient weight
generation via local data. Experimental results
demonstrate that integrating generated models
with TSFM enhances performance, and transfer-
ability, and reduces the need for additional sensi-
tive data training.

1. Introduction
The recent trend of integrating deep learning algorithms
on advanced wearable sensors and fixed medical equip-
ment has catalyzed massive amounts of valuable medical
data (Spathis et al., 2020; Che et al., 2017). These recorded
medical time series data are continuous observations related
to human health, usually including electroencephalogram
(EEG), heart rate, cardiotocography (CTG), electrooculo-
gram (EOG), galvanic skin response (GSR), electrocardio-
gram (ECG), electromyogram (EMG) and others (Thapa
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Figure 1. Illustration of existing two category time series foun-
dation model. (a) represents the methods applying pre-trained
large language model to train target data, and conducting tests
on target data. (b) demonstrate the methods that pre-train on a
large and multi-domain dataset, then test on the target data for the
zero-shot prediction.

et al., 2024; Wang et al., 2024b; Zhang et al., 2024; Al-Saegh
et al., 2021). These physiological signals are usually quanti-
tatively measured by medical devices and then analyzed by
doctors or specialists to evaluate the patient’s current state
and make data-driven decisions, which shows great signif-
icance for health monitoring, disease diagnosis and treat-
ment (Liu et al., 2023). Specifically, we focus on various
medical time series classification (TSC) tasks based on the
physiological signals, including emotion recognition (Pan
et al., 2023; Li et al., 2024a), sleep stage detection (Supratak
et al., 2017; Dong et al., 2017), neurological disorder classi-
fication (Yang et al., 2022b; Zhang et al., 2022) etc.

However, while the community has benefited greatly from
the large amount of new data collected by professional med-
ical devices or ubiquitous wearable devices, analyzing phys-
iological signals with existing deep-learning methods still
faces inherent challenges in practice. First, The amount of
data available for each signal is unbalanced. Most existing
studies focus on EEG and ECG data. In contrast, other
physiological signals have minor data available, making it
challenging to establish unified and generic models for all
signals. Furthermore, the sampling frequency and duration
of different signals may also vary, further causing the diver-
gence of data features and labels. Therefore, compared with
time series in conventional domains, medical time series
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also have unique challenges in imbalanced distributions.

To effectively capture the complex trends of time series,
the foundation model has recently attracted the attention of
researchers. With pre-training and success of the language
model, diverse time series foundation models (TSFM) have
been proposed (Zhou et al., 2023; Jin et al., 2024; Rasul
et al., 2023; Liu et al., 2024b; Goswami et al., 2024; Ansari
et al., 2024; Garza & Mergenthaler-Canseco, 2023a). TSFM
mainly includes two categories as shown in Figure 1. The
first category adopts language model parameters as pre-
training parameters and performs fine-tuning and testing on
target data locally (Zhou et al., 2023; Jin et al., 2024; Rasul
et al., 2023; Ansari et al., 2024). Another category pursues
generalization performance, is pre-trained with large-scale
time series data in various fields, and achieves universal per-
formance of train once for all (Liu et al., 2024b; Goswami
et al., 2024; Garza & Mergenthaler-Canseco, 2023a).

Yet, several challenges are aroused by implementing the
existing two types of TSFM, shown in Figure 2. For physi-
ological signals, patients’ sensitive data is prevented from
being uploaded to foundation model service providers for
pre-training due to recent laws like EU GDPR for patients’
privacy. To adapt local physiological signals, for the first
category, in the face of clinical diagnosis scenarios with lim-
ited computing capacity, local fine-tuning will cause huge
computing overhead, which is quite impractical. If applying
the generic pre-trained model, although various foundation
models have been proven to perform well in multiple fields
and have general feature extraction capabilities, some stud-
ies have shown that they perform poorly on specific tasks,
such as in fields where publicly available healthcare data is
scarce and imbalanced (Glocker et al., 2023; Gupta et al.,
2024; Dutt et al., 2023).

While several task-specific TSFMs have been crafted for
particular domains, such as Brant-X (Zhang et al., 2024),
SleepFM (Thapa et al., 2024) and ECG-FM (McKeen et al.,
2024). They aim to fit one task with massive public and
private data pre-training. These approaches also face the
issue of access to private data for training and the challenge
of transferring to unseen physiological signal tasks.

In this work, we propose PhysioPFM, a Personalized
Foundation Model approach for Physiological signal to effi-
ciently and lightweight produce a customer model for clin-
ical practice with privacy guarantee. Inspired by the con-
cept Train-Once-for-All Personalization (Chen et al., 2023;
Li et al., 2024b), our overall goal is to adapt a TSFM to
personalized clinical tasks without extra training during de-
ployment. Based on pre-trained and generalized TSFM, we
aim to synthesize customized Low-Rank adapter parameters
locally with lightweight cost and privacy guarantee.

Specifically, in the data preparation phase, we first train

Privacy preservation Limited comp. resources Insufficient specialization

Acc.

Figure 2. The challenges of implementing two category time
series foundation model to clinical practice. The first shows that
private data cannot be uploaded for pre-training. Local fine-tuning
on private data may cause huge computational overhead and be
impractical in some conditions. Applying a foundation model pre-
trained by multi-domain time series may not fit well on the feature
and distribution of local physiological signals without adaption.
the TSFM with massive public physiological signal data by
Low-Rank Adapter (LoRA) (Hu et al., 2021; Zhou et al.,
2024) and store the map of adapters and data sources. To
effectively learn diverse features, we adopt the neural col-
lapse (Papyan et al., 2020) to combat the imbalanced data
distribution. In the generator training phase, we use a diffu-
sion transformer (DiT) (Peebles & Xie, 2023; Peebles et al.,
2022) as a robust generator to synthesize LoRA weights.
To bridge the gap between time series and adapter param-
eters, we capture the representative subsequence of time
series shapelets (Ye & Keogh, 2009; Li et al., 2021; Le et al.,
2022; 2024) as the input conditions for DiT training. In the
local personalized inference phase, given the local data’s
shapelets, DiT could generate customized LoRA weights to
combine with generic TSFM. A personalized TSFM is ob-
tained for the local medical expert. Only limited computing
resources of the generator and TSFM inference are required.
We summarize our contributions as follows:

• We novelly propose a personalized approach to transfer
the time series foundation model to clinical physiologi-
cal signal tasks with lower computing costs and privacy
guarantees.

• We propose a specialized LoRA generator of DiT,
bridging the time series and model by discriminant
subsequences shapelets.

• Extensive experiments demonstrate the robustness and
efficiency of our approach. Our PhysioPFM has
achieved superior empirical performance that is better
than state-of-the-art solutions.

2. Related Work
2.1. Time Series Foundation Model

Recently, the development of large language models (LLMs)
has revolutionized the field of natural language processing

2



Efficient Personalized Adaptation for Physiological Signal Foundation Model

(NLP) (Chang et al., 2024; Wu et al., 2023b), demonstrating
multimodal adaptability beyond text (Qin et al., 2024; Hu
et al., 2020; Zeng et al., 2023; Jiang et al., 2024b). Time
series have practical value comparable to natural languages,
and in essence, they exhibit similar sequentiality in genera-
tive modelling (Gruver et al., 2024). This unique feature has
prompted much research to adapt LLM to time series. Cur-
rent time series foundation models (TSFM) can be divided
into two types, the first type utilizes language model parame-
ters to fine-tune target data. llm4ts (Chang et al., 2023) uses
fine-tuned transformer modules and positional encodings
in GPT-2 to align pre-trained LLMs with time series data
for forecasting tasks. One-Fits-All (GPT4TS) (Zhou et al.,
2023) freezes the multi-head attention and FFN layers, fine-
tunes input, positional embeddings and layer norm blocks,
based on GPT-2 parameters. Time-LLM (Jin et al., 2024)
introduces a reprogramming architecture, aligning LLM’s
word embedding with time series embedding, with frozen
LLama backbone (Touvron et al., 2023a;b).

Another type targets generalization with large-scale data
pretraining for few-shot or zero-shot tasks. LLMTime (Gru-
ver et al., 2024) investigates inputting time series as text
with different preprocessing to LLM for zero-shot forecast-
ing. TimeGPT-1 (Garza & Mergenthaler-Canseco, 2023b)
is a commercial time series LLM based on the transformer
architecture and pre-trained with more than 100 billion data
points for zero-shot prediction. Timer (Liu et al., 2024b)
proposes a pre-training dataset (UTSD) including multiple
domains with 1 billion time points and trains a GPT-style
(decoder-only) model to predict. MOMENT (Goswami
et al., 2024) also collects a large public dataset: Time Series
Pile, then proposes learnable masked patches to train a trans-
former. These pre-trained TSFMs focus on generalization
with a wide domain of time series, where their special-
ized abilities in medical time series may not be satisfactory.
Therefore, we propose a lightweight TSFM personalization
scheme to tackle the specialization ability.

2.2. Time Series Classification

In general, time series analysis involves four fundamental
downstream tasks: forecasting, imputation, classification
and anomaly detection. Current TSFMs mostly emphasize
forecasting ability or general ability. However, time se-
ries classification (TSC) has some unique challenges like
heterogeneous timestamp length (Chen et al., 2024), noisy
labelling (Liu et al., 2024c), and domain gap from different
sensors (He et al., 2023; Wu et al., 2024), aside from only
training a robust feature-extracting ability or replacing a
prediction head. Therefore, more studies have focused on
TSC, especially the applications of physiological signals.
For emotion detection, TNAS (Li et al., 2022) combines
the Transformer model with NAS and searches through a
multi-objective evolutionary algorithm (MOEA) to obtain

the optimal network architecture for EEG-based emotion
recognition; OMHGL (Pan et al., 2023) proposes an online
multimodal hypergraph learning method for emotion recog-
nition based on multimodal hypergraph fusion and online hy-
pergraph learning. For sleep stage detection, in (Kong et al.,
2023), a bilevel optimization approximation for EEG-based
sleep stage classification is proposed with a neural architec-
ture search framework; NeuroNet (Lee et al., 2024) propose
a self-supervised learning framework for sleep state detec-
tion by integrating contrastive learning tasks and masked
prediction tasks. To uniformly solve the physiological sig-
nal classification, Bran-X (Zhang et al., 2024) utilizes a
pre-trained brain signal foundation model Brant-2 (Yuan
et al., 2024) with 2 TB private data, then aligns other signals
to brain signal in two-level patching. In this work, we aim
to efficiently transfer the general knowledge of TSFM to
physiological signals with public datasets. Our focus is to
achieve specialization through openness and protect privacy
without exposing patient’s private data. We also consider
the classification challenges of noisy and imbalanced time
series in physiological signal data.

3. Preliminaries
3.1. Problem Setup

We consider multi-class time series classification tasks un-
der train-once-for-all personalization scenario (Chen et al.,
2023; Li et al., 2024b). There is a primitive time series
foundation model W0 pre-trained by large-scale public
datasets D. Each local clinical expert/user k holds a pri-
vate dataset Dk = {(xk

i , y
k
i )}

nk
i=1, where xk

i is the input of
the training sample, corresponding yki denotes the given
label, and the sum of local data does not belong to pre-
training datasets

⋃k
i=1 Di ∩D = ∅. For each physiological

signal x ∈ RM×L includes M channels with a length of
L timestamps. The optimization objective is to obtain a
best personalized model W ′

k for each user based on private
dataset Dk, formulated as:

minL(W ′
k) = L(fϕ(W0,Dk)), (1)

where fϕ denote the personalization operation function
based on the generative network Gϕ.

3.2. Low-Rank Adaptation

The size of parameters of existing LLM usually starts from
billions. Many works (Li et al., 2018) have proved that
matrices for deep learning are often over-parameterized.
Low-Rank Adaption (LoRA) (Hu et al., 2021) allows in-
direct training of some dense layers in a neural network
by optimizing the rank factorization matrix of the dense
layers that change during the adaptation process while keep-
ing the pre-trained weights unchanged. Hence, LoRA im-
proves efficiency for fine-tuning large pre-trained language
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models. In detail, LoRA first fixes the pre-trained LLM
W0 ∈ Rd×k and introduces two trainable low-rank ma-
trices: dimensionality-reducing matrices A ∈ Rr×k and
dimension-raising matrix B ∈ Rd×r, where r ≪ min(d, k).
The LoRA’s forward pass equation is denoted as:

W0x+∆Wx = W0 +BAx, (2)

where ∆W = BA is the parameter needing to be up-
dated, x is the same input for W0 and ∆W . The more
concentrated and stable parameter distribution in LoRA
helps improve generalization by reducing the risk of overfit-
ting. During the inference process, LoRA also introduces
almost no additional inference latency, only the calculation
of W = W0 + ∆W is required. In this work, we aim to
synthesize LoRA parameters to directly obtain customized
LLMs based on target data in a local private diagnosis.

3.3. Neural Collapse

Neural collapse is a phenomenon that the feature prototypes
and weight vectors of the classifier will gradually converge
to a Simplex Equiangular Tight Frame (ETF) structure at
the terminal phase of balanced data training (Papyan et al.,
2020; Li et al., 2023; Yang et al., 2023; 2022a). We note the
definition of the ETF and Neural Collapse as follows:

Definition 3.1 (Simplex Equiangular Tight Frame). A set
of C-dimensional vectors wi ∈ Rd, where i ∈ [C] and
d ≥ C − 1, forms a simplex equiangular tight frame (ETF)
if it satisfies the condition:

W =

√
C

C − 1
U

(
IC − 1

C
1C1

T
C

)
, (3)

where W = [w1, · · · ,wC ] ∈ Rd×C , U ∈ Rd×C , (d ≥
C) is a partial orthogonal matrix satisfying UTU = IC .
IC ∈ RC×C is a identity matrix and 1C is a vector of ones.
Any column vectors in W has the same ℓ2 norm, and the
pair-wise angles between any pair of vectors are maximized
by the simplex ETF, denoted as:

wT
i wj =

C

C − 1
δi,j −

1

C − 1
,∀i, j ∈ [C], (4)

where it takes the value of 1 if the indices i and j are equal,
while yielding 0 in all other cases. The optimal condition
could be obtained when ∀i ̸= j, the maximal equiangular
separation is wT

i wj = − 1
C−1 .

The phenomenon of Neural Collapse encompasses four dis-
tinct properties, which we highlight as key manifestations:

• NC1 (Within-Class Variability Collapse): All the
last-layer features will collapse to the class prototypes
(within-class feature means). Formally, the covariance

Σc
θ → 0, and Σc

θ := 1
nc

∑nc

i=1(hc,i − hc)(hc,i − hc)
T ,

where nc is the index of samples in c-th class, hc,i =
F(θ;xi) is the feature of the i-th sample of c-th class,
and hc = 1

nc

∑nc

i=1 hc,i is the within-class mean of
class c features, that is the prototype.

• NC2 (Convergence to Simplex ETF): The class proto-
types will collapse to a simplex ETF and be maximally
separated. ĥc = (hc − hG)/||hc − hG||,∀c ∈ [C] sat-
isfies Eq. (4), where hG refers to the global mean of
all the features.

• NC3 (Convergence to Self-Duality): The classifier
weights will collapse to the same simplex ETF of the
corresponding class. ĥc = wc/||wc||, where wc is the
classifier weight vector of class c.

• NC4 (Simple Decision Rule): Under the conditions
of (NC1)-(NC3), the classifier’s prediction can be
simplified to the nearest class centers based on Eu-
clidean distances, denoted as: argmaxk ⟨h,wc⟩ =
argmink ||h −wc||, where h represents the last-layer
feature of a sample used for classification.

4. Proposed Method
4.1. Overview

As shown in Figure 3, we describe the detailed process of
the proposed physiological signal foundation model per-
sonalization method: PhysioPFM. We consider three main
processes: debiased alignment as data preparation, shapelet-
to-LoRA model training, and lightweight custom model
generation. First, we adopt public physiological signals
to fine-tune the original time series foundation model in a
LoRA way. Then we use the map of the low-rank adapter
and the corresponding data to train the generative model. Fi-
nally, the user could apply the generative model to produce
a customer low-rank adapter with private data. Combined
with the time series foundation model, a customized physi-
ological signal foundation model is obtained with the only
extra computing costs of generation.

4.2. Data Preparation

Specifically, with the wide success of Low-Rank Adapter
(LoRA) fine-tuning in foundation model (Hu et al., 2021;
Zhou et al., 2024), we first pre-train the time series founda-
tion model by plenty of public physiological signal datasets
in a LoRA way and store the map of adapters and data
sources. To synthesize learnable LoRA parameters, we con-
sider building a map between LoRA and input time series
by training the generative model. We adopt multiple public
physiological signal datasets Dpub and decompose them
into more sub-tasks Dpub

k to expand the amount of training
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Figure 3. The framework of the proposed PhysioPFM. The training procedure follows: ① In the data preparation phase, we pre-train a
time series foundation model by public physiology signals in the cloud, to obtain the map of data and LoRA weights.② In the generator
training phase, we train a robust weights generator by the data as a condition and LoRA weights as output. ③ In the personalized inference
phase, we adopt local data and the trained generator to synthesize customer LoRA weights for the TSFM.

tasks. For each task, we can obtain a personalized LoRA.
Given the forward pass of LoRA in Eq. 2, we adopt two
classification losses to update the original TSFM and get a
customized LoRA for every task tk.

Cross-Entropy Loss. The vanilla cross-entropy loss Lce is
used to minimise empirical risks in a classification task:

Lce = − 1

|Dpub
k |

|Dpub
k |∑

i=1

yi log(f(W0;xi)), (5)

where Dpub
k is the subset of the public physiological signal

dataset Dpub. To enrich the training data size, each individ-
ual dataset and its subset of spatial classes can be Dpub

k . The
specific public physiological signal datasets we collected
are provided in Appendix A.6.

Anchored Classifier Loss. Due to the class-level distribu-
tion imbalance and length heterogeneity of the collected
physiological signal dataset, the number and series length
may differ across classes and samples. We aim to update the
TSFM in a debiased way. We first define the prototype pi as
the mean of embedding of the class i ∈ {1, 2, · · · , C} (Snell
et al., 2017). According to Definition 1, we can derive an
optimal condition of class prototypes:
Proposition 4.1. In a multi-class classification problem,
if prototypes p1 · · · pC ∈ Rd are fixed and satisfy pTi pj =
− 1

C−1 , ∀i ̸= j, i, j ∈ [C], the maximum of angular between
any two class prototypes will be reached, where the decision
bound among classes is optimal.

This proposition provides the optimality condition of vectors
to maximize the minimal sample margin. Thus, we initialize
a random synthesis of a simplex equiangular tight frame p̂ ∈

Rd×C . Any pair of prototypes vectors pi,pj in P̂ satisfy
a maximal pair-wise separation pT

i pj = − 1
C−1 , ∀i ̸= j,

i, j ∈ [C]. Therefore, we add the classifier-anchored loss to
regularize the training, defined as:

Lac = − log
nyi

exp(xi · pyi
/τ)∑

yj∈{[C]\yi} nyj
exp(xi · pyj

/τ)
, (6)

where nyi
is the number of samples for class yi, τ is a temper-

ate hyper-parameter, we set τ = 1 generally. Through these
losses, the TSFM could be adapted to various physiological
signal sub-tasks with a debiased classifier. The overall loss
function to align the generic TSFM to physiological signals
by low-rank adaption is formulated as:

L = Lce + Lac. (7)

After LoRA training on each sub-task of public datasets, we
define the sub-task of Dpub

k as tk. The overall demonstration
of the obtained data sample map can be expressed as T =
{(∆Wk, tk)}Kk=1, Tk ∈ T , where ∆Wk = BkAk.

4.3. Generator Training

To train the parameter generator, model generation with
advances in diffusion process (Peebles et al., 2022; Jiang
et al., 2024a) recently stands out from traditional techniques
like network architecture search (Annavajjala et al., 2024;
Cai et al., 2018) and neural network compression (Han
et al., 2015; Wang et al., 2022), beyond image, video and
other multimodal tasks. Different from generating a whole
backbone model like a CNN and an MLP (Peebles et al.,
2022; Li et al., 2024b), LoRA’s size of parameters shows a
minor feature space and is easier to compress and predict
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by controlling the rank of the adapter r. As a more efficient
paradigm for generating weights, we present the details of
DiT training.

Input learnable parameters. Through the data preparation
in Section 4.2, we could obtain the pairs Tk = (∆Wk, tk).
We set LoRA weights ∆Wk as input, flatten all parame-
ters into a one-dimensional vector and chunk/tokenize the
parameters in each layer. We add augmentation and the
random noise while inputting.

Input conditions. Existing works (Chen et al., 2023; Li
et al., 2024b) build the connection between model weights
and textual prompts for image classification tasks by pow-
erful pre-trained CLIP (Radford et al., 2021). However,
physiological signals are chronological data points and no
such existing encoder bridges the text-to-time relationships
as CLIP. To compress the input space and bridge the time se-
ries with LoRA weights, we propose shapelet prototypes as
a substitute. Shapelet is a set of discriminative subsequences
of a time series (Ye & Keogh, 2009), each of which is ex-
pected to represent a class best. Therefore, shapelet can help
to better understand the meaning of the time series and is
widely used in the field of time series classification (Li et al.,
2021; Zhang & Sun, 2022; Liu et al., 2024d). Following
the existing works (Le et al., 2022; 2024), we slice the time
series by the Offline shapelet Discovery (OSD) method to
get the shapelets Si(ti), presented in Appendix A.1. For
each class, we set a uniform amount of shapelets.

Diffusion training. We adopt DiT as the generator to train.
We present the basic training process of the DiT model as:

Diffusion forward pass. The forward process is adding
noise to the initial sample from xt−1 to xt, by condition c.
The probability of transitioning is modeled as a Gaussian
distribution:

q(xt|xt−1, c) = N (xt;
√
1− βtxt−1, βtI) (8)

where βt are the timestep-dependent noise levels, and I rep-
resents the identity matrix. The complete forward process
is denoted as:

q(x1:T |x0, c) =

T∏
t=1

q(xt|xt−1, c) (9)

Diffusion reverse process. The reverse process reconstructs
the original sample from the noisiest state xT with condition
c:

pϕ(xt−1|xt, c) = N (xt−1;µϕ(xt, t, c),Σϕ(xt, t, c))
(10)

Diffusion training objective. The training objective to
predict corresponding LoRA weights is to minimize the

simplified variational lower bound, denoted as:

min
ϕ

L(ϕ)
∑
k∈K

∑
j∈J

||∆Wk −Gϕ(S(tk),∆W j
k )||

2
2, (11)

where Gϕ is the generator model, S(tk)is the shapelets
of task tk inputted as conditions, noised LoRA weights is
∆W j

k . j ∈ [J ] denotes the timestep in the diffusion forward
noising process. The learning objective of diffusion is to
minimize the simplified variational lower bound, which
reduces to predicting the denoised model parameters.

4.4. Personalized Inference

Given the trained generator network Gϕ, we could deploy
on local medical users. The user provides raw data to the en-
coder to obtain shapelets as conditions. With the input con-
ditions, the generator Gϕ could synthesize suitable low-rank
adapter weights ∆W ′. Combined with the original TSFM,
the expert could conduct a diagnosis of disease by updated
TSFM, which only requires the cost of generator and foun-
dation model inference. The advantage of our personalized
inference lies in these aspects: 1) Lower computing over-
head, compared with other works, in local deployment, we
only add the cost of the generating process instead of costly
computation of foundation model fine-tuning. 2) Privacy
preservation, our method does not need to upload sensitive
data to the server for pre-training, the training for the DiT
is also based on public physiological signals. DiT’s power-
ful generalization capability enables the entire personalized
model generation process to be performed locally. 3) The
best of two worlds with public and private data. Our data
preparation and generator training depend on public data,
but our method can adapt to private data. The full utilization
of both data boots the overall performance.

5. Experiments
5.1. Experimental Setup

Datasets and tasks To fully evaluate performance, we con-
sider four typical physiological signals classification tasks,
covering different signals. We randomly sample 60% of the
data for training, 20% for validation, and 20% for testing
following the existing work (Zhang et al., 2024), for all
evaluation tasks. The specific datasets are as follows, and
the introduction of each task is shown in Appendix A.2.

Sleep-state detection. Sleep-EDF dataset (Kemp et al., 2000)
is a public dataset containing multiple sleep records. These
records are collected through multi-channel physiological
signals including EEG, EOG, and EMG. For Sleep-EDF, we
consider five class sleep stages: Wake, N1 (Light sleep stage
1), N2 (Light sleep stage 2), N3 (Deep sleep stage), and
REM (Rapid Eye Movement) sleep. Parts of previous work
adopt 30-minute data before and after in-bed, for fairness,
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Table 1. Results in terms of test accuracy (%) performance on Sleep-state detection. Blue/bold fonts highlight the best baseline/our
method. We evaluate classification accuracy, macro F1 score and kappa value.

Method Overall Metrics Perclass F1 Score

Metrics Acc. MF1 κ Wake N1 N2 N3 REM

Informer2022 71.91±1.82 69.93±1.17 55.28±2.25 65.63±1.77 52.85±3.01 52.37±2.08 68.76±1.89 53.82±2.30

FEDformer2022 56.58±2.39 50.35±2.12 51.78±1.02 60.50±3.25 40.89±1.74 55.53±3.34 49.13±2.63 46.52±2.15

SimMTM 2023 65.39±1.40 55.53±1.92 52.47±2.84 63.90±2.22 38.44±1.67 50.73±2.19 58.48±3.53 66.89±2.30

TimesNet2023 77.95±2.67 70.28±2.42 68.36±1.83 80.48±2.91 57.24±2.78 70.45±1.65 68.39±3.10 75.73±3.28

PatchTST2023 74.51±1.30 68.19±2.53 66.87±2.47 77.24±2.39 56.04±2.85 66.30±4.10 70.35±2.34 71.24±2.97

iTranformer2024 76.43±2.47 63.49±1.77 68.20±2.91 79.38±2.68 53.05±2.43 65.32±2.73 60.45±1.59 58.06±3.61

OneFitsAll2023 71.86±3.16 65.04±1.51 63.28±2.33 80.24±3.09 49.17±2.54 68.49±2.02 62.47±2.35 66.98±3.49

Time-LLM2023 80.95±2.68 71.22±2.34 72.63±1.52 82.56±2.45 59.38±2.23 65.82±3.52 73.40±2.31 76.38±2.90

MOMENT2024 81.90±1.42 72.72±2.82 73.12±1.17 78.62±2.88 54.69±2.56 77.07±1.89 76.34±2.72 75.05±4.11

SleepDG2024 79.48±3.16 71.95±2.30 73.43±2.44 81.29±2.72 64.52±1.03 72.30±2.45 69.24±2.93 69.75±3.42

SleepFM2024 81.65±2.05 74.26±3.40 72.03±3.97 82.55±2.93 61.24±2.56 76.52±3.15 74.38±2.27 76.93±2.04

Our PhysioPFM 86.39±2.54 76.27±2.98 77.36±3.14 83.04±2.75 66.71±2.81 76.43±1.94 77.29±2.90 78.38±2.31

we do not adopt this additional cropping, just raw data.

Emotion detection. DREAMER (Katsigiannis & Ramzan,
2017) is a multimodal physiological signal library consisting
of EEG and ECG signals recorded during emotional arousal
via audiovisual stimulation. Signals were recorded from 23
participants, along with the participants’ self-assessment of
their affective state after each stimulation, including valence,
arousal, and dominance.

Arrhythmia diagnosis. The MIT-BIH arrhythmia
dataset (Moody & Mark, 2001) includes more than 4,000
24-hour periodic dynamic ECG signals of 47 test individual
units, 48 recording files with a duration of approximately
30 minutes, and a total of 109,500 heartbeats, of which
abnormal heart beats to account for approximately 30%.

Freezing of Gaits Detection. The FOG dataset (Li, 2021)
collects multimodal data including EEG, EMG, ECG, skin
conductivity (SC), and acceleration (ACC) during walking
tasks using a high-quality hardware system that integrates
commercially available and self-designed sensors. A total
of 12 PD patients completed standard hospital experiments.

Baselines. We take three groups of methods as base-
lines. (1) vanilla deep learning technique for time series:
SimMTM (Dong et al., 2023), TimesNet (Wu et al., 2023a),
iTtransformer (Liu et al., 2024a), PatchTST (Nie et al.,
2023), FEDformer (Zhou et al., 2022), Informer (Zhou
et al., 2021). (2) time series foundation model: OneFit-
sAll (Zhou et al., 2023), Time-LLM (Jin et al., 2024), MO-
MENT (Goswami et al., 2024). (3) for each downstream
task, we adopt specialized methods: SleepFM (Thapa et al.,
2024) and SleepDG (Wang et al., 2024a) for sleep state de-
tection, LSTM-MLP (Wang et al., 2023) and OMHGL (Pan
et al., 2023) for emotion detection, DeepArr (Midani et al.,
2023) for arrhythmia detection, Extra Tree Classifier (Goel
et al., 2023) for FoG task.

Implement details. For generative model architecture, we
adopt GPT-2 (Radford et al., 2019) as the diffusion trans-
former with 12 layers. During training, we use AdamW with
a batch size of 64, a learning rate of 4e-4, 1000 diffusion
steps, and a linear noise scheduler ranging from 0.0001 to
0.012. we divide the LoRA weights into chunks by layer,
and the size of each chunk is 576. We set the rank of the
adapter as 4. For the pre-trained time series foundation
model, we adopt the 6-layer GPT2-based backbone (Rad-
ford et al., 2019; Liu et al., 2024b), pre-trained by UTSD
datasets (Liu et al., 2024b). We collect public physiological
signal datasets for training in the data preparation process,
shown in Table 6. The target task’s data will be removed
from generator training. We further prepare subsets and
sub-classes of datasets to expand the number of tasks. We
adopt the average result of 3 times.

5.2. Main Results

In Table 1-4, we evaluate the performance of our proposed
method against diverse baseline methods including the gen-
eral deep learning time series model, time series foundation
model with local training, pre-trained time series model for
zero-shot deployment and specialized methods for down-
stream tasks. The results show that PhysioPFM consis-
tently outperforms all baseline methods on all four tasks,
demonstrating the remarkable personalization ability of the
proposed method. Specifically, for sleep state detection in
Table 1, PhysioPFM achieves 4.49% surpassing the best
baselines MOMENT. PhysioPFM also leads with the best
performance in the F1 score and is stable in the classifica-
tion ability for each class, even in the tough class N1 light
sleep stage with 2.2% advantages.

For the evaluation of DREAMER datasets in Table 2,
our PhysioPFM method achieves the best results in emo-
tion recognition with the averaged accuracy of 73.97%,
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Table 2. Results in terms of test accuracy (%) performance on emotion detection. Blue/bold fonts highlight the best baseline/our
method. We evaluate the accuracy, F1 score and AUC.

Dataset Valence Arousal Dominance

Metrics Acc. F1 AUC Acc. F1 AUC Acc. F1 AUC

Informer2022 62.93±2.85 70.38±4.08 65.53±2.18 75.20±3.12 80.87±2.78 77.39±4.77 76.30±2.30 85.42±2.83 83.25±3.29

FEDformer2022 55.30±3.78 63.29±2.85 60.53±2.93 70.34±4.34 75.85±2.91 72.56±3.66 72.26±2.78 81.19±3.34 80.04±3.96

SimMTM 2023 60.89±2.54 75.53±3.40 67.20±3.92 76.64±2.89 83.49±3.73 77.24±3.51 76.44±2.07 86.56±3.87 82.17±2.88

TimesNet2023 70.32±2.87 78.98±3.38 75.35±4.23 78.95±3.15 85.67±3.59 78.19±2.84 81.26±2.54 85.07±3.27 84.72±3.98

PatchTST2023 62.35±3.14 72.80±4.05 66.73±2.27 71.29±3.63 82.24±2.70 75.54±3.32 75.47±2.85 82.54±3.61 79.93±4.41

iTranformer2024 67.93±4.27 77.42±2.38 75.60±3.88 80.59±2.72 84.05±5.45 80.82±3.76 80.20±4.17 83.91±2.10 82.94±3.98

OneFitsAll2023 64.04±2.32 73.43±3.03 64.23±2.22 75.03±4.28 81.29±5.14 72.39±2.05 77.46±3.88 85.09±4.29 83.40±3.46

Time-LLM2023 67.49±2.93 70.35±3.89 76.29±3.02 77.32±4.66 84.05±3.85 74.21±3.39 80.49±2.03 83.35±3.49 84.31±4.76

MOMENT2024 69.20±3.85 77.34±4.40 74.22±2.68 80.51±2.87 83.46±2.56 75.32±4.39 79.39±5.30 86.56±3.02 86.90±2.45

LSTM-MLP2023 67.60±3.62 78.36±4.61 62.21±2.06 77.78±3.37 84.90±3.92 78.24±4.74 79.11±2.69 89.63±5.53 82.55±3.10

OMHGL2023 71.29±3.13 66.20±2.95 70.09±2.29 79.53±2.62 79.21±3.41 78.83±4.74 79.41±2.35 83.52±4.30 80.69±1.36

Our PhysioPFM 73.97±2.36 79.25±2.56 79.41±1.94 82.19±2.73 86.65±4.05 80.84±3.16 84.45±4.35 91.53±2.82 89.61±3.15

Table 3. Results in terms of model performance on arrhythmia
diagnosis. We evaluate accuracy, precision, recall and F1.

Methods/Metrics Acc. Prec. Rec. F1

Informer 77.54±2.30 74.20±2.79 78.34±3.42 76.21±2.39

FEDformer 60.35±1.95 55.46±3.44 60.92±2.18 58.06±2.57

SimMTM 80.27±3.49 82.37±2.35 79.50±3.52 80.90±2.19

TimesNet 81.33±2.18 78.93±2.67 82.45±1.72 80.65±2.06

PatchTST 70.53±3.41 73.65±2.78 67.45±4.26 70.41±2.85

iTranformer 75.56±2.96 78.95±2.67 74.41±3.68 76.61±2.94

OneFitsAll 75.63±3.04 71.90±2.34 74.45±3.81 73.15±2.79

Time-LLM 82.91±1.71 84.22±3.45 81.02±2.51 82.58±2.90

MOMENT 83.25±2.09 86.92±2.31 83.57±2.82 85.21±2.69

DeepArr 86.55±2.62 83.34±2.75 85.95±3.18 84.62±2.71

Ours PhysioPFM 89.94±1.53 88.42±3.19 90.72±2.81 89.55±2.40

82.19% and 72.3% of valence, arousal and dominate recog-
nition tasks, respectively. Our method benefits from the
quick adaption ability to different sub-tasks with pre-trained
knowledge. In some conditions, baselines relying on large
language model parameters like OneFitsAll and Time-LLM
possess less knowledge of specialized downstream tasks.
So, with an LLM weight as a starting point, they are inferior
to other transformer-based methods such as iTtransformer.

We further investigate the performance of arrhythmia diag-
nosis and FoG detection on Table 3,4. For arrhythmia diag-
nosis, PhysioPFM leads with an average score of 89.94%,
which is a notable increase over the second-best performing
method by 3.39%. For FoG detection, PhysioPFM achieves
SOTA performance compared to all the baselines. It shows
that PhysioPFM could adapt to different downstream tasks
without heavy local training.

5.3. Ablation Study

To further show the effectiveness of each proposed compo-
nent, we conduct a comprehensive ablation study on Phys-
ioPFM. The results shown in Table 5 demonstrate that all

Table 4. Results of model performance on Freezing of Gaits
Detection. We evaluate accuracy, precision, recall and F1.

Methods/Metrics Acc. Prec. Rec. F1

Informer 64.25±1.85 66.34±2.56 74.21±2.96 70.05±2.32

FEDformer 59.80±3.44 57.67±2.85 68.15±4.09 62.47±3.48

SimMTM 70.61±2.20 69.25±3.71 72.47±5.23 70.82±3.72

TimesNet 72.19±2.26 70.88±3.56 73.79±2.74 72.30±3.47

PatchTST 66.90±4.42 67.23±5.71 64.75±3.82 65.96±2.52

iTranformer 74.14±3.58 75.76±2.40 75.60±2.94 75.67±3.38

OneFitsAll 62.52±3.27 60.94±4.43 71.30±2.71 65.71±3.51

Time-LLM 71.62±1.65 72.56±3.46 71.11±4.23 71.82±3.21

MOMENT 73.03±2.63 74.55±3.97 76.36±2.85 75.44± 4.68

Extra Tree Classifier 73.95±2.44 74.09±2.96 75.35±2.64 74.71±2.03

Ours PhysioPFM 81.32±2.65 80.77±3.40 78.24±2.71 79.48±3.01

components contribute to the overall performance. For the
setting of ablation, we first test the validation of anchored-
classifier loss. Then we use public data with the same task as
Shapelet (if we have the same domain task, else an average
with 5 random ones), instead of the local data’s shapelets.
We also evaluate the raw TSFM without generating cus-
tomized LoRA weights. The results show that ETF classier
has a great impact on model performance. A suitable tem-
perature for contrastive learning also contributes with 1.87%
to 4.63% advantages. We can also find that if the train-
ing is allowed, pre-trained TSFM could show great power
in most cases after fine-tuning. Considering the variant
without LoRA, we could acknowledge that the generated
LoRA weights could provide a comparable improvement
with direct training. The improvement from the generated
LoRA enhances the pre-trained TSFM and distinguishes
ours from the generic TSFM. Although shapelet has minor
impacts compared with other modules, it still illustrates the
importance of personalization.

Impact of Rank. We evaluate the impact of LoRA rank
on two downstream tasks in Figure 4(a). The results show
that increasing r from 1 to 4 brings significant performance
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Figure 4. PhyisoPFM capability analysis. Experiments of (a) and (b) are conducted on sleep state detection and arrhythmia diagnosis.
(c) is conducted on sleep state detection.
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Figure 5. Model performance on efficiency comparison. The
adaptation time represents the sum of training time (if needed) and
inference time.

Table 5. Ablation study of PhysioPFM’s modules in terms of
accuracy.

Methods/Dataset Sleep-EDF MIT-BIH FoG

TSFM with local training 87.15 ±1.55 88.59±1.34 83.71±2.25

Ours w/o Lac 82.47±2.01 84.30±1.52 78.56±3.78

Ours Lac, τ = 0.1 84.64±1.92 86.10±2.16 79.45±3.96

Ours Lac, τ = 10 81.76±2.31 85.52±2.84 78.37±1.60

Ours w/o local shapelets 85.94±2.05 87.43±1.65 79.96±3.21

Ours w/o local LoRA 82.08±2.37 84.17±2.42 76.45±3.04

Our PhysioPFM 86.39±2.54 89.94±1.35 81.32±2.65

improvements while increasing r from 8 to 16 provides no
further enhancement. It shows that a larger r is not necessar-
ily better, and the size and difficulty of the dataset matters.
Smaller r can also achieve acceptable performance. While
a larger r represents the increase in the size of parameters
that LoRA needs to train and generate. A rank that balances
computational overhead and performance is better.

Impact of training samples. We consider different sizes
of samples for the generator training. Here, the training
samples denote the sub-task number, i.e. the number of the
map of task and LoRA weights. The result in Table 4(b)
shows that as the number of training samples increases, the
performance of the model also improves. More training
on bringing the link between conditions and weights con-
tributes to the ability of the diffusion transformation. How-
ever, the number of map items relies on collecting public
physiological signals.

Training text and series as prompts. In the original design
of PhysioPFM, the shapelets are used for the prompts. We
investigate the different prompts as input in Table 4(c). In a
lower prompt size, shapelets have comparable performance
with the whole time series sequence. While the whole time
series representation may be more complex, and inputting
more prompts could have a negative impact on learning
the mapping relationship between time series and LoRA
weights. For texts, without robust pre-trained language
encoders for time series like CLIP, the difficulty of learning
is greater for textual prompts.

5.4. Adaption Efficiency

As a critical issue for medical practice, we conduct a com-
puting consumption study for baselines in the FoG task. In
Figure 5, we observe three-dimensional performance: accu-
racy, adaptation time, and memory costs. Here, we define
the adaptation time, for local fine-tuning-based methods, it
is the training time and inference time, for other methods, it
only counts the inference cost. For the training time on the
local side, our PhysioPFM is 0. We can find that FEDformer
has the most time and computation costs. Although One-
FitsAll achieves notable accuracy, training local data on the
GPT-2 backbone is also time-consuming. Some lightweight
models could train and predict quickly, but lose accuracy.
Our PhysioPFM acquires the cost of generator inference
and backbone inference, reaching a remarkable balance in
three indexes, which could be suitable for clinical practice.

6. Conclusion
In this work, we introduce PhysioPFM, a physiological sig-
nal foundation model for train-once-for-all personalization.
PhysioPFM obtains powerful neural network diffusion per-
formance by pre-training on public medical time series. By
simply inputting local private sensitive medical time series,
customized LoRA weights can be generated without train-
ing, supporting the efficient personalization of time series
foundation models. With the advantages of low overhead,
privacy protection and efficient performance, PhysioPFM
proposes a new framework for clinical diagnosis of medical
physiological signals.
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A. Appendix
A.1. Offline Shapelet Discovery

Considering that most existing shapelets mining methods require online training, that is, training the classification model
while improving the mining quality, and our method does not need to directly use shapelets as a training feature but only as
an input condition for the generator, we adopted an existing Offline Shapelet Discovery (Le et al., 2022; 2024)

In the shapelet extraction stage, OSD identifies shapelet candidates using Perceptually Important Points (PIPs). It starts
by including the first and last points of the time series in the PIPs set. Then, it repeatedly adds the point with the highest
reconstruction distance to the set. Each time a new PIP is added, new shapelet candidates are created using three consecutive
PIPs. The number of PIPs determines the size of candidates.

In the shapelet selection stage, OSD selects shapelets by ensuring an equal number is chosen for each class. For each
shapelet candidate, we calculate its Pairwise Shapelet Distance (PSD), denoted as:

PSD(X,Si) =
T−l+1
min
j=1

(CID(T [j : j + l − 1], Si)) (12)

where X is the given series of length T , a subsequence Si = s1, ..., sl of length l, with l ≤ T , CID is the complexity-
invariant distance. This distance is used to compute the ”information gain,” which measures how well a shapelet separates
classes. The shapelets with the highest information gain are selected and added to the final shapelet pool. To compress the
input dimension, we set a fixed number n for all classes {Sc

i}ni=1 ∀c ∈ [C] as shapelet prototypes.

A.2. Downstream Tasks

Sleep-state detection. Sleep is crucial for human health. It accounts for one-third of a human lifetime. Effective diagnosis
and treatment of patients with sleep-related disorders is currently a pressing and intensively researched topic in the healthcare
community (Zhang & Wu, 2017; Dong et al., 2017).

Emotion detection. Emotion detection is the process of identifying human emotions and has been applied in many fields
such as healthcare, safe driving, and the metaverse (Ayata et al., 2020). With the rapid development of portable wearable
physiological signals have been conveniently monitored and analyzed online throughout the day (Pan et al., 2023).

Arrhythmia diagnosis. Cardiovascular disease has become the leading cause of death from non-communicable diseases
worldwide, with more people dying from cardiovascular disease each year than from any other cause of death. Arrhythmia
is a common cardiovascular syndrome. Abnormal origin of cardiac electrical stimulation, abnormal conduction sequence,
and frequency changes can all cause arrhythmia, which is a major challenge currently faced by the clinical treatment of
cardiovascular disease. Different types of abnormal heart rhythms will show different states in the electrocardiogram
waveform and frequency. Studying electrocardiogram signals can diagnose a variety of arrhythmia symptoms.

Freezing of Gaits Detection. Freezing of gait (FoG) is a common symptom of Parkinson’s disease (PD) and usually involves
an inability to cope with concurrent cognitive, limbic, and motor inputs, resulting in movement disruption (Tăuţan et al.,
2020). Current clinical FoG assessments are self-report diaries by patients and manual video analysis by experts (Pham
et al., 2017).

A.3. Detailed Algorithm

We describe the detailed algorithm of the diffusion transformer training process, as follows Algorithm 1:

A.4. Details of Baselines

We introduce the baselines for comparison:

SimMTM (Dong et al., 2023), a pre-trained framework on time series for recovering masked time points via weighted
aggregation of multiple neighbours outside the manifold.

TimesNet (Wu et al., 2023a), analyzes time series changes from a multi-periodicity perspective, expands one-dimensional
time series data to two-dimensional space, and uses advanced visual backbone networks for feature extraction.

iTtransformer (Liu et al., 2024a), this method embeds the entire time series of each variable into tokens independently.
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Algorithm 1 LoRA generator training

1: Input: Number of training runs N , training sample map T = {(∆Wk, tk)}Kk=1, diffusion process length J , diffusion cumulative
variance schedule ᾱ.

2: Initialize: Learnable parameters ϕ for G
3: for i = 1, 2, ..., N do
4: # Sample a mini-batch of data from data map
5: (∆Wk, tk) ∼ T
6: # Noise LoRA parameters
7: j ∼ U({1, ..., J})
8: ˜∆W j

k ∼ N (
√
ᾱj∆Wk, (1− ᾱj)I)

9: # Compute the predictions
10: ˆ∆Wk ← Gϕ(S(tk),∆W j

k , j)
11: # Compute the loss
12: loss← || ˆ∆Wk −∆Wk||22
13: # Update DiT’s parameters
14: ϕi+1 ← update(loss;ϕ)
15: end for

PatchTST (Nie et al., 2023), processes each dimension of the multivariate time series separately, that is, inputs each
dimension into the Transformer Backbone separately, and then splices the obtained prediction results along the dimension
direction.

FEDformer (Zhou et al., 2022), reduces the distribution shifts between input and output through seasonal-trend decomposi-
tion; and proposes a model structure that applies an attention mechanism in the frequency domain to increase robustness to
noise.

Informer (Zhou et al., 2021), proposes ProbSpare Self-Attention effectively replaces the traditional Self-Attention.

OneFitsAll (Zhou et al., 2023), trains time series data on the pre-trained GPT-2 weights.

Time-LLM (Jin et al., 2024), freezes the LLM backbone, and then uses two learnable modules (Patch Reprogramming and
Output Projection) to reprogram the input and output respectively.

MOMENT (Goswami et al., 2024). collects a large and diverse collection of public time series, Time-series Pile. Then it
uses a lightweight reconstruction head to reconstruct the embedding of the input time series for pre-training.

SleepFM (Thapa et al., 2024), curates a large polysomnography dataset of multi-modal sleep recordings and trains the
model by contrastive learning.

SleepDG (Wang et al., 2024a), designs an epoch-level feature alignment to align the feature distribution of each single sleep
epoch between different domains and designs a sequence-level feature alignment to minimize the difference in sequence
features between different domains.

LSTM-MLP (Wang et al., 2023), proposes an emotion recognition method based on feature fusion of single-lead EEG and
ECG signals using various time domain, frequency domain and nonlinear features.

OMHGL (Pan et al., 2023), includes multimodal hypergraph fusion and online hypergraph learning. Multimodal hypergraph
fusion can fuse multimodal physiological signals and effectively obtain emotion-related information. Online hypergraph
learning aims to learn new information from online data by updating hypergraph projection.

DeepArr (Midani et al., 2023), combines feed-forward and recurrent deep neural networks using a sequential fusion
approach to exploit relevant feature representations of arrhythmias in electrocardiogram (ECG) signals.

Extra Tree Classifier (Goel et al., 2023), combines the integration technology of multiple prediction methods to improve
the performance of the EEG signal gait freezing detection model

A.5. Evaluation Metrics

In this section, we describe the evaluation metrics we adopted in the experiments for classification tasks. We first introduce
the concept of a confusion matrix. TP (True Positive): a correctly predicted positive example. That is, the true value of the
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data is a positive example, and the predicted value is also a positive example; TN (True Negative): a correctly predicted
negative example. That is, the true value of the data is a negative example, and the predicted value is also a negative example;
FP (False Positive): a wrongly predicted positive example. That is, the true value of the data is a negative example, but it is
wrongly predicted as a positive example; FN (False Negative): a wrongly predicted negative example. That is, the true value
of the data is a positive example, but it is wrongly predicted as a negative example.

Accuracy. Accuracy refers to the ratio of correctly classified samples to the total number of samples.

Accuracy =
TP + TN

TP + FP + TN + FN
. (13)

Precision. Precision refers to the proportion of samples that are positive among the samples predicted to be positive.

Precision =
TP

TP + FP
. (14)

Recall. Recall refers to the ratio of the actual number of positive samples in the predicted positive samples to the total
number of positive samples in the samples.

Recall =
TP

TP + FN
. (15)

F1. The F1 score is a weighted average of precision and recall.

F1 = 2
Precision×Recall

Precision+Recall
. (16)

Macro F1. The Macro F1 score refers to the average of each class’s F1 score.

Macro− F1 =
1

N

N∑
i=1

F1i (17)

Kappa coefficient. κ is a method used to evaluate the consistency of classification models.

P0 =
TP + TN

TP + FP + TN + FN
= Accuracy

Pe =
(TP + FP )× (TP + FN) + (FN + TN)× (FP + TN)

(TP + TN + FP + FN)2

κ =
P0 − Pe

1− Pe

(18)

AUC. AUC (Area Under the Curve) is an indicator for evaluating the performance of binary classification models, usually
used as the area under the ROC curve (Receiver Operating Characteristic curve). AUC represents the ability of the classifier
to rank positive examples before negative examples.

AUC =

∫ 1

0

Precision(Recall−1(u))du (19)

A.6. Public Datasets

In Table 6, we provide statistical information on collected public physiological signals, mainly from (Zhang et al., 2024;
Qiu et al., 2023) and PyhsioNet (Goldberger et al.). We exclude the datasets for experiment evaluations from pre-training.

B. Theoretical analysis
The proof for Proposition 3.1 is given as:
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Table 6. Statistics of the physiological benchmark datasets.
Task Name Modalities # of subjects Sampling rate

Arrhythmia Diagnosis

MIT-BIH arrhythmia dataset (Moody & Mark, 2001) ECG 1 360Hz
PTB-XL (Wagner et al., 2020) ECG 71 500Hz

European ST-T database (Taddei et al., 1992) ECG 2 250Hz
AF classification challenge 2017 (Clifford et al., 2017) ECG 4 300Hz

PTB diagnostic ECG (Wagner et al., 2020) ECG 9 N/A
AHA (Moody & Mark, 1982) ECG 8 250Hz
CPSC2018 (Liu et al., 2018) ECG 8 500Hz

Denoise MIT-BIH noise stress test (Moody et al., 1984) ECG 1 360Hz

Emotion Detection

CLAS (Markova, 2020) ECG,BVP,EMG,GSR 60 256HZ
SWELL (Koldijk et al., 2014) ECG,SC 25 2048HZ

ASCERTAIN (Subramanian et al., 2016) EEG, ECG, EDA 58 N/A
BIO-VID-EMO DB (Zhang et al., 2016) ECG, EMG, SC 86 N/A

DREAMER (Katsigiannis & Ramzan, 2017) EEG, ECG 23 256Hz

Seizure Detection Hospital (TUH) (Obeid & Picone, 2016) EEG 315 200Hz

Sleep-state Detection

Sleep-EDF (Kemp et al., 2000) EEG, EOG, EMG 22 100Hz
SHHS (Zhang et al., 2018) EEG, EOG, EMG 5804 12550Hz

ISRUC (Khalighi et al., 2016) EEG, ECG, EOG, EMG 118 200Hz
HMC (Alvarez-Estevez & Rijsman, 2021) EEG, ECG, EOG, EMG 151 256Hz

Motor Imagery BCI Competition IV (Blankertz et al., 2006) EEG, EOG 9 250Hz
EEG Motor Movement/Imagery Dataset (Schalk et al., 2004) EEG, EOG 109 160Hz

Freezing of Gaits Li et. al (Li, 2021) EEG, EMG, ECG, SC, ACC 12 1000Hz

Cyclic Alternating Pattern CAP (Terzano et al., 2001) EEG, ECG, EOG, EMG 108 512Hz

Sleep Apnea MIT-BIH PSG (Ichimaru & Moody, 1999) EEG, ECG, EOG, EMG 18 250Hz
UCDDB (Goldberger et al., 2000) EEG, ECG, EOG, EMG 25 128Hz

Stress and Affect Detection WESAD (Schmidt et al., 2018) ECG, EMG 15 700Hz

Proof. Suppose C class prototype vectors p1, p2, . . . , pC ∈ Rd satisfy: Unitization: |pi| = 1, symmetric inner product
constraint: pTi pj = − 1

C−1 ,∀i ̸= j. Define the Gram matrix G ∈ RC×C , where:

Gij = pTi pj =

{
1 if i = j,

− 1
C−1 if i ̸= j.

The matrix has the following properties: the diagonal elements are 1 and the off-diagonal elements are − 1
C−1 . The matrix

rank is d, and it is a symmetric semi-positive matrix (because the vector is in d-dimensional space). The above Gram matrix
corresponds to the Simplex Equiangular Tight Frame. Its core features are: all off-diagonal elements are equal, that is, the
angles between vectors are consistent, the vectors are evenly distributed in the feature space, and the minimum interval
between classes is maximized. This structure is the only configuration that satisfies symmetry and minimizes the similarity
between classes. The angle between any two vectors θ satisfies:

cos θ = pTi pj = − 1

C − 1
.

In classification problems, the decision boundary is determined by the geometric relationship of the prototype vectors. For a
linear classifier, the decision boundary for two categories i and j is:{

x ∈ Rd | (pi − pj)
Tx+

∥pj∥2 − ∥pi∥2

2
= 0

}
.

Since ∥pi∥ = ∥pj∥ = 1, the boundary is simplified to:

(pi − pj)
Tx = 0.

The margin between the two boundaries is:

Margin =
2

∥pi − pj∥
.
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Calculate ∥pi − pj∥2 = 2(1− pTi pj) = 2
(
1 + 1

C−1

)
, so:

Margin =
2√

2
(
1 + 1

C−1

) =

√
2(C − 1)

C
.

When all class prototypes meet the symmetry condition, the intervals between all classes are consistent and reach the
maximum possible value, so the decision boundary is optimal.
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